51
|
Velazquez G, Sousa R, Brieba LG. The thumb subdomain of yeast mitochondrial RNA polymerase is involved in processivity, transcript fidelity and mitochondrial transcription factor binding. RNA Biol 2016; 12:514-24. [PMID: 25654332 DOI: 10.1080/15476286.2015.1014283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Single subunit RNA polymerases have evolved 2 mechanisms to synthesize long transcripts without falling off a DNA template: binding of nascent RNA and interactions with an RNA:DNA hybrid. Mitochondrial RNA polymerases share a common ancestor with T-odd bacteriophage single subunit RNA polymerases. Herein we characterized the role of the thumb subdomain of the yeast mtRNA polymerase gene (RPO41) in complex stability, processivity, and fidelity. We found that deletion and point mutants of the thumb subdomain of yeast mtRNA polymerase increase the synthesis of abortive transcripts and the probability that the polymerase will disengage from the template during the formation of the late initial transcription and elongation complexes. Mutations in the thumb subdomain increase the amount of slippage products from a homopolymeric template and, unexpectedly, thumb subdomain deletions decrease the binding affinity for mitochondrial transcription factor (Mtf1). The latter suggests that the thumb subdomain is part of an extended binding surface area involved in binding Mtf1.
Collapse
Affiliation(s)
- Gilberto Velazquez
- a Laboratorio Nacional de Genómica para la Biodiversidad ; Centro de Investigación y de Estudios ; Irapuato , Guanajuato , México
| | | | | |
Collapse
|
52
|
Chen M, Xu J, Yao H, Lu C, Zhang W. Isolation, genome sequencing and functional analysis of two T7-like coliphages of avian pathogenic Escherichia coli. Gene 2016; 582:47-58. [PMID: 26828615 DOI: 10.1016/j.gene.2016.01.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 01/09/2016] [Accepted: 01/28/2016] [Indexed: 01/21/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis, which results in significant economic losses to the poultry industry worldwide. Due to the drug residues and increased antibiotic resistance caused by antibiotic use, bacteriophages and other alternative therapeutic agents are expected to control APEC infection in poultry. Two APEC phages, named P483 and P694, were isolated from the feces from the farmers market in China. We then studied their biological properties, and carried out high-throughput genome sequencing and homology analyses of these phages. Assembly results of high-throughput sequencing showed that the structures of both P483 and P694 genomes consist of linear and double-stranded DNA. Results of the electron microscopy and homology analysis revealed that both P483 and P694 belong to T7-like virus which is a member of the Podoviridae family of the Caudovirales order. Comparative genomic analysis showed that most of the predicted proteins of these two phages showed strongest sequence similarity to the Enterobacteria phages BA14 and 285P, Erwinia phage FE44, and Kluyvera phage Kvp1; however, some proteins such as gp0.6a, gp1.7 and gp17 showed lower similarity (<85%) with the homologs of other phages in the T7 subgroup. We also found some unique characteristics of P483 and P694, such as the two types of the genes of P694 and no lytic activity of P694 against its host bacteria in liquid medium. Our results serve to further our understanding of phage evolution of T7-like coliphages and provide the potential application of the phages as therapeutic agents for the treatment of diseases.
Collapse
Affiliation(s)
- Mianmian Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Juntian Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China.
| |
Collapse
|
53
|
Senavirathne G, Bertram JG, Jaszczur M, Chaurasiya KR, Pham P, Mak CH, Goodman MF, Rueda D. Activation-induced deoxycytidine deaminase (AID) co-transcriptional scanning at single-molecule resolution. Nat Commun 2015; 6:10209. [PMID: 26681117 PMCID: PMC4703863 DOI: 10.1038/ncomms10209] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/13/2015] [Indexed: 12/20/2022] Open
Abstract
Activation-induced deoxycytidine deaminase (AID) generates antibody diversity in B cells by initiating somatic hypermutation (SHM) and class-switch recombination (CSR) during transcription of immunoglobulin variable (IgV) and switch region (IgS) DNA. Using single-molecule FRET, we show that AID binds to transcribed dsDNA and translocates unidirectionally in concert with RNA polymerase (RNAP) on moving transcription bubbles, while increasing the fraction of stalled bubbles. AID scans randomly when constrained in an 8 nt model bubble. When unconstrained on single-stranded (ss) DNA, AID moves in random bidirectional short slides/hops over the entire molecule while remaining bound for ∼5 min. Our analysis distinguishes dynamic scanning from static ssDNA creasing. That AID alone can track along with RNAP during transcription and scan within stalled transcription bubbles suggests a mechanism by which AID can initiate SHM and CSR when properly regulated, yet when unregulated can access non-Ig genes and cause cancer. Activation-induced deoxycytidine deaminase (AID) induces somatic hypermutation and class-switch recombination during transcription of immunoglobulin genes. Here the authors use single-molecule FRET to show that AID translocates together with RNA polymerase and scans within stalled transcription bubbles.
Collapse
Affiliation(s)
- Gayan Senavirathne
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | - Jeffrey G Bertram
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Malgorzata Jaszczur
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Kathy R Chaurasiya
- Department of Medicine, Section of Virology, Imperial College London, Du Cane Road, London W12 0NN, UK.,Single Molecule Imaging Group, MRC Clinical Sciences Center, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Phuong Pham
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Chi H Mak
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA.,Center for Applied Mathematical Science, University of Southern California, Los Angeles, California 90089, USA
| | - Myron F Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA.,Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - David Rueda
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA.,Department of Medicine, Section of Virology, Imperial College London, Du Cane Road, London W12 0NN, UK.,Single Molecule Imaging Group, MRC Clinical Sciences Center, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
54
|
Guo F, Zhou W, Li P, Mao Z, Yennawar N, French JB, Jun Huang T. Precise Manipulation and Patterning of Protein Crystals for Macromolecular Crystallography Using Surface Acoustic Waves. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2733-7. [PMID: 25641793 PMCID: PMC4478196 DOI: 10.1002/smll.201403262] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/19/2014] [Indexed: 05/20/2023]
Abstract
Advances in modern X-ray sources and detector technology have made it possible for crystallographers to collect usable data on crystals of only a few micrometers or less in size. Despite these developments, sample handling techniques have significantly lagged behind and often prevent the full realization of current beamline capabilities. In order to address this shortcoming, a surface acoustic wave-based method for manipulating and patterning crystals is developed. This method, which does not damage the fragile protein crystals, can precisely manipulate and pattern micrometer and submicrometer-sized crystals for data collection and screening. The technique is robust, inexpensive, and easy to implement. This method not only promises to significantly increase efficiency and throughput of both conventional and serial crystallography experiments, but will also make it possible to collect data on samples that were previously intractable.
Collapse
Affiliation(s)
- Feng Guo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Weijie Zhou
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Peng Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhangming Mao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neela Yennawar
- Huck Institutes for Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jarrod B. French
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
55
|
Deshpande AP, Patel SS. Interactions of the yeast mitochondrial RNA polymerase with the +1 and +2 promoter bases dictate transcription initiation efficiency. Nucleic Acids Res 2014; 42:11721-32. [PMID: 25249624 PMCID: PMC4191429 DOI: 10.1093/nar/gku868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial promoters of Saccharomyces cerevisiae share a conserved -8 to +1 sequence with +1+2 AA, AG or AT initiation sequence, which dictates the efficiency of transcription initiation by the mitochondrial RNA polymerase Rpo41 and its initiation factor Mtf1. We used 2-aminopurine fluorescence to monitor promoter melting and measured the kcat/Km of 2-mer synthesis to quantify initiation efficiency with systematic changes of the +1+2 base pairs to matched and mismatched pairs. We show that AA promoters are most efficient, followed by AG and then AT promoters, and the differences in their efficiencies stem specifically from differential melting of +1+2 region without affecting melting of the upstream -4 to -1 region. Inefficient +1+2 melting increases the initial NTPs Kms of the AG and AT promoters relative to AA or singly mispaired promoters. The 16-100-fold higher catalytic efficiency of AA initiation sequence relative to AG and AT, respectively, is partly due to Rpo41-Mtf1 interactions with the +1+2 non-template adenines that generate a stable pre-transcribing complex. We propose a model where the +2 base pair regulates the efficiency of initial transcription by controlling multiple steps including downstream promoter opening, +1+2 NTPs binding, and the rate of 2-mer synthesis.
Collapse
Affiliation(s)
- Aishwarya P Deshpande
- Department of Biochemistry and Molecular Biology, RUTGERS-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, RUTGERS-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
56
|
Drakulic S, Wang L, Cuéllar J, Guo Q, Velázquez G, Martín-Benito J, Sousa R, Valpuesta JM. Yeast mitochondrial RNAP conformational changes are regulated by interactions with the mitochondrial transcription factor. Nucleic Acids Res 2014; 42:11246-60. [PMID: 25183523 PMCID: PMC4176174 DOI: 10.1093/nar/gku795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mitochondrial RNA polymerases (MtRNAPs) are members of the single-subunit RNAP family, the most well-characterized member being the RNAP from T7 bacteriophage. MtRNAPs are, however, functionally distinct in that they depend on one or more transcription factors to recognize and open the promoter and initiate transcription, while the phage RNAPs are capable of performing these tasks alone. Since the transcriptional mechanisms that are conserved in phage and mitochondrial RNAPs have been so effectively characterized in the phage enzymes, outstanding structure-mechanism questions concern those aspects that are distinct in the MtRNAPs, particularly the role of the mitochondrial transcription factor(s). To address these questions we have used both negative staining and cryo-EM to generate three-dimensional reconstructions of yeast MtRNAP initiation complexes with and without the mitochondrial transcription factor (MTF1), and of the elongation complex. Together with biochemical experiments, these data indicate that MTF1 uses multiple mechanisms to drive promoter opening, and that its interactions with the MtRNAP regulate the conformational changes undergone by the latter enzyme as it traverses the template strand.
Collapse
Affiliation(s)
- Srdja Drakulic
- Department for Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Liping Wang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, TX 78229-3900, USA
| | - Jorge Cuéllar
- Department for Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Qing Guo
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, TX 78229-3900, USA
| | - Gilberto Velázquez
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, TX 78229-3900, USA
| | - Jaime Martín-Benito
- Department for Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Rui Sousa
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, TX 78229-3900, USA
| | - José M Valpuesta
- Department for Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| |
Collapse
|
57
|
Tang GQ, Nandakumar D, Bandwar RP, Lee KS, Roy R, Ha T, Patel SS. Relaxed rotational and scrunching changes in P266L mutant of T7 RNA polymerase reduce short abortive RNAs while delaying transition into elongation. PLoS One 2014; 9:e91859. [PMID: 24651161 PMCID: PMC3961267 DOI: 10.1371/journal.pone.0091859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/14/2014] [Indexed: 12/02/2022] Open
Abstract
Abortive cycling is a universal feature of transcription initiation catalyzed by DNA-dependent RNA polymerases (RNAP). In bacteriophage T7 RNAP, mutation of proline 266 to leucine (P266L) in the C-linker region connecting the N-terminal promoter binding domain with the C-terminal catalytic domain drastically reduces short abortive products (4–7 nt) while marginally increasing long abortives (9–11 nt). Here we have investigated the transcription initiation pathway of P266L with the goal of understanding the mechanistic basis for short and long abortive synthesis. We show that the P266L mutation does not alter the affinity for the promoter, mildly affects promoter opening, and increases the +1/+2 GTP Kd by 2-fold. However, unlike wild-type T7 RNAP that undergoes stepwise rotation of the promoter binding domain and DNA scrunching during initial transcription, the P266L mutant does not undergo coupled rotational/scrunching movements until 7 nt RNA synthesis. The lack of rotation/scrunching correlates with greater stabilities of the initiation complexes of the P266L and decreased short abortive products. The results indicate that the increased flexibility in the C-linker due to P266L mutation enables T7 RNAP to absorb the stress from the growing RNA:DNA hybrid thereby decreasing short abortive products. Increased C-linker flexibility, however, has an adverse effect of delaying the transition into elongation by 1–2 nt, which gives rise to long abortive products. However, a mutation in the upstream promoter region greatly decreases long abortive products in P266L reactions, rendering the combination of P266L and A-15C promoter a desirable pair for efficient in vitro transcription for RNA production. We conclude that the conformational rigidity in the C-linker region conferred by the proline at position 266 is responsible for the undesirable short abortive products, but the rigidity is critical for efficient promoter clearance and transition into elongation.
Collapse
Affiliation(s)
- Guo-Qing Tang
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Divya Nandakumar
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Rajiv P. Bandwar
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Kyung Suk Lee
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Rahul Roy
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Taekjip Ha
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Howard Hughes Medical Institutes, Urbana, Illinois, United States of America
| | - Smita S. Patel
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
58
|
Fluorescent methods to study transcription initiation and transition into elongation. EXPERIENTIA SUPPLEMENTUM (2012) 2014; 105:105-30. [PMID: 25095993 PMCID: PMC4430081 DOI: 10.1007/978-3-0348-0856-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The DNA-dependent RNA polymerases induce specific conformational changes in the promoter DNA during transcription initiation. Fluorescence spectroscopy sensitively monitors these DNA conformational changes in real time and at equilibrium providing powerful ways to estimate interactions in transcriptional complexes and to assess how transcription is regulated by the promoter DNA sequence, transcription factors, and small ligands. Ensemble fluorescence methods described here probe the individual steps of promoter binding, bending, opening, and transition into the elongation using T7 phage and mitochondrial transcriptional systems as examples.
Collapse
|
59
|
Lysis delay and burst shrinkage of coliphage T7 by deletion of terminator Tφ reversed by deletion of early genes. J Virol 2013; 88:2107-15. [PMID: 24335287 DOI: 10.1128/jvi.03274-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage T7 terminator Tϕ is a class I intrinsic terminator coding for an RNA hairpin structure immediately followed by oligo(U), which has been extensively studied in terms of its transcription termination mechanism, but little is known about its physiological or regulatory functions. In this study, using a T7 mutant phage, where a 31-bp segment of Tϕ was deleted from the genome, we discovered that deletion of Tϕ from T7 reduces the phage burst size but delays lysis timing, both of which are disadvantageous for the phage. The burst downsizing could directly result from Tϕ deletion-caused upregulation of gene 17.5, coding for holin, among other Tϕ downstream genes, because infection of gp17.5-overproducing Escherichia coli by wild-type T7 phage showed similar burst downsizing. However, the lysis delay was not associated with cellular levels of holin or lysozyme or with rates of phage adsorption. Instead, when allowed to evolve spontaneously in five independent adaptation experiments, the Tϕ-lacking mutant phage, after 27 or 29 passages, recovered both burst size and lysis time reproducibly by deleting early genes 0.5, 0.6, and 0.7 of class I, among other mutations. Deletion of genes 0.5 to 0.7 from the Tϕ-lacking mutant phage decreased expression of several Tϕ downstream genes to levels similar to that of the wild-type phage. Accordingly, phage T7 lysis timing is associated with cellular levels of Tϕ downstream gene products. This suggests the involvement of unknown factor(s) besides the known lysis proteins, lysozyme and holin, and that Tϕ plays a role of optimizing burst size and lysis time during T7 infection. IMPORTANCE Bacteriophages are bacterium-infecting viruses. After producing numerous progenies inside bacteria, phages lyse bacteria using their lysis protein(s) to get out and start a new infection cycle. Normally, lysis is tightly controlled to ensure phage progenies are maximally produced and released at an optimal time. Here, we have discovered that phage T7, besides employing its known lysis proteins, additionally uses its transcription terminator Tϕ to guarantee the optimal lysis of the E. coli host. Tϕ, positioned in the middle of the T7 genome, must be inactivated at least partially to allow for transcription-driven translocation of T7 DNA into hosts and expression of Tϕ downstream but promoter-lacking genes. What role is played by Tϕ before inactivation? Without Tϕ, not only was lysis time delayed but also the number of progenies was reduced in this study. Furthermore, T7 can overcome Tϕ deletion by further deleting some genes, highlighting that a phage has multiple strategies for optimizing lysis.
Collapse
|
60
|
Theis K. Snapshots of a viral RNA polymerase switching gears from transcription initiation to elongation. Virol Sin 2013; 28:337-44. [PMID: 24306760 DOI: 10.1007/s12250-013-3397-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/28/2013] [Indexed: 10/25/2022] Open
Abstract
During transcription initiation, RNA polymerase binds tightly to the promoter DNA defining the start of transcription, transcribes comparatively slowly, and frequently releases short transcripts (3-8 nucleotides) in a process called abortive cycling. Transitioning to elongation, the second phase of transcription, the polymerase dissociates from the promoter while RNA synthesis continues. Elongation is characterized by higher rates of transcription and tight binding to the RNA transcript. The RNA polymerase from enterophage T7 (T7 RNAP) has been used as a model to understand the mechanism of transcription in general, and the transition from initiation to elongation specifically. This single-subunit enzyme undergoes dramatic conformational changes during this transition to support the changing requirements of nucleic acid interactions while continuously maintaining polymerase function. Crystal structures, available of multiple stages of the initiation complex and of the elongation complex, combined with biochemical and biophysical data, offer molecular detail of the transition. Some of the crystal structures contain a variant of T7 RNAP where proline 266 is substituted by leucine. This variant shows less abortive products and altered timing of transition, and is a valuable tool to study these processes. The structural transitions from early to late initiation are well understood and are consistent with solution data. The timing of events and the structural intermediates in the transition from late initiation to elongation are less well understood, but the available data allows one to formulate testable models of the transition to guide further research.
Collapse
Affiliation(s)
- Karsten Theis
- Department of Chemical and Physical Sciences, Westfield State University, Westfield, MA, 01085, USA,
| |
Collapse
|
61
|
Wang B, Feig M, Cukier RI, Burton ZF. Computational simulation strategies for analysis of multisubunit RNA polymerases. Chem Rev 2013; 113:8546-66. [PMID: 23987500 PMCID: PMC3829680 DOI: 10.1021/cr400046x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Beibei Wang
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824-1319, United States
| | - Michael Feig
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824-1319, United States
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Robert I. Cukier
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zachary F. Burton
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824-1319, United States
| |
Collapse
|
62
|
Structure of human mitochondrial RNA polymerase elongation complex. Nat Struct Mol Biol 2013; 20:1298-303. [PMID: 24096365 PMCID: PMC4321815 DOI: 10.1038/nsmb.2683] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/04/2013] [Indexed: 12/22/2022]
Abstract
The crystal structure of the human mitochondrial RNA polymerase (mtRNAP) transcription elongation complex was determined at 2.65 Å resolution. The structure reveals a 9–base pair hybrid formed between the DNA template and the RNA transcript and one turn of DNA both upstream and downstream of the hybrid. Comparisons with the distantly related RNAP from bacteriophage T7 indicates conserved mechanisms for substrate binding and nucleotide incorporation, but also strong mechanistic differences. Whereas T7 RNAP refolds during the transition from initiation to elongation, mtRNAP adopts an intermediary conformation that is capable of elongation without refolding. The intercalating hairpin that melts DNA during T7 RNAP initiation separates RNA from DNA during mtRNAP elongation. Newly synthesized RNA exits towards the PPR domain, a unique feature of mtRNAP with conserved RNA recognition motifs.
Collapse
|
63
|
Samanta S, Martin CT. Insights into the mechanism of initial transcription in Escherichia coli RNA polymerase. J Biol Chem 2013; 288:31993-2003. [PMID: 24047893 DOI: 10.1074/jbc.m113.497669] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has long been known that during initial transcription of the first 8-10 bases of RNA, complexes are relatively unstable, leading to the release of short abortive RNA transcripts. An early "stressed intermediate" model led to a more specific mechanistic model proposing "scrunching" stress as the basis for the instability. Recent studies in the single subunit T7 RNA polymerase have argued against scrunching as the energetic driving force and instead argue for a model in which pushing of the RNA-DNA hybrid against a protein element associated with promoter binding, while likely driving promoter release, reciprocally leads to instability of the hybrid. In this study, we test these models in the structurally unrelated multisubunit bacterial RNA polymerase. Via the targeted introduction of mismatches and nicks in the DNA, we demonstrate that neither downstream bubble collapse nor compaction/scrunching of either the single-stranded template or nontemplate strands is a major force driving abortive instability (although collapse from the downstream end of the bubble does contribute significantly to the instability of artificially halted complexes). In contrast, pushing of the hybrid against a mobile protein element (σ3.2 in the bacterial enzyme) results in substantially increased abortive instability and is likely the primary energetic contributor to abortive cycling. The results suggest that abortive instability is a by-product of the mechanistic need to couple the energy of nucleotide addition (RNA chain growth) to driving the timed release of promoter contacts during initial transcription.
Collapse
Affiliation(s)
- Satamita Samanta
- From the Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | | |
Collapse
|
64
|
Boulain JC, Dassa J, Mesta L, Savatier A, Costa N, Muller BH, L'hostis G, Stura EA, Troesch A, Ducancel F. Mutants with higher stability and specific activity from a single thermosensitive variant of T7 RNA polymerase. Protein Eng Des Sel 2013; 26:725-34. [PMID: 24006372 DOI: 10.1093/protein/gzt040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A single strategy to select RNA polymerase from bacteriophage T7 (T7 RNAP) mutants in Escherichia coli with enhanced thermostability or enzymatic activity is described. T7 RNAP has the ability to specifically transcribe genes under control of T7 phage promoter. By using random mutagenesis of the T7 RNAP gene in combination with an appropriate screening at 25 and 42°C, we have generated and selected E.coli clones with temperature-sensitive phenotype in the presence of chloramphenicol. The resistance to chloramphenicol used to select these clones results from expression control of the chloramphenicol acetyl transferase gene by the T7 promoter. In a second phase, and using the thermosensitive T7 RNAP variants as template, a new round of random mutagenesis was performed. Combined to an appropriate screening strategy, 11 mutations (second-site T7 RNAP revertants) that restore the initial resistance to chloramphenicol at 42°C were identified. Nine of these mutations increase the thermal resistance of the wild-type T7 RNA. They include the five mutations previously described using different approaches and four novel mutations. One improves T7 RNA catalytic activity and one has no positive effect on the natural enzyme but increases the activity of some combined mutants. Additive effects of mutations amount to an increase of as much as 10°C in T1/2 compared with the wild-type enzyme and up to a 2-fold activity enhancement.
Collapse
Affiliation(s)
- Jean-Claude Boulain
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Ingénierie des Anticorps pour la Santé, Equipe mixte CEA/BioMérieux, Gif-sur-Yvette F-91191, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Kamzolova S, Beskaravainy P, Osypov A, Dzhelyadin T, Temlyakova E, Sorokin A. Electrostatic map of T7 DNA: comparative analysis of functional and electrostatic properties of T7 RNA polymerase-specific promoters. J Biomol Struct Dyn 2013; 32:1184-92. [DOI: 10.1080/07391102.2013.819298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
66
|
Kim S, Broströmer E, Xing D, Jin J, Chong S, Ge H, Wang S, Gu C, Yang L, Gao YQ, Su XD, Sun Y, Xie XS. Probing allostery through DNA. Science 2013; 339:816-9. [PMID: 23413354 DOI: 10.1126/science.1229223] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Allostery is well documented for proteins but less recognized for DNA-protein interactions. Here, we report that specific binding of a protein on DNA is substantially stabilized or destabilized by another protein bound nearby. The ternary complex's free energy oscillates as a function of the separation between the two proteins with a periodicity of ~10 base pairs, the helical pitch of B-form DNA, and a decay length of ~15 base pairs. The binding affinity of a protein near a DNA hairpin is similarly dependent on their separation, which-together with molecular dynamics simulations-suggests that deformation of the double-helical structure is the origin of DNA allostery. The physiological relevance of this phenomenon is illustrated by its effect on gene expression in live bacteria and on a transcription factor's affinity near nucleosomes.
Collapse
Affiliation(s)
- Sangjin Kim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Chang HW, Shaytan AK, Hsieh FK, Kulaeva OI, Kirpichnikov MP, Studitsky VM. Structural Analysis of the Key Intermediate Formed during Transcription through a Nucleosome. TRENDS IN CELL & MOLECULAR BIOLOGY 2013; 8:13-23. [PMID: 25364155 PMCID: PMC4214391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Transcription through chromatin by different RNA polymerases produces different biological outcomes and is accompanied by either nucleosome survival at the original location (Pol II-type mechanism) or backward nucleosome translocation along DNA (Pol III-type mechanism). It has been proposed that differences in the structure of the key intermediates formed during transcription dictate the fate of the nucleosomes. To evaluate this possibility, structure of the key intermediate formed during transcription by Pol III-type mechanism was studied by DNase I footprinting and molecular modeling. The Pol III-type mechanism is characterized by less efficient formation of the key intermediate required for nucleosome survival (Ø-loop, Pol II-type mechanism), most likely due to steric interference between the RNA polymerase and DNA in the Ø-loop. The data suggest that the lower efficiency of Ø-loop formation induces formation of a lower nucleosomal barrier and nucleosome translocation during transcription by Pol III-type mechanism.
Collapse
Affiliation(s)
- H.-W. Chang
- Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - A. K. Shaytan
- School of Biology; Lomonosov Moscow State University; Moscow, Russia
| | - F.-K. Hsieh
- Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - O. I. Kulaeva
- Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | - V. M. Studitsky
- Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
- School of Biology; Lomonosov Moscow State University; Moscow, Russia
| |
Collapse
|
68
|
Neil AJ, Belotserkovskii BP, Hanawalt PC. Transcription blockage by bulky end termini at single-strand breaks in the DNA template: differential effects of 5' and 3' adducts. Biochemistry 2012; 51:8964-70. [PMID: 23066636 DOI: 10.1021/bi301240y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RNA polymerases from phage-infected bacteria and mammalian cells have been shown to bypass single-strand breaks (SSBs) with a single-nucleotide gap in the template DNA strand during transcription elongation; however, the SSB bypass efficiency varies significantly depending upon the backbone end chemistries at the break. Using a reconstituted T7 phage transcription system (T7 RNAP) and RNA polymerase II (RNAPII) in HeLa cell nuclear extracts, we observe a slight reduction in the level of transcription arrest at SSBs with no gap as compared to those with a single-nucleotide gap. We have shown that biotin and carbon-chain moieties linked to the 3' side, and in select cases the 5' side, of an SSB in the template strand strongly increase the level of transcription arrest when compared to unmodified SSBs. We also find that a small carbon-chain moiety linked to the upstream side of an SSB aids transcriptional bypass of SSBs for both T7 RNAP and RNAP II. Analysis of transcription across SSBs flanked by bulky 3' adducts reveals the ability of 3' end chemistries to arrest T7 RNAP in a size-dependent manner. T7 RNAP is also completely arrested when 3' adducts or 3'-phosphate groups are placed opposite 5'-phosphate groups at an SSB. We have also observed that a biotinylated thymine in the template strand (without a break) does not pose a strong block to transcription. Taken together, these results emphasize the importance of the size of 3', but usually not 5', end chemistries in arresting transcription at SSBs, substantiating the notion that bulky 3' lesions (e.g., topoisomerase cleavable complexes, 3'-phosphoglycolates, and 3'-unsaturated aldehydes) pose very strong blocks to transcribing RNA polymerases. These findings have implications for the processing of DNA damage through SSB intermediates and the mechanism of SSB bypass by T7 RNAP and mammalian RNAPII.
Collapse
Affiliation(s)
- Alexander J Neil
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | | | | |
Collapse
|
69
|
Martinez-Rucobo FW, Cramer P. Structural basis of transcription elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:9-19. [PMID: 22982352 DOI: 10.1016/j.bbagrm.2012.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 01/13/2023]
Abstract
For transcription elongation, all cellular RNA polymerases form a stable elongation complex (EC) with the DNA template and the RNA transcript. Since the millennium, a wealth of structural information and complementary functional studies provided a detailed three-dimensional picture of the EC and many of its functional states. Here we summarize these studies that elucidated EC structure and maintenance, nucleotide selection and addition, translocation, elongation inhibition, pausing and proofreading, backtracking, arrest and reactivation, processivity, DNA lesion-induced stalling, lesion bypass, and transcriptional mutagenesis. In the future, additional structural and functional studies of elongation factors that control the EC and their possible allosteric modes of action should result in a more complete understanding of the dynamic molecular mechanisms underlying transcription elongation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
|
70
|
Ramírez-Tapia LE, Martin CT. New insights into the mechanism of initial transcription: the T7 RNA polymerase mutant P266L transitions to elongation at longer RNA lengths than wild type. J Biol Chem 2012; 287:37352-61. [PMID: 22923611 DOI: 10.1074/jbc.m112.370643] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerases undergo substantial structural and functional changes in transitioning from sequence-specific initial transcription to stable and relatively sequence-independent elongation. Initially, transcribing complexes are characteristically unstable, yielding short abortive products on the path to elongation. However, protein mutations have been isolated in RNA polymerases that dramatically reduce abortive instability. Understanding these mutations is essential to understanding the energetics of initial transcription and promoter clearance. We demonstrate here that the P266L point mutation in T7 RNA polymerase, which shows dramatically reduced abortive cycling, also transitions to elongation later, i.e. at longer lengths of RNA. These two properties of the mutant are not necessarily coupled, but rather we propose that they both derive from a weakening of the barrier to RNA-DNA hybrid-driven rotation of the promoter binding N-terminal platform, a motion necessary to achieve programmatically timed release of promoter contacts in the transition to elongation. Parallels in the multisubunit RNA polymerases are discussed.
Collapse
Affiliation(s)
- Luis E Ramírez-Tapia
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
71
|
Vaughan R, Fan B, You JS, Kao CC. Identification and functional characterization of the nascent RNA contacting residues of the hepatitis C virus RNA-dependent RNA polymerase. RNA (NEW YORK, N.Y.) 2012; 18:1541-52. [PMID: 22736798 PMCID: PMC3404374 DOI: 10.1261/rna.031914.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 05/30/2012] [Indexed: 05/21/2023]
Abstract
Understanding how the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) interacts with nascent RNA would provide valuable insight into the virus's mechanism for RNA synthesis. Using a peptide mass fingerprinting method and affinity capture of peptides reversibly cross-linked to an alkyn-labeled nascent RNA, we identified a region below the Δ1 loop in the fingers domain of the HCV RdRp that contacts the nascent RNA. A modification protection assay was used to confirm the assignment. Several mutations within the putative nascent RNA binding region were generated and analyzed for RNA synthesis in vitro and in the HCV subgenomic replicon. All mutations tested within this region showed a decrease in primer-dependent RNA synthesis and decreased stabilization of the ternary complex. The results from this study advance our understanding of the structure and function of the HCV RdRp and the requirements for HCV RNA synthesis. In addition, a model of nascent RNA interaction is compared with results from structural studies.
Collapse
Affiliation(s)
- Robert Vaughan
- The Biochemistry Interdisciplinary Program, Indiana University, Bloomington, Indiana 47405, USA
| | - Baochang Fan
- The Biochemistry Interdisciplinary Program, Indiana University, Bloomington, Indiana 47405, USA
| | - Jin-Sam You
- Indiana University School of Medicine, IUPUI, Indianapolis, Indiana 46202, USA
| | - C. Cheng Kao
- The Biochemistry Interdisciplinary Program, Indiana University, Bloomington, Indiana 47405, USA
- Corresponding authorE-mail
| |
Collapse
|
72
|
Finan K, Torella JP, Kapanidis AN, Cook PR. T7 RNA polymerase functions in vitro without clustering. PLoS One 2012; 7:e40207. [PMID: 22768341 PMCID: PMC3388079 DOI: 10.1371/journal.pone.0040207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/06/2012] [Indexed: 11/18/2022] Open
Abstract
Many nucleic acid polymerases function in clusters known as factories. We investigate whether the RNA polymerase (RNAP) of phage T7 also clusters when active. Using ‘pulldowns’ and fluorescence correlation spectroscopy we find that elongation complexes do not interact in vitro with a Kd<1 µM. Chromosome conformation capture also reveals that genes located 100 kb apart on the E. coli chromosome do not associate more frequently when transcribed by T7 RNAP. We conclude that if clustering does occur in vivo, it must be driven by weak interactions, or mediated by a phage-encoded protein.
Collapse
Affiliation(s)
- Kieran Finan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Joseph P. Torella
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Achillefs N. Kapanidis
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Peter R. Cook
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
73
|
Billingsley DJ, Bonass WA, Crampton N, Kirkham J, Thomson NH. Single-molecule studies of DNA transcription using atomic force microscopy. Phys Biol 2012; 9:021001. [PMID: 22473059 DOI: 10.1088/1478-3975/9/2/021001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Atomic force microscopy (AFM) can detect single biomacromolecules with a high signal-to-noise ratio on atomically flat biocompatible support surfaces, such as mica. Contrast arises from the innate forces and therefore AFM does not require imaging contrast agents, leading to sample preparation that is relatively straightforward. The ability of AFM to operate in hydrated environments, including humid air and aqueous buffers, allows structure and function of biological and biomolecular systems to be retained. These traits of the AFM are ensuring that it is being increasingly used to study deoxyribonucleic acid (DNA) structure and DNA-protein interactions down to the secondary structure level. This report focuses in particular on reviewing the applications of AFM to the study of DNA transcription in reductionist single-molecule bottom-up approaches. The technique has allowed new insights into the interactions between ribonucleic acid (RNA) polymerase to be gained and enabled quantification of some aspects of the transcription process, such as promoter location, DNA wrapping and elongation. More recently, the trend is towards studying the interactions of more than one enzyme operating on a single DNA template. These methods begin to reveal the mechanics of gene expression at the single-molecule level and will enable us to gain greater understanding of how the genome is transcribed and translated into the proteome.
Collapse
Affiliation(s)
- Daniel J Billingsley
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds, West Yorkshire LS2 9JT, UK
| | | | | | | | | |
Collapse
|
74
|
Yu J, Oster G. A small post-translocation energy bias aids nucleotide selection in T7 RNA polymerase transcription. Biophys J 2012; 102:532-41. [PMID: 22325276 PMCID: PMC3274829 DOI: 10.1016/j.bpj.2011.12.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 12/14/2011] [Accepted: 12/16/2011] [Indexed: 01/22/2023] Open
Abstract
The RNA polymerase (RNAP) of bacteriophage T7 is a single subunit enzyme that can transcribe DNA to RNA in the absence of additional protein factors. In this work, we present a model of T7 RNAP translocation during elongation. Based on structural information and experimental data from single-molecule force measurements, we show that a small component of facilitated translocation or power stroke coexists with the Brownian-ratchet-driven motions, and plays a crucial role in nucleotide selection at pre-insertion. The facilitated translocation is carried out by the conserved Tyr(639) that moves its side chain into the active site, pushing aside the 3'-end of the RNA, and forming a locally stabilized post-translocation intermediate. Pre-insertion of an incoming nucleotide into this stabilized intermediate state ensures that Tyr(639) closely participates in selecting correct nucleotides. A similar translocation mechanism has been suggested for multi-subunit RNAPs involving the bridge-helix bending. Nevertheless, the bent bridge-helix sterically prohibits nucleotide binding in the post-transolocation intermediate analog; moreover, the analog is not stabilized unless an inhibitory protein factor binds to the enzyme. Using our scheme, we also compared the efficiencies of different strategies for nucleotide selection, and examined effects of facilitated translocation on forward tracking.
Collapse
Affiliation(s)
- Jin Yu
- Departments of Molecular and Cell Biology, and Environmental Science, Policy and Management, University of California, Berkeley, California
| | - George Oster
- Departments of Molecular and Cell Biology, and Environmental Science, Policy and Management, University of California, Berkeley, California
| |
Collapse
|
75
|
Abstract
Viral polymerases play a central role in viral genome replication and transcription. Based on the genome type and the specific needs of particular virus, RNA-dependent RNA polymerase, RNA-dependent DNA polymerase, DNA-dependent RNA polymerase, and DNA-dependent RNA polymerases are found in various viruses. Viral polymerases are generally active as a single protein capable of carrying out multiple functions related to viral genome synthesis. Specifically, viral polymerases use variety of mechanisms to recognize initial binding sites, ensure processive elongation, terminate replication at the end of the genome, and also coordinate the chemical steps of nucleic acid synthesis with other enzymatic activities. This review focuses on different viral genome replication and transcription strategies, and the polymerase interactions with various viral proteins that are necessary to complete genome synthesis.
Collapse
Affiliation(s)
- Kyung H Choi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
76
|
Real-time monitoring of a stepwise transcription reaction on a quartz-crystal microbalance. Anal Biochem 2011; 421:732-41. [PMID: 22182728 DOI: 10.1016/j.ab.2011.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/18/2011] [Accepted: 11/19/2011] [Indexed: 11/23/2022]
Abstract
We monitored real-time DNA transcription by T7 RNAP using a 27-MHz DNA-immobilized quartz-crystal microbalance (QCM) in buffer solution to investigate the stepwise reaction of transcription. We designed a template double-stranded DNA that consisted of a T7 promoter, a stall position (15 bp downstream from the promoter), and a 73-bp transcription region. Based on the frequency (mass) changes of the template-immobilized QCM in response to the addition of T7 RNAP and monomers of NTP, we obtained the kinetic parameters of each step of the T7 RNAP reactions: the enzyme-binding rate (k(on)) to and the dissociation rate (k(off)) from the promoter, the proceeding rate (k(for)) from the promoter to the forward stall position, the polymerization rate (k(cat)) of RNA along DNA, and the release rate (k(r)) from the end of the template DNA. We found that k(cat) (120 s⁻¹) was extremely large compared with k(off) (0.014 s⁻¹), k(for) (0.062 s⁻¹), and k(r) (0.014 s⁻¹), revealing that the rate-limiting steps of T7 RNAP involve the binding to the promoter, the movement to the stall position, and the release from DNA. These kinetic parameters were compared with values for other DNA-binding enzymes.
Collapse
|
77
|
Ulrich S, Kool ET. Importance of steric effects on the efficiency and fidelity of transcription by T7 RNA polymerase. Biochemistry 2011; 50:10343-9. [PMID: 22044042 DOI: 10.1021/bi2011465] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
DNA-dependent RNA polymerases such as T7 RNA polymerase (T7 RNAP) perform the transcription of DNA into mRNA with high efficiency and high fidelity. Although structural studies have provided a detailed account of the molecular basis of transcription, the relative importance of factors like hydrogen bonds and steric effects remains poorly understood. We report herein the first study aimed at systematically probing the importance of steric and electrostatic effects on the efficiency and fidelity of DNA transcription by T7 RNAP. We used synthetic nonpolar analogues of thymine with sizes varying in subangstrom increments to probe the steric requirements of T7 RNAP during the elongation mode of transcription. Enzymatic assays with internal radiolabeling were performed to compare the efficiency of transcription of modified DNA templates with a natural template containing thymine as a reference. Furthermore, we analyzed effects on the fidelity by measuring the composition of RNA transcripts by enzymatic digestion followed by two-dimensional thin layer chromatography separation. Our results demonstrate that hydrogen bonds play an important role in the efficiency of transcription but, interestingly, do not appear to be required for faithful transcription. Steric effects (size and shape variations) are found to be significant both in insertion of a new RNA base and in extension beyond it.
Collapse
Affiliation(s)
- Sébastien Ulrich
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | | |
Collapse
|
78
|
Park JS, Kim KB, Kim DE. DNA Helicase Reduces Production of Aberrant Run-off Transcripts during in vitro RNA Synthesis with T7 RNA Polymerase. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.10.3779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
79
|
Ringel R, Sologub M, Morozov YI, Litonin D, Cramer P, Temiakov D. Structure of human mitochondrial RNA polymerase. Nature 2011; 478:269-73. [PMID: 21947009 DOI: 10.1038/nature10435] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/10/2011] [Indexed: 11/10/2022]
Abstract
Transcription of the mitochondrial genome is performed by a single-subunit RNA polymerase (mtRNAP) that is distantly related to the RNAP of bacteriophage T7, the pol I family of DNA polymerases, and single-subunit RNAPs from chloroplasts. Whereas T7 RNAP can initiate transcription by itself, mtRNAP requires the factors TFAM and TFB2M for binding and melting promoter DNA. TFAM is an abundant protein that binds and bends promoter DNA 15-40 base pairs upstream of the transcription start site, and stimulates the recruitment of mtRNAP and TFB2M to the promoter. TFB2M assists mtRNAP in promoter melting and reaches the active site of mtRNAP to interact with the first base pair of the RNA-DNA hybrid. Here we report the X-ray structure of human mtRNAP at 2.5 Å resolution, which reveals a T7-like catalytic carboxy-terminal domain, an amino-terminal domain that remotely resembles the T7 promoter-binding domain, a novel pentatricopeptide repeat domain, and a flexible N-terminal extension. The pentatricopeptide repeat domain sequesters an AT-rich recognition loop, which binds promoter DNA in T7 RNAP, probably explaining the need for TFAM during promoter binding. Consistent with this, substitution of a conserved arginine residue in the AT-rich recognition loop, or release of this loop by deletion of the N-terminal part of mtRNAP, had no effect on transcription. The fingers domain and the intercalating hairpin, which melts DNA in phage RNAPs, are repositioned, explaining the need for TFB2M during promoter melting. Our results provide a new venue for the mechanistic analysis of mitochondrial transcription. They also indicate how an early phage-like mtRNAP lost functions in promoter binding and melting, which were provided by initiation factors in trans during evolution, to enable mitochondrial gene regulation and the adaptation of mitochondrial function to changes in the environment.
Collapse
Affiliation(s)
- Rieke Ringel
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
80
|
Vahia AV, Martin CT. Direct tests of the energetic basis of abortive cycling in transcription. Biochemistry 2011; 50:7015-22. [PMID: 21776950 DOI: 10.1021/bi200620q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the synthesis of RNA from a DNA template is (and must be) a generally very stable process to enable transcription of kilobase transcripts, it has long been known that during initial transcription of the first 8-10 bases of RNA complexes are relatively unstable, leading to the release of short abortive RNA transcripts. A wealth of structural data in the past decade has led to specific mechanistic models elaborating an earlier "stressed intermediate" model for initial transcription. In this study, we test fundamental predictions of each of these models in the simple model enzyme T7 RNA polymerase. Nicking or gapping the nontranscribed template DNA immediately upstream of the growing hybrid yields no systematic reduction in abortive falloff, demonstrating clearly that compaction or "scrunching" of this DNA is not a source of functional instability. Similarly, transcription on DNA in which the nontemplate strand in the initially transcribed region is either mismatched or removed altogether leads to at most modest reductions in abortive falloff, indicating that expansion or "scrunching" of the bubble is not the primary driving force for abortive cycling. Finally, energetic stress derived from the observed steric clash of the growing hybrid against the N-terminal domain contributes at most mildly to abortive cycling, as the addition of steric bulk (additional RNA bases) at the upstream end of the hybrid does not lead to predicted positional shifts in observed abortive patterns. We conclude that while structural changes (scrunching) clearly occur in initial transcription, stress from these changes is not the primary force driving abortive cycling.
Collapse
Affiliation(s)
- Ankit V Vahia
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | | |
Collapse
|
81
|
Single Molecule Detection of One, Two and Multiplex Proteins Involved in DNA/RNA Transaction. Cell Mol Bioeng 2011. [DOI: 10.1007/s12195-011-0159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
82
|
Skinner GM, Kalafut BS, Visscher K. Downstream DNA tension regulates the stability of the T7 RNA polymerase initiation complex. Biophys J 2011; 100:1034-41. [PMID: 21320448 DOI: 10.1016/j.bpj.2010.11.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 11/11/2010] [Accepted: 11/15/2010] [Indexed: 11/25/2022] Open
Abstract
Gene transcription by the enzyme RNA polymerase is tightly regulated. In many cases, such as in the lac operon in Escherichia coli, this regulation is achieved through the action of protein factors on DNA. Because DNA is an elastic polymer, its response to enzymatic processing can lead to mechanical perturbations (e.g., linear stretching and supercoiling) that can affect the operation of other DNA processing complexes acting elsewhere on the same substrate molecule. Using an optical-tweezers assay, we measured the binding kinetics between single molecules of bacteriophage T7 RNA polymerase and DNA, as a function of tension. We found that increasing DNA tension under conditions that favor formation of the open complex results in destabilization of the preinitiation complex. Furthermore, with zero ribonucleotides present, when the closed complex is favored, we find reduced tension sensitivity, implying that it is predominantly the open complex that is sensitive. This result strongly supports the "scrunching" model for T7 transcription initiation, as the applied tension acts against the movement of the DNA into the scrunched state, and introduces linear DNA tension as a potential regulatory quantity for transcription initiation.
Collapse
Affiliation(s)
- Gary M Skinner
- Department of Physics, University of Arizona, Tucson, Arizona, USA.
| | | | | |
Collapse
|
83
|
Conde J, de la Fuente JM, Baptista PV. In vitro transcription and translation inhibition via DNA functionalized gold nanoparticles. NANOTECHNOLOGY 2010; 21:505101. [PMID: 21098932 DOI: 10.1088/0957-4484/21/50/505101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The use of gold nanoparticles (AuNPs) has been gaining momentum as vectors for gene silencing strategies, combining the AuNPs' ease of functionalization with DNA and/or siRNA, high loading capacity and fast uptake by target cells. Here, we used AuNP functionalized with thiolated oligonucleotides to specifically inhibit transcription in vitro, demonstrating the synergetic effect between AuNPs and a specific antisense sequence that blocks the T7 promoter region. Also, AuNPs efficiently protect the antisense oligonucleotide against nuclease degradation, which can thus retain its inhibitory potential. In addition, we demonstrate that AuNPs functionalized with a thiolated oligonucleotide complementary to the ribosome binding site and the start codon, effectively shut down in vitro translation. Together, these two approaches can provide for a simple yet robust experimental set up to test for efficient gene silencing of AuNP-DNA conjugates. What is more, these results show that appropriate functionalization of AuNPs can be used as a dual targeting approach to an enhanced control of gene expression-inhibition of both transcription and translation.
Collapse
Affiliation(s)
- J Conde
- Centro de Investigação em Genética Molecular Humana, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | |
Collapse
|
84
|
Mie M, Sugita R, Endoh T, Kobatake E. Evaluation of small ligand-protein interactions by using T7 RNA polymerase with DNA-modified ligand. Anal Biochem 2010; 405:109-13. [PMID: 20553866 DOI: 10.1016/j.ab.2010.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/27/2010] [Accepted: 06/02/2010] [Indexed: 11/26/2022]
Abstract
The interaction between proteins and ligands was evaluated by T7 RNA polymerase transcription with a DNA-modified ligand. The principle of this method is suppression of T7 RNA polymerase transcription by binding of a protein to small ligand modified by conjugation with a T7 RNA polymerase promoter. To demonstrate proof of principle, biotin or antifolate methotrexate was modified by covalent attachment of a T7 RNA promoter. Using these T7 RNA promoter-modified ligands, T7 RNA polymerase transcriptions were performed in the presence or absence of an anti-biotin antibody or recombinant human dihydrofolate reductase, respectively. Transcription was suppressed in the presence of each binding protein plus its modified ligand, but not in the absence of the binding protein.
Collapse
Affiliation(s)
- Masayasu Mie
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
85
|
Stengel G, Urban M, Purse BW, Kuchta RD. Incorporation of the fluorescent ribonucleotide analogue tCTP by T7 RNA polymerase. Anal Chem 2010; 82:1082-9. [PMID: 20067253 DOI: 10.1021/ac902456n] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescent RNA is an important analytical tool in medical diagnostics, RNA cytochemistry, and RNA aptamer development. We have synthesized the fluorescent ribonucleotide analogue 1,3-diaza-2-oxophenothiazine-ribose-5'-triphosphate (tCTP) and tested it as substrate for T7 RNA polymerase in transcription reactions, a convenient route for generating RNA in vitro. When transcribing a guanine, T7 RNA polymerase incorporates tCTP with 2-fold higher catalytic efficiency than CTP and efficiently polymerizes additional NTPs onto the tC. Remarkably, T7 RNA polymerase does not incorporate tCTP with the same ambivalence opposite guanine and adenine with which DNA polymerases incorporate the analogous dtCTP. While several DNA polymerases discriminated against a d(tC-A) base pair only by factors <10, T7 RNA polymerase discriminates against tC-A base pair formation by factors of 40 and 300 when operating in the elongation and initiation mode, respectively. These catalytic properties make T7 RNA polymerase an ideal tool for synthesizing large fluorescent RNA, as we demonstrated by generating a approximately 800 nucleotide RNA in which every cytosine was replaced with tC.
Collapse
Affiliation(s)
- Gudrun Stengel
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 30309-0215, USA
| | | | | | | |
Collapse
|
86
|
Grünberg S, Reich C, Zeller ME, Bartlett MS, Thomm M. Rearrangement of the RNA polymerase subunit H and the lower jaw in archaeal elongation complexes. Nucleic Acids Res 2009; 38:1950-63. [PMID: 20040576 PMCID: PMC2847245 DOI: 10.1093/nar/gkp1190] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The lower jaws of archaeal RNA polymerase and eukaryotic RNA polymerase II include orthologous subunits H and Rpb5, respectively. The tertiary structure of H is very similar to the structure of the C-terminal domain of Rpb5, and both subunits are proximal to downstream DNA in pre-initiation complexes. Analyses of reconstituted euryarchaeal polymerase lacking subunit H revealed that H is important for open complex formation and initial transcription. Eukaryotic Rpb5 rescues activity of the ΔH enzyme indicating a strong conservation of function for this subunit from archaea to eukaryotes. Photochemical cross-linking in elongation complexes revealed a striking structural rearrangement of RNA polymerase, bringing subunit H near the transcribed DNA strand one helical turn downstream of the active center, in contrast to the positioning observed in preinitiation complexes. The rearrangement of subunits H and A′′ suggest a major conformational change in the archaeal RNAP lower jaw upon formation of the elongation complex.
Collapse
Affiliation(s)
- Sebastian Grünberg
- Lehrstuhl für Mikrobiologie, Universität Regensburg, 93053 Regensburg, Germany
| | | | | | | | | |
Collapse
|
87
|
Real-time observation of the transition from transcription initiation to elongation of the RNA polymerase. Proc Natl Acad Sci U S A 2009; 106:22175-80. [PMID: 20018723 DOI: 10.1073/pnas.0906979106] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transition from initiation to elongation of the RNA polymerase (RNAP) is an important stage of transcription that often limits the production of the full-length RNA. Little is known about the RNAP transition kinetics and the steps that dictate the transition rate, because of the challenge in monitoring subpopulations of the transient and heterogeneous transcribing complexes in rapid and real time. Here, we have dissected the complete transcription initiation pathway of T7 RNAP by using kinetic modeling of RNA synthesis and by determining the initiation (IC) to elongation (EC) transition kinetics at each RNA polymerization step using single-molecule and stopped-flow FRET methods. We show that the conversion of IC to EC in T7 RNAP consensus promoter occurs only after 8- to 12-nt synthesis, and the 12-nt synthesis represents a critical juncture in the transcriptional initiation pathway when EC formation is most efficient. We show that the slow steps of transcription initiation, including DNA scrunching/RNAP-promoter rotational changes during 5- to 8-nt synthesis, not the major conformational changes, dictate the overall rate of EC formation in T7 RNAP and represent key steps that regulate the synthesis of full-length RNA.
Collapse
|
88
|
Steitz TA. The structural changes of T7 RNA polymerase from transcription initiation to elongation. Curr Opin Struct Biol 2009; 19:683-90. [PMID: 19811903 PMCID: PMC2818687 DOI: 10.1016/j.sbi.2009.09.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 09/03/2009] [Indexed: 11/15/2022]
Abstract
The structures of T7 RNA polymerase (T7 RNAP) captured in the initiation and elongation phases of transcription, as well as an intermediate stage provide insights into how this RNA polymerase protein can initiate RNA synthesis and synthesize 7-10 nucleotides of RNA while remaining bound to the DNA promoter site. Recently, the structures of T7 RNAP bound to its promoter DNA along with either a seven nucleotide or eight nucleotide transcript show an elongated product site resulting from a 40 degrees or 45 degrees rotation of the promoter and domain that binds it. The different functional properties of the initiation and elongation phases of transcription are illuminated from structures of the initiation and elongation complexes. Structural insights into the translocation of the product transcript of RNAP, its separation of the downstream duplex DNA, and its removal of the transcript from the heteroduplex are provided by the structures of several states of nucleotide incorporation. A conformational change in the 'fingers' domain that results from the binding or dissociation of incoming NTP or PPi appears to be associated with the state of translocation of T7 RNAP.
Collapse
Affiliation(s)
- Thomas A Steitz
- Department of Molecular Biophysics & Biochemistry, Yale University, and Howard Hughes Medical Institute, New Haven, CT 06520-8114, United States.
| |
Collapse
|
89
|
Sorokina M, Koh HR, Patel SS, Ha T. Fluorescent lifetime trajectories of a single fluorophore reveal reaction intermediates during transcription initiation. J Am Chem Soc 2009; 131:9630-1. [PMID: 19552410 PMCID: PMC2726732 DOI: 10.1021/ja902861f] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Single molecule (SM) techniques are relatively new additions to the field of biophysics that allow one to manipulate individual molecules and study their behavior. To make these studies more relevant to what actually happens in the cell, one needs to move beyond the studies of individual molecules in isolation and study many different molecules working in concert. This presents a technical challenge as most SM experiments measure only one observable as a function of time, whereas complex biomolecular systems require multidimensional SM analysis. Förster resonance energy transfer (FRET) is one of the most common single molecule approaches and can report on the real time distance changes. However, FRET requires two fluorophores which will ultimately limit the degree of multiplexing in future SM applications. It will be useful if a single fluorophore can be used to provide equivalent information. In this communication, we show that fluorescence lifetime analysis of a single Cy3 fluorophore attached to the promoter region of the DNA can be used to reveal transient reaction intermediates during transcription initiation by T7 RNA polymerase. This work represents the first demonstration of real-time biochemical reactions observed via single molecule fluorescence lifetime trajectories of immobilized molecules.
Collapse
Affiliation(s)
- Maria Sorokina
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
90
|
Nayak D, Guo Q, Sousa R. A promoter recognition mechanism common to yeast mitochondrial and phage t7 RNA polymerases. J Biol Chem 2009; 284:13641-13647. [PMID: 19307179 DOI: 10.1074/jbc.m900718200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast mitochondrial (YMt) and phage T7 RNA polymerases (RNAPs) are two divergent representatives of a large family of single subunit RNAPs that are also found in the mitochondria and chloroplasts of higher eukaryotes, mammalian nuclei, and many other bacteriophage. YMt and phage T7 promoters differ greatly in sequence and length, and the YMt RNAP uses an accessory factor for initiation, whereas T7 RNAP does not. We obtain evidence here that, despite these apparent differences, both the YMt and T7 RNAPs utilize a similar promoter recognition loop to bind their respective promoters. Mutations in this element in YMt RNAP specifically disrupt mitochondrial promoter utilization, and experiments with site-specifically tethered chemical nucleases indicate that this element binds the mitochondrial promoter almost identically to how the promoter recognition loop from the phage RNAP binds its promoter. Sequence comparisons reveal that the other members of the single subunit RNAP family display loops of variable sequence and size at a position corresponding to the YMt and T7 RNAP promoter recognition loops. We speculate that these elements may be involved in promoter recognition in most or all of these enzymes and that this element's structure allows it to accommodate significant sequence and length variation to provide a mechanism for rapid evolution of new promoter specificities in this RNAP family.
Collapse
Affiliation(s)
- Dhananjaya Nayak
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Qing Guo
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Rui Sousa
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229.
| |
Collapse
|