51
|
Yang S, Tang Q, Chen L, Chang J, Jiang T, Zhao J, Wang M, Chen PR. Cationic Lipid-based Intracellular Delivery of Bacterial Effectors for Rewiring Malignant Cell Signaling. Angew Chem Int Ed Engl 2020; 59:18087-18094. [PMID: 32671943 DOI: 10.1002/anie.202009572] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Indexed: 12/12/2022]
Abstract
The abundance of bacterial effectors have inspired us to explore their potential in rewiring malignant cell signaling. Their incapability for entering cells, however, hinders such application. Herein we developed a cationic lipid-based high throughput library screening platform for effective intracellular delivery of bacterial effectors. As the misregulated MAPK signaling is a hallmark of many types of cancer, we turned to the Shigella effector OspF which irreversibly inactivates ERK, the terminal component of MAPK cascade. We created a function-based screening assay to obtain AMPA-O16B lipid nanoparticles for effective OspF intracellular delivery, which inhibited the malignant MAPK signaling and tumor growth in vitro and in vivo. Furthermore, the optimized lipid nanoparticle formulation can deliver OspF to modulate the immunosuppressive responses in macrophages. Our work is a general strategy to explore the therapeutic potentials of naturally evolved bacterial effectors.
Collapse
Affiliation(s)
- Shaojun Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qiao Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Long Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jin Chang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Tian Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Jingyi Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Peng R Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
52
|
Yang S, Tang Q, Chen L, Chang J, Jiang T, Zhao J, Wang M, Chen PR. Cationic Lipid‐based Intracellular Delivery of Bacterial Effectors for Rewiring Malignant Cell Signaling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shaojun Yang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Qiao Tang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing 100190 China
| | - Long Chen
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jin Chang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing 100190 China
| | - Tian Jiang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing 100190 China
| | - Jingyi Zhao
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing 100190 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Peng R. Chen
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 China
| |
Collapse
|
53
|
Hegemann JD, Süssmuth RD. Matters of class: coming of age of class III and IV lanthipeptides. RSC Chem Biol 2020; 1:110-127. [PMID: 34458752 PMCID: PMC8341899 DOI: 10.1039/d0cb00073f] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Lanthipeptides belong to the superfamily of ribosomally-synthesized and posttranslationally-modified peptides (RiPPs). Despite the fact that they represent one of the longest known RiPP subfamilies, their youngest members, classes III and IV, have only been described more recently. Since then, a plethora of studies furthered the understanding of their biosynthesis. While there are commonalities between classes III and IV due to the similar domain architectures of their processing enzymes, there are also striking differences that allow their discrimination. In this concise review article, we summarize what is known about the underlying biosynthetic principles of these lanthipeptides and discuss open questions for future research.
Collapse
Affiliation(s)
- Julian D Hegemann
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124 10623 Berlin Germany
| | - Roderich D Süssmuth
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124 10623 Berlin Germany
| |
Collapse
|
54
|
Xue J, Hu S, Huang Y, Zhang Q, Yi X, Pan X, Li S. Arg-GlcNAcylation on TRADD by NleB and SseK1 Is Crucial for Bacterial Pathogenesis. Front Cell Dev Biol 2020; 8:641. [PMID: 32766249 PMCID: PMC7379376 DOI: 10.3389/fcell.2020.00641] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023] Open
Abstract
Death receptor signaling is critical for cell death, inflammation, and immune homeostasis. Hijacking death receptors and their corresponding adaptors through type III secretion system (T3SS) effectors has been evolved to be a bacterial evasion strategy. NleB from enteropathogenic Escherichia coli (EPEC) and SseK1/2/3 from Salmonella enterica serovar Typhimurium (S. Typhimurium) can modify some death domain (DD) proteins through arginine-GlcNAcylation. Here, we performed a substrate screen on 12 host DD proteins with conserved arginine during EPEC and Salmonella infection. NleB from EPEC hijacked death receptor signaling through tumor necrosis factor receptor 1 (TNFR1)-associated death domain protein (TRADD), FAS-associated death domain protein (FADD), and receptor-interacting serine/threonine-protein kinase 1 (RIPK1), whereas SseK1 and SseK3 disturbed TNF signaling through the modification of TRADD Arg235/Arg245 and TNFR1 Arg376, respectively. Furthermore, mouse infection studies showed that SseK1 but not SseK3 rescued the bacterial colonization deficiency contributed by the deletion of NleBc (Citrobacter NleB), indicating that TRADD was the in vivo substrate. The result provides an insight into the mechanism by which attaching and effacing (A/E) pathogen manipulate TRADD-mediated signaling and evade host immune defense through T3SS effectors.
Collapse
Affiliation(s)
- Juan Xue
- Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Shufan Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Yuxuan Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Qi Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Xueying Yi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Xing Pan
- Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Shan Li
- Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
55
|
Denzer L, Schroten H, Schwerk C. From Gene to Protein-How Bacterial Virulence Factors Manipulate Host Gene Expression During Infection. Int J Mol Sci 2020; 21:ijms21103730. [PMID: 32466312 PMCID: PMC7279228 DOI: 10.3390/ijms21103730] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bacteria evolved many strategies to survive and persist within host cells. Secretion of bacterial effectors enables bacteria not only to enter the host cell but also to manipulate host gene expression to circumvent clearance by the host immune response. Some effectors were also shown to evade the nucleus to manipulate epigenetic processes as well as transcription and mRNA procession and are therefore classified as nucleomodulins. Others were shown to interfere downstream with gene expression at the level of mRNA stability, favoring either mRNA stabilization or mRNA degradation, translation or protein stability, including mechanisms of protein activation and degradation. Finally, manipulation of innate immune signaling and nutrient supply creates a replicative niche that enables bacterial intracellular persistence and survival. In this review, we want to highlight the divergent strategies applied by intracellular bacteria to evade host immune responses through subversion of host gene expression via bacterial effectors. Since these virulence proteins mimic host cell enzymes or own novel enzymatic functions, characterizing their properties could help to understand the complex interactions between host and pathogen during infections. Additionally, these insights could propose potential targets for medical therapy.
Collapse
|
56
|
Liu S, Xie Y, Luo W, Dou Y, Xiong H, Xiao Z, Zhang XL. PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism. Front Microbiol 2020; 11:845. [PMID: 32457723 PMCID: PMC7225313 DOI: 10.3389/fmicb.2020.00845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb) evades the surveillance of immune responses for survival in macrophages. However, the precise mechanism and toxins/proteins encoded by M. tb involved in the bacterial escape remain elusive. The function of Rv1768 protein (also referred to as PE_PGRS31, belonging to the PE_PGRS family) encoded by the region of deletion 14 (RD-14) in the virulent M. tb H37Rv strain has not, to the best of our knowledge, been reported previously. Here, we found that Rv1768 remarkably promotes bacterial survival in macrophages. Compared to wild type (WT) H37Rv, the Rv1768 deficient strain (H37RvΔ1768) showed significantly decreased colony-forming units in the lungs, spleen, and liver of the murine M. tb infection model. The bacterial burdens of WT H37Rv in WT macrophages and C57BL/6 mice were significantly higher than those in S100A9 deficiency cells and mice, but there were no significant differences for H37RvΔRv1768. Rv1768 binds S100A9 with the proline-glutamic acid domain (PE domain) and blocks the interaction between S100A9 and Toll-like receptor 4 (TLR4), and suppresses TLR4-myeloid differentiation factor 88-nuclear factor-kappa B (NF-κB)-tumor necrosis factor α (TNF-α) signaling in macrophages. Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. Our results revealed that M. tb Rv1768 promotes mycobacterial survival in macrophages by regulating NF-κB-TNF-α signaling and arachidonic acid metabolism via S100A9. Disturbing the interaction between Rv1768 and S100A9 may be a potential therapeutic target for tuberculosis.
Collapse
Affiliation(s)
- Sheng Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences and Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yan Xie
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences and Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Wei Luo
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences and Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yafeng Dou
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences and Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Huan Xiong
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences and Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Zhen Xiao
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences and Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences and Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan, China
| |
Collapse
|
57
|
Chambers KA, Abularrage NS, Hill CJ, Khan IH, Scheck RA. A Chemical Probe for Dehydrobutyrine. Angew Chem Int Ed Engl 2020; 59:7350-7355. [DOI: 10.1002/anie.202003631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Kaitlin A. Chambers
- Department of Chemistry Tufts University 62 Talbot Avenue Medford MA 02155 USA
| | - Nile S. Abularrage
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Caitlin J. Hill
- Department of Chemistry Tufts University 62 Talbot Avenue Medford MA 02155 USA
| | - Imran H. Khan
- Department of Chemistry Tufts University 62 Talbot Avenue Medford MA 02155 USA
| | - Rebecca A. Scheck
- Department of Chemistry Tufts University 62 Talbot Avenue Medford MA 02155 USA
| |
Collapse
|
58
|
Chambers KA, Abularrage NS, Hill CJ, Khan IH, Scheck RA. A Chemical Probe for Dehydrobutyrine. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Kaitlin A. Chambers
- Department of Chemistry Tufts University 62 Talbot Avenue Medford MA 02155 USA
| | - Nile S. Abularrage
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Caitlin J. Hill
- Department of Chemistry Tufts University 62 Talbot Avenue Medford MA 02155 USA
| | - Imran H. Khan
- Department of Chemistry Tufts University 62 Talbot Avenue Medford MA 02155 USA
| | - Rebecca A. Scheck
- Department of Chemistry Tufts University 62 Talbot Avenue Medford MA 02155 USA
| |
Collapse
|
59
|
Bacterial Factors Targeting the Nucleus: The Growing Family of Nucleomodulins. Toxins (Basel) 2020; 12:toxins12040220. [PMID: 32244550 PMCID: PMC7232420 DOI: 10.3390/toxins12040220] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/23/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022] Open
Abstract
Pathogenic bacteria secrete a variety of proteins that manipulate host cell function by targeting components of the plasma membrane, cytosol, or organelles. In the last decade, several studies identified bacterial factors acting within the nucleus on gene expression or other nuclear processes, which has led to the emergence of a new family of effectors called “nucleomodulins”. In human and animal pathogens, Listeria monocytogenes for Gram-positive bacteria and Anaplasma phagocytophilum, Ehrlichia chaffeensis, Chlamydia trachomatis, Legionella pneumophila, Shigella flexneri, and Escherichia coli for Gram-negative bacteria, have led to pioneering discoveries. In this review, we present these paradigms and detail various mechanisms and core elements (e.g., DNA, histones, epigenetic regulators, transcription or splicing factors, signaling proteins) targeted by nucleomodulins. We particularly focus on nucleomodulins interacting with epifactors, such as LntA of Listeria and ankyrin repeat- or tandem repeat-containing effectors of Rickettsiales, and nucleomodulins from various bacterial species acting as post-translational modification enzymes. The study of bacterial nucleomodulins not only generates important knowledge about the control of host responses by microbes but also creates new tools to decipher the dynamic regulations that occur in the nucleus. This research also has potential applications in the field of biotechnology. Finally, this raises questions about the epigenetic effects of infectious diseases.
Collapse
|
60
|
Sámano-Sánchez H, Gibson TJ. Mimicry of Short Linear Motifs by Bacterial Pathogens: A Drugging Opportunity. Trends Biochem Sci 2020; 45:526-544. [PMID: 32413327 DOI: 10.1016/j.tibs.2020.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Bacterial pathogens have developed complex strategies to successfully survive and proliferate within their hosts. Throughout the infection cycle, direct interaction with host cells occurs. Many bacteria have been found to secrete proteins, such as effectors and toxins, directly into the host cell with the potential to interfere with cell regulatory processes, either enzymatically or through protein-protein interactions (PPIs). Short linear motifs (SLiMs) are abundant peptide modules in cell signaling proteins. Here, we cover the reported examples of eukaryotic-like SLiM mimicry being used by pathogenic bacteria to hijack host cell machinery and discuss how drugs targeting SLiM-regulated cell signaling networks are being evaluated for interference with bacterial infections. This emerging anti-infective opportunity may become an essential contributor to antibiotic replacement strategies.
Collapse
Affiliation(s)
- Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
61
|
Wang M, Qazi IH, Wang L, Zhou G, Han H. Salmonella Virulence and Immune Escape. Microorganisms 2020; 8:microorganisms8030407. [PMID: 32183199 PMCID: PMC7143636 DOI: 10.3390/microorganisms8030407] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Salmonella genus represents the most common foodborne pathogens causing morbidity, mortality, and burden of disease in all regions of the world. The introduction of antimicrobial agents and Salmonella-specific phages has been considered as an effective intervention strategy to reduce Salmonella contamination. However, data from the United States, European countries, and low- and middle-income countries indicate that Salmonella cases are still a commonly encountered cause of bacterial foodborne diseases globally. The control programs have not been successful and even led to the emergence of some multidrug-resistant Salmonella strains. It is known that the host immune system is able to effectively prevent microbial invasion and eliminate microorganisms. However, Salmonella has evolved mechanisms of resisting host physical barriers and inhibiting subsequent activation of immune response through their virulence factors. There has been a high interest in understanding how Salmonella interacts with the host. Therefore, in the present review, we characterize the functions of Salmonella virulence genes and particularly focus on the mechanisms of immune escape in light of evidence from the emerging mainstream literature.
Collapse
Affiliation(s)
- Mengyao Wang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (L.W.)
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
- Department of Veterinary Anatomy and Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Linli Wang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (L.W.)
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
- Correspondence: (H.H.); (G.Z.)
| | - Hongbing Han
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (L.W.)
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (H.H.); (G.Z.)
| |
Collapse
|
62
|
Revealing eukaryotic histone-modifying mechanisms through bacterial infection. Semin Immunopathol 2020; 42:201-213. [DOI: 10.1007/s00281-019-00778-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022]
|
63
|
Jumani RS, Spector JM, Izadnegahdar R, Kelly P, Diagana TT, Manjunatha UH. Innovations in Addressing Pediatric Diarrhea in Low Resource Settings. ACS Infect Dis 2020; 6:14-24. [PMID: 31612701 DOI: 10.1021/acsinfecdis.9b00315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diarrhea has long been recognized as an important cause of mortality during childhood. In parallel with ensuring access to proven care practices is the imperative to apply modern advances in medicine, science, and technology to accelerate progress against diarrheal disease, particularly in developing countries where the burden of avoidable harm is the greatest. In order to highlight achievements and identify outstanding areas of need, we reviewed the landscape of recent innovations that have significance for the study and clinical management of pediatric diarrhea in low resource settings.
Collapse
Affiliation(s)
- Rajiv S. Jumani
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Jonathan M. Spector
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Rasa Izadnegahdar
- Bill and Melinda Gates Foundation, 440 5th Ave N, Seattle, Washington 98109, United States
| | - Paul Kelly
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, Turner Street, London E1 2AD, United Kingdom
- Tropical Gastroenterology and Nutrition group, University of Zambia School of Medicine, Nationalist Road, Lusaka, Zambia
| | - Thierry T. Diagana
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Ujjini H. Manjunatha
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, California 94608, United States
| |
Collapse
|
64
|
Mukhopadhyay S, Ganguli S, Chakrabarti S. <em>Shigella</em> pathogenesis: molecular and computational insights. AIMS MOLECULAR SCIENCE 2020. [DOI: 10.3934/molsci.2020007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
65
|
Molecular Mechanisms That Define Redox Balance Function in Pathogen-Host Interactions-Is There a Role for Dietary Bioactive Polyphenols? Int J Mol Sci 2019; 20:ijms20246222. [PMID: 31835548 PMCID: PMC6940965 DOI: 10.3390/ijms20246222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023] Open
Abstract
To ensure a functional immune system, the mammalian host must detect and respond to the presence of pathogenic bacteria during infection. This is accomplished in part by generating reactive oxygen species (ROS) that target invading bacteria; a process that is facilitated by NADPH oxidase upregulation. Thus, bacterial pathogens must overcome the oxidative burst produced by the host innate immune cells in order to survive and proliferate. In this way, pathogenic bacteria develop virulence, which is related to the affinity to secrete effector proteins against host ROS in order to facilitate microbial survival in the host cell. These effectors scavenge the host generated ROS directly, or alternatively, manipulate host cell signaling mechanisms designed to benefit pathogen survival. The redox-balance of the host is important for the regulation of cell signaling activities that include mitogen-activated protein kinase (MAPK), p21-activated kinase (PAK), phosphatidylinositol 3-kinase (PI3K)/Akt, and nuclear factor κB (NF-κB) pathways. An understanding of the function of pathogenic effectors to divert host cell signaling is important to ascertain the mechanisms underlying pathogen virulence and the eventual host–pathogen relationship. Herein, we examine the effectors produced by the microbial secretion system, placing emphasis on how they target molecular signaling mechanisms involved in a host immune response. Moreover, we discuss the potential impact of bioactive polyphenols in modulating these molecular interactions that will ultimately influence pathogen virulence.
Collapse
|
66
|
The Salmonella type III effector SpvC triggers the reverse transmigration of infected cells into the bloodstream. PLoS One 2019; 14:e0226126. [PMID: 31815949 PMCID: PMC6901223 DOI: 10.1371/journal.pone.0226126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022] Open
Abstract
Salmonella can appear in the bloodstream within CD18 expressing phagocytes following oral ingestion in as little as 15 minutes. Here, we provide evidence that the process underlying this phenomenon is reverse transmigration. Reverse transmigration is a normal host process in which dendritic cells can reenter the bloodstream by traversing endothelium in the basal to apical direction. We have developed an in vitro reverse transmigration assay in which dendritic cells are given the opportunity to cross endothelial monolayers in the basal to apical direction grown on membranes with small pores, modeling how such cells can penetrate the bloodstream. We demonstrate that exposing dendritic cells to microbial components negatively regulates reverse transmigration. We propose that microbial components normally cause the host to toggle between positively and negatively regulating reverse transmigration, balancing the need to resolve inflammation with inhibiting the spread of microbes. We show that Salmonella in part overcomes this negative regulation of reverse transmigration with the Salmonella pathogenicity island-2 encoded type III secretion system, which increases reverse transmigration by over an order of magnitude. The SPI-2 type III secretion system does this in part, but not entirely by injecting the type III effector SpvC into infected cells. We further demonstrate that SpvC greatly promotes early extra-intestinal dissemination in mice. This result combined with the previous observation that the spv operon is conserved amongst strains of non-typhoidal Salmonella capable of causing bacteremia in humans suggests that this pathway to the bloodstream could be important for understanding human infections.
Collapse
|
67
|
Jo SH, Lee J, Park E, Kim DW, Lee DH, Ryu CM, Choi D, Park JM. A human pathogenic bacterium Shigella proliferates in plants through adoption of type III effectors for shigellosis. PLANT, CELL & ENVIRONMENT 2019; 42:2962-2978. [PMID: 31250458 DOI: 10.1111/pce.13603] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Shigella, which infects primates, can be transmitted via fresh vegetables; however, its molecular interactions with plants have not been elucidated. Here, we show that four Shigella strains, Shigella boydii, Shigella sonnei, Shigella flexneri 2a, and S. flexneri 5a, proliferate at different levels in Arabidopsis thaliana. Microscopic studies revealed that these bacteria were present inside leaves and damaged plant cells. Green fluorescent protein (GFP)-tagged S. boydii and S. flexneri 5a colonized leaves only, whereas S. flexneri 2a colonized both leaves and roots. Using Shigella mutants lacking type III secretion systems (T3SSs), we found that T3SSs that regulate the pathogenesis of shigellosis in humans also play a central role in bacterial proliferation in Arabidopsis. Strikingly, the immunosuppressive activity of two T3S effectors, OspF and OspG, was required for proliferation of Shigella in Arabidopsis. Of note, delivery of OspF or OspG effectors inside plant cells upon Shigella inoculation was confirmed using a split GFP system. These findings demonstrate that the human pathogen Shigella can proliferate in plants by adapting immunosuppressive machinery used in the original host human.
Collapse
Affiliation(s)
- Sung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Jiyoung Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Biological Resource Center, KRIBB, Jeongeup, 56212, South Korea
| | - Eunsook Park
- Plant Immunity Research Center, Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, 15588, South Korea
- Institute of Pharmacological Research, Hanyang University, Ansan, 15588, South Korea
| | - Dae Hee Lee
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, South Korea
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Choong Min Ryu
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, South Korea
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Doil Choi
- Plant Immunity Research Center, Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jeong Mee Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, South Korea
| |
Collapse
|
68
|
Tasmin R, Gulig PA, Parveen S. Detection of Virulence Plasmid-Encoded Genes in Salmonella Typhimurium and Salmonella Kentucky Isolates Recovered from Commercially Processed Chicken Carcasses. J Food Prot 2019; 82:1364-1368. [PMID: 31322922 DOI: 10.4315/0362-028x.jfp-18-552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Salmonella enterica serovar Typhimurium is one of the leading causes of nontyphoidal gastroenteritis of humans in the United States. Commercially processed poultry carcasses are frequently contaminated with Salmonella serovar Kentucky in the United States. The aim of the study was to detect the Salmonella virulence plasmid containing the spv genes from Salmonella isolates recovered from commercially processed chicken carcasses. A total of 144 Salmonella isolates (Salmonella Typhimurium, n = 72 and Salmonella Kentucky, n = 72) were used for isolation of plasmids and detection of corresponding virulence genes (spvA, spvB, and spvC). Only four (5.5%) Salmonella Typhimurium isolates tested positive for all three virulence genes and hence were classified as possessing the virulence plasmid. All isolates of Salmonella Kentucky were negative for the virulence plasmid and genes. These results indicate that the virulence plasmid, which is very common among clinical isolates of Typhimurium and other Salmonella serovars (e.g., Enteritidis, Dublin, Choleraesuis, Gallinarum, Pullorum, and Abortusovis), may not be present in a significant portion of commercially processed chicken carcass isolates.
Collapse
Affiliation(s)
- Rizwana Tasmin
- 1 Agriculture, Food and Resource Sciences, University of Maryland, Eastern Shore, Princess Anne, Maryland 21853
| | - Paul A Gulig
- 2 Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32611, USA
| | - Salina Parveen
- 1 Agriculture, Food and Resource Sciences, University of Maryland, Eastern Shore, Princess Anne, Maryland 21853
| |
Collapse
|
69
|
Yang D, Liu X, Xu W, Gu Z, Yang C, Zhang L, Tan J, Zheng X, Wang Z, Quan S, Zhang Y, Liu Q. The Edwardsiella piscicida thioredoxin-like protein inhibits ASK1-MAPKs signaling cascades to promote pathogenesis during infection. PLoS Pathog 2019; 15:e1007917. [PMID: 31314784 PMCID: PMC6636751 DOI: 10.1371/journal.ppat.1007917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/14/2019] [Indexed: 12/02/2022] Open
Abstract
It is important that bacterium can coordinately deliver several effectors into host cells to disturb the cellular progress during infection, however, the precise role of effectors in host cell cytosol remains to be resolved. In this study, we identified a new bacterial virulence effector from pathogenic Edwardsiella piscicida, which presents conserved crystal structure to thioredoxin family members and is defined as a thioredoxin-like protein (Trxlp). Unlike the classical bacterial thioredoxins, Trxlp can be translocated into host cells, mimicking endogenous thioredoxin to abrogate ASK1 homophilic interaction and phosphorylation, then suppressing the phosphorylation of downstream Erk1/2- and p38-MAPK signaling cascades. Moreover, Trxlp-mediated inhibition of ASK1-Erk/p38-MAPK axis promotes the pathogenesis of E. piscicida in zebrafish larvae infection model. Taken together, these data provide insights into the mechanism underlying the bacterial thioredoxin as a virulence effector in downmodulating the innate immune responses during E. piscicida infection. Thioredoxin (Trx) is universally conserved thiol-oxidoreductase that regulates numerous cellular pathways under thiol-based redox control in both prokaryotic and eukaryotic organisms. Despite its central importance, the mechanism of bacterial Trx recognizes its target proteins in host cellular signaling remains unknown. Here, we uncover a bacterial thioredoxin-like protein that can be translocated into host cells and mimic the endogenous TRX1 to target ASK1-MAPK signaling, finally facilitating bacterial pathogenesis. This work expands our understanding of bacterial thioredoxins in manipulating host innate immunity.
Collapse
Affiliation(s)
- Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Wenting Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhaoyan Gu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Cuiting Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lingzhi Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jinchao Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xin Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shu Quan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| |
Collapse
|
70
|
Yang B, Wang N, Schnier PD, Zheng F, Zhu H, Polizzi NF, Ittuveetil A, Saikam V, DeGrado WF, Wang Q, Wang PG, Wang L. Genetically Introducing Biochemically Reactive Amino Acids Dehydroalanine and Dehydrobutyrine in Proteins. J Am Chem Soc 2019; 141:7698-7703. [PMID: 31038942 DOI: 10.1021/jacs.9b02611] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Expansion of the genetic code with unnatural amino acids (Uaas) has significantly increased the chemical space available to proteins for exploitation. Due to the inherent limitation of translational machinery and the required compatibility with biological settings, function groups introduced via Uaas to date are restricted to chemically inert, bioorthogonal, or latent bioreactive groups. To break this barrier, here we report a new strategy enabling the specific incorporation of biochemically reactive amino acids into proteins. A latent bioreactive amino acid is genetically encoded at a position proximal to the target natural amino acid; they react via proximity-enabled reactivity, selectively converting the latter into a reactive residue in situ. Using this Genetically Encoded Chemical COnversion (GECCO) strategy and harnessing the sulfur-fluoride exchange (SuFEx) reaction between fluorosulfate-l-tyrosine and serine or threonine, we site-specifically generated the reactive dehydroalanine and dehydrobutyrine into proteins. GECCO works both inter- and intramolecularly, and is compatible with various proteins. We further labeled the resultant dehydroalanine-containing protein with thiol-saccharide to generate glycoprotein mimetics. GECCO represents a new solution for selectively introducing biochemically reactive amino acids into proteins and is expected to open new avenues for exploiting chemistry in live systems for biological research and engineering.
Collapse
Affiliation(s)
| | | | | | - Feng Zheng
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Hangzhou 310018 , China
| | - He Zhu
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | | | - Avinash Ittuveetil
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Varma Saikam
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | | | - Qian Wang
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Hangzhou 310018 , China
| | - Peng G Wang
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | | |
Collapse
|
71
|
The Shigella type three secretion system effector OspF invades host nucleus by binding host importin α1. World J Microbiol Biotechnol 2019; 35:71. [DOI: 10.1007/s11274-019-2635-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/11/2019] [Indexed: 11/26/2022]
|
72
|
Schnupf P, Sansonetti PJ. Shigella Pathogenesis: New Insights through Advanced Methodologies. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0023-2019. [PMID: 30953429 PMCID: PMC11588159 DOI: 10.1128/microbiolspec.bai-0023-2019] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Shigella is a genus of Gram-negative enteropathogens that have long been, and continue to be, an important public health concern worldwide. Over the past several decades, Shigella spp. have also served as model pathogens in the study of bacterial pathogenesis, and Shigella flexneri has become one of the best-studied pathogens on a molecular, cellular, and tissue level. In the arms race between Shigella and the host immune system, Shigella has developed highly sophisticated mechanisms to subvert host cell processes in order to promote infection, escape immune detection, and prevent bacterial clearance. Here, we give an overview of Shigella pathogenesis while highlighting innovative techniques and methods whose application has significantly advanced our understanding of Shigella pathogenesis in recent years.
Collapse
Affiliation(s)
- Pamela Schnupf
- Institut Imagine, Laboratory of Intestinal Immunity, INSERM UMR1163; Institut Necker Enfants Malades, Laboratory of Host-Microbiota Interaction, INSERM U1151; and Université Paris Descartes-Sorbonne, 75006 Paris, France
| | - Philippe J Sansonetti
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, and College de France, Paris, France
| |
Collapse
|
73
|
Connor M, Arbibe L, Hamon M. Customizing Host Chromatin: a Bacterial Tale. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0015-2019. [PMID: 30953433 PMCID: PMC11590419 DOI: 10.1128/microbiolspec.bai-0015-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 12/14/2022] Open
Abstract
Successful bacterial colonizers and pathogens have evolved with their hosts and have acquired mechanisms to customize essential processes that benefit their lifestyle. In large part, bacterial survival hinges on shaping the transcriptional signature of the host, a process regulated at the chromatin level. Modifications of chromatin, either on histone proteins or on DNA itself, are common targets during bacterium-host cross talk and are the focus of this article.
Collapse
Affiliation(s)
- Michael Connor
- Institut Pasteur, G5 Chromatine et Infection, Paris, France
| | - Laurence Arbibe
- INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades, INEM Institute Department of Immunology, Infectiology and Hematology, Paris, France
| | - Mélanie Hamon
- Institut Pasteur, G5 Chromatine et Infection, Paris, France
| |
Collapse
|
74
|
Hausmann A, Hardt WD. The Interplay between Salmonella enterica Serovar Typhimurium and the Intestinal Mucosa during Oral Infection. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0004-2019. [PMID: 30953432 PMCID: PMC11588296 DOI: 10.1128/microbiolspec.bai-0004-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 12/28/2022] Open
Abstract
Bacterial infection results in a dynamic interplay between the pathogen and its host. The underlying interactions are multilayered, and the cellular responses are modulated by the local environment. The intestine is a particularly interesting tissue regarding host-pathogen interaction. It is densely colonized by commensal microbes and a portal of entry for ingested pathogens. This necessitates constant monitoring of microbial stimuli in order to maintain homeostasis during encounters with benign microbiota and to trigger immune defenses in response to bacterial pathogens. Homeostasis is maintained by physical barriers (the mucus layer and epithelium), chemical defenses (antimicrobial peptides), and innate immune responses (NLRC4 inflammasome), which keep the bacteria from reaching the sterile lamina propria. Intestinal pathogens represent potent experimental tools to probe these barriers and decipher how pathogens can circumvent them. The streptomycin mouse model of oral Salmonella enterica serovar Typhimurium infection provides a well-characterized, robust experimental system for such studies. Strikingly, each stage of the gut tissue infection poses a different set of challenges to the pathogen and requires tight control of virulence factor expression, host response modulation, and cooperation between phenotypic subpopulations. Therefore, successful infection of the intestinal tissue relies on a delicate and dynamic balance between responses of the pathogen and its host. These mechanisms can be deciphered to their full extent only in realistic in vivo infection models.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, D-BIOL ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
75
|
Zhao J, Liu Y, Lin F, Wang W, Yang S, Ge Y, Chen PR. Bioorthogonal Engineering of Bacterial Effectors for Spatial-Temporal Modulation of Cell Signaling. ACS CENTRAL SCIENCE 2019; 5:145-152. [PMID: 30693333 PMCID: PMC6346392 DOI: 10.1021/acscentsci.8b00751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Indexed: 05/02/2023]
Abstract
The complicated and entangled cell signaling network is dynamically regulated by a wide array of enzymes such as kinases. It remains desirable but challenging to specifically modulate individual, endogenous kinases within a cell, particularly in a spatial-temporally controlled fashion. Current strategies toward regulating the intracellular functions of a kinase of interest either lack specificity or require genetic engineering that may perturb its physiological activity. Herein, we harnessed a bacterial effector OspF for optical and chemical modulation of the endogenous mitogen-activated protein kinase (MAPK) cascade in living cells and mice. The phospho-lyase OspF provided high specificity and spatial resolution toward the desired kinase such as the extracellular signal-regulated kinase (ERK), while the genetically encoded bioorthogonal decaging strategy enabled its temporal activation in living systems. The photocaged OspF (OspF*) was applied to dissect the subcellular signaling roles of ERK in nucleus as opposed to cytoplasm, while the chemically caged OspF (OspFc) was introduced into living mice to modulate ERK-mediated gene expression. Finally, our spatially and chemically controlled OspFc was further used to precisely tune immune responses in T cells. Together, our bioorthogonal engineering strategy on bacterial effectors offers a general tool to modulate cell signaling with high specificity and spatial-temporal resolution.
Collapse
Affiliation(s)
- Jingyi Zhao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yanjun Liu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Feng Lin
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy
for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Weixia Wang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shaojun Yang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yun Ge
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peng R. Chen
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
- Academy
for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- E-mail:
| |
Collapse
|
76
|
The Major RNA-Binding Protein ProQ Impacts Virulence Gene Expression in Salmonella enterica Serovar Typhimurium. mBio 2019; 10:mBio.02504-18. [PMID: 30602583 PMCID: PMC6315103 DOI: 10.1128/mbio.02504-18] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
FinO domain proteins such as ProQ of the model pathogen Salmonella enterica have emerged as a new class of major RNA-binding proteins in bacteria. ProQ has been shown to target hundreds of transcripts, including mRNAs from many virulence regions, but its role, if any, in bacterial pathogenesis has not been studied. Here, using a Dual RNA-seq approach to profile ProQ-dependent gene expression changes as Salmonella infects human cells, we reveal dysregulation of bacterial motility, chemotaxis, and virulence genes which is accompanied by altered MAPK (mitogen-activated protein kinase) signaling in the host. Comparison with the other major RNA chaperone in Salmonella, Hfq, reinforces the notion that these two global RNA-binding proteins work in parallel to ensure full virulence. Of newly discovered infection-associated ProQ-bound small noncoding RNAs (sRNAs), we show that the 3'UTR-derived sRNA STnc540 is capable of repressing an infection-induced magnesium transporter mRNA in a ProQ-dependent manner. Together, this comprehensive study uncovers the relevance of ProQ for Salmonella pathogenesis and highlights the importance of RNA-binding proteins in regulating bacterial virulence programs.IMPORTANCE The protein ProQ has recently been discovered as the centerpiece of a previously overlooked "third domain" of small RNA-mediated control of gene expression in bacteria. As in vitro work continues to reveal molecular mechanisms, it is also important to understand how ProQ affects the life cycle of bacterial pathogens as these pathogens infect eukaryotic cells. Here, we have determined how ProQ shapes Salmonella virulence and how the activities of this RNA-binding protein compare with those of Hfq, another central protein in RNA-based gene regulation in this and other bacteria. To this end, we apply global transcriptomics of pathogen and host cells during infection. In doing so, we reveal ProQ-dependent transcript changes in key virulence and host immune pathways. Moreover, we differentiate the roles of ProQ from those of Hfq during infection, for both coding and noncoding transcripts, and provide an important resource for those interested in ProQ-dependent small RNAs in enteric bacteria.
Collapse
|
77
|
Phosphothreonine Lyase Promotes p65 Degradation in a Mitogen-Activated Protein Kinase/Mitogen- and Stress-Activated Protein Kinase 1-Dependent Manner. Infect Immun 2018; 87:IAI.00508-18. [PMID: 30396897 DOI: 10.1128/iai.00508-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Bacterial phosphothreonine lyases have been identified to be type III secretion system (T3SS) effectors that irreversibly dephosphorylate host mitogen-activated protein kinase (MAPK) signaling to promote infection. However, the effects of phosphothreonine lyase on nuclear factor κB (NF-κB) signaling remain largely unknown. In this study, we detected significant phosphothreonine lyase-dependent p65 degradation during Edwardsiella piscicida infection in macrophages, and this degradative effect was blocked by the protease inhibitor MG132. Further analysis revealed that phosphothreonine lyase promotes the dephosphorylation and ubiquitination of p65 by inhibiting the phosphorylation of mitogen- and stress-activated protein kinase-1 (MSK1) and by inhibiting the phosphorylation of extracellular signal-related kinase 1/2 (ERK1/2), p38α, and c-Jun N-terminal kinase (JNK). Moreover, we revealed that the catalytic active site of phosphothreonine lyase plays a critical role in regulating the MAPK-MSK1-p65 signaling axis. Collectively, the mechanism described here expands our understanding of the pathogenic effector in not only regulating MAPK signaling but also regulating p65. These findings uncover a new mechanism by which pathogenic bacteria overcome host innate immunity to promote pathogenesis.
Collapse
|
78
|
Brauer EK, Popescu GV, Singh DK, Calviño M, Gupta K, Gupta B, Chakravarthy S, Popescu SC. Integrative network-centric approach reveals signaling pathways associated with plant resistance and susceptibility to Pseudomonas syringae. PLoS Biol 2018; 16:e2005956. [PMID: 30540739 PMCID: PMC6322785 DOI: 10.1371/journal.pbio.2005956] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 01/07/2019] [Accepted: 11/16/2018] [Indexed: 11/18/2022] Open
Abstract
Plant protein kinases form redundant signaling pathways to perceive microbial pathogens and activate immunity. Bacterial pathogens repress cellular immune responses by secreting effectors, some of which bind and inhibit multiple host kinases. To understand how broadly bacterial effectors may bind protein kinases and the function of these kinase interactors, we first tested kinase–effector (K-E) interactions using the Pseudomonas syringae pv. tomato–tomato pathosystem. We tested interactions between five individual effectors (HopAI1, AvrPto, HopA1, HopM1, and HopAF1) and 279 tomato kinases in tomato cells. Over half of the tested kinases interacted with at least one effector, and 48% of these kinases interacted with more than three effectors, suggesting a role in the defense. Next, we characterized the role of select multi-effector–interacting kinases and revealed their roles in basal resistance, effector-triggered immunity (ETI), or programmed cell death (PCD). The immune function of several of these kinases was only detectable in the presence of effectors, suggesting that these kinases are critical when particular cell functions are perturbed or that their role is typically masked. To visualize the kinase networks underlying the cellular responses, we derived signal-specific networks. A comparison of the networks revealed a limited overlap between ETI and basal immunity networks. In addition, the basal immune network complexity increased when exposed to some of the effectors. The networks were used to successfully predict the role of a new set of kinases in basal immunity. Our work indicates the complexity of the larger kinase-based defense network and demonstrates how virulence- and avirulence-associated bacterial effectors alter sectors of the defense network. Some bacterial pathogens secrete virulence factors called effectors, which influence host tissues during infection. The impact of such bacterial effectors on the transmission of immune signals in plants remains poorly understood. In this study, we developed an integrative network approach to discover interactions between bacterial effectors and a class of host signal-mediating enzymes called protein kinases. We also characterized the functions of the targets of these kinases in order to understand how bacterial effectors might disrupt the flow of information in signaling pathways within plant cells. We show that plants activate larger signaling networks when inoculated with pathogens that produce effectors. We also find that plant signaling networks are specific to individual effectors and that the networks include kinases with both positive and negative effects on plant resistance to pathogens. We propose that the topology of immune signaling networks is determined by the plant’s ability to activate compensatory pathways in response to the effectors’ network-disruptive actions. Conversely, pathogens may increase their virulence both by disrupting host signaling at the membrane-located end of the signaling network and by recruiting cytosolic kinases. This work provides a framework for the study of plant–pathogen communication and could be used to prioritize targets for improving resistance in crops.
Collapse
Affiliation(s)
- Elizabeth K. Brauer
- The Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - George V. Popescu
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, Mississippi, United States of America
- The National Institute for Laser, Plasma & Radiation Physics, Bucharest, Romania
| | - Dharmendra K. Singh
- The Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Mauricio Calviño
- The Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Kamala Gupta
- The Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Bhaskar Gupta
- The Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Suma Chakravarthy
- Department of Plant Pathology, Cornell University, Ithaca, New York, United States of America
| | - Sorina C. Popescu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
79
|
Dreier RF, Ahrné E, Broz P, Schmidt A. Global Ion Suppression Limits the Potential of Mass Spectrometry Based Phosphoproteomics. J Proteome Res 2018; 18:493-507. [DOI: 10.1021/acs.jproteome.8b00812] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roland Felix Dreier
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Erik Ahrné
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Petr Broz
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Alexander Schmidt
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
80
|
Tawk C, Nigro G, Rodrigues Lopes I, Aguilar C, Lisowski C, Mano M, Sansonetti P, Vogel J, Eulalio A. Stress-induced host membrane remodeling protects from infection by non-motile bacterial pathogens. EMBO J 2018; 37:embj.201798529. [PMID: 30389666 PMCID: PMC6276891 DOI: 10.15252/embj.201798529] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 01/01/2023] Open
Abstract
While mucosal inflammation is a major source of stress during enteropathogen infection, it remains to be fully elucidated how the host benefits from this environment to clear the pathogen. Here, we show that host stress induced by different stimuli mimicking inflammatory conditions strongly reduces the binding of Shigella flexneri to epithelial cells. Mechanistically, stress activates acid sphingomyelinase leading to host membrane remodeling. Consequently, knockdown or pharmacological inhibition of the acid sphingomyelinase blunts the stress-dependent inhibition of Shigella binding to host cells. Interestingly, stress caused by intracellular Shigella replication also results in remodeling of the host cell membrane, in vitro and in vivo, which precludes re-infection by this and other non-motile pathogens. In contrast, Salmonella Typhimurium overcomes the shortage of permissive entry sites by gathering effectively at the remaining platforms through its flagellar motility. Overall, our findings reveal host membrane remodeling as a novel stress-responsive cell-autonomous defense mechanism that protects epithelial cells from infection by non-motile bacterial pathogens.
Collapse
Affiliation(s)
- Caroline Tawk
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Giulia Nigro
- Molecular Microbial Pathogenesis Laboratory, Institut Pasteur, Paris, France
| | - Ines Rodrigues Lopes
- Functional Genomics and RNA-based Therapeutics, UC-BIOTECH, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,RNA & Infection Group, UC-BIOTECH, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Carmen Aguilar
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Clivia Lisowski
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Miguel Mano
- Functional Genomics and RNA-based Therapeutics, UC-BIOTECH, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Philippe Sansonetti
- Molecular Microbial Pathogenesis Laboratory, Institut Pasteur, Paris, France
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,Helmholtz Institute for RNA-Based Infection Research (HIRI), Würzburg, Germany
| | - Ana Eulalio
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany .,RNA & Infection Group, UC-BIOTECH, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
81
|
Song N, Li T. Regulation of NLRP3 Inflammasome by Phosphorylation. Front Immunol 2018; 9:2305. [PMID: 30349539 PMCID: PMC6186804 DOI: 10.3389/fimmu.2018.02305] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/17/2018] [Indexed: 01/01/2023] Open
Abstract
The cytosolic pattern recognition receptor (PRR) NOD-like receptor family, pyrin domain containing 3 (NLRP3) senses a wide range of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Upon activation, NLRP3 triggers the assembly of inflammasome via the self-oligomerization and the recruitment of apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) and pro-caspase-1, facilitating the robust immune responses including the secretion of proinflammatory cytokines and pyroptosis. The NLRP3 inflammasome must be well orchestrated to prevent the aberrant activations under physiological and pathological conditions, because uncontrolled activation of NLRP3 inflammasome is one of the major causes of a variety of autoimmune diseases and metabolic disorders. Therefore, understanding the molecular mechanisms for controlling NLRP3 inflammasome activation may provide novel strategies for the treatment of NLRP3-related diseases. Although NLRP3 inflammasome can be regulated at the transcriptional level, the post-translational modification (PTM) of NLRP3 as well as other inflammasome components has also been showed to be critical for the regulation of its activation. Several kinases and phosphatases have been shown to control NLRP3 inflammasome activation in response to either exogenous pathogen infections or endogenous molecules, such as bile acids. In this review, we summarize our current knowledge of phosphorylation patterns and their functional role in the regulation of NLRP3 inflammasome, and suggest interesting areas for future research.
Collapse
Affiliation(s)
- Nan Song
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,State Key Laboratory of Proteomics, Beijing Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Tao Li
- State Key Laboratory of Proteomics, Beijing Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
82
|
Dubytska LP, Thune RL. Edwardsiella ictaluri type III secretion system (T3SS) effector EseN is a phosphothreonine lyase that inactivates ERK1/2. DISEASES OF AQUATIC ORGANISMS 2018; 130:117-129. [PMID: 30198487 DOI: 10.3354/dao03255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
EseN is a type III secretion system (T3SS) effector that is encoded on the Edwardsiella ictaluri chromosome and is homologous to a family of T3SS effector proteins with phosphothreonine lyase (PTL) activity, including OspF from Shigella and SpvC from Salmonella. A yeast-2-hybrid system was used to identify the major vault protein (MVP) as a specific host-cell binding partner for EseN, and the proximity ligation assay (PLA) confirmed the interaction. Similar to other pathogens, E. ictaluri invasion activates extracellular signal-regulated kinases 1 and 2 (ERK1/2) early in the infection, which are subsequently inactivated by EseN. Structurally, EseN contains a highly conserved docking motif that is required for specific binding to mitogen-activated protein kinases, such as ERK1/2, and a motif that is essential for PTL activity. Immunoblotting and immunofluorescence analyses indicate that EseN inactivates ERK1/2 by dephosphorylation in vivo in the head kidney of infected fish and ex vivo in head kidney derived macrophages. Interaction of EseN with phosphorylated ERK1/2 (pERK1/2) was also confirmed using PLA, suggesting that MVP serves as a signaling scaffold for ERK1/2 and EseN. Channel catfish Ictalurus punctatus infected with E. ictaluri strains lacking the eseN gene had reduced numbers of E. ictaluri in the tissues following infection and reduced mortality compared to fish infected with the wild-type. Our results indicate that eseN encodes a PTL domain that interacts with MVP as a possible scaffold protein and inactivates pERK1/2 to ERK1/2, resulting in increased proliferation of E. ictaluri and, ultimately, death of the host.
Collapse
Affiliation(s)
- Lidiya P Dubytska
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | | |
Collapse
|
83
|
Liu W, Zhou Y, Peng T, Zhou P, Ding X, Li Z, Zhong H, Xu Y, Chen S, Hang HC, Shao F. N ε-fatty acylation of multiple membrane-associated proteins by Shigella IcsB effector to modulate host function. Nat Microbiol 2018; 3:996-1009. [PMID: 30061757 PMCID: PMC6466622 DOI: 10.1038/s41564-018-0215-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 06/27/2018] [Indexed: 11/09/2022]
Abstract
Shigella flexneri, an intracellular Gram-negative bacterium causative for shigellosis, employs a type III secretion system to deliver virulence effectors into host cells. One such effector, IcsB, is critical for S. flexneri intracellular survival and pathogenesis, but its mechanism of action is unknown. Here, we discover that IcsB is an 18-carbon fatty acyltransferase catalysing lysine Nε-fatty acylation. IcsB disrupted the actin cytoskeleton in eukaryotes, resulting from Nε-fatty acylation of RhoGTPases on lysine residues in their polybasic region. Chemical proteomic profiling identified about 60 additional targets modified by IcsB during infection, which were validated by biochemical assays. Most IcsB targets are membrane-associated proteins bearing a lysine-rich polybasic region, including members of the Ras, Rho and Rab families of small GTPases. IcsB also modifies SNARE proteins and other non-GTPase substrates, suggesting an extensive interplay between S. flexneri and host membrane trafficking. IcsB is localized on the Shigella-containing vacuole to fatty-acylate its targets. Knockout of CHMP5-one of the IcsB targets and a component of the ESCRT-III complex-specifically affected S. flexneri escape from host autophagy. The unique Nε-fatty acyltransferase activity of IcsB and its altering of the fatty acylation landscape of host membrane proteomes represent an unprecedented mechanism in bacterial pathogenesis.
Collapse
Affiliation(s)
- Wang Liu
- College of Life Science, Peking University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, National Institute of Biological Sciences, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Yan Zhou
- National Institute of Biological Sciences, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Peng
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, USA
| | - Ping Zhou
- National Institute of Biological Sciences, Beijing, China
| | - Xiaojun Ding
- National Institute of Biological Sciences, Beijing, China
| | - Zilin Li
- National Institute of Biological Sciences, Beijing, China
| | - Haoyu Zhong
- National Institute of Biological Sciences, Beijing, China
| | - Yue Xu
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, USA.
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
84
|
Alpha-kinase 1 is a cytosolic innate immune receptor for bacterial ADP-heptose. Nature 2018; 561:122-126. [PMID: 30111836 DOI: 10.1038/s41586-018-0433-3] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 07/23/2018] [Indexed: 12/24/2022]
Abstract
Immune recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors often activates proinflammatory NF-κB signalling1. Recent studies indicate that the bacterial metabolite D-glycero-β-D-manno-heptose 1,7-bisphosphate (HBP) can activate NF-κB signalling in host cytosol2-4, but it is unclear whether HBP is a genuine PAMP and the cognate pattern recognition receptor has not been identified. Here we combined a transposon screen in Yersinia pseudotuberculosis with biochemical analyses and identified ADP-β-D-manno-heptose (ADP-Hep), which mediates type III secretion system-dependent NF-κB activation and cytokine expression. ADP-Hep, but not other heptose metabolites, could enter host cytosol to activate NF-κB. A CRISPR-Cas9 screen showed that activation of NF-κB by ADP-Hep involves an ALPK1 (alpha-kinase 1)-TIFA (TRAF-interacting protein with forkhead-associated domain) axis. ADP-Hep directly binds the N-terminal domain of ALPK1, stimulating its kinase domain to phosphorylate and activate TIFA. The crystal structure of the N-terminal domain of ALPK1 and ADP-Hep in complex revealed the atomic mechanism of this ligand-receptor recognition process. HBP was transformed by host adenylyltransferases into ADP-heptose 7-P, which could activate ALPK1 to a lesser extent than ADP-Hep. ADP-Hep (but not HBP) alone or during bacterial infection induced Alpk1-dependent inflammation in mice. Our findings identify ALPK1 and ADP-Hep as a pattern recognition receptor and an effective immunomodulator, respectively.
Collapse
|
85
|
Dadová J, Galan SR, Davis BG. Synthesis of modified proteins via functionalization of dehydroalanine. Curr Opin Chem Biol 2018; 46:71-81. [PMID: 29913421 DOI: 10.1016/j.cbpa.2018.05.022] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/02/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
Dehydroalanine has emerged in recent years as a non-proteinogenic residue with strong chemical utility in proteins for the study of biology. In this review we cover the several methods now available for its flexible and site-selective incorporation via a variety of complementary chemical and biological techniques and examine its reactivity, allowing both creation of modified protein side-chains through a variety of bond-forming methods (C-S, C-N, C-Se, C-C) and as an activity-based probe in its own right. We illustrate its utility with selected examples of biological and technological discovery and application.
Collapse
Affiliation(s)
- Jitka Dadová
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Sébastien Rg Galan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Benjamin G Davis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
86
|
Chambers KA, Abularrage NS, Scheck RA. Selectivity within a Family of Bacterial Phosphothreonine Lyases. Biochemistry 2018; 57:3790-3796. [PMID: 29792689 DOI: 10.1021/acs.biochem.8b00534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phosphothreonine lyases are bacterial effector proteins secreted into host cells to facilitate the infection process. This enzyme family catalyzes an irreversible elimination reaction that converts phosphothreonine or phosphoserine to dehydrobutyrine or dehydroalanine, respectively. Herein, we report a study of substrate selectivity for each of the four known phosphothreonine lyases. This was accomplished using a combination of mass spectrometry and enzyme kinetics assays for a series of phosphorylated peptides derived from the mitogen-activated protein kinase (MAPK) activation loop. These studies provide the first experimental evidence that VirA, a putative phosphothreonine lyase identified through homology, is indeed capable of catalyzing phosphate elimination. These studies further demonstrate that OspF is the most promiscuous phosphothreonine lyase, whereas SpvC is the most specific for the MAPK activation loop. Our studies reveal that phospholyases are dramatically more efficient at catalyzing elimination from phosphothreonine than from phosphoserine. Together, our data suggest that each enzyme likely has preferred substrates, either within the MAPK family or beyond. Fully understanding the extent of selectivity is key to understanding the impact of phosphothreonine lyases during bacterial infection and to exploiting their unique chemistry for a range of applications.
Collapse
Affiliation(s)
- Kaitlin A Chambers
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| | - Nile S Abularrage
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| | - Rebecca A Scheck
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| |
Collapse
|
87
|
Schuelein R, Spencer H, Dagley LF, Li PF, Luo L, Stow JL, Abraham G, Naderer T, Gomez-Valero L, Buchrieser C, Sugimoto C, Yamagishi J, Webb AI, Pasricha S, Hartland EL. Targeting of RNA Polymerase II by a nuclear Legionella pneumophila Dot/Icm effector SnpL. Cell Microbiol 2018; 20:e12852. [PMID: 29691989 DOI: 10.1111/cmi.12852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/24/2018] [Accepted: 04/11/2018] [Indexed: 12/28/2022]
Abstract
The intracellular pathogen Legionella pneumophila influences numerous eukaryotic cellular processes through the Dot/Icm-dependent translocation of more than 300 effector proteins into the host cell. Although many translocated effectors localise to the Legionella replicative vacuole, other effectors can affect remote intracellular sites. Following infection, a subset of effector proteins localises to the nucleus where they subvert host cell transcriptional responses to infection. Here, we identified Lpw27461 (Lpp2587), Lpg2519 as a new nuclear-localised effector that we have termed SnpL. Upon ectopic expression or during L. pneumophila infection, SnpL showed strong nuclear localisation by immunofluorescence microscopy but was excluded from nucleoli. Using immunoprecipitation and mass spectrometry, we determined the host-binding partner of SnpL as the eukaryotic transcription elongation factor, Suppressor of Ty5 (SUPT5H)/Spt5. SUPT5H is an evolutionarily conserved component of the DRB sensitivity-inducing factor complex that regulates RNA Polymerase II dependent mRNA processing and transcription elongation. Protein interaction studies showed that SnpL bound to the central Kyprides, Ouzounis, Woese motif region of SUPT5H. Ectopic expression of SnpL led to massive upregulation of host gene expression and macrophage cell death. The activity of SnpL further highlights the ability of L. pneumophila to control fundamental eukaryotic processes such as transcription that, in the case of SnpL, leads to global upregulation of host gene expression.
Collapse
Affiliation(s)
- Ralf Schuelein
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hugh Spencer
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Peng Fei Li
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| | - Lin Luo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Gilu Abraham
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Australia
| | - Thomas Naderer
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Australia
| | - Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR 3525, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR 3525, Paris, France
| | - Chihiro Sugimoto
- Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Hokkaido, Japan.,Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Junya Yamagishi
- Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Hokkaido, Japan.,Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Shivani Pasricha
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France.,Department of Molecular and Translational Science, Monash University, Clayton, Australia
| |
Collapse
|
88
|
Pinaud L, Sansonetti PJ, Phalipon A. Host Cell Targeting by Enteropathogenic Bacteria T3SS Effectors. Trends Microbiol 2018; 26:266-283. [DOI: 10.1016/j.tim.2018.01.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 12/23/2022]
|
89
|
Cooperative Immune Suppression by Escherichia coli and Shigella Effector Proteins. Infect Immun 2018; 86:IAI.00560-17. [PMID: 29339461 DOI: 10.1128/iai.00560-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The enteric attaching and effacing (A/E) pathogens enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) and the invasive pathogens enteroinvasive E. coli (EIEC) and Shigella encode type III secretion systems (T3SS) used to inject effector proteins into human host cells during infection. Among these are a group of effectors required for NF-κB-mediated host immune evasion. Recent studies have identified several effector proteins from A/E pathogens and EIEC/Shigella that are involved in suppression of NF-κB and have uncovered their cellular and molecular functions. A novel mechanism among these effectors from both groups of pathogens is to coordinate effector function during infection. This cooperativity among effector proteins explains how bacterial pathogens are able to effectively suppress innate immune defense mechanisms in response to diverse classes of immune receptor signaling complexes (RSCs) stimulated during infection.
Collapse
|
90
|
Rikkerink EHA. Pathogens and Disease Play Havoc on the Host Epiproteome-The "First Line of Response" Role for Proteomic Changes Influenced by Disorder. Int J Mol Sci 2018. [PMID: 29518008 PMCID: PMC5877633 DOI: 10.3390/ijms19030772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Organisms face stress from multiple sources simultaneously and require mechanisms to respond to these scenarios if they are to survive in the long term. This overview focuses on a series of key points that illustrate how disorder and post-translational changes can combine to play a critical role in orchestrating the response of organisms to the stress of a changing environment. Increasingly, protein complexes are thought of as dynamic multi-component molecular machines able to adapt through compositional, conformational and/or post-translational modifications to control their largely metabolic outputs. These metabolites then feed into cellular physiological homeostasis or the production of secondary metabolites with novel anti-microbial properties. The control of adaptations to stress operates at multiple levels including the proteome and the dynamic nature of proteomic changes suggests a parallel with the equally dynamic epigenetic changes at the level of nucleic acids. Given their properties, I propose that some disordered protein platforms specifically enable organisms to sense and react rapidly as the first line of response to change. Using examples from the highly dynamic host-pathogen and host-stress response, I illustrate by example how disordered proteins are key to fulfilling the need for multiple levels of integration of response at different time scales to create robust control points.
Collapse
Affiliation(s)
- Erik H A Rikkerink
- The New Zealand Institute for Plant & Food Research Ltd., 120 Mt. Albert Rd., Private Bag 92169, Auckland 1025, New Zealand.
| |
Collapse
|
91
|
Quaile AT, Stogios PJ, Egorova O, Evdokimova E, Valleau D, Nocek B, Kompella PS, Peisajovich S, Yakunin AF, Ensminger AW, Savchenko A. The Legionella pneumophila effector Ceg4 is a phosphotyrosine phosphatase that attenuates activation of eukaryotic MAPK pathways. J Biol Chem 2018; 293:3307-3320. [PMID: 29301934 DOI: 10.1074/jbc.m117.812727] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/18/2017] [Indexed: 01/08/2023] Open
Abstract
Host colonization by Gram-negative pathogens often involves delivery of bacterial proteins called "effectors" into the host cell. The pneumonia-causing pathogen Legionella pneumophila delivers more than 330 effectors into the host cell via its type IVB Dot/Icm secretion system. The collective functions of these proteins are the establishment of a replicative niche from which Legionella can recruit cellular materials to grow while evading lysosomal fusion inhibiting its growth. Using a combination of structural, biochemical, and in vivo approaches, we show that one of these translocated effector proteins, Ceg4, is a phosphotyrosine phosphatase harboring a haloacid dehalogenase-hydrolase domain. Ceg4 could dephosphorylate a broad range of phosphotyrosine-containing peptides in vitro and attenuated activation of MAPK-controlled pathways in both yeast and human cells. Our findings indicate that L. pneumophila's infectious program includes manipulation of phosphorylation cascades in key host pathways. The structural and functional features of the Ceg4 effector unraveled here provide first insight into its function as a phosphotyrosine phosphatase, paving the way to further studies into L. pneumophila pathogenicity.
Collapse
Affiliation(s)
- Andrew T Quaile
- From the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Peter J Stogios
- From the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Olga Egorova
- From the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Elena Evdokimova
- From the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Dylan Valleau
- From the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Boguslaw Nocek
- Structural Biology Center, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439
| | - Purnima S Kompella
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Sergio Peisajovich
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Alexander F Yakunin
- From the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Alexander W Ensminger
- Department of Biochemistry, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada, and
| | - Alexei Savchenko
- From the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada, .,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
92
|
Gouw M, Michael S, Sámano-Sánchez H, Kumar M, Zeke A, Lang B, Bely B, Chemes LB, Davey NE, Deng Z, Diella F, Gürth CM, Huber AK, Kleinsorg S, Schlegel LS, Palopoli N, Roey KV, Altenberg B, Reményi A, Dinkel H, Gibson TJ. The eukaryotic linear motif resource - 2018 update. Nucleic Acids Res 2018; 46:D428-D434. [PMID: 29136216 PMCID: PMC5753338 DOI: 10.1093/nar/gkx1077] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 11/14/2022] Open
Abstract
Short linear motifs (SLiMs) are protein binding modules that play major roles in almost all cellular processes. SLiMs are short, often highly degenerate, difficult to characterize and hard to detect. The eukaryotic linear motif (ELM) resource (elm.eu.org) is dedicated to SLiMs, consisting of a manually curated database of over 275 motif classes and over 3000 motif instances, and a pipeline to discover candidate SLiMs in protein sequences. For 15 years, ELM has been one of the major resources for motif research. In this database update, we present the latest additions to the database including 32 new motif classes, and new features including Uniprot and Reactome integration. Finally, to help provide cellular context, we present some biological insights about SLiMs in the cell cycle, as targets for bacterial pathogenicity and their functionality in the human kinome.
Collapse
Affiliation(s)
- Marc Gouw
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Sushama Michael
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - András Zeke
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Benjamin Lang
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Benoit Bely
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Lucía B Chemes
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires CP 1405, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires CP 2160, Argentina
- Instituto de Investigaciones Biotecnoltógicas, Universidad Nacional de General San Martín, IIB-INTECH-CONICET, San Martín, Buenos Aires CP 1650, Argentina
| | - Norman E Davey
- UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ziqi Deng
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Francesca Diella
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | | | | | | | | | - Nicolás Palopoli
- Department of Science and Technology, Universidad Nacional de Quilmes, CONICET, Bernal B1876BXD, Buenos Aires, Argentina
| | - Kim V Roey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Brigitte Altenberg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Attila Reményi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Holger Dinkel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Leibniz-Institute on Aging, Fritz Lipmann Institute (FLI), Jena D-07745, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
93
|
Turk BE. Exceptionally Selective Substrate Targeting by the Metalloprotease Anthrax Lethal Factor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:189-203. [PMID: 30267305 DOI: 10.1007/5584_2018_273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zinc-dependent metalloprotease anthrax lethal factor (LF) is the enzymatic component of a toxin thought to have a major role in Bacillus anthracis infections. Like many bacterial toxins, LF is a secreted protein that functions within host cells. LF is a highly selective protease that cleaves a limited number of substrates in a site-specific manner, thereby impacting host signal transduction pathways. The major substrates of LF are mitogen-activated protein kinase kinases (MKKs), which lie in the middle of three-component phosphorylation cascades mediating numerous functions in a variety of cells and tissues. How LF targets its limited substrate repertoire has been an active area of investigation. LF recognizes a specific sequence motif surrounding the scissile bonds of substrate proteins. X-ray crystallography of the protease in complex with peptide substrates has revealed the structural basis of selectivity for the LF cleavage site motif. In addition to having interactions proximal to the cleavage site, LF binds directly to a more distal region in its substrates through a so-called exosite interaction. This exosite has been mapped to a surface within a non-catalytic domain of LF with previously unknown function. A putative LF-binding site has likewise been identified on the catalytic domains of MKKs. Here we review our current state of understanding of LF-substrate interactions and discuss the implications for the design and discovery of inhibitors that may have utility as anthrax therapeutics.
Collapse
Affiliation(s)
- Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
94
|
Antrodia cinnamomea Oligosaccharides Suppress Lipopolysaccharide-Induced Inflammation through Promoting O-GlcNAcylation and Repressing p38/Akt Phosphorylation. Molecules 2017; 23:molecules23010051. [PMID: 29278394 PMCID: PMC5943963 DOI: 10.3390/molecules23010051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022] Open
Abstract
Antrodia cinnamomea (AC), an edible fungus growing in Taiwan, has various health benefits. This study was designed to examine the potential inhibitory effects of AC oligosaccharides on lipopolysaccharide (LPS)-induced inflammatory responses in vitro and in vivo. By trifluoroacetic acid degradation, two oligosaccharide products were prepared from AC polysaccharides at 90 °C (ACHO) or 25 °C (ACCO), which showed different oligosaccharide identities. Compared to ACCO, ACHO displayed better inhibitory effects on LPS-induced mRNA expression of pro-inflammatory cytokines including IL-6, IL-8, IL-1β, TNF-α and MCP-1 in macrophage cells. Further, ACHO significantly suppressed the inflammation in lung tissues of LPS-injected C57BL/6 mice. The potential anti-inflammatory molecular mechanism may be associated with the promotion of protein O-GlcNAcylation, which further skewed toward the marked suppression of p38 and Akt phosphorylation. Our results suggest that the suppressive effect of AC oligosaccharides on inflammation may be an effective approach for the prevention of inflammation-related diseases.
Collapse
|
95
|
Woida PJ, Satchell KJF. Coordinated delivery and function of bacterial MARTX toxin effectors. Mol Microbiol 2017; 107:133-141. [PMID: 29114985 DOI: 10.1111/mmi.13875] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2017] [Indexed: 12/22/2022]
Abstract
Bacteria often coordinate virulence factors to fine-tune the host response during infection. These coordinated events can include toxins counteracting or amplifying effects of another toxin or though regulating the stability of virulence factors to remove their function once it is no longer needed. Multifunctional autoprocessing repeats-in toxin (MARTX) toxins are effector delivery toxins that form a pore into the plasma membrane of a eukaryotic cell to deliver multiple effector proteins into the cytosol of the target cell. The function of these proteins includes manipulating actin cytoskeletal dynamics, regulating signal transduction pathways and inhibiting host secretory pathways. Investigations into the molecular mechanisms of these effector domains are providing insight into how the function of some effectors overlap and regulate one another during infection. Coordinated crosstalk of effector function suggests that MARTX toxins are not simply a sum of all their parts. Instead, modulation of cell function by effector domains may depend on which other effector domain are co-delivered. Future studies will elucidate how these effectors interact with each other to modulate the bacterial host interaction.
Collapse
Affiliation(s)
- Patrick J Woida
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
96
|
Cornejo E, Schlaermann P, Mukherjee S. How to rewire the host cell: A home improvement guide for intracellular bacteria. J Cell Biol 2017; 216:3931-3948. [PMID: 29097627 PMCID: PMC5716269 DOI: 10.1083/jcb.201701095] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/21/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023] Open
Abstract
Intracellular bacterial pathogens have developed versatile strategies to generate niches inside the eukaryotic cells that allow them to survive and proliferate. Making a home inside the host offers many advantages; however, intracellular bacteria must also overcome many challenges, such as disarming innate immune signaling and accessing host nutrient supplies. Gaining entry into the cell and avoiding degradation is only the beginning of a successful intracellular lifestyle. To establish these replicative niches, intracellular pathogens secrete various virulence proteins, called effectors, to manipulate host cell signaling pathways and subvert host defense mechanisms. Many effectors mimic host enzymes, whereas others perform entirely novel enzymatic functions. A large volume of work has been done to understand how intracellular bacteria manipulate membrane trafficking pathways. In this review, we focus on how intracellular bacterial pathogens target innate immune signaling, the unfolded protein response, autophagy, and cellular metabolism and exploit these pathways to their advantage. We also discuss how bacterial pathogens can alter host gene expression by directly modifying histones or hijacking the ubiquitination machinery to take control of several host signaling pathways.
Collapse
Affiliation(s)
- Elias Cornejo
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- George William Hooper Foundation, San Francisco, CA
| | - Philipp Schlaermann
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- George William Hooper Foundation, San Francisco, CA
| | - Shaeri Mukherjee
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- George William Hooper Foundation, San Francisco, CA
| |
Collapse
|
97
|
Blevins LK, Parsonage D, Oliver MB, Domzalski E, Swords WE, Alexander-Miller MA. A Novel Function for the Streptococcus pneumoniae Aminopeptidase N: Inhibition of T Cell Effector Function through Regulation of TCR Signaling. Front Immunol 2017; 8:1610. [PMID: 29230212 PMCID: PMC5711787 DOI: 10.3389/fimmu.2017.01610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae (Spn) causes a variety of disease states including fatal bacterial pneumonia. Our previous finding that introduction of Spn into an animal with ongoing influenza virus infection resulted in a CD8+ T cell population with reduced effector function gave rise to the possibility of direct regulation by pneumococcal components. Here, we show that treatment of effector T cells with lysate derived from Spn resulted in inhibition of IFNγ and tumor necrosis factor α production as well as of cytolytic granule release. Spn aminopeptidase N (PepN) was identified as the inhibitory bacterial component and surprisingly, this property was independent of the peptidase activity found in this family of proteins. Inhibitory activity was associated with reduced activation of ZAP-70, ERK1/2, c-Jun N-terminal kinase, and p38, demonstrating the ability of PepN to negatively regulate TCR signaling at multiple points in the cascade. These results reveal a novel immune regulatory function for a bacterial aminopeptidase.
Collapse
Affiliation(s)
- Lance K Blevins
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Melissa B Oliver
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Elizabeth Domzalski
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - W Edward Swords
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
98
|
Scott NE, Hartland EL. Post-translational Mechanisms of Host Subversion by Bacterial Effectors. Trends Mol Med 2017; 23:1088-1102. [PMID: 29150361 DOI: 10.1016/j.molmed.2017.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/19/2022]
Abstract
Bacterial effector proteins are a specialized class of secreted proteins that are translocated directly into the host cytoplasm by bacterial pathogens. Effector proteins have diverse activities and targets, and many mediate post-translational modifications of host proteins. Effector proteins offer potential in novel biotechnological and medical applications as enzymes that may modify human proteins. Here, we discuss the mechanisms used by effectors to subvert the human host through blocking, blunting, or subverting immune mechanisms. This capacity allows bacteria to control host cell function to support pathogen survival, replication and dissemination to other hosts. In addition, we highlight that knowledge of effector protein activity may be used to develop chemical inhibitors as a new approach to treat bacterial infections.
Collapse
Affiliation(s)
- Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Elizabeth L Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton 3168, Australia.
| |
Collapse
|
99
|
Müller MM. Post-Translational Modifications of Protein Backbones: Unique Functions, Mechanisms, and Challenges. Biochemistry 2017; 57:177-185. [PMID: 29064683 PMCID: PMC5770884 DOI: 10.1021/acs.biochem.7b00861] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Post-translational
modifications (PTMs) dramatically enhance the
capabilities of proteins. They introduce new functionalities and dynamically
control protein activity by modulating intra- and intermolecular interactions.
Traditionally, PTMs have been considered as reversible attachments
to nucleophilic functional groups on amino acid side chains, whereas
the polypeptide backbone is often thought to be inert. This paradigm
is shifting as chemically and functionally diverse alterations of
the protein backbone are discovered. Importantly, backbone PTMs can
control protein structure and function just as side chain modifications
do and operate through unique mechanisms to achieve these features.
In this Perspective, I outline the various types of protein backbone
modifications discovered so far and highlight their contributions
to biology as well as the challenges in studying this versatile yet
poorly characterized class of PTMs.
Collapse
Affiliation(s)
- Manuel M Müller
- Department of Chemistry, King's College London , 7 Trinity Street, London SE1 1DB, United Kingdom
| |
Collapse
|
100
|
Prokop A, Gouin E, Villiers V, Nahori MA, Vincentelli R, Duval M, Cossart P, Dussurget O. OrfX, a Nucleomodulin Required for Listeria monocytogenes Virulence. mBio 2017; 8:e01550-17. [PMID: 29089430 PMCID: PMC5666158 DOI: 10.1128/mbio.01550-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022] Open
Abstract
Listeria monocytogenes is a bacterial pathogen causing severe foodborne infections in humans and animals. Listeria can enter into host cells and survive and multiply therein, due to an arsenal of virulence determinants encoded in different loci on the chromosome. Several key Listeria virulence genes are clustered in Listeria pathogenicity island 1. This important locus also contains orfX (lmo0206), a gene of unknown function. Here, we found that OrfX is a small, secreted protein whose expression is positively regulated by PrfA, the major transcriptional activator of Listeria virulence genes. We provide evidence that OrfX is a virulence factor that dampens the oxidative response of infected macrophages, which contributes to intracellular survival of bacteria. OrfX is targeted to the nucleus and interacts with the regulatory protein RybP. We show that in macrophages, the expression of OrfX decreases the level of RybP, which controls cellular infection. Collectively, these data reveal that Listeria targets RybP and evades macrophage oxidative stress for efficient infection. Altogether, OrfX is after LntA, the second virulence factor acting directly in the nucleus.IMPORTANCEListeria monocytogenes is a model bacterium that has been successfully used over the last 30 years to refine our understanding of the molecular, cellular, and tissular mechanisms of microbial pathogenesis. The major virulence factors of pathogenic Listeria species are located on a single chromosomal locus. Here, we report that the last gene of this locus encodes a small secreted nucleomodulin, OrfX, that is required for bacterial survival within macrophages and in the infected host. This work demonstrates that the production of OrfX contributes to limiting the host innate immune response by dampening the oxidative response of macrophages. We also identify a target of OrfX, RybP, which is an essential pleiotropic regulatory protein of the cell, and uncover its role in host defense. Our data reinforce the view that the secretion of nucleomodulins is an important strategy used by microbial pathogens to promote infection.
Collapse
Affiliation(s)
- Andrzej Prokop
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France
- Inserm, U604, Paris, France
- INRA, USC2020, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Edith Gouin
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France
- Inserm, U604, Paris, France
- INRA, USC2020, Paris, France
| | - Véronique Villiers
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France
- Inserm, U604, Paris, France
- INRA, USC2020, Paris, France
| | - Marie-Anne Nahori
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France
- Inserm, U604, Paris, France
- INRA, USC2020, Paris, France
| | | | - Mélodie Duval
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France
- Inserm, U604, Paris, France
- INRA, USC2020, Paris, France
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France
- Inserm, U604, Paris, France
- INRA, USC2020, Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France
- Inserm, U604, Paris, France
- INRA, USC2020, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|