51
|
Matos R, Santos-Leite L, Cruz F, Charrua A. Early in life stressful events induce chronic visceral pain and changes in bladder function in adult female mice through a mechanism involving TRPV1 and alpha 1A adrenoceptors. Neurourol Urodyn 2024; 43:533-541. [PMID: 38178640 DOI: 10.1002/nau.25376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic pain disorder with multiple phenotypes, one of which is associated with an overactive adrenergic system. OBJECTIVE We investigated if the maternal deprivation model (MDM) in female and male mice mimics IC/BPS phenotype and if the overstimulation of alpha 1A adrenoceptor (A1AAR) and the crosstalk with transient receptor potential vanilloid-1 (TRPV1) are involved in the generation of pain and bladder functional changes. DESIGN, SETTING, AND PARTICIPANTS C57BL/6 female and male mice were submitted to MDM. TRPV1 knockout (KO) mice were used to study TRPV1 involvement. Silodosin administration to MDM mice was used to study A1AAR involvement. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary outcome was chronic visceral pain measured by Von Frey filaments analysis (effect size: 3 for wild type, 3.9 for TRPV1 KO). Bladder changes were secondary outcome measurements. Unpaired T test, Mann-Whitney test, one-way analysis of variance followed by Newman-Keuls multiple comparisons test, and Kruskal-Wallis followed by Dunn's multiple comparisons test were used where appropriate. RESULTS AND LIMITATIONS MDM induces pain behavior in female and not in male mice. Bladder afferents seem sensitize as MDM also increase the number of small volume spots voided, the bladder reflex activity, and urothelial damage. These changes were similarly absent after A1AAR blockade with silodosin or by TRPV1 gene KO. The main limitation is the number/type of pain tests used. CONCLUSIONS MDM induced in female mice is able to mimic IC/BPS phenotype, through mechanisms involving A1AAR and TRPV1. Therefore, the modulation of both receptors may represent a therapeutic approach to treat IC/BPS patients.
Collapse
Affiliation(s)
- Rita Matos
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, Porto, Portugal
| | - Liliana Santos-Leite
- Common Resources Department, Animal Resources Centre, Faculty of Medicine of University of Porto, Porto, Portugal
| | - Francisco Cruz
- Department of Surgery e Physiology, Faculty of Medicine of University of Porto, Porto, Portugal
- Translational Neurourology Group, Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
- Department of Urology, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Ana Charrua
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, Porto, Portugal
- Translational Neurourology Group, Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| |
Collapse
|
52
|
Pluma-Pluma A, García G, Murbartián J. Chronic restraint stress and social transfer of stress produce tactile allodynia mediated by the HMGB1/TNFα/TNFR1 pathway in female and male rats. Physiol Behav 2024; 274:114418. [PMID: 38042454 DOI: 10.1016/j.physbeh.2023.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Previous studies have shown the relevance of high mobility group box 1 protein (HMGB1) and tumor necrosis factor α (TNFα) in nerve or tissue injury-induced nociception. However, the role of these proteins in chronic stress and social transfer of stress (STS)-induced dysfunctional pain is not entirely known. The aim of this study was to determine the participation of the spinal HMGB1-TNFα signaling pathway and TNFα receptor 1 (TNFR1) in rats subjected to chronic restraint stress (CRS) and STS. Non-stressed female and male rats in contact with CRS rats increased sniffing behavior of the anogenital area, behavior related to STS. Rats subjected to CRS and STS reduced 50 % withdrawal threshold and reached the value of tactile allodynia after 21 days of stress. Rats return to the basal withdrawal threshold after 30 days without stress and return to allodynia values in only 5 days of stress sessions (priming). Female and male rats subjected to 28 days of CRS or STS were intrathecal injected with glycyrrhizin (inhibitor of HMGB1), thalidomide (inhibitor of the TNFα synthesis), and R7050 (TNFR1 antagonist), in all the cases, an antiallodynic effect was observed. Rats under CRS or STS enhanced HMGB1 and TNFR1 protein expression in DRG and dorsal spinal cord. Data suggest that the spinal HMGB1/TNFα/TNFR1 signaling pathway plays a relevant role in the maintenance of CRS and STS-induced nociceptive hypersensitivity in rats. These proteins could be helpful in developing pain treatments for fibromyalgia in humans.
Collapse
Affiliation(s)
- Alejandro Pluma-Pluma
- Departamento de Farmacobiología, Cinvestav, Calzada de los Tenorios 235, Colonia Granjas Coapa, 14330, South Campus, Mexico City, Mexico
| | - Guadalupe García
- Departamento de Farmacobiología, Cinvestav, Calzada de los Tenorios 235, Colonia Granjas Coapa, 14330, South Campus, Mexico City, Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, Calzada de los Tenorios 235, Colonia Granjas Coapa, 14330, South Campus, Mexico City, Mexico.
| |
Collapse
|
53
|
Yokose J, Marks WD, Kitamura T. Visuotactile integration facilitates mirror-induced self-directed behavior through activation of hippocampal neuronal ensembles in mice. Neuron 2024; 112:306-318.e8. [PMID: 38056456 DOI: 10.1016/j.neuron.2023.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/28/2023] [Accepted: 10/17/2023] [Indexed: 12/08/2023]
Abstract
Remembering the visual features of oneself is critical for self-recognition. However, the neural mechanisms of how the visual self-image is developed remain unknown because of the limited availability of behavioral paradigms in experimental animals. Here, we demonstrate a mirror-induced self-directed behavior (MSB) in mice, resembling visual self-recognition. Mice displayed increased mark-directed grooming to remove ink placed on their heads when an ink-induced visual-tactile stimulus contingency occurred. MSB required mirror habituation and social experience. The chemogenetic inhibition of dorsal or ventral hippocampal CA1 (vCA1) neurons attenuated MSB. Especially, a subset of vCA1 neurons activated during the mirror exposure was significantly reactivated during re-exposure to the mirror and was necessary for MSB. The self-responding vCA1 neurons were also reactivated when mice were exposed to a conspecific of the same strain. These results suggest that visual self-image may be developed through social experience and mirror habituation and stored in a subset of vCA1 neurons.
Collapse
Affiliation(s)
- Jun Yokose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - William D Marks
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
54
|
Ueno H, Takahashi Y, Mori S, Murakami S, Wani K, Matsumoto Y, Okamoto M, Ishihara T. Mice Recognise Mice in Neighbouring Rearing Cages and Change Their Social Behaviour. Behav Neurol 2024; 2024:9215607. [PMID: 38264671 PMCID: PMC10805542 DOI: 10.1155/2024/9215607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
Mice are social animals that change their behaviour primarily in response to visual, olfactory, and auditory information from conspecifics. Rearing conditions such as cage size and colour are important factors influencing mouse behaviour. In recent years, transparent plastic cages have become standard breeding cages. The advantage of using a transparent cage is that the experimenter can observe the mouse from outside the cage without touching the cage. However, mice may recognise the environment outside the cage and change their behaviour. We speculated that mice housed in transparent cages might recognise mice in neighbouring cages. We used only male mice in this experiment. C57BL/6 mice were kept in transparent rearing cages with open lids, and the cage positions were maintained for 3 weeks. Subsequently, we examined how mice behaved toward cagemate mice, mice from neighbouring cages, and mice from distant cages. We compared the level of interest in mice using a social preference test. Similar to previous reports, subject mice showed a high degree of interest in unfamiliar mice from distant cages. By contrast, subject mice reacted to mice from neighbouring cages as familiar mice, similar to cagemate mice. This suggests that mice housed in transparent cages with open lids perceive the external environment and identify mice in neighbouring cages. Researchers should pay attention to the environment outside the mouse cage, especially for the social preference test.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, Okayama 701-0193, Japan
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Sachiko Mori
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan
| |
Collapse
|
55
|
Rivera-Villaseñor A, Higinio-Rodríguez F, López-Hidalgo M. Astrocytes in Pain Perception: A Systems Neuroscience Approach. ADVANCES IN NEUROBIOLOGY 2024; 39:193-212. [PMID: 39190076 DOI: 10.1007/978-3-031-64839-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Astrocytes play an active role in the function of the brain integrating neuronal activity and regulating back neuronal dynamic. They have recently emerged as active contributors of brain's emergent properties such as perceptions. Here, we analyzed the role of astrocytes in pain perception from the lens of systems neuroscience, and we do this by analyzing how astrocytes encode nociceptive information within brain processing areas and how they are key regulators of the internal state that determines pain perception. Specifically, we discuss the dynamic interactions between astrocytes and neuromodulators, such as noradrenaline, highlighting their role in shaping the level of activation of the neuronal ensemble, thereby influencing the experience of pain. Also, we will discuss the possible implications of an "Astro-NeuroMatrix" in the integration of pain across sensory, affective, and cognitive dimensions of pain perception.
Collapse
Affiliation(s)
- Angélica Rivera-Villaseñor
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Queretaro, Qro., Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Qro., Mexico
| | - Frida Higinio-Rodríguez
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Queretaro, Qro., Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Qro., Mexico
| | - Mónica López-Hidalgo
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Queretaro, Qro., Mexico.
| |
Collapse
|
56
|
Ueno H, Takahashi Y, Murakami S, Wani K, Matsumoto Y, Okamoto M, Ishihara T. Effects of home-cage elevation on behavioral tests in mice. Brain Behav 2023; 14:e3269. [PMID: 38064177 PMCID: PMC10897499 DOI: 10.1002/brb3.3269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/06/2023] [Accepted: 09/24/2023] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Research reproducibility is a common problem in preclinical behavioral science. Mice are an important animal model for studying human behavioral disorders. Experimenters, processing methods, and rearing environments are the main causes of data variability in behavioral neuroscience. It is likely that mice adapt their behavior according to the environment outside the breeding cage. We speculated that mice housed on elevated shelves and mice housed on low shelves might have differently altered anxiety-like behavior toward heights. PURPOSE The purpose of this study was to investigate potential behavioral changes in mice raised at different heights for 3 weeks. Changes in behavior were examined using various experimental tests. RESULTS Mice housed on elevated shelves showed reduced anxiety-like behavior in a light/dark traffic test compared with mice housed on low shelves. There were no significant differences between the two groups in terms of activity, exploratory behavior, muscle strength, or depression-like behavior. CONCLUSIONS Our results indicate that different cage heights and corresponding light exposure may alter the anxiety-like behavior of mice in response to brightness. Researchers need to carefully control the cage height and light intensity experienced by the mice to produce reproducible test results.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical TechnologyKawasaki University of Medical WelfareOkayamaJapan
| | - Yu Takahashi
- Department of PsychiatryKawasaki Medical SchoolKurashikiJapan
| | - Shinji Murakami
- Department of PsychiatryKawasaki Medical SchoolKurashikiJapan
| | - Kenta Wani
- Department of PsychiatryKawasaki Medical SchoolKurashikiJapan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of MedicineDentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health SciencesOkayama UniversityOkayamaJapan
| | | |
Collapse
|
57
|
Keysers C, Gazzola V. Vicarious Emotions of Fear and Pain in Rodents. AFFECTIVE SCIENCE 2023; 4:662-671. [PMID: 38156261 PMCID: PMC10751282 DOI: 10.1007/s42761-023-00198-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/24/2023] [Indexed: 12/30/2023]
Abstract
Affective empathy, the ability to share the emotions of others, is an important contributor to the richness of our emotional experiences. Here, we review evidence that rodents show signs of fear and pain when they witness the fear and pain of others. This emotional contagion creates a vicarious emotion in the witness that mirrors some level of detail of the emotion of the demonstrator, including its valence and the vicinity of threats, and depends on brain regions such as the cingulate, amygdala, and insula that are also at the core of human empathy. Although it remains impossible to directly know how witnessing the distress of others feels for rodents, and whether this feeling is similar to the empathy humans experience, the similarity in neural structures suggests some analogies in emotional experience across rodents and humans. These neural homologies also reveal that feeling distress while others are distressed must serve an evolutionary purpose strong enough to warrant its stability across ~ 100 millions of years. We propose that it does so by allowing observers to set in motion the very emotions that have evolved to prepare them to deal with threats - with the benefit of triggering them socially, by harnessing conspecifics as sentinels, before the witness personally faces that threat. Finally, we discuss evidence that rodents can engage in prosocial behaviors that may be motivated by vicarious distress or reward.
Collapse
Affiliation(s)
- Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
58
|
Jiang J, Tan S, Feng X, Peng Y, Long C, Yang L. Distinct ACC Neural Mechanisms Underlie Authentic and Transmitted Anxiety Induced by Maternal Separation in Mice. J Neurosci 2023; 43:8201-8218. [PMID: 37845036 PMCID: PMC10697407 DOI: 10.1523/jneurosci.0558-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023] Open
Abstract
It is known that humans and rodents are capable of transmitting stress to their naive partners via social interaction. However, a comprehensive understanding of transmitted stress, which may differ from authentic stress, thus revealing unique neural mechanisms of social interaction resulting from transmitted stress and the associated anxiety, is missing. We used, in the present study, maternal separation (MS) as a stress model to investigate whether MS causes abnormal behavior in adolescence. A key concern in the analysis of stress transmission is whether the littermates of MS mice who only witness MS stress ("Partners") exhibit behavioral abnormalities similar to those of MS mice themselves. Of special interest is the establishment of the neural mechanisms underlying transmitted stress and authentic stress. The results show that Partners, similar to MS mice, exhibit anxiety-like behavior and hyperalgesia after witnessing littermates being subjected to early-life repetitive MS. Electrophysiological analysis revealed that mice subjected to MS demonstrate a reduction in both the excitatory and inhibitory synaptic activities of parvalbumin interneurons (PVINs) in the anterior cingulate cortex (ACC). However, Partners differed from MS mice in showing an increase in the number and excitability of GABAergic PVINs in the ACC and in the ability of chemogenetic PVIN inactivation to eliminate abnormal behavior. Furthermore, the social transfer of anxiety-like behavior required intact olfactory, but not visual, perception. This study suggests a functional involvement of ACC PVINs in mediating the distinct neural basis of transmitted anxiety.SIGNIFICANCE STATEMENT The anterior cingulate cortex (ACC) is a critical brain area in physical and social pain and contributes to the exhibition of abnormal behavior. ACC glutamatergic neurons have been shown to encode transmitted stress, but it remains unclear whether inhibitory ACC neurons also play a role. We evaluate, in this study, ACC neuronal, synaptic and network activities and uncover a critical role of parvalbumin interneurons (PVINs) in the expression of transmitted stress in adolescent mice who had witnessed MS of littermates in infancy. Furthermore, inactivation of ACC PVINs blocks transmitted stress. The results suggest that emotional contagion has a severe effect on brain function, and identify a potential target for the treatment of transmitted anxiety.
Collapse
Affiliation(s)
- Jinxiang Jiang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shuyi Tan
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoyi Feng
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yigang Peng
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
59
|
de C Williams AC. Pain: Behavioural expression and response in an evolutionary framework. Evol Med Public Health 2023; 11:429-437. [PMID: 38022798 PMCID: PMC10656790 DOI: 10.1093/emph/eoad038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
An evolutionary perspective offers insights into the major public health problem of chronic (persistent) pain; behaviours associated with it perpetuate both pain and disability. Pain is motivating, and pain-related behaviours promote recovery by immediate active or passive defence; subsequent protection of wounds; suppression of competing responses; energy conservation; vigilance to threat; and learned avoidance of associated cues. When these persist beyond healing, as in chronic pain, they are disabling. In mammals, facial and bodily expression of pain is visible and identifiable by others, while social context, including conspecifics' responses, modulate pain. Studies of responses to pain emphasize onlooker empathy, but people with chronic pain report feeling disbelieved and stigmatized. Observers frequently discount others' pain, best understood in terms of cheater detection-alertness to free riders that underpins the capacity for prosocial behaviours. These dynamics occur both in everyday life and in clinical encounters, providing an account of the adaptiveness of pain-related behaviours.
Collapse
Affiliation(s)
- Amanda C de C Williams
- Research Department of Clinical, Educational & Health Psychology, University College London, Gower St, London WC1E 6BT, UK
| |
Collapse
|
60
|
Burbano D, Senthilkumar S, Manzini MC. Exploring emotional contagion in zebrafish: A virtual-demonstrator study of positive and negative emotions. Behav Processes 2023; 213:104961. [PMID: 37897852 DOI: 10.1016/j.beproc.2023.104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Emotional contagion, the transmission of emotions within a group, has been extensively studied in mammals but remains largely unexplored in fish. This study aims to investigate whether emotional contagion, specifically in terms of low and high anxiety levels, can be evoked in zebrafish. This freshwater species has been gaining momentum due to its high genetic homology to humans and complex behavioral repertoire, making it well-suited for exploring social behavior. Our hypothesis posits that zebrafish have the ability to transmit positive and negative emotions to one another through visual cues only and that this transmission is robust over time. To test this, we employed a virtual demonstrator fish approach, where videos of zebrafish exhibiting either high or low geotactic behavior were shown to live zebrafish. Geotaxis, the tendency of a fish to spend more time at the bottom of the tank, is a sensitive measure of anxiety, with high geotactic behavior corresponding to high anxiety levels and vice versa. Our findings indicate that the virtual demonstrator successfully transmitted emotional states to the live fish, as evidenced by changes in the time spent at the bottom of the tank, linear acceleration, and fast-turning maneuvers, metrics that quantify anxiety-like behaviors such as geotaxis and erratic movements. Additionally, we conducted a causal analysis using a transfer entropy approach, revealing a significant flow of information from the virtual demonstrator fish to the live fish, indicating the efficacy and potential of this approach in studying emotional contagion. This study provides additional empirical evidence of how visual cues alone from a virtual demonstrator exhibiting high or low anxious behavior can elicit similar behavioral states in bystander fish, highlighting the potential for emotional contagion beyond mammalian and avian models.
Collapse
Affiliation(s)
- Daniel Burbano
- Department of Electrical and Computer Engineering, Rutgers University, 94 Brett Road, Piscataway 08854, NJ, USA.
| | - Sahana Senthilkumar
- School of Arts and Sciences Honors Program, 35 College Avenue, New Brunswick 08901, NY, USA
| | - M Chiara Manzini
- Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, Child Health Institute of New Jersey, 89 French Street, New Brunswick 08901, NY, USA
| |
Collapse
|
61
|
Sato M, Nakai N, Fujima S, Choe KY, Takumi T. Social circuits and their dysfunction in autism spectrum disorder. Mol Psychiatry 2023; 28:3194-3206. [PMID: 37612363 PMCID: PMC10618103 DOI: 10.1038/s41380-023-02201-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Social behaviors, how individuals act cooperatively and competitively with conspecifics, are widely seen across species. Rodents display various social behaviors, and many different behavioral paradigms have been used for investigating their neural circuit bases. Social behavior is highly vulnerable to brain network dysfunction caused by neurological and neuropsychiatric conditions such as autism spectrum disorders (ASDs). Studying mouse models of ASD provides a promising avenue toward elucidating mechanisms of abnormal social behavior and potential therapeutic targets for treatment. In this review, we outline recent progress and key findings on neural circuit mechanisms underlying social behavior, with particular emphasis on rodent studies that monitor and manipulate the activity of specific circuits using modern systems neuroscience approaches. Social behavior is mediated by a distributed brain-wide network among major cortical (e.g., medial prefrontal cortex (mPFC), anterior cingulate cortex, and insular cortex (IC)) and subcortical (e.g., nucleus accumbens, basolateral amygdala (BLA), and ventral tegmental area) structures, influenced by multiple neuromodulatory systems (e.g., oxytocin, dopamine, and serotonin). We particularly draw special attention to IC as a unique cortical area that mediates multisensory integration, encoding of ongoing social interaction, social decision-making, emotion, and empathy. Additionally, a synthesis of studies investigating ASD mouse models demonstrates that dysfunctions in mPFC-BLA circuitry and neuromodulation are prominent. Pharmacological rescues by local or systemic (e.g., oral) administration of various drugs have provided valuable clues for developing new therapeutic agents for ASD. Future efforts and technological advances will push forward the next frontiers in this field, such as the elucidation of brain-wide network activity and inter-brain neural dynamics during real and virtual social interactions, and the establishment of circuit-based therapy for disorders affecting social functions.
Collapse
Affiliation(s)
- Masaaki Sato
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Kita, Sapporo, 060-8638, Japan
| | - Nobuhiro Nakai
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan
| | - Shuhei Fujima
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan
| | - Katrina Y Choe
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan.
- RIKEN Center for Biosystems Dynamics Research, Chuo, Kobe, 650-0047, Japan.
| |
Collapse
|
62
|
Benz-Schwarzburg J, Wrage B. Caring animals and the ways we wrong them. BIOLOGY & PHILOSOPHY 2023; 38:25. [PMID: 37388763 PMCID: PMC10300179 DOI: 10.1007/s10539-023-09913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023]
Abstract
Many nonhuman animals have the emotional capacities to form caring relationships that matter to them, and for their immediate welfare. Drawing from care ethics, we argue that these relationships also matter as objectively valuable states of affairs. They are part of what is good in this world. However, the value of care is precarious in human-animal interactions. Be it in farming, research, wildlife 'management', zoos, or pet-keeping, the prevention, disruption, manipulation, and instrumentalization of care in animals by humans is ubiquitous. We criticize a narrow conception of welfare that, in practice, tends to overlook non-experiential forms of harm that occur when we interfere with caring animals. Additionally, we point out wrongs against caring animals that are not just unaccounted for but denied by even an expansive welfare perspective: The instrumentalization of care and caring animals in systems of use can occur as a harmless wrong that an approach purely focused on welfare may, in fact, condone. We should therefore adopt an ethical perspective that goes beyond welfare in our dealings with caring animals.
Collapse
Affiliation(s)
| | - Birte Wrage
- Messerli Research Institute, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
63
|
Mohapatra AN, Wagner S. The role of the prefrontal cortex in social interactions of animal models and the implications for autism spectrum disorder. Front Psychiatry 2023; 14:1205199. [PMID: 37409155 PMCID: PMC10318347 DOI: 10.3389/fpsyt.2023.1205199] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
Social interaction is a complex behavior which requires the individual to integrate various internal processes, such as social motivation, social recognition, salience, reward, and emotional state, as well as external cues informing the individual of others' behavior, emotional state and social rank. This complex phenotype is susceptible to disruption in humans affected by neurodevelopmental and psychiatric disorders, including autism spectrum disorder (ASD). Multiple pieces of convergent evidence collected from studies of humans and rodents suggest that the prefrontal cortex (PFC) plays a pivotal role in social interactions, serving as a hub for motivation, affiliation, empathy, and social hierarchy. Indeed, disruption of the PFC circuitry results in social behavior deficits symptomatic of ASD. Here, we review this evidence and describe various ethologically relevant social behavior tasks which could be employed with rodent models to study the role of the PFC in social interactions. We also discuss the evidence linking the PFC to pathologies associated with ASD. Finally, we address specific questions regarding mechanisms employed by the PFC circuitry that may result in atypical social interactions in rodent models, which future studies should address.
Collapse
Affiliation(s)
- Alok Nath Mohapatra
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | | |
Collapse
|
64
|
Yoshiike T, Benedetti F, Moriguchi Y, Vai B, Aggio V, Asano K, Ito M, Ikeda H, Ohmura H, Honma M, Yamada N, Kim Y, Nakajima S, Kuriyama K. Exploring the role of empathy in prolonged grief reactions to bereavement. Sci Rep 2023; 13:7596. [PMID: 37165097 PMCID: PMC10172345 DOI: 10.1038/s41598-023-34755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/06/2023] [Indexed: 05/12/2023] Open
Abstract
Grief reactions to the bereavement of a close individual could involve empathy for pain, which is fundamental to social interaction. To explore whether grief symptoms interact with social relatedness to a person to whom one directs empathy to modulate the expression of empathy, we administered an empathy task to 28 bereaved adults during functional magnetic resonance imaging, in which participants were subliminally primed with facial stimuli (e.g., faces of their deceased or living relative, or a stranger), each immediately followed by a visual pain stimulus. Individuals' grief severity promoted empathy for the pain stimulus primed with the deceased's face, while it diminished the neural response to the pain stimulus primed with the face of either their living relative or a stranger in the medial frontal cortex (e.g., the right dorsal anterior cingulate cortex). Moreover, preliminary analyses showed that while the behavioral empathic response was promoted by the component of "longing" in the deceased priming condition, the neural empathic response was diminished by the component of "avoidance" in the stranger priming condition. Our results suggest an association between grief reactions to bereavement and empathy, in which grief symptoms interact with interpersonal factors to promote or diminish empathic responses to others' pain.
Collapse
Affiliation(s)
- Takuya Yoshiike
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8553, Japan.
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Yoshiya Moriguchi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Benedetta Vai
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Veronica Aggio
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Keiko Asano
- Department of Human Sciences, Faculty of Human Sciences, Musashino University, Tokyo, Japan
| | - Masaya Ito
- National Center for Cognitive Behavior Therapy and Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hiroki Ikeda
- National Institute of Occupational Safety and Health, Japan Organization of Occupational Health and Safety, Kawasaki, Japan
| | - Hidefumi Ohmura
- Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Motoyasu Honma
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Naoto Yamada
- Department of Psychiatry, Shiga University of Medical Science, Otsu, Japan
| | - Yoshiharu Kim
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Satomi Nakajima
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Human Sciences, Faculty of Human Sciences, Musashino University, Tokyo, Japan
| | - Kenichi Kuriyama
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8553, Japan
- Department of Psychiatry, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
65
|
Zhao Y, Liu J, Ding Z, Ge W, Wang S, Zhang J. ATP-induced hypothermia improves burn injury and relieves burn pain in mice. J Therm Biol 2023; 114:103563. [PMID: 37344025 DOI: 10.1016/j.jtherbio.2023.103563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/05/2023] [Accepted: 04/02/2023] [Indexed: 06/23/2023]
Abstract
Thermal burn injury is a severe and life-threatening form of trauma that presents a significant challenge to clinical therapy. Therapeutic hypothermia has been shown to be beneficial in various human pathologies. Adenosine triphosphate (ATP) induces a hypothermic state that resembles hibernation-like suspended animation in mammals. This study investigates the potential protective role of ATP-induced hypothermia in thermal burn injury. Male C57BL/6 mice underwent a sham procedure or third-degree burn, and ATP-induced hypothermia was applied immediately or 1 h after burn injury. Our results show that ATP-induced hypothermia significantly improved burn depth progression and reduced collagen degradation. Moreover, hypothermia induced by ATP alleviated burn-induced hyperinflammatory responses and oxidative stress. Metabolomic profiling revealed that ATP-induced hypothermia reversed the shifts of metabolic profiles of the skin in burn mice. In addition, ATP-induced hypothermia relieved nociceptive and inflammatory pain, as observed in the antinociceptive test. Our findings suggest that ATP-induced hypothermia attenuates burn injury and provides new insights into first-aid therapy after thermal burn injury.
Collapse
Affiliation(s)
- Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Junhao Liu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Shiming Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| |
Collapse
|
66
|
Pozo M, Milà-Guasch M, Haddad-Tóvolli R, Boudjadja M, Chivite I, Toledo M, Gómez-Valadés A, Eyre E, Ramírez S, Obri A, Ben-Ami Bartal I, D'Agostino G, Costa-Font J, Claret M. Negative energy balance hinders prosocial helping behavior. Proc Natl Acad Sci U S A 2023; 120:e2218142120. [PMID: 37023123 PMCID: PMC10104524 DOI: 10.1073/pnas.2218142120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/02/2023] [Indexed: 04/07/2023] Open
Abstract
The internal state of an animal, including homeostatic requirements, modulates its behavior. Negative energy balance stimulates hunger, thus promoting a range of actions aimed at obtaining food. While these survival actions are well established, the influence of the energy status on prosocial behavior remains unexplored. We developed a paradigm to assess helping behavior in which a free mouse was faced with a conspecific trapped in a restrainer. We measured the willingness of the free mouse to liberate the confined mouse under diverse metabolic conditions. Around 42% of ad libitum-fed mice exhibited a helping behavior, as evidenced by the reduction in the latencies to release the trapped cagemate. This behavior was independent of subsequent social contact reward and was associated with changes in corticosterone indicative of emotional contagion. This decision-making process was coupled with reduced blood glucose excursions and higher Adenosine triphosphate (ATP):Adenosine diphosphate (ADP) ratios in the forebrain of helper mice, suggesting that it was a highly energy-demanding process. Interestingly, chronic (food restriction and type 2 diabetes) and acute (chemogenetic activation of hunger-promoting AgRP neurons) situations mimicking organismal negative energy balance and enhanced appetite attenuated helping behavior toward a distressed conspecific. To investigate similar effects in humans, we estimated the influence of glycated hemoglobin (a surrogate of long-term glycemic control) on prosocial behavior (namely charity donation) using the Understanding Society dataset. Our results evidenced that organismal energy status markedly influences helping behavior and that hypothalamic AgRP neurons are at the interface of metabolism and prosocial behavior.
Collapse
Affiliation(s)
- Macarena Pozo
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Maria Milà-Guasch
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Mehdi Boutagouga Boudjadja
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, M13 9PTManchester, United Kingdom
| | - Iñigo Chivite
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Miriam Toledo
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Alicia G. Gómez-Valadés
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Elena Eyre
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Sara Ramírez
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Arnaud Obri
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Inbal Ben-Ami Bartal
- School of Psychological Sciences, Tel-Aviv University, 6997801Tel Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, 6997801Tel Aviv, Israel
| | - Giuseppe D'Agostino
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, M13 9PTManchester, United Kingdom
| | - Joan Costa-Font
- Department of Health Policy, London School of Economics and Political Science, WC2A 2AELondon, United Kingdom
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
- School of Medicine, Universitat de Barcelona, 08036Barcelona, Spain
| |
Collapse
|
67
|
Misiołek K, Klimczak M, Chrószcz M, Szumiec Ł, Bryksa A, Przyborowicz K, Rodriguez Parkitna J, Harda Z. Prosocial behavior, social reward and affective state discrimination in adult male and female mice. Sci Rep 2023; 13:5583. [PMID: 37019941 PMCID: PMC10076499 DOI: 10.1038/s41598-023-32682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Prosocial behavior, defined as voluntary behavior intended to benefit another, has long been regarded as a primarily human characteristic. In recent years, it was reported that laboratory animals also favor prosocial choices in various experimental paradigms, thus demonstrating that prosocial behaviors are evolutionarily conserved. Here, we investigated prosocial choices in adult male and female C57BL/6 laboratory mice in a task where a subject mouse was equally rewarded for entering any of the two compartments of the experimental cage, but only entering of the compartment designated as "prosocial" rewarded an interaction partner. In parallel we have also assessed two traits that are regarded as closely related to prosociality: sensitivity to social reward and the ability to recognize the affective state of another individual. We found that female, but not male, mice increased frequency of prosocial choices from pretest to test. However, both sexes showed similar rewarding effects of social contact in the conditioned place preference test, and similarly, there was no effect of sex on affective state discrimination measured as the preference for interaction with a hungry or relieved mouse over a neutral animal. These observations bring interesting parallels to differences between sexes observed in humans, and are in line with reported higher propensity for prosocial behavior in human females, but differ with regard to sensitivity to social stimuli in males.
Collapse
Affiliation(s)
- Klaudia Misiołek
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Marta Klimczak
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Magdalena Chrószcz
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Łukasz Szumiec
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Anna Bryksa
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Karolina Przyborowicz
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland.
| | - Zofia Harda
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland.
| |
Collapse
|
68
|
Baldwin G. Rawls and Animal Moral Personality. Animals (Basel) 2023; 13:1238. [PMID: 37048494 PMCID: PMC10093262 DOI: 10.3390/ani13071238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
The relationship between animal rights and contractarian theories of justice such as that of Rawls has long been vexed. In this article, I contribute to the debate over the possibility of inclusion of animals in Rawls's theory of justice by critiquing the rationale he gives for their omission: that they do not possess moral personality. Contrary to Rawls's assumptions, it appears that some animals may possess the moral powers that comprise moral personality, albeit to a lesser extent than most humans. Some animals can act in pursuit of preferences and desires (and communicate them non-verbally), which might be taken as implicitly selecting a conception of the good; further, scientific research demonstrating inequity aversion and social play behaviors suggests that some animals can have a sense of justice relating to their own social groups. I conclude that Rawls's theory needs to acknowledge any animals that can be considered to meet the threshold of moral personality, while the concept of moral personality as a range property may also require reconsideration.
Collapse
Affiliation(s)
- Guy Baldwin
- Faculty of Law, University of Cambridge, 10 West Road, Cambridge CB3 9DZ, UK
| |
Collapse
|
69
|
Phillips HL, Dai H, Choi SY, Jansen-West K, Zajicek AS, Daly L, Petrucelli L, Gao FB, Yao WD. Dorsomedial prefrontal hypoexcitability underlies lost empathy in frontotemporal dementia. Neuron 2023; 111:797-806.e6. [PMID: 36638803 PMCID: PMC10023454 DOI: 10.1016/j.neuron.2022.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/22/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023]
Abstract
Empathic function is essential for the well-being of social species. Empathy loss is associated with various brain disorders and represents arguably the most distressing feature of frontotemporal dementia (FTD), a leading form of presenile dementia. The neural mechanisms are unknown. We established an FTD mouse model deficient in empathy and observed that aged somatic transgenic mice expressing GGGGCC repeat expansions in C9orf72, a common genetic cause of FTD, exhibited blunted affect sharing and failed to console distressed conspecifics by affiliative contact. Distress-induced consoling behavior activated the dorsomedial prefrontal cortex (dmPFC), which developed profound pyramidal neuron hypoexcitability in aged mutant mice. Optogenetic dmPFC inhibition attenuated affect sharing and other-directed consolation in wild-type mice, whereas chemogenetically enhancing dmPFC excitability rescued empathy deficits in mutant mice, even at advanced ages when substantial cortical atrophy had occurred. These results establish cortical hypoexcitability as a pathophysiological basis of empathy loss in FTD and suggest a therapeutic strategy.
Collapse
Affiliation(s)
- Hannah L Phillips
- Department of Psychiatry and Behavioral Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Neuroscience Graduate Program, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Huihui Dai
- Department of Psychiatry and Behavioral Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - So Yoen Choi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Alexis S Zajicek
- Department of Psychiatry and Behavioral Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Neuroscience Graduate Program, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Luke Daly
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Neuroscience Program, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | | | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Neuroscience Program, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Wei-Dong Yao
- Department of Psychiatry and Behavioral Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Neuroscience Graduate Program, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
70
|
Chronic stress and stressful emotional contagion affect the empathy-like behavior of rats. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01081-9. [PMID: 36899132 DOI: 10.3758/s13415-023-01081-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/12/2023]
Abstract
Empathy is a potential motivation for prosocial behaviors that is related to many psychiatric diseases, such as major depressive disorder; however, its neural mechanisms remain unclear. To elucidate the relationship between empathy and stress, we established a chronic stress contagion (SC) procedure combined with chronic unpredictable mild stress (CUMS) to investigate (1) whether depressive rats show impaired empathy-like behavior toward fearful conspecifics, (2) whether frequent social contact with normal familiar conspecifics (social support) alleviates the negative effects of CUMS, and (3) the effect of long-term exposure to a depressed partner on emotional and empathic responses in normal rats. We found that the CUMS group showed less empathy-like behavior in the social transfer of fear model (STFM), as indicated by less social interaction with the demonstrator and reduced freezing behavior in the fear-expression test. Social contact partially alleviated depression-like behaviors and the negative effect of CUMS in the fear-transfer test. The normal rats who experienced stress contagion from daily exposure to a depressed partner for 3 weeks showed lower anxiety and increased social response in the fear-transfer test than the control group. We concluded that chronic stress impairs empathy-like behaviors, while social contact partially buffers the effect of CUMS. Thus, social contact or contagion of stress is mutually beneficial to both stressed individuals and nonstressed partners. Higher dopamine and lower norepinephrine levels in the basolateral amygdala probably contributed to these beneficial effects.
Collapse
|
71
|
Lei H, Shu H, Xiong R, He T, Lv J, Liu J, Pi G, Ke D, Wang Q, Yang X, Wang JZ, Yang Y. Poststress social isolation exerts anxiolytic effects by activating the ventral dentate gyrus. Neurobiol Stress 2023; 24:100537. [PMID: 37081927 PMCID: PMC10112178 DOI: 10.1016/j.ynstr.2023.100537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
After aversive stress, people either choose to return to their previously familiar social environment or tend to adopt temporary social withdrawal to buffer negative emotions. However, which behavior intervention is more appropriate and when remain elusive. Here, we unexpectedly found that stressed mice experiencing social isolation exhibited less anxiety than those experiencing social contact. Within the first 24 h after returning to their previous social environment, mice experienced acute restraint stress (ARS) displayed low social interest but simultaneously received excessive social disturbance from their cage mates, indicating a critical time window for social isolation to balance the conflict. To screen brain regions that were differentially activated between the poststress social isolation and poststress social contact groups, we performed ΔFosB immunostaining and found that ΔFosB + signals were remarkably increased in the vDG of poststress social isolation group compared with poststress social contact group. There were no significant differences between the two groups in the other anxiety- and social-related brain regions, such as prelimbic cortex, infralimbic cortex, nucleus accumbens, etc. These data indicate that vDG is closely related to the differential phenotypes between the poststress social isolation and poststress social contact groups. Electrophysiological recording, further, revealed a higher activity of vDG in the poststress social isolation group than the poststress social contact group. Chemogenetically inhibiting vDG excitatory neurons within the first 24 h after ARS completely abolished the anxiolytic effects of poststress social isolation, while stimulating vDG excitatory neurons remarkably reduced anxiety-like behaviors in the poststress social contact group. Together, these data suggest that the activity of vDG excitatory neurons is essential and sufficient to govern the anxiolytic effect of poststress social isolation. To the best of our knowledge, this is the first report to uncover a beneficial role of temporal social isolation in acute stress-induced anxiety. In addition to the critical 24-h time window, activation of vDG is crucial for ameliorating anxiety through poststress social isolation.
Collapse
Affiliation(s)
- Huiyang Lei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huaqing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| | - Rui Xiong
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting He
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingru Lv
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiale Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guilin Pi
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China
- Corresponding author. Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Corresponding author.
| |
Collapse
|
72
|
Bulgarelli C, Jones EJH. The typical and atypical development of empathy: How big is the gap from lab to field? JCPP ADVANCES 2023; 3:e12136. [PMID: 37431324 PMCID: PMC10241450 DOI: 10.1002/jcv2.12136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/03/2022] [Indexed: 01/26/2023] Open
Abstract
Background Empathy-understanding and sharing someone else's feelings-is crucial for social bonds. Studies on empathy development are limited and mainly performed with behavioural assessments. This is in contrast to the extensive literature on cognitive and affective empathy in adults. However, understanding the mechanisms behind empathy development is critical to developing early interventions to support children with limited empathy. This is particularly key in toddlerhood, as children transition from highly scaffolded interactions with their parents and towards interactions with their peers. However, we know little about toddlers' empathy, in part due to the methodological constraints of testing this population in traditional lab settings. Methods Here, we combine naturalistic observations with a targeted review of the literature to provide an assessment of our current understanding of the development of empathy in toddlerhood as it is expressed in real-world settings. We went into toddlers' typical habitat, a nursery, and we performed 21 h of naturalistic observations of 2-to-4-year-olds. We then reviewed the literature to evaluate our current understanding of the mechanisms that underpin observed behaviours. Results We observed that (i) emotional contagion, possibly a primitive form of empathy, was observed at the nursery, but rarely; (ii) older toddlers often stared when someone cried, but there was no clear evidence of shared feelings; (iii) teacher and parent scaffolding might be paramount for empathy development; (iv) as some atypical empathic reactions can be observed from toddlerhood, early interventions could be developed. Several competing theoretical frameworks could account for current findings. Conclusions Targeted studies of toddlers and their interaction partners in both controlled and naturalistic contexts are required to distinguish different mechanistic explanations for empathic behaviour in toddlerhood. We recommend the use of new cutting-edge methodologies to embed neurocognitively-informed frameworks into toddlers' natural social world.
Collapse
Affiliation(s)
- Chiara Bulgarelli
- Centre for Brain and Cognitive DevelopmentBirkbeckUniversity of LondonLondonUK
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Emily J. H. Jones
- Centre for Brain and Cognitive DevelopmentBirkbeckUniversity of LondonLondonUK
| |
Collapse
|
73
|
Ito W, Palmer AJ, Morozov A. Social Synchronization of Conditioned Fear in Mice Requires Ventral Hippocampus Input to the Amygdala. Biol Psychiatry 2023; 93:322-330. [PMID: 36244803 PMCID: PMC10069289 DOI: 10.1016/j.biopsych.2022.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Social organisms synchronize behaviors as an evolutionary-conserved means of thriving. Synchronization under threat, in particular, benefits survival and occurs across species, including humans, but the underlying mechanisms remain unknown because of the scarcity of relevant animal models. Here, we developed a rodent paradigm in which mice synchronized a classically conditioned fear response and identified an underlying neuronal circuit. METHODS Male and female mice were trained individually using auditory fear conditioning and then tested 24 hours later as dyads while allowing unrestricted social interaction during exposure to the conditioned stimulus under visible or infrared illumination to eliminate visual cues. The synchronization of the immobility or freezing bouts was quantified by calculating the effect size Cohen's d for the difference between the actual freezing time overlap and the overlap by chance. The inactivation of the dorsomedial prefrontal cortex, dorsal hippocampus, or ventral hippocampus was achieved by local infusions of muscimol. The chemogenetic disconnection of the hippocampus-amygdala pathway was performed by expressing hM4D(Gi) in the ventral hippocampal neurons and infusing clozapine N-oxide in the amygdala. RESULTS Mice synchronized cued but not contextual fear. It was higher in males than in females and attenuated in the absence of visible light. Inactivation of the ventral but not dorsal hippocampus or dorsomedial prefrontal cortex abolished fear synchronization. Finally, the disconnection of the hippocampus-amygdala pathway diminished fear synchronization. CONCLUSIONS Mice synchronize expression of conditioned fear relying on the ventral hippocampus-amygdala pathway, suggesting that the hippocampus transmits social information to the amygdala to synchronize threat response.
Collapse
Affiliation(s)
- Wataru Ito
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Neurobiology Research, Roanoke, Virginia.
| | - Alexander J Palmer
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Neurobiology Research, Roanoke, Virginia
| | - Alexei Morozov
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Neurobiology Research, Roanoke, Virginia; Carilion Clinic Department of Psychiatry and Behavioral Medicine, Roanoke, Virginia.
| |
Collapse
|
74
|
Social Support in a Novel Situation Aimed for Stunning and Euthanasia of Pigs May Be Increased by Familiar Pigs-A Behavioural Study with Weaners. Animals (Basel) 2023; 13:ani13030481. [PMID: 36766370 PMCID: PMC9913420 DOI: 10.3390/ani13030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The common method of stunning pigs using high concentration carbon dioxide prior to slaughter poses an animal welfare issue, as the gas is aversive. Proof of concept for using nitrogen gas encapsulated in high-expansion foam as an alternative non-aversive method for stunning pigs has recently been presented. However, the individually tested pigs showed distress-related responses to foam exposure, regardless of whether it was nitrogen- or air-filled. This study examined the effect of companionship from a familiar or unfamiliar pig on behaviours in 72 nine-weeks old pigs during exposure to air-filled foam. Escape attempts were observed by 75% of solitary pigs, 42% of pigs with unfamiliar conspecifics, and 33% of pigs with familiar conspecifics. Familiar pig pairs clearly preferred social contact during foam exposure, whereas this was not as clear in unfamiliar pig pairs, and their motivation for social contact could have multiple explanations. The results from this study highlight the importance of contact with conspecifics when studying animal welfare and suggest that familiarity between pigs is important for social support, thus emphasizing the importance of maintaining social groups to reduce distress in pigs at slaughter.
Collapse
|
75
|
Wu WY, Cheng Y, Liang KC, Lee RX, Yen CT. Affective mirror and anti-mirror neurons relate to prosocial help in rats. iScience 2023; 26:105865. [PMID: 36632059 PMCID: PMC9826941 DOI: 10.1016/j.isci.2022.105865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Although empathic emotion is closely related to prosocial behavior, neuronal substrate that accounts for empathy-associated prosocial action remains poorly understood. We recorded neurons in the anterior cingulate cortex (ACC) and insular cortex (InC) in rats when they observed another rat in pain. We discovered neurons with anti-mirror properties in the ACC and InC, in addition to those with mirror properties. ACC neurons show higher coupling between activation of self-in-pain and others-in-pain, whereas the InC has a higher ratio of neurons with anti-mirror properties. During others-in-pain, ACC neurons activated more when actively nose-poking toward others and InC neurons activated more when freezing. To further illustrate prosocial function, we examined neuronal activities in the helping behavior test. Both ACC and InC neurons showed specific activation to rat rescuing which is contributed by mirror, but not anti-mirror neurons. Our work indicates the functional involvement of mirror neuron system in prosocial behaviors.
Collapse
Affiliation(s)
- Wen-Yi Wu
- Department of Psychology, Cornell University, Ithaca, NY 14850, USA
| | - Yawei Cheng
- Institute of Neuroscience, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Keng-Chen Liang
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan
| | - Ray X. Lee
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, MA 02139, USA
- Program in Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, 1 Roosevelt Road Sec. 4, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
76
|
Silveira LM, Tavares LRR, Baptista-de-Souza D, Carmona IM, Carneiro de Oliveira PE, Nunes-de-Souza RL, Canto-de-Souza A. Anterior cingulate cortex, but not amygdala, modulates the anxiogenesis induced by living with conspecifics subjected to chronic restraint stress in male mice. Front Behav Neurosci 2023; 16:1077368. [PMID: 36688134 PMCID: PMC9853544 DOI: 10.3389/fnbeh.2022.1077368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Cohabitation with a partner undergoing chronic restraint stress (CRE) induces anxiogenic-like behaviors through emotional contagion. We hypothesized that the anterior cingulate cortex (ACC) and the amygdala would be involved in the modulation of this emotional process. This study investigated the role of the ACC and amygdala in empathy-like behavior (e.g., anxiety-like responses) induced by living with a mouse subjected to CRE. Male Swiss mice were housed in pairs for 14 days and then allocated into two groups: cagemate stress (one animal of the pair was subjected to 14 days of restraint stress) and cagemate control (no animal experienced stress). Twenty-four hours after the last stress session, cagemates had their brains removed for recording FosB labeling in the ACC and amygdala (Exp.1). In experiments 2 and 3, 24 h after the last stress session, the cagemates received 0.1 μL of saline or cobalt chloride (CoCl2 1 mM) into the ACC or amygdala, and then exposed to the elevated plus-maze (EPM) for recording anxiety. Results showed a decrease of FosB labeling in the ACC without changing immunofluorescence in the amygdala of stress cagemate mice. Cohabitation with mice subjected to CRE provoked anxiogenic-like behaviors. Local inactivation of ACC (but not the amygdala) reversed the anxiogenic-like effects induced by cohabitation with a partner undergoing CRE. These results suggest the involvement of ACC, but not the amygdala, in anxiety induced by emotional contagion.
Collapse
Affiliation(s)
- Lara Maria Silveira
- Psychobiology Group, Department of Psychology/Centro de Educação e Ciências Humanas (CECH), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil,Graduate Program in Psychology, Centro de Educação e Ciências Humanas (CECH)-Universidade Federal de São Carlos, São Paulo, Brazil
| | - Ligia Renata Rodrigues Tavares
- Psychobiology Group, Department of Psychology/Centro de Educação e Ciências Humanas (CECH), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil,Joint Graduate Program in Physiological Sciences, Universidade Federal de São Carlos (UFSCar)/Universidade Estadual Paulista (UNESP), São Carlos, São Paulo, Brazil
| | - Daniela Baptista-de-Souza
- Psychobiology Group, Department of Psychology/Centro de Educação e Ciências Humanas (CECH), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil,Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, São Paulo, Brazil,Institute of Neuroscience and Behaviour, Ribeirão Preto, São Paulo, Brazil
| | - Isabela Miranda Carmona
- Psychobiology Group, Department of Psychology/Centro de Educação e Ciências Humanas (CECH), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil,Joint Graduate Program in Physiological Sciences, Universidade Federal de São Carlos (UFSCar)/Universidade Estadual Paulista (UNESP), São Carlos, São Paulo, Brazil
| | - Paulo Eduardo Carneiro de Oliveira
- Psychobiology Group, Department of Psychology/Centro de Educação e Ciências Humanas (CECH), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil,Graduate Program in Psychology, Centro de Educação e Ciências Humanas (CECH)-Universidade Federal de São Carlos, São Paulo, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Joint Graduate Program in Physiological Sciences, Universidade Federal de São Carlos (UFSCar)/Universidade Estadual Paulista (UNESP), São Carlos, São Paulo, Brazil,Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, São Paulo, Brazil,Institute of Neuroscience and Behaviour, Ribeirão Preto, São Paulo, Brazil
| | - Azair Canto-de-Souza
- Psychobiology Group, Department of Psychology/Centro de Educação e Ciências Humanas (CECH), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil,Graduate Program in Psychology, Centro de Educação e Ciências Humanas (CECH)-Universidade Federal de São Carlos, São Paulo, Brazil,Joint Graduate Program in Physiological Sciences, Universidade Federal de São Carlos (UFSCar)/Universidade Estadual Paulista (UNESP), São Carlos, São Paulo, Brazil,Institute of Neuroscience and Behaviour, Ribeirão Preto, São Paulo, Brazil,*Correspondence: Azair Canto-de-Souza, ;
| |
Collapse
|
77
|
The association between acute stress & empathy: A systematic literature review. Neurosci Biobehav Rev 2023; 144:105003. [PMID: 36535374 DOI: 10.1016/j.neubiorev.2022.105003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Empathy is a fundamental component of our social-emotional experience. Over the last decade, there has been increased interest in understanding the effects of acute stress on empathy. We provide a first comprehensive-and systematic-overview identifying emerging patterns and gaps in this literature. Regarding affective empathy, there is abundant evidence for stress contagion-the 'spillover' of stress from a stressed target to an unstressed perceiver. We highlight contextual factors that can facilitate and/or undermine these effects. Fewer studies have investigated the effects of acute stress on affective empathy, revealing a nuanced picture, some evidence suggests acute stress can block contagion of other's emotions; but again contextual differences need to be considered. Regarding cognitive empathy, most studies find no conclusive effects for simplistic measures of emotion recognition; however, studies using more complex empathy tasks find that acute stress might affect cognitive empathy differentially for men and women. This review provides an important first step towards understanding how acute stress can impact social-togetherness, and aims to aid future research by highlighting (in)congruencies and outstanding questions.
Collapse
|
78
|
Walsh JJ, Christoffel DJ, Malenka RC. Neural circuits regulating prosocial behaviors. Neuropsychopharmacology 2023; 48:79-89. [PMID: 35701550 PMCID: PMC9700801 DOI: 10.1038/s41386-022-01348-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
Positive, prosocial interactions are essential for survival, development, and well-being. These intricate and complex behaviors are mediated by an amalgamation of neural circuit mechanisms working in concert. Impairments in prosocial behaviors, which occur in a large number of neuropsychiatric disorders, result from disruption of the coordinated activity of these neural circuits. In this review, we focus our discussion on recent findings that utilize modern approaches in rodents to map, monitor, and manipulate neural circuits implicated in a variety of prosocial behaviors. We highlight how modulation by oxytocin, serotonin, and dopamine of excitatory and inhibitory synaptic transmission in specific brain regions is critical for regulation of adaptive prosocial interactions. We then describe how recent findings have helped elucidate pathophysiological mechanisms underlying the social deficits that accompany neuropsychiatric disorders. We conclude by discussing approaches for the development of more efficacious and targeted therapeutic interventions to ameliorate aberrant prosocial behaviors.
Collapse
Affiliation(s)
- Jessica J Walsh
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27514, USA.
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA.
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27514, USA.
| | - Daniel J Christoffel
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27514, USA
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA.
| |
Collapse
|
79
|
Kaufmann LV, Brecht M, Ishiyama S. Tickle contagion in the rat somatosensory cortex. iScience 2022; 25:105718. [PMID: 36578320 PMCID: PMC9791364 DOI: 10.1016/j.isci.2022.105718] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
The cellular mechanisms of emotional contagion are unknown. We investigated tickle contagion and the underlying neuronal representations in playful rats. We recorded trunk somatosensory cortex activity of observer rats while they received tickling and audiovisual playback of tickling footage and while they witnessed tickling of demonstrator rats. Observers vocalized and showed "Freudensprünge" ("joy jumps") during witnessing live tickling, while they showed little behavioral responses to playbacks. Deep layers in the trunk somatosensory neurons showed a larger correlation between direct and witnessed tickling responses compared to superficial layers. Trunk somatosensory neurons discharged upon emission of own and demonstrator's vocalizations and might drive contagious "laughter". We conclude that trunk somatosensory cortex might represent ticklishness contagion.
Collapse
Affiliation(s)
- Lena V. Kaufmann
- Bernstein Center for Computational Neuroscience Berlin, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 6, 10115 Berlin, Germany,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 6, 10115 Berlin, Germany,NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Shimpei Ishiyama
- Bernstein Center for Computational Neuroscience Berlin, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 6, 10115 Berlin, Germany,Institut für Pathophysiologie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Duesbergweg 6, 55128 Mainz, Germany,Corresponding author
| |
Collapse
|
80
|
Toth M. Editorial: Prosocial and hypersocial behavior: From genes to circuits and behavior. Front Behav Neurosci 2022; 16:1090151. [DOI: 10.3389/fnbeh.2022.1090151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
|
81
|
Rana AN, Gonzales-Rojas R, Lee HY. Imitative and contagious behaviors in animals and their potential roles in the study of neurodevelopmental disorders. Neurosci Biobehav Rev 2022; 143:104876. [PMID: 36243193 DOI: 10.1016/j.neubiorev.2022.104876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/07/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Social learning in the forms of imitative and contagious behaviors are essential for learning abilities and social interaction. However, children with neurodevelopmental disorders and intellectual disabilities show impairments in these behaviors, which profoundly affect their communication skills and cognitive functions. Although these deficits are well studied in humans, pre-clinical animal model assessments of imitative and contagious behavioral deficits are limited. Here, we first define various forms of social learning as well as their developmental and evolutionary significance in humans. We also explore the impact of imitative and contagious behavioral deficits in several neurodevelopmental disorders associated with autistic-like symptoms. Second, we highlight imitative and contagious behaviors observed in nonhuman primates and other social animals commonly used as models for neurodevelopmental disorders. Lastly, we conceptualize these behaviors in the contexts of mirror neuron activity, learning, and empathy, which are highly debated topics. Taken together, this review furthers the understanding of imitative and contagious behaviors. We hope to prompt and guide future behavioral studies in animal models of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Amtul-Noor Rana
- The Department of Cellular and Integrative Physiology, the University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Rodrigo Gonzales-Rojas
- The Department of Cellular and Integrative Physiology, the University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hye Young Lee
- The Department of Cellular and Integrative Physiology, the University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
82
|
Xue X, Wang Q, Huang Z, Wang Y. An Empathic Pain-Regulated Neural Circuit. Neurosci Bull 2022; 38:1613-1616. [PMID: 36342655 PMCID: PMC9722988 DOI: 10.1007/s12264-022-00978-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/27/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xiumin Xue
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qian Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
83
|
Jabarin R, Netser S, Wagner S. Beyond the three-chamber test: toward a multimodal and objective assessment of social behavior in rodents. Mol Autism 2022; 13:41. [PMID: 36284353 PMCID: PMC9598038 DOI: 10.1186/s13229-022-00521-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/06/2022] [Indexed: 12/31/2022] Open
Abstract
MAIN: In recent years, substantial advances in social neuroscience have been realized, including the generation of numerous rodent models of autism spectrum disorder. Still, it can be argued that those methods currently being used to analyze animal social behavior create a bottleneck that significantly slows down progress in this field. Indeed, the bulk of research still relies on a small number of simple behavioral paradigms, the results of which are assessed without considering behavioral dynamics. Moreover, only few variables are examined in each paradigm, thus overlooking a significant portion of the complexity that characterizes social interaction between two conspecifics, subsequently hindering our understanding of the neural mechanisms governing different aspects of social behavior. We further demonstrate these constraints by discussing the most commonly used paradigm for assessing rodent social behavior, the three-chamber test. We also point to the fact that although emotions greatly influence human social behavior, we lack reliable means for assessing the emotional state of animals during social tasks. As such, we also discuss current evidence supporting the existence of pro-social emotions and emotional cognition in animal models. We further suggest that adequate social behavior analysis requires a novel multimodal approach that employs automated and simultaneous measurements of multiple behavioral and physiological variables at high temporal resolution in socially interacting animals. We accordingly describe several computerized systems and computational tools for acquiring and analyzing such measurements. Finally, we address several behavioral and physiological variables that can be used to assess socio-emotional states in animal models and thus elucidate intricacies of social behavior so as to attain deeper insight into the brain mechanisms that mediate such behaviors. CONCLUSIONS: In summary, we suggest that combining automated multimodal measurements with machine-learning algorithms will help define socio-emotional states and determine their dynamics during various types of social tasks, thus enabling a more thorough understanding of the complexity of social behavior.
Collapse
Affiliation(s)
- Renad Jabarin
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
84
|
Rein B, Jones E, Tuy S, Boustani C, Johnson JA, Malenka RC, Smith ML. Protocols for the social transfer of pain and analgesia in mice. STAR Protoc 2022; 3:101756. [PMID: 36227742 PMCID: PMC9576629 DOI: 10.1016/j.xpro.2022.101756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022] Open
Abstract
We provide protocols for the social transfer of pain and analgesia in mice. We describe the steps to induce pain or analgesia (pain relief) in bystander mice with a 1-h social interaction with a partner injected with CFA (complete Freund's adjuvant) or CFA and morphine, respectively. We detail behavioral tests to assess pain or analgesia in the untreated bystander mice. This protocol has been validated in mice and rats and can be used for investigating mechanisms of empathy. For complete details on the use and execution of this protocol, please refer to Smith et al. (2021).
Collapse
Affiliation(s)
- Benjamin Rein
- Nancy Pritzker Laboratory, Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA 94306, USA
| | - Erin Jones
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Sabrena Tuy
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Cali Boustani
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Julia A. Johnson
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Robert C. Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA 94306, USA
| | - Monique L. Smith
- Nancy Pritzker Laboratory, Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA 94306, USA,Corresponding author
| |
Collapse
|
85
|
Gao F, Ma J, Yu YQ, Gao XF, Bai Y, Sun Y, Liu J, Liu X, Barry DM, Wilhelm S, Piccinni-Ash T, Wang N, Liu D, Ross RA, Hao Y, Huang X, Jia JJ, Yang Q, Zheng H, van Nispen J, Chen J, Li H, Zhang J, Li YQ, Chen ZF. A non-canonical retina-ipRGCs-SCN-PVT visual pathway for mediating contagious itch behavior. Cell Rep 2022; 41:111444. [PMID: 36198265 PMCID: PMC9595067 DOI: 10.1016/j.celrep.2022.111444] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 08/10/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Contagious itch behavior informs conspecifics of adverse environment and is crucial for the survival of social animals. Gastrin-releasing peptide (GRP) and its receptor (GRPR) in the suprachiasmatic nucleus (SCN) of the hypothalamus mediates contagious itch behavior in mice. Here, we show that intrinsically photosensitive retina ganglion cells (ipRGCs) convey visual itch information, independently of melanopsin, from the retina to GRP neurons via PACAP-PAC1R signaling. Moreover, GRPR neurons relay itch information to the paraventricular nucleus of the thalamus (PVT). Surprisingly, neither the visual cortex nor superior colliculus is involved in contagious itch. In vivo calcium imaging and extracellular recordings reveal contagious itch-specific neural dynamics of GRPR neurons. Thus, we propose that the retina-ipRGC-SCN-PVT pathway constitutes a previously unknown visual pathway that probably evolved for motion vision that encodes salient environmental cues and enables animals to imitate behaviors of conspecifics as an anticipatory mechanism to cope with adverse conditions. It has been shown that GRP-GRPR neuropeptide signaling in the SCN is important for contagious itch behavior in mice. Gao et al. find that SCN-projecting ipRGCs are sufficient to relay itch information from the retina to the SCN by releasing neuropeptide PACAP to activate the GRP-GRPR pathway.
Collapse
Affiliation(s)
- Fang Gao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jun Ma
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yao-Qing Yu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, P. R. China
| | - Xiao-Fei Gao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Present address: Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, P. R. China
| | - Yang Bai
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, P. R. China,Present address: Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang 110016, P. R. China
| | - Yi Sun
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, P. R. China,Present address: Binzhou Medical University, Yantai 264003, P. R. China
| | - Juan Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xianyu Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Devin M. Barry
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven Wilhelm
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tyler Piccinni-Ash
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Na Wang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Present address: Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, P. R. China
| | - Dongyang Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Department of Pain Management, the State Key Clinical Specialty in Pain Medicine, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P.R. China
| | - Rachel A. Ross
- Department of Neuroscience, Psychiatry and Medicine, Albert Einstein College of Medicine Rose F. Kennedy Center, Bronx, NY, USA
| | - Yan Hao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Present address: Department of Pediatrics, Tongji Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Xu Huang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Jin-Jing Jia
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Present address: College of Life Sciences, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Qianyi Yang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao Zheng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Johan van Nispen
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Present address: Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, P. R. China
| | - Hui Li
- Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, P. R. China
| | - Jiayi Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, P. R. China
| | - Zhou-Feng Chen
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Lead contact,Correspondence:
| |
Collapse
|
86
|
Jeon D, Kim S, Choi J, Yang AR, Lee SK, Chu K. Chronic social stress during early development is involved in antisocial maltreatment behavior in mice. ENCEPHALITIS 2022; 2:98-107. [PMID: 37469995 PMCID: PMC10295919 DOI: 10.47936/encephalitis.2022.00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 07/21/2023] Open
Abstract
Purpose Early-life stress can cause brain inflammation and affect social behavior in adulthood. In humans, maltreated (abused or neglected) children often exhibit antisocial behavior, including violent and sadistic behavior, in adulthood. However, it is unknown whether maltreatment behavior occurs in rodents. Here, we developed an assay system to evaluate conspecific maltreatment behavior in the mouse. Methods To assess maltreatment behavior, we devised a two-chamber apparatus separated by a transparent partition, in which one chamber was provided with a nose-poking hole that would trigger foot shocks onto the other. Lidocaine was used to inhibit neural activity in vivo. Brain oscillations were investigated by electroencephalograph. Enzyme-linked immunosorbent assay was used for protein assay. The mouse model was sequentially subjected to maternal separation (MS), social defeat (SD), and social isolation (SI) in that order (MS/SD/SI model). Results Inactivation of the anterior cingulate cortex and medial prefrontal cortex increased the level of nose-poking. Maltreatment behavior provoked changes in oxytocin, corticosterone, and brain-derived neurotrophic factor levels. MS/SD/SI mice exhibited more sustained nose-poking behavior during the experiment, resulting in increased foot shocks to the mouse in the opposite chamber. Abnormal brain oscillations were observed in the MS/SD/SI mice. Conclusion The MS/SD/SI model and maltreatment-behavior assay may be useful not only to study the relationship between social stress in childhood and antisocial behavior in adulthood, but also for study of etiology, pathology, or treatment for brain disorders, such as psychopathy.
Collapse
Affiliation(s)
| | - Sangwoo Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jiye Choi
- Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Ah Reum Yang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Sang Kun Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kon Chu
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
87
|
Wu YE, Hong W. Neural basis of prosocial behavior. Trends Neurosci 2022; 45:749-762. [PMID: 35853793 PMCID: PMC10039809 DOI: 10.1016/j.tins.2022.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 01/10/2023]
Abstract
The ability to behave in ways that benefit other individuals' well-being is among the most celebrated human characteristics crucial for social cohesiveness. Across mammalian species, animals display various forms of prosocial behaviors - comforting, helping, and resource sharing - to support others' emotions, goals, and/or material needs. In this review, we provide a cross-species view of the behavioral manifestations, proximate and ultimate drives, and neural mechanisms of prosocial behaviors. We summarize key findings from recent studies in humans and rodents that have shed light on the neural mechanisms underlying different processes essential for prosocial interactions, from perception and empathic sharing of others' states to prosocial decisions and actions.
Collapse
Affiliation(s)
- Ye Emily Wu
- Department of Neurobiology and Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Weizhe Hong
- Department of Neurobiology and Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
88
|
Testing individual variations of horses’ tactile reactivity: when, where, how? Naturwissenschaften 2022; 109:41. [DOI: 10.1007/s00114-022-01811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022]
|
89
|
Rodrigues Tavares LR, Baptista-de-Souza D, Canto-de-Souza L, Planeta CDS, Guimarães FS, Nunes-de-Souza RL, Canto-de-Souza A. The Reversal of Empathy-Induced Hypernociception in Male Mice by Intra-Amygdala Administration of Midazolam and Cannabidiol Depends on 5-HT 3 Receptors. Cannabis Cannabinoid Res 2022; 8:335-347. [PMID: 36103283 DOI: 10.1089/can.2022.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Empathy is a fundamental prosocial behavior. It has been defined as perception, awareness, and understanding of others' emotional states, including painful processes. Mice living in pairs with conspecific chronic suffering from constriction injury exhibit pain hypersensitivity mediated by the amygdaloid complex. Nevertheless, the underlying mechanisms in the amygdala responsible for this response remain to be determined. This study investigated if the anxiolytic benzodiazepine midazolam (MDZ) and cannabidiol (CBD), a phytocannabinoid with multiple molecular targets, would attenuate this behavioral change. We also investigated if serotonergic and γ-aminobutyric acid (GABA)ergic mechanisms in the amygdala are involved in this effect. Materials and Methods: Male Swiss mice were housed in pairs for 28 days. The pairs were divided into two groups on the 14th day: cagemate nerve constriction and cagemate sham. On the 24th day, cagemates underwent a stereotaxic surgery and, on the 28th day, were evaluated on the writhing test. Results: The results showed that living with chronic pain leads to hypernociception in the cagemate and increases the expression of 5-HT3 receptor (5-HT3R) and glutamic acid decarboxylase 67 within the amygdala. MDZ (3.0 and 30 nmol) and CBD (30 and 60 nmol) attenuated the hypernociceptive behavior. The 5-HT3R antagonist ondansetron (0.3 nmol) prevented the antinociceptive effects of MDZ and CBD. Conclusion: These findings indicate that 5-HT3R and GABAergic mechanisms within the amygdala are involved in the pain hypersensitivity induced by the empathy for pain model. They also suggest that MDZ and CBD could be a new potential therapy to alleviate emotional pain disorders.
Collapse
Affiliation(s)
- Lígia Renata Rodrigues Tavares
- Psychobiology Group, Department of Psychology/CECH-Federal University of São Carlos-UFSCar, São Carlos, São Paulo, Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, São Paulo, Brazil
| | - Daniela Baptista-de-Souza
- Psychobiology Group, Department of Psychology/CECH-Federal University of São Carlos-UFSCar, São Carlos, São Paulo, Brazil
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
- Neuroscience and Behavioral Institute-INeC, Ribeirão Preto, São Paulo, Brazil
| | - Lucas Canto-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Cleopatra da Silva Planeta
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, São Paulo, Brazil
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, São Paulo, Brazil
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
- Neuroscience and Behavioral Institute-INeC, Ribeirão Preto, São Paulo, Brazil
| | - Azair Canto-de-Souza
- Psychobiology Group, Department of Psychology/CECH-Federal University of São Carlos-UFSCar, São Carlos, São Paulo, Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, São Paulo, Brazil
- Neuroscience and Behavioral Institute-INeC, Ribeirão Preto, São Paulo, Brazil
- Program in Psychology UFSCar, São Carlos, São Paulo, Brazil
| |
Collapse
|
90
|
Toyoshima M, Okuda E, Hasegawa N, Kaseda K, Yamada K. Socially Transferred Stress Experience Modulates Social Affective Behaviors in Rats. Neuroscience 2022; 502:68-76. [PMID: 36064051 DOI: 10.1016/j.neuroscience.2022.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
Abstract
Social communication of affective states between individuals, as well as actual experiences, influences their internal states and behaviors. Although prior stress experiences promote empathy-like behaviors, it remains unclear whether the social transmission of stress events modulates these behaviors. Here, we provide evidence that transferred stress experiences from cage mates modulate socioaffective approach-avoidance behaviors in rats. Male Wistar-Imamichi rats were assigned to one of five experimental groups (Control (n = 15); no shock with shocked cage mates (n = 15); low (0.1 mA, n = 15), middle (0.5 mA, n = 14), and high shock (1.0 mA, n = 14)). Except for the naïve and housed with stressed mate groups, rats received two foot-shocks (5 s for each). The next day, the subjects were allowed to explore two unfamiliar conspecifics; one was a naïve, while the other was a distressed conspecific that received two foot-shocks (1.0 mA, 5 s) immediately before the test. Rats that were housed with stressed mates, as well as those that experienced a higher intensity of foot-shocks, were more likely to approach, while naïve rats avoided, a distressed conspecific. These results suggest that socially transferred stress shifts socioaffective response styles from avoidance to approach toward a stressed conspecific in rats.
Collapse
Affiliation(s)
- Michimasa Toyoshima
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; JSPS Research Fellow, Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-0083, Japan.
| | - Eri Okuda
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Natsu Hasegawa
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kodai Kaseda
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuo Yamada
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
91
|
Takayama K, Tobori S, Andoh C, Kakae M, Hagiwara M, Nagayasu K, Shirakawa H, Ago Y, Kaneko S. Autism Spectrum Disorder Model Mice Induced by Prenatal Exposure to Valproic Acid Exhibit Enhanced Empathy-Like Behavior <i>via</i> Oxytocinergic Signaling. Biol Pharm Bull 2022; 45:1124-1132. [DOI: 10.1248/bpb.b22-00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kaito Takayama
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Shota Tobori
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Chihiro Andoh
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Masashi Kakae
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Masako Hagiwara
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
92
|
Zuo Z. Have we forgotten something when caring for patients for surgery? Front Med (Lausanne) 2022; 9:952893. [PMID: 35966850 PMCID: PMC9366056 DOI: 10.3389/fmed.2022.952893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
|
93
|
Shi T, Feng S, Shi W, Fu Y, Zhou W. A modified mouse model for observational fear learning and the influence of social hierarchy. Front Behav Neurosci 2022; 16:941288. [PMID: 35957923 PMCID: PMC9359141 DOI: 10.3389/fnbeh.2022.941288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
Background Indirectly experiencing traumatic events either by witnessing or learning of a loved one’s suffering is associated with the highest prevalence rates of epidemiological features of PTSD. Social species can develop fear by observing conspecifics in distress. Observational fear learning (OFL) is one of the most widely used paradigms for studying fear contagion in mice. However, the impact of empathic fear behavior and social hierarchy on fear transfer in mice is not well understood. Methods Fear emotions are best characterized in mice by using complementary tests, rather than only freezing behavior, and simultaneously avoiding behavioral variability in different tests across time. In this study, we modified the OFL model by implementing freezing (FZ), open field (OF), and social interaction (SI) tests in a newly designed experimental facility and applied Z-normalization to assess emotionality changes across different behaviors. Results The integrated emotionality scores revealed a robustly increased emotionality of observer mice and, more importantly, contributed to distinguishing susceptible individuals. Interestingly, fos-positive neurons were mainly found in the interoceptive network, and mice of a lower social rank showed more empathy-like behaviors. Conclusion Our findings highlight that combining this experimental model with the Z-scoring method yields robust emotionality measures of individual mice, thus making it easier to screen and differentiate between empathic fear-susceptible mice and resilient mice, and refining the translational applicability of these models.
Collapse
Affiliation(s)
- Tianyao Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shufang Feng
- Department of Medical Psychology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wenlong Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuan Fu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wenxia Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- *Correspondence: Wenxia Zhou,
| |
Collapse
|
94
|
Ben-Ami Bartal I. What's familiarity got to do with it? Neural mechanisms of observational fear in siblings and strangers. Neuron 2022; 110:1887-1888. [PMID: 35709693 DOI: 10.1016/j.neuron.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Social modulation of pain sensitivity is considered part of the empathic response. In this issue of Neuron, Zhang at al. (2022) uncover the neurobiological basis of observational pain in mice. They report increased synaptic transmission from the insular cortex to the basolateral amygdala and explore genes mediating this effect.
Collapse
Affiliation(s)
- Inbal Ben-Ami Bartal
- School of Psychological Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
95
|
Keysers C, Knapska E, Moita MA, Gazzola V. Emotional contagion and prosocial behavior in rodents. Trends Cogn Sci 2022; 26:688-706. [PMID: 35667978 DOI: 10.1016/j.tics.2022.05.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023]
Abstract
Empathy is critical to adjusting our behavior to the state of others. The past decade dramatically deepened our understanding of the biological origin of this capacity. We now understand that rodents robustly show emotional contagion for the distress of others via neural structures homologous to those involved in human empathy. Their propensity to approach others in distress strengthens this effect. Although rodents can also learn to favor behaviors that benefit others via structures overlapping with those of emotional contagion, they do so less reliably and more selectively. Together, this suggests evolution selected mechanisms for emotional contagion to prepare animals for dangers by using others as sentinels. Such shared emotions additionally can, under certain circumstances, promote prosocial behavior.
Collapse
Affiliation(s)
- Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands.
| | - Ewelina Knapska
- Laboratory of Emotions' Neurobiology, Center of Excellence for Neural Plasticity and Brain Disorders BRAINCITY, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta A Moita
- Champalimaud Neuroscience Progamme, Champalimaud Foundation, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
96
|
Ueno H, Takahashi Y, Murakami S, Wani K, Matsumoto Y, Okamoto M, Ishihara T. Effect of simultaneous testing of two mice in the tail suspension test and forced swim test. Sci Rep 2022; 12:9224. [PMID: 35654971 PMCID: PMC9163059 DOI: 10.1038/s41598-022-12986-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
In mouse studies, the results of behavioural experiments are greatly affected by differences in the experimental environment and handling methods. The Porsolt forced swim test and tail suspension test are widely used to evaluate predictive models of depression-like behaviour in mice. It has not been clarified how the results of these tests are affected by testing single or multiple mice simultaneously. Therefore, this study evaluated the differences between testing two mice simultaneously or separately. To investigate the effect of testing multiple mice simultaneously, the Porsolt forced swim test and tail suspension test were performed in three patterns: (1) testing with an opaque partition between two mice, (2) testing without a partition between two mice, and (3) testing a single mouse. In the Porsolt forced swim test, the mice tested simultaneously without a partition demonstrated increased immobility time as compared to mice tested alone. No difference in immobility time was observed between the three groups in the tail suspension test. Our results showed that the environment of behavioural experiments investigating depression-like behaviour in mice can cause a difference in depression-like behaviour. The results of this experiment indicated that it is necessary to describe the method used for behavioural testing in detail.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, 288, Matsushima, Kurashiki, Okayama, 701-0193, Japan.
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| |
Collapse
|
97
|
Pohl TT, Hörnberg H. Neuroligins in neurodevelopmental conditions: how mouse models of de novo mutations can help us link synaptic function to social behavior. Neuronal Signal 2022; 6:NS20210030. [PMID: 35601025 PMCID: PMC9093077 DOI: 10.1042/ns20210030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022] Open
Abstract
Neurodevelopmental conditions (or neurodevelopmental disorders, NDDs) are highly heterogeneous with overlapping characteristics and shared genetic etiology. The large symptom variability and etiological heterogeneity have made it challenging to understand the biological mechanisms underpinning NDDs. To accommodate this individual variability, one approach is to move away from diagnostic criteria and focus on distinct dimensions with relevance to multiple NDDs. This domain approach is well suited to preclinical research, where genetically modified animal models can be used to link genetic variability to neurobiological mechanisms and behavioral traits. Genetic factors associated with NDDs can be grouped functionally into common biological pathways, with one prominent functional group being genes associated with the synapse. These include the neuroligins (Nlgns), a family of postsynaptic transmembrane proteins that are key modulators of synaptic function. Here, we review how research using Nlgn mouse models has provided insight into how synaptic proteins contribute to behavioral traits associated with NDDs. We focus on how mutations in different Nlgns affect social behaviors, as differences in social interaction and communication are a common feature of most NDDs. Importantly, mice carrying distinct mutations in Nlgns share some neurobiological and behavioral phenotypes with other synaptic gene mutations. Comparing the functional implications of mutations in multiple synaptic proteins is a first step towards identifying convergent neurobiological pathways in multiple brain regions and circuits.
Collapse
Affiliation(s)
- Tobias T. Pohl
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Hanna Hörnberg
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany
| |
Collapse
|
98
|
Wrage B. Caring animals and care ethics. BIOLOGY & PHILOSOPHY 2022; 37:18. [PMID: 35637869 PMCID: PMC9135829 DOI: 10.1007/s10539-022-09857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/09/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Are there nonhuman animals who behave morally? In this paper I answer this question in the affirmative by applying the framework of care ethics to the animal morality debate. According to care ethics, empathic care is the wellspring of morality in humans. While there have been several suggestive analyses of nonhuman animals as empathic, much of the literature within the animal morality debate has marginalized analyses from the perspective of care ethics. In this paper I examine care ethics to extract its core commitments to what is required for moral care: emotional motivation that enables the intentional meeting of another's needs, and forward-looking responsibility in particular relationships. What is not required, I argue, are metarepresentational capacities or the ability to scrutinize one's reasons for action, and thus being retrospectively accountable. This minimal account of moral care is illustrated by moral practices of parental care seen in many nonhuman animal species. In response to the worry that parental care in nonhuman animals lacks all evaluation and is therefore nonmoral I point to cultural differences in human parenting and to normativity in nonhuman animals.
Collapse
Affiliation(s)
- Birte Wrage
- Unit of Ethics and Human-Animal Studies, Messerli Research Institute, Vetmeduni Vienna, Uni Vienna, MedUni Vienna, Vienna, Austria
| |
Collapse
|
99
|
Maigrot AL, Hillmann E, Briefer EF. Cross-species discrimination of vocal expression of emotional valence by Equidae and Suidae. BMC Biol 2022; 20:106. [PMID: 35606806 PMCID: PMC9128205 DOI: 10.1186/s12915-022-01311-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Discrimination and perception of emotion expression regulate interactions between conspecifics and can lead to emotional contagion (state matching between producer and receiver) or to more complex forms of empathy (e.g., sympathetic concern). Empathy processes are enhanced by familiarity and physical similarity between partners. Since heterospecifics can also be familiar with each other to some extent, discrimination/perception of emotions and, as a result, emotional contagion could also occur between species. RESULTS Here, we investigated if four species belonging to two ungulate Families, Equidae (domestic and Przewalski's horses) and Suidae (pigs and wild boars), can discriminate between vocalizations of opposite emotional valence (positive or negative), produced not only by conspecifics, but also closely related heterospecifics and humans. To this aim, we played back to individuals of these four species, which were all habituated to humans, vocalizations from a unique set of recordings for which the valence associated with vocal production was known. We found that domestic and Przewalski's horses, as well as pigs, but not wild boars, reacted more strongly when the first vocalization played was negative compared to positive, regardless of the species broadcasted. CONCLUSIONS Domestic horses, Przewalski's horses and pigs thus seem to discriminate between positive and negative vocalizations produced not only by conspecifics, but also by heterospecifics, including humans. In addition, we found an absence of difference between the strength of reaction of the four species to the calls of conspecifics and closely related heterospecifics, which could be related to similarities in the general structure of their vocalization. Overall, our results suggest that phylogeny and domestication have played a role in cross-species discrimination/perception of emotions.
Collapse
Affiliation(s)
- Anne-Laure Maigrot
- Institute of Agricultural Sciences, ETH Zürich, Universitätsstrasse 2, 8092, Zurich, Switzerland.,Division of Animal Welfare, Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland.,Swiss National Stud Farm, Agroscope, Les Longs-Prés, 1580, Avenches, Switzerland
| | - Edna Hillmann
- Institute of Agricultural Sciences, ETH Zürich, Universitätsstrasse 2, 8092, Zurich, Switzerland.,Animal Husbandry and Ethology, Albrecht Daniel Thaer-Institut, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115, Berlin, Germany
| | - Elodie F Briefer
- Institute of Agricultural Sciences, ETH Zürich, Universitätsstrasse 2, 8092, Zurich, Switzerland. .,Centre for Proper Housing of Ruminants and Pigs, Federal Food Safety and Veterinary Office, Agroscope, Tänikon, 8356, Ettenhausen, Switzerland. .,Department of Biology, Behavioral Ecology Group, Section for Ecology & Evolution, University of Copenhagen, 2100, Copenhagen Ø, Denmark.
| |
Collapse
|
100
|
Carneiro de Oliveira PE, Carmona IM, Casarotto M, Silveira LM, Oliveira ACB, Canto-de-Souza A. Mice Cohabiting With Familiar Conspecific in Chronic Stress Condition Exhibit Methamphetamine-Induced Locomotor Sensitization and Augmented Consolation Behavior. Front Behav Neurosci 2022; 16:835717. [PMID: 35517576 PMCID: PMC9062221 DOI: 10.3389/fnbeh.2022.835717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Recognizing and sharing emotions are essential for species survival, but in some cases, living with a conspecific in distress condition may induce negative emotional states through empathy-like processes. Studies have reported that stressors promote psychiatric disorders in both, those who suffer directly and who witness these aversive episodes, principally whether social proximity is involved. However, the mechanisms underlying the harmful outcomes of emotional contagion need more studies, mainly in the drug addiction-related behaviors. Here, we investigated the relevance of familiarity and the effects of cohabitation with a partner submitted to chronic stress in the anxiety-like, locomotor sensitization, and consolation behaviors. Male Swiss mice were housed in pairs during different periods to test the establishment of familiarity and the stress-induced anxiety behavior in the elevated plus maze. Another cohort was housed with a conspecific subjected to repeated restraint stress (1 h/day) for 14 days. During chronic restraint the allogrooming was measured and after the stress period mice were tested in the open field for evaluation of anxiety and locomotor cross-sensitization induced by methamphetamine. We found that familiarity was established after 14 days of cohabitation and the anxiogenic behavior appeared after 14 days of stress. Repeated restraint stress also increased anxiety in the open field test and induced locomotor cross-sensitization in the stressed mice and their cagemates. Cagemates also exhibited an increase in the consolation behavior after stress sessions when compared to control mice. These results indicate that changes in drug abuse-related, consolation, and affective behaviors may be precipitated through emotional contagion in familiar conspecifics.
Collapse
Affiliation(s)
| | - Isabela Miranda Carmona
- Psychobiology Group/Department of Psychology/CECH - Federal University of São Carlos, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Federal University of São Carlos, São Carlos, Brazil
| | - Mariana Casarotto
- Psychobiology Group/Department of Psychology/CECH - Federal University of São Carlos, São Carlos, Brazil
| | - Lara Maria Silveira
- Psychobiology Group/Department of Psychology/CECH - Federal University of São Carlos, São Carlos, Brazil.,Graduate Program in Psychology, Federal University of São Carlos, São Carlos, Brazil
| | - Anna Cecília Bezerra Oliveira
- Psychobiology Group/Department of Psychology/CECH - Federal University of São Carlos, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Federal University of São Carlos, São Carlos, Brazil
| | - Azair Canto-de-Souza
- Psychobiology Group/Department of Psychology/CECH - Federal University of São Carlos, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Federal University of São Carlos, São Carlos, Brazil.,Graduate Program in Psychology, Federal University of São Carlos, São Carlos, Brazil.,Neuroscience and Behavioral Institute, Ribeirão Preto, Brazil
| |
Collapse
|