51
|
Roos-Mattjus P, Sistonen L. Interplay between mammalian heat shock factors 1 and 2 in physiology and pathology. FEBS J 2022; 289:7710-7725. [PMID: 34478606 DOI: 10.1111/febs.16178] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/17/2021] [Accepted: 09/02/2021] [Indexed: 01/14/2023]
Abstract
The heat-shock factors (HSFs) belong to an evolutionary conserved family of transcription factors that were discovered already over 30 years ago. The HSFs have been shown to a have a broad repertoire of target genes, and they also have crucial functions during normal development. Importantly, HSFs have been linked to several disease states, such as neurodegenerative disorders and cancer, highlighting their importance in physiology and pathology. However, it is still unclear how HSFs are regulated and how they choose their specific target genes under different conditions. Posttranslational modifications and interplay among the HSF family members have been shown to be key regulatory mechanisms for these transcription factors. In this review, we focus on the mammalian HSF1 and HSF2, including their interplay, and provide an updated overview of the advances in understanding how HSFs are regulated and how they function in multiple processes of development, aging, and disease. We also discuss HSFs as therapeutic targets, especially the recently reported HSF1 inhibitors.
Collapse
Affiliation(s)
- Pia Roos-Mattjus
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Lea Sistonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| |
Collapse
|
52
|
Kovács D, Kovács M, Ahmed S, Barna J. Functional diversification of heat shock factors. Biol Futur 2022; 73:427-439. [PMID: 36402935 DOI: 10.1007/s42977-022-00138-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Heat shock transcription factors (HSFs) are widely known as master regulators of the heat shock response. In invertebrates, a single heat shock factor, HSF1, is responsible for the maintenance of protein homeostasis. In vertebrates, seven members of the HSF family have been identified, namely HSF1, HSF2, HSF3, HSF4, HSF5, HSFX, and HSFY, of which HSF1 and HSF2 are clearly associated with heat shock response, while HSF4 is involved in development. Other members of the family have not yet been studied as extensively. Besides their role in cellular proteostasis, HSFs influence a plethora of biological processes such as aging, development, cell proliferation, and cell differentiation, and they are implicated in several pathologies such as neurodegeneration and cancer. This is achieved by regulating the expression of a great variety of genes including chaperones. Here, we review our current knowledge on the function of HSF family members and important aspects that made possible the functional diversification of HSFs.
Collapse
Affiliation(s)
- Dániel Kovács
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary
| | - Márton Kovács
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary
| | - Saqib Ahmed
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary
| | - János Barna
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary. .,ELKH-ELTE Genetics Research Group, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary.
| |
Collapse
|
53
|
The Thermal Stress Coping Network of the Nematode Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms232314907. [PMID: 36499234 PMCID: PMC9737000 DOI: 10.3390/ijms232314907] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Response to hyperthermia, highly conserved from bacteria to humans, involves transcriptional upregulation of genes involved in battling the cytotoxicity caused by misfolded and denatured proteins, with the aim of proteostasis restoration. C. elegans senses and responds to changes in growth temperature or noxious thermal stress by well-defined signaling pathways. Under adverse conditions, regulation of the heat shock response (HSR) in C. elegans is controlled by a single transcription factor, heat-shock factor 1 (HSF-1). HSR and HSF-1 in particular are proven to be central to survival under proteotoxic stress, with additional roles in normal physiological processes. For years, it was a common belief that upregulation of heat shock proteins (HSPs) by HSF-1 was the main and most important step toward thermotolerance. However, an ever-growing number of studies have shown that targets of HSF-1 involved in cytoskeletal and exoskeletal integrity preservation as well as other HSF-1 dependent and independent pathways are equally important. In this review, we follow the thermal stimulus from reception by the nematode nerve endings till the activation of cellular response programs. We analyze the different HSF-1 functions in HSR as well as all the recently discovered mechanisms that add to the knowledge of the heat stress coping network of C. elegans.
Collapse
|
54
|
Tokunaga Y, Otsuyama KI, Kakuta S, Hayashida N. Heat Shock Transcription Factor 2 Is Significantly Involved in Neurodegenerative Diseases, Inflammatory Bowel Disease, Cancer, Male Infertility, and Fetal Alcohol Spectrum Disorder: The Novel Mechanisms of Several Severe Diseases. Int J Mol Sci 2022; 23:ijms232213763. [PMID: 36430241 PMCID: PMC9691173 DOI: 10.3390/ijms232213763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
HSF (heat shock transcription factor or heat shock factor) was discovered as a transcription factor indispensable for heat shock response. Although four classical HSFs were discovered in mammals and two major HSFs, HSF1 and HSF2, were cloned in the same year of 1991, only HSF1 was intensively studied because HSF1 can give rise to heat shock response through the induction of various HSPs' expression. On the other hand, HSF2 was not well studied for some time, which was probably due to an underestimate of HSF2 itself. Since the beginning of the 21st century, HSF2 research has progressed and many biologically significant functions of HSF2 have been revealed. For example, the roles of HSF2 in nervous system protection, inflammation, maintenance of mitosis and meiosis, and cancer cell survival and death have been gradually unveiled. However, we feel that the fact HSF2 has a relationship with various factors is not yet widely recognized; therefore, the biological significance of HSF2 has been underestimated. We strongly hope to widely communicate the significance of HSF2 to researchers and readers in broad research fields through this review. In addition, we also hope that many readers will have great interest in the molecular mechanism in which HSF2 acts as an active transcription factor and gene bookmarking mechanism of HSF2 during cell cycle progression, as is summarized in this review.
Collapse
Affiliation(s)
- Yasuko Tokunaga
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi 755-8505, Japan
| | - Ken-Ichiro Otsuyama
- Department of Clinical Laboratory Science, Faculty of Health Science, Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
| | - Shigeru Kakuta
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naoki Hayashida
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
- Correspondence: ; Tel.: +81-836-22-2359
| |
Collapse
|
55
|
Choo OS, Lee YY, Kim YS, Kim YJ, Lee DH, Kim H, Jang JH, Choung YH. Effect of statin on age-related hearing loss via drug repurposing. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119331. [PMID: 35963547 DOI: 10.1016/j.bbamcr.2022.119331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Hearing loss in the elderly cause communication difficulties, decreased quality of life, isolation, loneliness and frustration. The aim of our study was to investigate the effect of drug repurposing candidates in aging mouse. The selected candidate drugs for age-related hearing loss (ARHL) included atorvastatin (AS) and sarpogrelate. Monotherapy or fixed dose combination (FDC) products were administered via oral gavage for 6 consecutive months. Auditory outcomes showed significant hearing preservation in AS-treated aging mice compared to aging control, especially in the early stages of ARHL in both 8 and 16 kHz frequencies. However, none of the FDC products were able to prevent ARHL regardless of AS involvement. In aging mice, damage and dysfunction of mitochondria was noted as well as reactive oxygen species overproduction leading to oxidative stress and intrinsic apoptosis. These processes of ARHL were significantly prevented with administration of AS. Normal structures of mitochondria were maintained, and antioxidant activity were proceeded by activation of HSF1/Sirt1 pathway. Our study suggests that AS is a promising drug repurposing candidate to delay the progression of ARHL.
Collapse
Affiliation(s)
- Oak-Sung Choo
- Department of Otolaryngology, Uijeongbu Eulji Medical Center, Uijeongbu 11749, Republic of Korea
| | - Yun Yeong Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Young Sun Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yeon Ju Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Dong Ha Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Hantai Kim
- Department of Otorhinolaryngology, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea.
| |
Collapse
|
56
|
The macrophage senescence hypothesis: the role of poor heat shock response in pulmonary inflammation and endothelial dysfunction following chronic exposure to air pollution. Inflamm Res 2022; 71:1433-1448. [PMID: 36264363 DOI: 10.1007/s00011-022-01647-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/18/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Cardiovascular diseases (CVD) have been associated with high exposure to fine particulate air pollutants (PM2.5). Alveolar macrophages are the first defense against inhaled particles. As soon as they phagocytize the particles, they reach an inflammatory phenotype, which affects the surrounding cells and associates with CVD. Not coincidentally, CVD are marked by a depleted heat shock response (HSR), defined by a deficit in inducing 70-kDa heat shock protein (HSP70) expression during stressful conditions. HSP70 is a powerful anti-inflammatory chaperone, whose reduced levels trigger a pro-inflammatory milieu, cellular senescence, and a senescence-associated secretory phenotype (SASP). However, whether macrophage senescence is the main mechanism by which PM2.5 propagates low-grade inflammation remains unclear. OBJECTIVE AND DESIGN In this article, we review evidence supporting that chronic exposure to PM2.5 depletes HSR and determines the ability to solve the initial stress. RESULTS AND DISCUSSION When exposed to PM2.5, macrophages increase the production of reactive oxygen species, which activate nuclear factor-kappa B (NF-κB). NF-κB is naturally a pro-inflammatory factor that drives prostaglandin E2 (PGE2) synthesis and causes fever. PGE2 can be converted into prostaglandin A2, a powerful inducer of HSR. Therefore, when transiently activated, NF-κB can trigger the anti-inflammatory response through negative feedback, by inducing HSP70 expression. However, when chronically activated, NF-κB heads a set of pathways involved in mitochondrial dysfunction, endoplasmic reticulum stress, unfolded protein response, inflammasome activation, and apoptosis. During chronic exposure to PM2.5, cells cannot properly express sirtuin-1 or activate heat shock factor-1 (HSF-1), which delays the resolution phase of inflammation. Since alveolar macrophages are the first immune defense against PM2.5, we suppose that the pollutant impairs HSR and, consequently, induces cellular senescence. Accordingly, senescent macrophages change its secretory phenotype to a more inflammatory one, known as SASP. Finally, macrophages' SASP would propagate the systemic inflammation, leading to endothelial dysfunction and atherosclerosis.
Collapse
|
57
|
Paxman J, Zhou Z, O'Laughlin R, Liu Y, Li Y, Tian W, Su H, Jiang Y, Holness SE, Stasiowski E, Tsimring LS, Pillus L, Hasty J, Hao N. Age-dependent aggregation of ribosomal RNA-binding proteins links deterioration in chromatin stability with challenges to proteostasis. eLife 2022; 11:e75978. [PMID: 36194205 PMCID: PMC9578700 DOI: 10.7554/elife.75978] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin instability and protein homeostasis (proteostasis) stress are two well-established hallmarks of aging, which have been considered largely independent of each other. Using microfluidics and single-cell imaging approaches, we observed that, during the replicative aging of Saccharomyces cerevisiae, a challenge to proteostasis occurs specifically in the fraction of cells with decreased stability within the ribosomal DNA (rDNA). A screen of 170 yeast RNA-binding proteins identified ribosomal RNA (rRNA)-binding proteins as the most enriched group that aggregate upon a decrease in rDNA stability induced by inhibition of a conserved lysine deacetylase Sir2. Further, loss of rDNA stability induces age-dependent aggregation of rRNA-binding proteins through aberrant overproduction of rRNAs. These aggregates contribute to age-induced proteostasis decline and limit cellular lifespan. Our findings reveal a mechanism underlying the interconnection between chromatin instability and proteostasis stress and highlight the importance of cell-to-cell variability in aging processes.
Collapse
Affiliation(s)
- Julie Paxman
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Zhen Zhou
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Richard O'Laughlin
- Department of Bioengineering, University of California, San DiegoLa JollaUnited States
| | - Yuting Liu
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Yang Li
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Wanying Tian
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Hetian Su
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Yanfei Jiang
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Shayna E Holness
- Department of Chemistry and Biochemistry, University of California, San DiegoLa JollaUnited States
| | - Elizabeth Stasiowski
- Department of Bioengineering, University of California, San DiegoLa JollaUnited States
| | - Lev S Tsimring
- Synthetic Biology Institute, University of California, San DiegoLa JollaUnited States
| | - Lorraine Pillus
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
- UCSD Moores Cancer Center, University of California San, DiegoLa JollaUnited States
| | - Jeff Hasty
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
- Department of Bioengineering, University of California, San DiegoLa JollaUnited States
- Synthetic Biology Institute, University of California, San DiegoLa JollaUnited States
| | - Nan Hao
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
- Department of Bioengineering, University of California, San DiegoLa JollaUnited States
- Synthetic Biology Institute, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
58
|
Shu HY, Peng YZ, Hang WJ, Zhang M, Shen L, Wang DW, Zhou N. Trimetazidine enhances myocardial angiogenesis in pressure overload-induced cardiac hypertrophy mice through directly activating Akt and promoting the binding of HSF1 to VEGF-A promoter. Acta Pharmacol Sin 2022; 43:2550-2561. [PMID: 35217815 PMCID: PMC9525722 DOI: 10.1038/s41401-022-00877-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Latest clinical research shows that trimetazidine therapy during the perioperative period relieves endothelial dysfunction in patients with unstable angina induced by percutaneous coronary intervention. In this study we investigated the effects of TMZ on myocardial angiogenesis in pressure overload-induced cardiac hypertrophy mice. Cardiac hypertrophy was induced in mice by transverse aortic constriction (TAC) surgery. TAC mice were administered trimetazidine (2.8 mg/100 µL, i.g.) for 28 consecutive days. We showed that trimetazidine administration significantly increased blood vessel density in the left ventricular myocardium and abrogated cardiac dysfunction in TAC mice. Co-administration of a specific HSF1 inhibitor KRIBB11 (1.25 mg/100 µL, i.h.) abrogated the angiogenesis-promoting effects of trimetazidine in TAC mice. Using luciferase reporter and electrophoretic mobility shift assays we demonstrated that the transcription factor HSF1 bound to the promoter region of VEGF-A, and the transcriptional activity of HSF1 was enhanced upon trimetazidine treatment. In molecular docking analysis we found that trimetazidine directly bound to Akt via a hydrogen bond with Asp292 and a pi-pi bond with Trp80. In norepinephrine-treated HUVECs, we showed that trimetazidine significantly increased the phosphorylation of Akt and the synergistic nuclear translocation of Akt and HSF1, as well as the binding of Akt and HSF1 in the nucleus. These results suggest that trimetazidine enhances myocardial angiogenesis through a direct interaction with Akt and promotion of nuclear translocation of HSF1, and that trimetazidine may be used for the treatment of myocardial angiogenic disorders in hypertensive patients.
Collapse
Affiliation(s)
- Hong-Yang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi-Zhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei-Jian Hang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lan Shen
- Department of Cardiology, Shanghai Chest Hospital Shanghai Jiaotong University, Shanghai, 200030, China
| | - Dao-Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
59
|
Somogyvári M, Khatatneh S, Sőti C. Hsp90: From Cellular to Organismal Proteostasis. Cells 2022; 11:cells11162479. [PMID: 36010556 PMCID: PMC9406713 DOI: 10.3390/cells11162479] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Assuring a healthy proteome is indispensable for survival and organismal health. Proteome disbalance and the loss of the proteostasis buffer are hallmarks of various diseases. The essential molecular chaperone Hsp90 is a regulator of the heat shock response via HSF1 and a stabilizer of a plethora of signaling proteins. In this review, we summarize the role of Hsp90 in the cellular and organismal regulation of proteome maintenance.
Collapse
|
60
|
Kanno K, Kayashima Y, Tamura K, Miyara T, Baba K, Koganei M, Natsume M, Imai S. Fatty acid tryptamide from cacao elongates Drosophila melanogaster lifespan with sirtuin-dependent heat shock protein expression. Sci Rep 2022; 12:12080. [PMID: 35840713 PMCID: PMC9287426 DOI: 10.1038/s41598-022-16471-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Life span is increasing in developed countries as Japan, and an aging society is becoming a problem. In fact, healthy lifespan is not extended, and it is desired to extend it by functional food. Cacao (Theobroma cacao) contains various active components and is considered a preventative agent against metabolic disease. In addition, it has long been thought that regular cacao intake extends a healthy lifespan. However, there is no direct evidence for this belief. The purpose of this study is to identify the cacao component that elongate the lifespan of D. melanogaster as a model organism and to elucidate its functional mechanism. The activation of sirtuins, a family of NAD+-dependent deacetylases, has been reported to extend the lifespans of various organisms. Heat shock factor 1 is known to be deacetylated by reaction with sirtuins, thereby inducing gene expression of various heat shock proteins by heat stress and effectively extending the lifespan of organisms. Therefore, we evaluated whether components in cacao activate sirtuins and extend the lifespan of D. melanogaster. In the process, we discovered the fatty acid tryptamide as a lifespan-elongating component of cacao. Therefore, we investigated whether the fatty acid tryptamide from cacao upregulates the genes of heat shock proteins. As a result, it was confirmed that the gene expression of multiple heat shock proteins was significantly increased. This suggests that fatty acid tryptamide may activate sirtuins, increase gene expression of heat shock proteins, and elongate the lifespan of D. melanogaster.
Collapse
Affiliation(s)
- Kiko Kanno
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Yasunari Kayashima
- Department of Food and Nutrition, Yamanashi Gakuin Junior College, 2-4-5 Sakaori, Kofu-shi, Yamanashi, 400-8575, Japan
| | - Kazuji Tamura
- Meiji.Co., Ltd., 1-29-1, Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Takako Miyara
- Meiji Seika Pharma Co., Ltd., 788, Kayama, Odawara, Kanagawa, 250-0852, Japan
| | - Kento Baba
- Meiji.Co., Ltd., 1-29-1, Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Megumi Koganei
- Meiji.Co., Ltd., 1-29-1, Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Midori Natsume
- Meiji.Co., Ltd., 1-29-1, Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Shinjiro Imai
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
61
|
Wang YZ, Guo SY, Kong RL, Sui AR, Wang ZH, Guan RX, Supratik K, Zhao J, Li S. Scorpion Venom Heat–Resistant Synthesized Peptide Increases Stress Resistance and Extends the Lifespan of Caenorhabditis elegans via the Insulin/IGF-1-Like Signal Pathway. Front Pharmacol 2022; 13:919269. [PMID: 35910355 PMCID: PMC9330001 DOI: 10.3389/fphar.2022.919269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Improving healthy life expectancy by targeting aging-related pathological changes has been the spotlight of geroscience. Scorpions have been used in traditional medicine in Asia and Africa for a long time. We have isolated heat-resistant peptides from scorpion venom of Buthusmartensii Karsch (SVHRP) and found that SVHRP can attenuate microglia activation and protect Caenorhabditis elegans (C. elegans) against β-amyloid toxicity. Based on the amino acid sequence of these peptides, scorpion venom heat–resistant synthesized peptide (SVHRSP) was prepared using polypeptide synthesis technology. In the present study, we used C. elegans as a model organism to assess the longevity-related effects and underlying molecular mechanisms of SVHRSP in vivo. The results showed that SVHRSP could prolong the lifespan of worms and significantly improve the age-related physiological functions of worms. SVHRSP increases the survival rate of larvae under oxidative and heat stress and decreases the level of reactive oxygen species and fat accumulation in vivo. Using gene-specific mutation of C. elegans, we found that SVHRSP-mediated prolongation of life depends on Daf-2, Daf-16, Skn-1, and Hsf-1 genes. These results indicate that the antiaging mechanism of SVHRSP in nematodes might be mediated by the insulin/insulin-like growth factor-1 signaling pathway. Meanwhile, SVHRSP could also up-regulate the expression of stress-inducing genes Hsp-16.2, Sod-3, Gei-7, and Ctl-1 associated with aging. In general, our study may have important implications for SVHRSP to promote healthy aging and provide strategies for research and development of drugs to treat age-related diseases.
Collapse
Affiliation(s)
- Ying-Zi Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Song-Yu Guo
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Rui-Li Kong
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Ao-Ran Sui
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
| | - Zhen-Hua Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Rong-Xiao Guan
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Kundu Supratik
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- *Correspondence: Jie Zhao, ; Shao Li,
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- *Correspondence: Jie Zhao, ; Shao Li,
| |
Collapse
|
62
|
Lazaro-Pena MI, Ward ZC, Yang S, Strohm A, Merrill AK, Soto CA, Samuelson AV. HSF-1: Guardian of the Proteome Through Integration of Longevity Signals to the Proteostatic Network. FRONTIERS IN AGING 2022; 3:861686. [PMID: 35874276 PMCID: PMC9304931 DOI: 10.3389/fragi.2022.861686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.
Collapse
Affiliation(s)
- Maria I. Lazaro-Pena
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zachary C. Ward
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Sifan Yang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Strohm
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Andrew V. Samuelson,
| |
Collapse
|
63
|
Beegum F, P V A, George KT, K P D, Begum F, Krishnadas N, Shenoy RR. Sirtuins as therapeutic targets for improving delayed wound healing in diabetes. J Drug Target 2022; 30:911-926. [PMID: 35787722 DOI: 10.1080/1061186x.2022.2085729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sirtuins are a vast family of histone deacetylases, which are NAD+ dependent enzymes, consisting of seven members, namely SIRT 1, SIRT 6 and SIRT 7 located within the nucleus, SIRT 2 in the cytoplasm and SIRT 3, SIRT 4, and SIRT 5 in the mitochondria. They have vital roles in regulating various biological functions such as age-related metabolic disorders, inflammation, stress response, cardiovascular and neuronal functions. Delayed wound healing is one of the complication of diabetes, which can lead to lower limb amputation if not treated timely. SIRT 1, 3 and 6 are potent targets for diabetic wound healing. SIRT 1 deficiency reduces recruitment of fibroblasts, macrophages, mast cells, neutrophils to wound site and delays wound healing; negatively expressing MMP-9. The SIRT 1 mediated signalling pathway in diabetic wound healing is the SIRT 1-foxo-C-Myc pathway. On the contrary SIRT 3 deficiency, impairs proliferation and migration of fibroblasts and SIRT 6 deficiency impairs wound closure rate and interrupts the vascular remodelling. This review focuses on the role of sirtuins in improving delayed wound healing in diabetes and its natural modulators with their specific functions towards healing diabetic wounds.
Collapse
Affiliation(s)
- Fathima Beegum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Anuranjana P V
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Krupa Thankam George
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Divya K P
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Farmiza Begum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Nandakumar Krishnadas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Rekha R Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
64
|
P63 and P73 Activation in Cancers with p53 Mutation. Biomedicines 2022; 10:biomedicines10071490. [PMID: 35884795 PMCID: PMC9313412 DOI: 10.3390/biomedicines10071490] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/27/2022] Open
Abstract
The members of the p53 family comprise p53, p63, and p73, and full-length isoforms of the p53 family have a tumor suppressor function. However, p53, but not p63 or p73, has a high mutation rate in cancers causing it to lose its tumor suppressor function. The top and second-most prevalent p53 mutations are missense and nonsense mutations, respectively. In this review, we discuss possible drug therapies for nonsense mutation and a missense mutation in p53. p63 and p73 activators may be able to replace mutant p53 and act as anti-cancer drugs. Herein, these p63 and p73 activators are summarized and how to improve these activator responses, particularly focusing on p53 gain-of-function mutants, is discussed.
Collapse
|
65
|
Pallapati AR, Prasad S, Roy I. Glycerol 3-phosphate dehydrogenase regulates heat shock response in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119238. [PMID: 35150808 DOI: 10.1016/j.bbamcr.2022.119238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The aim of this work was to identify elements of adaptive regulatory mechanism for basal level of yeast histone deacetylase Sir2. Heat shock response (HSR) was altered in the absence of the NAD-dependent glycerol 3-phosphate dehydrogenase (Gpd1). Increase in HSR was lower in ΔGpd1 cells than wild-type cells. An inverse correlation existed between Gpd1 and Sir2; Sir2-deleted cells showed higher expression of Gpd1 while deletion of Gpd1 led to higher expression of Sir2. In the absence of Gpd1, basal activity of Sir2 promoter was higher and was increased further upon heat shock, suggesting higher Sir2 levels. No interaction between Gpd1 and Sir2 was detected without or with heat shock using immunoprecipitation. The results show that Gpd1 regulates HSR in yeast cells and likely blocks its uncontrolled activation. As uncontrolled stress adversely affects the cellular adaptive response, Gpd1 may be a component of the cell's catalogue to ensure a balanced response to unmitigated thermal stress.
Collapse
Affiliation(s)
- Anusha Rani Pallapati
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Shivcharan Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
66
|
Reyes A, Navarro AJ, Diethelm-Varela B, Kalergis AM, González PA. Is there a role for HSF1 in viral infections? FEBS Open Bio 2022; 12:1112-1124. [PMID: 35485710 PMCID: PMC9157408 DOI: 10.1002/2211-5463.13419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/29/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
Cells undergo numerous processes to adapt to new challenging conditions and stressors. Heat stress is regulated by a family of heat shock factors (HSFs) that initiate a heat shock response by upregulating the expression of heat shock proteins (HSPs) intended to counteract cellular damage elicited by increased environmental temperature. Heat shock factor 1 (HSF1) is known as the master regulator of the heat shock response and upon its activation induces the transcription of genes that encode for molecular chaperones, such as HSP40, HSP70, and HSP90. Importantly, an accumulating body of studies relates HSF1 with viral infections; the induction of fever during viral infection may activate HSF1 and trigger a consequent heat shock response. Here, we review the role of HSF1 in different viral infections and its impact on the health outcome for the host. Studying the relationship between HSF1 and viruses could open new potential therapeutic strategies given the availability of drugs that regulate the activation of this transcription factor.
Collapse
Affiliation(s)
- Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile
| | - Areli J Navarro
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile
| | - Benjamín Diethelm-Varela
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile.,Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina Pontificia, Universidad Católica de Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile
| |
Collapse
|
67
|
Barrett LN, Westerheide SD. The CBP-1/p300 Lysine Acetyltransferase Regulates the Heat Shock Response in C. elegans. FRONTIERS IN AGING 2022; 3:861761. [PMID: 35821825 PMCID: PMC9261439 DOI: 10.3389/fragi.2022.861761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/01/2022] [Indexed: 01/09/2023]
Abstract
The decline of proteostasis is a hallmark of aging that is, in part, affected by the dysregulation of the heat shock response (HSR), a highly conserved cellular response to proteotoxic stress in the cell. The heat shock transcription factor HSF-1 is well-studied as a key regulator of proteostasis, but mechanisms that could be used to modulate HSF-1 function to enhance proteostasis during aging are largely unknown. In this study, we examined lysine acetyltransferase regulation of the HSR and HSF-1 in C. elegans. We performed an RNA interference screen of lysine acetyltransferases and examined mRNA expression of the heat-shock inducible gene hsp-16.2, a widely used marker for HSR activation. From this screen, we identified one acetyltransferase, CBP-1, the C. elegans homolog of mammalian CREB-binding protein CBP/p300, as a negative regulator of the HSR. We found that while knockdown of CBP-1 decreases the overall lifespan of the worm, it also enhances heat shock protein production upon heat shock and increases thermotolerance of the worm in an HSF-1 dependent manner. Similarly, we examined a hallmark of HSF-1 activation, the formation of nuclear stress bodies (nSBs). In analyzing the recovery rate of nSBs, we found that knockdown of CBP-1 enhanced the recovery and resolution of nSBs after stress. Collectively, our studies demonstrate a role of CBP-1 as a negative regulator of HSF-1 activity and its physiological effects at the organismal level upon stress.
Collapse
|
68
|
Ubaid S, Pandey S, Akhtar MS, Rumman M, Singh B, Mahdi AA. SIRT1 Mediates Neuroprotective and Neurorescue Effects of Camel α-Lactalbumin and Oleic Acid Complex on Rotenone-Induced Parkinson's Disease. ACS Chem Neurosci 2022; 13:1263-1272. [PMID: 35385250 DOI: 10.1021/acschemneuro.1c00876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) is the second most common devastating neurodegenerative disorder. Presently used therapies for PD have severe side effects and are limited to only temporary improvement. Therefore, a new therapeutic approach to treat PD urgently needs to be developed. α-Lactalbumin, the most abundant milk protein in camel milk, has been attributed to various medicinal properties. This study intended to investigate the neuroprotective efficacy of the camel α-lactalbumin and oleic acid (CLOA) complex. One mechanism postulated to underlie neuroprotection by the CLOA complex is the induction of silent information regulatory protein (SIRT1). SIRT1 is known to be involved in several pathological and physiological processes, and it has been suggested that SIRT1 plays a protective role in PD. Oxidative stress, inflammation, mitochondrial dysfunction, and apoptosis are involved in PD pathogenesis. Our results revealed that SIRT1 inhibits oxidative stress by maintaining HIF-1α in a deacetylated state. SIRT1 upregulates the expression of FOXO3a and HSF-1, thus inhibiting apoptosis and maintaining the homeostasis of cellular proteins. Increased SIRT1 expression reduces the levels of TNF-α, IL-6, and IL-8, which in turn inhibits neuroinflammation. In addition to SIRT1, the CLOA complex also enhances the expression of survivin and leptin and promotes the survival of neuroblastoma cells. Altogether, our results suggest that the CLOA complex might be a novel therapeutic molecule that could ameliorate neuronal cell damage in PD.
Collapse
Affiliation(s)
- Saba Ubaid
- Department of Biochemistry, King George’s Medical University (KGMU), Lucknow 226003, Uttar Pradesh, India
| | - Shivani Pandey
- Department of Biochemistry, King George’s Medical University (KGMU), Lucknow 226003, Uttar Pradesh, India
| | - Mohd. Sohail Akhtar
- Division of Molecular & Structural Biology, Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Mohammad Rumman
- Department of Biochemistry, King George’s Medical University (KGMU), Lucknow 226003, Uttar Pradesh, India
| | - Babita Singh
- Department of Biochemistry, King George’s Medical University (KGMU), Lucknow 226003, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George’s Medical University (KGMU), Lucknow 226003, Uttar Pradesh, India
| |
Collapse
|
69
|
Kaszubowska L, Foerster J, Kmieć Z. NKT-like (CD3 + CD56+) cells differ from T cells in expression level of cellular protective proteins and sensitivity to stimulation in the process of ageing. Immun Ageing 2022; 19:18. [PMID: 35410272 PMCID: PMC8996639 DOI: 10.1186/s12979-022-00274-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND NKT-like cells are T lymphocytes coexpressing several NK cell-associated receptors. They are effector lymphocytes of innate and adaptive immunity, and their number increases with age. The study aimed to analyze the expression of cellular protective proteins, i.e. sirtuin 1 (SIRT1), heat shock protein 70 (HSP70) and manganese superoxide dismutase (SOD2) in NKT-like and T cells of the young ('young', 31 subjects, age range 19-24 years), seniors aged under 85 ('old'; 30 subjects, age range 65-84 years) and seniors aged over 85 ('oldest', 24 subjects, age range 85-94 years). Both NKT-like and T cells were cultured for 48 h and stimulated with IL-2, LPS and PMA with ionomycin and compared with unstimulated control cells. RESULTS The oldest seniors varied from the other age groups by significantly increased expression of SIRT1 and HSP70 in both NKT-like and T cells observed in both stimulated and nonstimulated cells. The analyzed lymphocyte populations of the oldest revealed not only the highest expression of these proteins but also insensitivity to all types of applied stimulation. When NKT-like cells were compared to T cells, higher expression of the studied protective proteins was observed in both stimulated and unstimulated NKT-like cells. Neither CD3 + CD56+ nor CD3+ cells revealed elevated expression of SOD2, and these cells responded to stimulation until very advanced age. T cells revealed higher sensitivity to stimulation with IL-2 regarding SIRT1 and HSP70 expression. NKT-like cells were more sensitive to stimulation with PMA and ionomycin concerning the expression of these proteins. IL-2 did not induce a significant increase in SOD2 expression in the studied age groups. CONCLUSIONS The oldest seniors developed an adaptive stress response in both T and NKT-like cells regarding the expression of SIRT1 and HSP70, which was increased and insensitive to further stimulation in contrast to SOD2, which showed a more inducible pattern of expression. CD3 + CD56+ cells exhibited higher expression of cellular protective proteins than CD3+ cells in both stimulated and control, nonstimulated cells. NKT-like and T cells showed a distinct sensitivity to the applied stimulatory factors in the respective age groups.
Collapse
Affiliation(s)
- Lucyna Kaszubowska
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.
| | - Jerzy Foerster
- Department of Social and Clinical Gerontology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| |
Collapse
|
70
|
Afzaal A, Rehman K, Kamal S, Akash MSH. Versatile role of sirtuins in metabolic disorders: From modulation of mitochondrial function to therapeutic interventions. J Biochem Mol Toxicol 2022; 36:e23047. [PMID: 35297126 DOI: 10.1002/jbt.23047] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022]
Abstract
Sirtuins (SIRT1-7) are distinct histone deacetylases (HDACs) whose activity is determined by cellular metabolic status andnicotinamide adenine dinucleotide (NAD+ ) levels. HDACs of class III are the members of the SIRT's protein family. SIRTs are the enzymes that modulate mitochondrial activity and energy metabolism. SIRTs have been linked to a number of clinical and physiological operations, such as energy responses to low-calorie availability, aging, stress resistance, inflammation, and apoptosis. Mammalian SIRT2 orthologs have been identified as SIRT1-7 that are found in several subcellular sections, including the cytoplasm (SIRT1, 2), mitochondrial matrix (SIRT3, 4, 5), and the core (SIRT1, 2, 6, 7). For their deacetylase or ADP-ribosyl transferase action, all SIRTs require NAD+ and are linked to cellular energy levels. Evolutionarily, SIRT1 is related to yeast's SIRT2 as well as received primary attention in the circulatory system. An endogenous protein, SIRT1 is involved in the development of heart failure and plays a key role in cell death and survival. SIRT2 downregulation protects against ischemic-reperfusion damage. Increase in human longevity is caused by an increase in SIRT3 expression. Cardiomyocytes are also protected by SIRT3 from oxidative damage and aging, as well as suppressing cardiac hypertrophy. SIRT4 and SIRT5 perform their roles in the heart. SIRT6 has also been linked to a reduction in heart hypertrophy. SIRT7 is known to be involved in the regulation of stress responses and apoptosis in the heart.
Collapse
Affiliation(s)
- Ammara Afzaal
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
71
|
Jin J, Liu Y, Liang X, Pei Y, Wan F, Guo J. Regulatory Mechanism of Transcription Factor AhHsf Modulates AhHsp70 Transcriptional Expression Enhancing Heat Tolerance in Agasicles hygrophila (Coleoptera: Chrysomelidae). Int J Mol Sci 2022; 23:ijms23063210. [PMID: 35328631 PMCID: PMC8955217 DOI: 10.3390/ijms23063210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 12/24/2022] Open
Abstract
Agasicles hygrophila is a classical biological agent used to control alligator weed (Alternanthera philoxeroides). Previous research has indicated that the heat shock factor (HSF) is involved in regulating the transcriptional expression of Hsp70 in response to heat resistance in A. hygrophila. However, the regulatory mechanism by which AhHsf regulates the expression of AhHsp70 remains largely unknown. Here, we identified and cloned a 944 bp AhHsp70 promoter (AhHsp70p) region from A. hygrophila. Subsequent bioinformatics analysis revealed that the AhHsp70p sequence contains multiple functional elements and has a common TATA box approximately 30 bp upstream of the transcription start site, with transcription commencing at a purine base approximately 137 bp upstream of ATG. Promoter deletion analyses revealed that the sequence from -944 to -744 bp was the core regulatory region. A dual-luciferase reporter assay indicated that overexpressed AhHsf significantly enhanced the activity of AhHsp70p. Furthermore, qPCR showed that AhHsp70 expression increased with time in Spodoptera frugiperda (Sf9) cells, and AhHsf overexpression significantly upregulated AhHsp70 expression in vitro. Characterization of the upstream regulatory mechanisms demonstrated that AhHsf binds to upstream cis-acting elements in the promoter region of AhHsp70 from -944 to -744 bp to activate the AhHSF-AhHSP pathway at the transcriptional level to protect A. hygrophila from high temperature damage. Furthermore, we proposed a molecular model of AhHsf modulation of AhHsp70 transcription following heat shock in A. hygrophila. The findings of this study suggest that enhancing the heat tolerance of A. hygrophila by modulating the upstream pathways of the Hsp family can improve the biocontrol of A. philoxeroides.
Collapse
Affiliation(s)
- Jisu Jin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (Y.L.); (X.L.); (Y.P.); (F.W.)
| | - Yiran Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (Y.L.); (X.L.); (Y.P.); (F.W.)
| | - Xiaocui Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (Y.L.); (X.L.); (Y.P.); (F.W.)
| | - Yiming Pei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (Y.L.); (X.L.); (Y.P.); (F.W.)
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (Y.L.); (X.L.); (Y.P.); (F.W.)
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (Y.L.); (X.L.); (Y.P.); (F.W.)
- Correspondence:
| |
Collapse
|
72
|
Cai BH, Bai ZY, Lien CF, Yu SJ, Lu RY, Wu MH, Wu WC, Chen CC, Hsu YC. NAMPT Inhibitor and P73 Activator Represses P53 R175H Mutated HNSCC Cell Proliferation in a Synergistic Manner. Biomolecules 2022; 12:biom12030438. [PMID: 35327630 PMCID: PMC8946684 DOI: 10.3390/biom12030438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 01/25/2023] Open
Abstract
The p53 family has the following three members: p53, p63 and p73. p53 is a tumor suppressor gene that frequently exhibits mutation in head and neck cancer. Most p53 mutants are loss-of-function (LoF) mutants, but some acquire some oncogenic function, such as gain of function (GoF). It is known that the aggregation of mutant p53 can induce p53 GoF. The p73 activators RETRA and NSC59984 have an anti-cancer effect in p53 mutation cells, but we found that p73 activators were not effective in all head and neck squamous cell carcinoma (HNSCC) cell lines, with different p53 mutants. A comparison of the gene expression profiles of several regulator(s) in mutant HNSCC cells with or without aggregation of p53 revealed that nicotinamide phosphoribosyltransferase (NAMPT) is a key regulator of mutant p53 aggregation. An NAMPT inhibitor, to reduce abnormal aggregation of mutant p53, used in combination with a p73 activator, was able to effectively repress growth in HNSCC cells with p53 GoF mutants. This study, therefore, suggests a potential combination therapy approach for HNSCC with a p53 GoF mutation.
Collapse
Affiliation(s)
- Bi-He Cai
- School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-F.L.); (M.-H.W.)
- Correspondence: (B.-H.C.); (C.-C.C.); (Y.-C.H.)
| | - Zhi-Yu Bai
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung 82445, Taiwan; (Z.-Y.B.); (S.-J.Y.); (R.-Y.L.)
| | - Ching-Feng Lien
- School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-F.L.); (M.-H.W.)
- Department of Otolaryngology-Head and Neck Surgery, E-DA Hospital, Kaohsiung 82445, Taiwan
| | - Si-Jie Yu
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung 82445, Taiwan; (Z.-Y.B.); (S.-J.Y.); (R.-Y.L.)
| | - Rui-Yu Lu
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung 82445, Taiwan; (Z.-Y.B.); (S.-J.Y.); (R.-Y.L.)
| | - Ming-Han Wu
- School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-F.L.); (M.-H.W.)
| | - Wei-Chen Wu
- Department of Physical Therapy, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Chia-Chi Chen
- Department of Pathology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
- Correspondence: (B.-H.C.); (C.-C.C.); (Y.-C.H.)
| | - Yi-Chiang Hsu
- School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-F.L.); (M.-H.W.)
- Correspondence: (B.-H.C.); (C.-C.C.); (Y.-C.H.)
| |
Collapse
|
73
|
Wang R, Wu Y, Liu R, Liu M, Li Q, Ba Y, Huang H. Deciphering therapeutic options for neurodegenerative diseases: insights from SIRT1. J Mol Med (Berl) 2022; 100:537-553. [PMID: 35275221 DOI: 10.1007/s00109-022-02187-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022]
Abstract
Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD +)-dependent protein deacetylase that exerts biological effects through nucleoplasmic transfer. Recent studies have highlighted that SIRT1 deacetylates protein substrates to exert its neuroprotective effects, including decreased oxidative stress and inflammatory, increases autophagy, increases levels of nerve growth factors (correlated with behavioral changes), and maintains neural integrity (affects neuronal development and function) in aging or neurological disorder. In this review, we highlight the molecular mechanisms underlying the protective role of SIRT1 in modulating neurodegeneration, focusing on protein homeostasis, aging-related signaling pathways, neurogenesis, and synaptic plasticity. Meanwhile, the potential of targeting SIRT1 to block the occurrence and progression of neurodegenerative diseases is also discussed. Taken together, this review provides an up-to-date evaluation of our current understanding of the neuroprotective mechanisms of SIRT1 and also be involved in the potential therapeutic opportunities of AD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Qiong Li
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China. .,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China.
| |
Collapse
|
74
|
Cyran AM, Zhitkovich A. Heat Shock Proteins and HSF1 in Cancer. Front Oncol 2022; 12:860320. [PMID: 35311075 PMCID: PMC8924369 DOI: 10.3389/fonc.2022.860320] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Fitness of cells is dependent on protein homeostasis which is maintained by cooperative activities of protein chaperones and proteolytic machinery. Upon encountering protein-damaging conditions, cells activate the heat-shock response (HSR) which involves HSF1-mediated transcriptional upregulation of a group of chaperones - the heat shock proteins (HSPs). Cancer cells experience high levels of proteotoxic stress due to the production of mutated proteins, aneuploidy-induced excess of components of multiprotein complexes, increased translation rates, and dysregulated metabolism. To cope with this chronic state of proteotoxic stress, cancers almost invariably upregulate major components of HSR, including HSF1 and individual HSPs. Some oncogenic programs show dependence or coupling with a particular HSR factor (such as frequent coamplification of HSF1 and MYC genes). Elevated levels of HSPs and HSF1 are typically associated with drug resistance and poor clinical outcomes in various malignancies. The non-oncogene dependence ("addiction") on protein quality controls represents a pancancer target in treating human malignancies, offering a potential to enhance efficacy of standard and targeted chemotherapy and immune checkpoint inhibitors. In cancers with specific dependencies, HSR components can serve as alternative targets to poorly druggable oncogenic drivers.
Collapse
Affiliation(s)
- Anna M Cyran
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Anatoly Zhitkovich
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| |
Collapse
|
75
|
Alagar Boopathy LR, Jacob-Tomas S, Alecki C, Vera M. Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges. J Biol Chem 2022; 298:101796. [PMID: 35248532 PMCID: PMC9065632 DOI: 10.1016/j.jbc.2022.101796] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
All cells possess an internal stress response to cope with environmental and pathophysiological challenges. Upon stress, cells reprogram their molecular functions to activate a survival mechanism known as the heat shock response, which mediates the rapid induction of molecular chaperones such as the heat shock proteins (HSPs). This potent production overcomes the general suppression of gene expression and results in high levels of HSPs to subsequently refold or degrade misfolded proteins. Once the damage or stress is repaired or removed, cells terminate the production of HSPs and resume regular functions. Thus, fulfillment of the stress response requires swift and robust coordination between stress response activation and completion that is determined by the status of the cell. In recent years, single-cell fluorescence microscopy techniques have begun to be used in unravelling HSP-gene expression pathways, from DNA transcription to mRNA degradation. In this review, we will address the molecular mechanisms in different organisms and cell types that coordinate the expression of HSPs with signaling networks that act to reprogram gene transcription, mRNA translation, and decay and ensure protein quality control.
Collapse
|
76
|
Abstract
The proteostasis network (PN) regulates protein synthesis, folding, and degradation and is critical for the health and function of all cells. The PN has been extensively studied in the context of aging and age-related diseases, and loss of proteostasis is regarded as a major contributor to many age-associated disorders. In contrast to somatic tissues, an important feature of germ cells is their ability to maintain a healthy proteome across generations. Accumulating evidence has now revealed multiple layers of PN regulation that support germ cell function, determine reproductive capacity during aging, and prioritize reproduction at the expense of somatic health. Here, we review recent insights into these different modes of regulation and their implications for reproductive and somatic aging.
Collapse
|
77
|
Zhou H, Ding S, Sun C, Fu J, Yang D, Wang X, Wang CC, Wang L. Lycium barbarum Extracts Extend Lifespan and Alleviate Proteotoxicity in Caenorhabditis elegans. Front Nutr 2022; 8:815947. [PMID: 35096951 PMCID: PMC8790518 DOI: 10.3389/fnut.2021.815947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Lycium barbarum berry (Ningxia Gouqi, Fructus lycii, goji berry, or wolfberry), as a traditional Chinese herb, was recorded beneficial for longevity in traditional Chinese medical scriptures and currently is a natural dietary supplement worldwide. However, under modern experimental conditions, the longevity effect of L. barbarum berry and the underlying mechanisms have been less studied. Here, we reported that total water extracts of L. barbarum berry (LBE), which contains 22% polysaccharides and other components, such as anthocyanins, extended the lifespan of Caenorhabditis elegans without side effects on worm fertility and pharyngeal pumping. Interestingly, we found that the lifespan extension effect was more prominent in worms with shorter mean lifespan as compared to those with longer mean lifespan. Furthermore, we showed that the lifespan extension effect of LBE depended on deacetylase sir-2.1. Remarkably, LBE rescued heat shock transcription factor-1 (hsf-1) deficiency in wild-type worms with different mean lifespans, and this effect also depended on sir-2.1. In addition, we found that LBE extended lifespan and alleviated toxic protein aggregation in neurodegenerative worms with hsf-1 deficiency. Our study suggested that LBE may be a potential antiaging natural dietary supplement especially to individuals with malnutrition or chronic diseases and a potential therapeutic agent for neurodegenerative diseases characterized by hsf-1 deficiency.
Collapse
Affiliation(s)
- Haitao Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China.,Central Laboratory, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Shanshan Ding
- Central Laboratory, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Chuanxin Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jiahui Fu
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Dong Yang
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xi'e Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
78
|
The modulation of PD-L1 induced by the oncogenic HBXIP for breast cancer growth. Acta Pharmacol Sin 2022; 43:429-445. [PMID: 33824459 PMCID: PMC8791967 DOI: 10.1038/s41401-021-00631-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/24/2021] [Indexed: 02/03/2023]
Abstract
Programmed death ligand-1 (PD-L1)/PD-1 checkpoint extensively serves as a central mediator of immunosuppression. A tumor-promoting role for abundant PD-L1 in several cancers is revealed. However, the importance of PD-L1 and how the PD-L1 expression is controlled in breast cancer remains obscure. Here, the mechanisms of controlling PD-L1 at the transcription and protein acetylation levels in promoting breast cancer growth are presented. Overexpressed PD-L1 accelerates breast cancer growth in vitro and in vivo. RNA-seq uncovers that PD-L1 can induce some target genes affecting many cellular processes, especially cancer development. In clinical breast cancer tissues and cells, PD-L1 and HBXIP are both increased, and their expressions are positively correlated. Mechanistic exploration identifies that HBXIP stimulates the transcription of PD-L1 through co-activating ETS2. Specifically, HBXIP induces PD-L1 acetylation at K270 site through interacting with acetyltransferase p300, leading to the stability of PD-L1 protein. Functionally, depletion of HBXIP attenuates PD-L1-accelerated breast tumor growth. Aspirin alleviates breast cancer via targeting PD-L1 and HBXIP. Collectively, the findings display new light into the mechanisms of controlling tumor PD-L1 and broaden the utility for PD-L1 as a target in breast cancer therapy.
Collapse
|
79
|
Lu WC, Omari R, Ray H, Wang J, Williams I, Jacobs C, Hockaden N, Bochman ML, Carpenter RL. AKT1 mediates multiple phosphorylation events that functionally promote HSF1 activation. FEBS J 2022; 289:3876-3893. [PMID: 35080342 PMCID: PMC9309721 DOI: 10.1111/febs.16375] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022]
Abstract
The heat stress response activates the transcription factor heat shock factor 1 (HSF1), which subsequently upregulates heat shock proteins to maintain the integrity of the proteome. HSF1 activation requires nuclear localization, trimerization, DNA binding, phosphorylation and gene transactivation. Phosphorylation at S326 is an important regulator of HSF1 transcriptional activity. Phosphorylation at S326 is mediated by AKT1, mTOR, p38, MEK1 and DYRK2. Here, we observed activation of HSF1 by AKT1 independently of mTOR. AKT2 also phosphorylated S326 of HSF1 but showed weak ability to activate HSF1. Similarly, mTOR, p38, MEK1 and DYRK2 all phosphorylated S326 but AKT1 was the most potent activator. Mass spectrometry showed that AKT1 also phosphorylated HSF1 at T142, S230 and T527 in addition to S326, whereas the other kinases did not. Subsequent investigation revealed that phosphorylation at T142 is necessary for HSF1 trimerization and that S230, S326 and T527 are required for HSF1 gene transactivation and recruitment of TFIIB and CDK9. Interestingly, T527 as a phosphorylated residue has not been previously shown and sits in the transactivation domain, further implying a role for this site in HSF1 gene transactivation. This study suggests that HSF1 hyperphosphorylation is targeted and these specific residues have direct function in regulating HSF1 transcriptional activity.
Collapse
Affiliation(s)
- Wen-Cheng Lu
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Ramsey Omari
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Haimanti Ray
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - John Wang
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Imade Williams
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Curteisha Jacobs
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Natasha Hockaden
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA.,Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, IN, USA
| | - Richard L Carpenter
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, IN, USA.,Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, IN, USA
| |
Collapse
|
80
|
Heat Shock Factors in Protein Quality Control and Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:181-199. [PMID: 36472823 DOI: 10.1007/978-3-031-12966-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proper regulation of cellular protein quality control is crucial for cellular health. It appears that the protein quality control machinery is subjected to distinct regulation in different cellular contexts such as in somatic cells and in germ cells. Heat shock factors (HSFs) play critical role in the control of quality of cellular proteins through controlling expression of many genes encoding different proteins including those for inducible protein chaperones. Mammalian cells exert distinct mechanism of cellular functions through maintenance of tissue-specific HSFs. Here, we have discussed different HSFs and their functions including those during spermatogenesis. We have also discussed the different heat shock proteins induced by the HSFs and their activities in those contexts. We have also identified several small molecule activators and inhibitors of HSFs from different sources reported so far.
Collapse
|
81
|
Khan RIN, Sahu AR, Malla WA, Praharaj MR, Hosamani N, Kumar S, Gupta S, Sharma S, Saxena A, Varshney A, Singh P, Verma V, Kumar P, Singh G, Pandey A, Saxena S, Gandham RK, Tiwari AK. Systems biology under heat stress in Indian cattle. Gene 2021; 805:145908. [PMID: 34411649 DOI: 10.1016/j.gene.2021.145908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/26/2022]
Abstract
Transcriptome profiling of Vrindavani and Tharparkar cattle (n = 5 each) revealed that more numbers of genes were dysregulated in Vrindavani than in Tharparkar. A contrast in gene expression was observed with 18.9 % of upregulated genes in Vrindavani downregulated in Tharparkar and 17.8% upregulated genes in Tharparkar downregulated in Vrindavani. Functional annotation of genes differentially expressed in Tharparkar and Vrindavani revealed that the systems biology in Tharparkar is moving towards counteracting the effects due to heat stress. Unlike Vrindavani, Tharparkar is not only endowed with higher expression of the scavengers (UBE2G1, UBE2S, and UBE2H) of misfolded proteins but also with protectors (VCP, Serp1, and CALR) of naïve unfolded proteins. Further, higher expression of the antioxidants in Tharparkar enables it to cope up with higher levels of free radicals generated as a result of heat stress. In this study, we found relevant genes dysregulated in Tharparkar in the direction that can counter heat stress.
Collapse
Affiliation(s)
- Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Amit Ranjan Sahu
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Manas Ranjan Praharaj
- Computational Biology and Genomics, National Institute of Animal Biotechnology, Hyderabad, India
| | - Neelima Hosamani
- Computational Biology and Genomics, National Institute of Animal Biotechnology, Hyderabad, India
| | - Shakti Kumar
- Computational Biology and Genomics, National Institute of Animal Biotechnology, Hyderabad, India
| | - Smita Gupta
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Shweta Sharma
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Archana Saxena
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Anshul Varshney
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Pragya Singh
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Vinay Verma
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Bareilly, India
| | - Puneet Kumar
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Bareilly, India
| | - Gyanendra Singh
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Bareilly, India
| | - Aruna Pandey
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Shikha Saxena
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Ravi Kumar Gandham
- Computational Biology and Genomics, National Institute of Animal Biotechnology, Hyderabad, India.
| | - Ashok Kumar Tiwari
- Division of Biological Standardization, Indian Veterinary Research Institute, Bareilly, India.
| |
Collapse
|
82
|
Bello F, Orozco E, Benítez-Cardoza CG, Zamorano-Carrillo A, Reyes-López CA, Pérez-Ishiwara DG, Gómez-García C. The novel EhHSTF7 transcription factor displays an oligomer state and recognizes a heat shock element in the Entamoeba histolytica parasite. Microb Pathog 2021; 162:105349. [PMID: 34864144 DOI: 10.1016/j.micpath.2021.105349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/09/2023]
Abstract
The heat shock response is a conserved mechanism that allows cells to respond and survive stress damage and is transcriptionally regulated by the heat shock factors and heat shock elements. The P-glycoprotein confer the multidrug resistance phenotype; Entamoeba histolytica has the largest multidrug resistance gene family described so far; one of these genes, the EhPgp5 gene, has an emetine-inducible expression. A functional heat shock element was localized in the EhPgp5 gene promoter, indicating transcriptional regulation by heat shock factors. In this work, we determined the oligomer state of EhHSTF7 and the recognition of the heat shock element of the EhPgp5 gene. The EhHSTF7 recombinant protein was obtained as monomer and oligomer. In silico molecular docking predicts protein-DNA binding between EhHSTF7 and 5'-GAA-3' complementary bases. The rEhHSTF7 protein specifically binds to the heat shock element of the EhPgp5 gene in gel shift assays. The competition assays with heat shock element mutants indicate that 5'-GAA-3' complementary bases are necessary for the rEhHSTF7 binding. Finally, the siRNA-mediated knockdown of Ehhstf7 expression causes downregulation of EhPgp5 expression, suggesting that EhHSTF7 is likely to play a key role in the E. histolytica multidrug resistance. This is the first report of a transcription factor that recognizes a heat shock element from a gene involved in drug resistance in parasites. However, further analysis needs to demonstrate the biological relevance of the EhHSTF7 and the rest of the heat shock factors of E. histolytica, to understand the underlying regulation of transcriptional control in response to stress.
Collapse
Affiliation(s)
- Fabiola Bello
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico
| | - Claudia G Benítez-Cardoza
- Programa Institucional en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, La Escalera, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - Absalom Zamorano-Carrillo
- Programa Institucional en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, La Escalera, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - César A Reyes-López
- Programa Institucional en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, La Escalera, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - D Guillermo Pérez-Ishiwara
- Programa Institucional en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, La Escalera, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - Consuelo Gómez-García
- Programa Institucional en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, La Escalera, Gustavo A. Madero, 07320, Mexico City, Mexico.
| |
Collapse
|
83
|
Yan P, Li Z, Xiong J, Geng Z, Wei W, Zhang Y, Wu G, Zhuang T, Tian X, Liu Z, Liu J, Sun K, Chen F, Zhang Y, Zeng C, Huang Y, Zhang B. LARP7 ameliorates cellular senescence and aging by allosterically enhancing SIRT1 deacetylase activity. Cell Rep 2021; 37:110038. [PMID: 34818543 DOI: 10.1016/j.celrep.2021.110038] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/24/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is associated with pleiotropic physiopathological processes, including aging and age-related diseases. The persistent DNA damage is a major stress leading to senescence, but the underlying molecular link remains elusive. Here, we identify La Ribonucleoprotein 7 (LARP7), a 7SK RNA binding protein, as an aging antagonist. DNA damage-mediated Ataxia Telangiectasia Mutated (ATM) activation triggers the extracellular shuttling and downregulation of LARP7, which dampens SIRT1 deacetylase activity, enhances p53 and NF-κB (p65) transcriptional activity by augmenting their acetylation, and thereby accelerates cellular senescence. Deletion of LARP7 leads to senescent cell accumulation and premature aging in rodent model. Furthermore, we show this ATM-LARP7-SIRT1-p53/p65 senescence axis is active in vascular senescence and atherogenesis, and preventing its activation substantially alleviates senescence and atherogenesis. Together, this study identifies LARP7 as a gatekeeper of senescence, and the altered ATM-LARP7-SIRT1-p53/p65 pathway plays an important role in DNA damage response (DDR)-mediated cellular senescence and atherosclerosis.
Collapse
Affiliation(s)
- Pengyi Yan
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Zixuan Li
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Junhao Xiong
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Zilong Geng
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Weiting Wei
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yan Zhang
- Renji-Med Clinical Stem Cell Research Center, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gengze Wu
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Tao Zhuang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New District, Shanghai 200120, China
| | - Xiaoyu Tian
- School of Biomedical Sciences, Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology and Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Sun
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Fengyuan Chen
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yuzhen Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New District, Shanghai 200120, China
| | - Chunyu Zeng
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Bing Zhang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.
| |
Collapse
|
84
|
Kmiecik SW, Mayer MP. Molecular mechanisms of heat shock factor 1 regulation. Trends Biochem Sci 2021; 47:218-234. [PMID: 34810080 DOI: 10.1016/j.tibs.2021.10.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/08/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023]
Abstract
To thrive and to fulfill their functions, cells need to maintain proteome homeostasis even in the face of adverse environmental conditions or radical restructuring of the proteome during differentiation. At the center of the regulation of proteome homeostasis is an ancient transcriptional mechanism, the so-called heat shock response (HSR), orchestrated in all eukaryotic cells by heat shock transcription factor 1 (Hsf1). As Hsf1 is implicated in aging and several pathologies like cancer and neurodegenerative disorders, understanding the regulation of Hsf1 could open novel therapeutic opportunities. In this review, we discuss the regulation of Hsf1's transcriptional activity by multiple layers of control circuits involving Hsf1 synthesis and degradation, conformational rearrangements and post-translational modifications (PTMs), and molecular chaperones in negative feedback loops.
Collapse
Affiliation(s)
- Szymon W Kmiecik
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.
| |
Collapse
|
85
|
Rao Y, Li C, Hu YT, Xu YH, Song BB, Guo SY, Jiang Z, Zhao DD, Chen SB, Tan JH, Huang SL, Li QJ, Wang XJ, Zhang YJ, Ye JM, Huang ZS. A novel HSF1 activator ameliorates nonalcoholic steatohepatitis by stimulating mitochondrial adaptive oxidation. Br J Pharmacol 2021; 179:1411-1432. [PMID: 34783017 DOI: 10.1111/bph.15727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Nonalcoholic steatohepatitis (NASH) is the more severe form of metabolic associated fatty liver disease (MAFLD), and no pharmacologic treatment approved as yet. Identification of novel therapeutic targets and their agents are critical to overcome the current inadequacy of drug treatment for NASH. EXPERIMENTAL APPROACH The correlation between heat shock factor 1 (HSF1) levels and the development of NASH and the target genes of HSF1 in hepatocyte were revealed by chromatin-immunoprecipitation sequencing. The effects and mechanisms of SYSU-3d in alleviating NASH were examined in relevant cell models and mouse models (the Ob/Ob mice, high-fat and high-cholesterol diet, the methionine-choline deficient diet fed mice). The drug-like properties of SYSU-3d in vivo were evaluated. KEY RESULTS HSF1 is progressively reduced with mitochondrial dysfunction in NASH pathogenesis and activation of this transcription factor by its newly-identified activator SYSU-3d efficiently ameliorated all manifestations of NASH in mice. When activated, the phosphorylated HSF1 (Ser326) translocated to nucleus and bound to the promoter of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) to induce mitochondrial biogenesis, thus increasing mitochondrial adaptive oxidation and inhibiting oxidative stress. The deletion of HSF1 and PGC-1α or recovery of HSF1 in HSF1-deficiency cells revealed the HSF1/PGC-1α metabolic axis mainly responsible for the anti-NASH effects of SYSU-3d independent of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK). CONCLUSION AND IMPLICATIONS Activation of HSF1 is a practicable therapeutic approach for NASH treatment via the HSF1/PGC-1α/mitochondrial axis, and SYSU-3d would take into consideration as a potential candidate for the treatment of NASH.
Collapse
Affiliation(s)
- Yong Rao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chan Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yu-Tao Hu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yao-Hao Xu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bing-Bing Song
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Yao Guo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi Jiang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dan-Dan Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qing-Jiang Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiao-Jun Wang
- Sunshine Lake Pharma Co., Ltd, Dongguan, Guangdong, China
| | - Ying-Jun Zhang
- Sunshine Lake Pharma Co., Ltd, Dongguan, Guangdong, China
| | - Ji-Ming Ye
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
86
|
Alì S, Davinelli S, Accardi G, Aiello A, Caruso C, Duro G, Ligotti ME, Pojero F, Scapagnini G, Candore G. Healthy ageing and Mediterranean diet: A focus on hormetic phytochemicals. Mech Ageing Dev 2021; 200:111592. [PMID: 34710375 DOI: 10.1016/j.mad.2021.111592] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/06/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
Mediterranean diet (MedDiet) is rich in fruits and vegetables associated with longevity and a reduced risk of several age-related diseases. It is demonstrated that phytochemicals in these plant products enhance the positive effects of MedDiet by acting on the inflammatory state and reducing oxidative stress. Evidence support that these natural compounds act as hormetins, triggering one or more adaptive stress-response pathways at low doses. Activated stress-response pathways increase the expression of cytoprotective proteins and multiple genes that act as lifespan regulators, essential for the ageing process. In these ways, the hormetic response by phytochemicals such as resveratrol, ferulic acid, and several others in MedDiet might enhance cells' ability to cope with more severe challenges, resist diseases, and promote longevity. This review discusses the role of MedDiet phytochemicals in healthy ageing and the prevention of age-related diseases.
Collapse
Affiliation(s)
- Sawan Alì
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Italy.
| | - Giovanni Duro
- Institute for Research and Biomedical Innovation, National Research Council, Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Italy; Institute for Research and Biomedical Innovation, National Research Council, Palermo, Italy
| | - Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Italy
| |
Collapse
|
87
|
Structures of heat shock factor trimers bound to DNA. iScience 2021; 24:102951. [PMID: 34458700 PMCID: PMC8379338 DOI: 10.1016/j.isci.2021.102951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/15/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022] Open
Abstract
Heat shock factor 1 (HSF1) and 2 (HSF2) play distinct but overlapping regulatory roles in maintaining cellular proteostasis or mediating cell differentiation and development. Upon activation, both HSFs trimerize and bind to heat shock elements (HSEs) present in the promoter region of target genes. Despite structural insights gained from recent studies, structures reflecting the physiological architecture of this transcriptional machinery remains to be determined. Here, we present co-crystal structures of human HSF1 and HSF2 trimers bound to DNA, which reveal a triangular arrangement of the three DNA-binding domains (DBDs) with protein-protein interactions largely mediated by the wing domain. Two structural properties, different flexibility of the wing domain and local DNA conformational changes induced by HSF binding, seem likely to contribute to the subtle differential specificity between HSF1 and HSF2. Besides, two more structures showing DBDs bound to "two-site" head-to-head HSEs were determined as additions to the published tail-to-tail dimer-binding structures.
Collapse
|
88
|
Pesonen L, Svartsjö S, Bäck V, de Thonel A, Mezger V, Sabéran-Djoneidi D, Roos-Mattjus P. Gambogic acid and gambogenic acid induce a thiol-dependent heat shock response and disrupt the interaction between HSP90 and HSF1 or HSF2. Cell Stress Chaperones 2021; 26:819-833. [PMID: 34331200 PMCID: PMC8492855 DOI: 10.1007/s12192-021-01222-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer cells rely on heat shock proteins (HSPs) for growth and survival. Especially HSP90 has multiple client proteins and plays a critical role in malignant transformation, and therefore different types of HSP90 inhibitors are being developed. The bioactive natural compound gambogic acid (GB) is a prenylated xanthone with antitumor activity, and it has been proposed to function as an HSP90 inhibitor. However, there are contradicting reports whether GB induces a heat shock response (HSR), which is cytoprotective for cancer cells and therefore a potentially problematic feature for an anticancer drug. In this study, we show that GB and a structurally related compound, called gambogenic acid (GBA), induce a robust HSR, in a thiol-dependent manner. Using heat shock factor 1 (HSF1) or HSF2 knockout cells, we show that the GB or GBA-induced HSR is HSF1-dependent. Intriguingly, using closed form ATP-bound HSP90 mutants that can be co-precipitated with HSF1, a known facilitator of cancer, we show that also endogenous HSF2 co-precipitates with HSP90. GB and GBA treatment disrupt the interaction between HSP90 and HSF1 and HSP90 and HSF2. Our study implies that these compounds should be used cautiously if developed for cancer therapies, since GB and its derivative GBA are strong inducers of the HSR, in multiple cell types, by involving the dissociation of a HSP90-HSF1/HSF2 complex.
Collapse
Affiliation(s)
- Linda Pesonen
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Artillerigatan 6, 20520, Åbo/Turku, Finland
| | - Sally Svartsjö
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Artillerigatan 6, 20520, Åbo/Turku, Finland
| | - Viktor Bäck
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Artillerigatan 6, 20520, Åbo/Turku, Finland
| | - Aurélie de Thonel
- Université de Paris, UMR7216 Épigénétique et Destin Cellulaire, CNRS, F-75013, Paris, France
| | - Valérie Mezger
- Université de Paris, UMR7216 Épigénétique et Destin Cellulaire, CNRS, F-75013, Paris, France
| | - Délara Sabéran-Djoneidi
- Université de Paris, UMR7216 Épigénétique et Destin Cellulaire, CNRS, F-75013, Paris, France
| | - Pia Roos-Mattjus
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Artillerigatan 6, 20520, Åbo/Turku, Finland.
| |
Collapse
|
89
|
Gao X, Lei J, Zhu Y, Chen X, Mao F, Miao M, Quan Y, Yu W. Role of the Bombyx mori nucleopolyhedrovirus LEF3 acetylation on viral replication. Microb Pathog 2021; 158:105109. [PMID: 34314811 DOI: 10.1016/j.micpath.2021.105109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/25/2022]
Abstract
Late expression factor 3 (LEF3) is a single-stranded DNA binding protein of Bombyx mori nucleopolyhedrovirus (BmNPV) with multiple functions. It is an essential factor for viral DNA replication and plays an important regulatory role during BmNPV infection. Our recent quantitative analysis of protein acetylome revealed for the first time that LEF3 can be acetylated at four lysine residues during the viral infection, but the underlying mechanism is unknown. Among the modification sites, two of them (K18 and K27) are located in the conserved nuclear localization sequence region. The acetylation level for K18 especially was up-regulated approximately 7.4 times after 36 h of post-infection. To understand the regulatory function of this modification, site-direct mutagenesis for acetylated mimic (K18Q) or deacetylated mimic (K18R) mutants was performed on LEF3. The fluorescence analysis results showed that the replication capacity of the virus was significantly reduced after K18 acetylation. Meanwhile, co-localization analysis revealed that acetylation at K18 caused LEF3 to lose its nuclear targeting ability and affected the interaction between LEF3 and P143, retaining P143 in the cytoplasm. And further Yeast two-hybrid analysis results also confirmed that the acetylation at K18 did affect the interaction between LEF3 and P143. In conclusion, the acetylation of LEF3 at K18 might act as one of the antiviral strategies for silkworm host by affecting nuclear localization of LEF3, interaction with P143, and then blocking viral replication.
Collapse
Affiliation(s)
- Xu Gao
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China
| | - Jihai Lei
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China
| | - Yajie Zhu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China
| | - Xi Chen
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China
| | - Fuxiang Mao
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China
| | - Meng Miao
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China
| | - Yanping Quan
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China.
| |
Collapse
|
90
|
Saikumar J, Bonini NM. Synergistic effects of brain injury and aging: common mechanisms of proteostatic dysfunction. Trends Neurosci 2021; 44:728-740. [PMID: 34301397 DOI: 10.1016/j.tins.2021.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 01/09/2023]
Abstract
The aftermath of TBI is associated with an acute stress response and the accumulation of insoluble protein aggregates. Even after the symptoms of TBI are resolved, insidious molecular processes continue to develop, which often ultimately result in the development of age-associated neurodegenerative disorders. The precise molecular cascades that drive unhealthy brain aging are still largely unknown. In this review, we discuss proteostatic dysfunction as a converging mechanism contributing to accelerated brain aging after TBI. We examine evidence from human tissue and in vivo animal models, spanning both the aging and injury contexts. We conclude that TBI has a sustained debilitating effect on the proteostatic machinery, which may contribute to the accelerated pathological and cognitive hallmarks of aging that are observed following injury.
Collapse
Affiliation(s)
- Janani Saikumar
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
91
|
Liu L, Ge W, Zhang Z, Li Y, Xie M, Zhao C, Yao C, Luo C, Wu Z, Wang W, Zhao D, Zhang J, Qiu W, Wang Y. Sublytic C5b-9 triggers glomerular mesangial cell proliferation via enhancing FGF1 and PDGFα gene transcription mediated by GCN5-dependent SOX9 acetylation in rat Thy-1 nephritis. FASEB J 2021; 35:e21751. [PMID: 34156114 DOI: 10.1096/fj.202002814rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022]
Abstract
Rat Thy-1 nephritis (Thy-1N) is an animal model of human mesangioproliferative glomerulonephritis (MsPGN), accompanied by glomerular mesangial cell (GMC) proliferation and extracellular matrix (ECM) deposition. Although sublytic C5b-9 formed on GMC membrane could induce cell proliferation, the mechanism is still unclear. In this study, we first demonstrated that the level of SRY related HMG-BOX gene 9 (SOX9), general control nonderepressible 5 (GCN5), fibroblast growth factor 1 (FGF1) and platelet-derived growth factor α (PDGFα) was all elevated both in the renal tissues of Thy-1N rats (in vivo) and in the GMCs (in vitro) with sublytic C5b-9 stimulation. Then, we not only discovered that sublytic C5b-9 caused GMC proliferation through increasing SOX9, GCN5, FGF1 and PDGFα expression, but also proved that SOX9 and GCN5 formed a complex and combined with FGF1 and PDGFα promoters, leading to FGF1 and PDGFα gene transcription. More importantly, GCN5 could mediate SOX9 acetylation at lysine 62 (K62) to enhance SOX9 binding to FGF1 or PDGFα promoter and promote FGF1 or PDGFα synthesis and GMC proliferation. Besides, the experiments in vivo also showed that FGF1 and PDGFα expression, GMC proliferation and urinary protein secretion in Thy-1N rats were greatly reduced by silencing renal SOX9, GCN5, FGF1 or PDGFα gene. Furthermore, the renal tissues of MsPGN patients also exhibited positive expression of these genes mentioned above. Collectively, our findings indicate that GCN5, SOX9 and FGF1/PDGFα can form an axis and play an essential role in sublytic C5b-9-triggered GMC proliferation, which might provide a novel insight into the pathogenesis of Thy-1N and MsPGN.
Collapse
Affiliation(s)
- Longfei Liu
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China.,Department of Central Laboratory, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huai'an, China
| | - Wen Ge
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Zhiwei Zhang
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Ya Li
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Mengxiao Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenhui Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunlei Yao
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Can Luo
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Zhijiao Wu
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Wenbo Wang
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Dan Zhao
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Wen Qiu
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, China
| | - Yingwei Wang
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
92
|
Zhang B, Fan Y, Cao P, Tan K. Multifaceted roles of HSF1 in cell death: A state-of-the-art review. Biochim Biophys Acta Rev Cancer 2021; 1876:188591. [PMID: 34273469 DOI: 10.1016/j.bbcan.2021.188591] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/24/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023]
Abstract
Cell death is a common and active process that is involved in various biological processes, including organ development, morphogenesis, maintaining tissue homeostasis and eliminating potentially harmful cells. Abnormal regulation of cell death significantly contributes to tumor development, progression and chemoresistance. The mechanisms of cell death are complex and involve not only apoptosis and necrosis but also their cross-talk with other types of cell death, such as autophagy and the newly identified ferroptosis. Cancer cells are chronically exposed to various stresses, such as lack of oxygen and nutrients, immune responses, dysregulated metabolism and genomic instability, all of which lead to activation of heat shock factor 1 (HSF1). In response to heat shock, oxidative stress and proteotoxic stresses, HSF1 upregulates transcription of heat shock proteins (HSPs), which act as molecular chaperones to protect normal cells from stresses and various diseases. Accumulating evidence suggests that HSF1 regulates multiple types of cell death through different signaling pathways as well as expression of distinct target genes in cancer cells. Here, we review the current understanding of the potential roles and molecular mechanism of HSF1 in regulating apoptosis, autophagy and ferroptosis. Deciphering HSF1-regulated signaling pathways and target genes may help in the development of new targeted anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Bingwei Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yumei Fan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Pengxiu Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ke Tan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
93
|
Hendler A, Akiva E, Sandhu M, Goldberg D, Arbely E, Jackson CJ, Aharoni A. Human SIRT1 Multispecificity Is Modulated by Active-Site Vicinity Substitutions during Natural Evolution. Mol Biol Evol 2021; 38:545-556. [PMID: 32956445 PMCID: PMC7826192 DOI: 10.1093/molbev/msaa244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Many enzymes that catalyze protein post-translational modifications can specifically modify multiple target proteins. However, little is known regarding the molecular basis and evolution of multispecificity in these enzymes. Here, we used a combined bioinformatics and experimental approaches to investigate the evolution of multispecificity in the sirtuin-1 (SIRT1) deacetylase. Guided by bioinformatics analysis of SIRT1 orthologs and substrates, we identified and examined important amino acid substitutions that have occurred during the evolution of sirtuins in Metazoa and Fungi. We found that mutation of human SIRT1 at these positions, based on sirtuin orthologs from Fungi, could alter its substrate specificity. These substitutions lead to reduced activity toward K382 acetylated p53 protein, which is only present in Metazoa, without affecting the high activity toward the conserved histone substrates. Results from ancestral sequence reconstruction are consistent with a model in which ancestral sirtuin proteins exhibited multispecificity, suggesting that the multispecificity of some metazoan sirtuins, such as hSIRT1, could be a relatively ancient trait.
Collapse
Affiliation(s)
- Adi Hendler
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Eyal Akiva
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA
| | - Mahakaran Sandhu
- Research School of Chemistry, Australian National University, Acton, ACT, Australia
| | - Dana Goldberg
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Eyal Arbely
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Acton, ACT, Australia
| | - Amir Aharoni
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
94
|
Xu Q, Liu Q, Chen Z, Yue Y, Liu Y, Zhao Y, Zhou DX. Histone deacetylases control lysine acetylation of ribosomal proteins in rice. Nucleic Acids Res 2021; 49:4613-4628. [PMID: 33836077 PMCID: PMC8096213 DOI: 10.1093/nar/gkab244] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/21/2021] [Accepted: 04/08/2021] [Indexed: 01/04/2023] Open
Abstract
Lysine acetylation (Kac) is well known to occur in histones for chromatin function and epigenetic regulation. In addition to histones, Kac is also detected in a large number of proteins with diverse biological functions. However, Kac function and regulatory mechanism for most proteins are unclear. In this work, we studied mutation effects of rice genes encoding cytoplasm-localized histone deacetylases (HDAC) on protein acetylome and found that the HDAC protein HDA714 was a major deacetylase of the rice non-histone proteins including many ribosomal proteins (r-proteins) and translation factors that were extensively acetylated. HDA714 loss-of-function mutations increased Kac levels but reduced abundance of r-proteins. In vitro and in vivo experiments showed that HDA714 interacted with r-proteins and reduced their Kac. Substitutions of lysine by arginine (depleting Kac) in several r-proteins enhance, while mutations of lysine to glutamine (mimicking Kac) decrease their stability in transient expression system. Ribo-seq analysis revealed that the hda714 mutations resulted in increased ribosome stalling frequency. Collectively, the results uncover Kac as a functional posttranslational modification of r-proteins which is controlled by histone deacetylases, extending the role of Kac in gene expression to protein translational regulation.
Collapse
Affiliation(s)
- Qiutao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhengting Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yaping Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yuan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China.,Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
95
|
Lang BJ, Guerrero ME, Prince TL, Okusha Y, Bonorino C, Calderwood SK. The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response. Arch Toxicol 2021; 95:1943-1970. [PMID: 34003342 DOI: 10.1007/s00204-021-03070-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Cells respond to protein-damaging (proteotoxic) stress by activation of the Heat Shock Response (HSR). The HSR provides cells with an enhanced ability to endure proteotoxic insults and plays a crucial role in determining subsequent cell death or survival. The HSR is, therefore, a critical factor that influences the toxicity of protein stress. While named for its vital role in the cellular response to heat stress, various components of the HSR system and the molecular chaperone network execute essential physiological functions as well as responses to other diverse toxic insults. The effector molecules of the HSR, the Heat Shock Factors (HSFs) and Heat Shock Proteins (HSPs), are also important regulatory targets in the progression of neurodegenerative diseases and cancers. Modulation of the HSR and/or its extended network have, therefore, become attractive treatment strategies for these diseases. Development of effective therapies will, however, require a detailed understanding of the HSR, important features of which continue to be uncovered and are yet to be completely understood. We review recently described and hallmark mechanistic principles of the HSR, the regulation and functions of HSPs, and contexts in which the HSR is activated and influences cell fate in response to various toxic conditions.
Collapse
Affiliation(s)
- Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Martin E Guerrero
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), 5500, Mendoza, Argentina
| | - Thomas L Prince
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Yuka Okusha
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Cristina Bonorino
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil.,Department of Surgery, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
96
|
Wang N, Zhou C, Basang W, Zhu Y, Wang X, Li C, Chen L, Zhou X. Mechanisms by which mastitis affects reproduction in dairy cow: A review. Reprod Domest Anim 2021; 56:1165-1175. [PMID: 34008236 DOI: 10.1111/rda.13953] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022]
Abstract
Reproductive performance is a key factor in determining the profitability of dairy farm, which is affected by many factors such as environment and diseases. Mastitis is a common and important disease, which has caused huge economic losses to the dairy industries worldwide. Mammary gland infection causes immune responses, resulting in the abnormal secretion of cytokines and hormones and abnormal function of the reproductive system such as the ovary, corpus luteum, uterus and embryo. Cows with mastitis have delayed oestrus, decreased pregnancy rate and increased risk of abortion. The adverse effects of mastitis on reproductive performance are affected by many factors, such as occurrence time, pathogen and cow factors. This paper primarily reviews the progress in the effects and mechanisms of mastitis on reproductive performance, with emphasis on maternal transcriptome, genomic analysis, epigenetic modification, microbiota, inflammatory regulation and immune evasion mechanism of mastitis, aiming to provide directions for the prevention and control of mastitis in the future.
Collapse
Affiliation(s)
- Nan Wang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Changhai Zhou
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Wangdui Basang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa Tibet, China
| | - Yanbin Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa Tibet, China
| | - Xin Wang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
97
|
Griñán-Ferré C, Bellver-Sanchis A, Izquierdo V, Corpas R, Roig-Soriano J, Chillón M, Andres-Lacueva C, Somogyvári M, Sőti C, Sanfeliu C, Pallàs M. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer's disease pathology: From antioxidant to epigenetic therapy. Ageing Res Rev 2021; 67:101271. [PMID: 33571701 DOI: 10.1016/j.arr.2021.101271] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
While the elderly segment of the population continues growing in importance, neurodegenerative diseases increase exponentially. Lifestyle factors such as nutrition, exercise, and education, among others, influence ageing progression, throughout life. Notably, the Central Nervous System (CNS) can benefit from nutritional strategies and dietary interventions that prevent signs of senescence, such as cognitive decline or neurodegenerative diseases such as Alzheimer's disease and Parkinson's Disease. The dietary polyphenol Resveratrol (RV) possesses antioxidant and cytoprotective effects, producing neuroprotection in several organisms. The oxidative stress (OS) occurs because of Reactive oxygen species (ROS) accumulation that has been proposed to explain the cause of the ageing. One of the most harmful effects of ROS in the cell is DNA damage. Nevertheless, there is also evidence demonstrating that OS can produce other molecular changes such as mitochondrial dysfunction, inflammation, apoptosis, and epigenetic modifications, among others. Interestingly, the dietary polyphenol RV is a potent antioxidant and possesses pleiotropic actions, exerting its activity through various molecular pathways. In addition, recent evidence has shown that RV mediates epigenetic changes involved in ageing and the function of the CNS that persists across generations. Furthermore, it has been demonstrated that RV interacts with gut microbiota, showing modifications in bacterial composition associated with beneficial effects. In this review, we give a comprehensive overview of the main mechanisms of action of RV in different experimental models, including clinical trials and discuss how the interconnection of these molecular events could explain the neuroprotective effects induced by RV.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain.
| | - Aina Bellver-Sanchis
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Vanessa Izquierdo
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Joan Roig-Soriano
- Department of Biochemistry and Molecular Biology, Universitat Autònoma Barcelona, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Miguel Chillón
- Department of Biochemistry and Molecular Biology, Universitat Autònoma Barcelona, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), Research Group on Gene Therapy at Nervous System, Passeig de la Vall d'Hebron, Barcelona, Spain; Unitat producció de Vectors (UPV), Universitat Autònoma Barcelona, Bellaterra, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Xarta, INSA, Faculty of Pharmacy and Food Sciences, Campus Torribera, University of Barcelona, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salut Carlos III, Barcelona, Spain
| | - Milán Somogyvári
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Csaba Sőti
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain
| |
Collapse
|
98
|
Chen N, Zhang Y, Wang M, Lin X, Li J, Li J, Xiao X. Maternal obesity interrupts the coordination of the unfolded protein response and heat shock response in the postnatal developing hypothalamus of male offspring in mice. Mol Cell Endocrinol 2021; 527:111218. [PMID: 33636254 DOI: 10.1016/j.mce.2021.111218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/24/2021] [Accepted: 02/15/2021] [Indexed: 11/24/2022]
Abstract
Maternal obesity malprograms offspring obesity and associated metabolic disorder. As a common phenomenon in obesity, endoplasmic reticulum (ER) stress also presents early prior to the development. Here, we investigate metabolic effect of early activated hypothalamic ER stress in offspring exposed to maternal obesogenic environment and the underlying mechanism in ICR mice model. We found higher body weight, hyperphagia and defective hypothalamic feeding-circuit in the offspring born to obese dams, with hypothalamic ER stress, and even more comprehensive cell proteotoxic stress were induced during the early postnatal period. However, neonatal inhibition of hypothalamic ER stress worsened the metabolic end. We believe that the uncoordinated interaction between the unfolded protein response and the heat shock response, regulated by heat shock protein 70, might be responsible for the malformed hypothalamic feeding circuit of the offspring exposure to maternal obesogenic conditions and were linked with deleterious metabolism in adulthood, especially when exposure to high-energy conditions.
Collapse
Affiliation(s)
- Nan Chen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yunqi Zhang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Miaoran Wang
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaojing Lin
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiayu Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jibin Li
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoqiu Xiao
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
99
|
Diane A, Abunada H, Khattab N, Moin ASM, Butler AE, Dehbi M. Role of the DNAJ/HSP40 family in the pathogenesis of insulin resistance and type 2 diabetes. Ageing Res Rev 2021; 67:101313. [PMID: 33676026 DOI: 10.1016/j.arr.2021.101313] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022]
Abstract
Insulin resistance (IR) underpins a wide range of metabolic disorders including type 2 diabetes (T2D), metabolic syndrome and cardiovascular diseases. IR is characterized by a marked reduction in the magnitude and/or delayed onset of insulin to stimulate glucose disposal. This condition is due to defects in one or several intracellular intermediates of the insulin signaling cascade, ranging from insulin receptor substrate (IRS) inactivation to reduced glucose phosphorylation and oxidation. Genetic predisposition, as well as other precipitating factors such as aging, obesity, and sedentary lifestyles are among the risk factors underlying the pathogenesis of IR and its subsequent progression to T2D. One of the cardinal hallmarks of T2D is the impairment of the heat shock response (HSR). Human and animal studies provided compelling evidence of reduced expression of several components of the HSR (i.e. Heat shock proteins or HSPs) in diabetic samples in a manner that correlates with the degree of IR. Interventions that induce the HSR, irrespective of the means to achieve it, proved their effectiveness in enhancing insulin sensitivity and improving glycemic index. However, most of these studies have been focused on HSP70 family. In this review, we will focus on the novel role of DNAJ/HSP40 cochaperone family in metabolic diseases associated with IR.
Collapse
|
100
|
Cafe SL, Nixon B, Ecroyd H, Martin JH, Skerrett-Byrne DA, Bromfield EG. Proteostasis in the Male and Female Germline: A New Outlook on the Maintenance of Reproductive Health. Front Cell Dev Biol 2021; 9:660626. [PMID: 33937261 PMCID: PMC8085359 DOI: 10.3389/fcell.2021.660626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 01/07/2023] Open
Abstract
For fully differentiated, long lived cells the maintenance of protein homeostasis (proteostasis) becomes a crucial determinant of cellular function and viability. Neurons are the most well-known example of this phenomenon where the majority of these cells must survive the entire course of life. However, male and female germ cells are also uniquely dependent on the maintenance of proteostasis to achieve successful fertilization. Oocytes, also long-lived cells, are subjected to prolonged periods of arrest and are largely reliant on the translation of stored mRNAs, accumulated during the growth period, to support meiotic maturation and subsequent embryogenesis. Conversely, sperm cells, while relatively ephemeral, are completely reliant on proteostasis due to the absence of both transcription and translation. Despite these remarkable, cell-specific features there has been little focus on understanding protein homeostasis in reproductive cells and how/whether proteostasis is "reset" during embryogenesis. Here, we seek to capture the momentum of this growing field by highlighting novel findings regarding germline proteostasis and how this knowledge can be used to promote reproductive health. In this review we capture proteostasis in the context of both somatic cell and germline aging and discuss the influence of oxidative stress on protein function. In particular, we highlight the contributions of proteostasis changes to oocyte aging and encourage a focus in this area that may complement the extensive analyses of DNA damage and aneuploidy that have long occupied the oocyte aging field. Moreover, we discuss the influence of common non-enzymatic protein modifications on the stability of proteins in the male germline, how these changes affect sperm function, and how they may be prevented to preserve fertility. Through this review we aim to bring to light a new trajectory for our field and highlight the potential to harness the germ cell's natural proteostasis mechanisms to improve reproductive health. This manuscript will be of interest to those in the fields of proteostasis, aging, male and female gamete reproductive biology, embryogenesis, and life course health.
Collapse
Affiliation(s)
- Shenae L. Cafe
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Heath Ecroyd
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Jacinta H. Martin
- Department of Human Genetics, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - David A. Skerrett-Byrne
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Elizabeth G. Bromfield
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|