51
|
Abstract
Skeletal dysplasias result from disruptions in normal skeletal growth and development and are a major contributor to severe short stature. They occur in approximately 1/5,000 births, and some are lethal. Since the most recent publication of the Nosology and Classification of Genetic Skeletal Disorders, genetic causes of 56 skeletal disorders have been uncovered. This remarkable rate of discovery is largely due to the expanded use of high-throughput genomic technologies. In this review, we discuss these recent discoveries and our understanding of the molecular mechanisms behind these skeletal dysplasia phenotypes. We also cover potential therapies, unusual genetic mechanisms, and novel skeletal syndromes both with and without known genetic causes. The acceleration of skeletal dysplasia genetics is truly spectacular, and these advances hold great promise for diagnostics, risk prediction, and therapeutic design.
Collapse
|
52
|
Fırat-Karalar EN, Stearns T. The centriole duplication cycle. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0460. [PMID: 25047614 DOI: 10.1098/rstb.2013.0460] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Centrosomes are the main microtubule-organizing centre of animal cells and are important for many critical cellular and developmental processes from cell polarization to cell division. At the core of the centrosome are centrioles, which recruit pericentriolar material to form the centrosome and act as basal bodies to nucleate formation of cilia and flagella. Defects in centriole structure, function and number are associated with a variety of human diseases, including cancer, brain diseases and ciliopathies. In this review, we discuss recent advances in our understanding of how new centrioles are assembled and how centriole number is controlled. We propose a general model for centriole duplication control in which cooperative binding of duplication factors defines a centriole 'origin of duplication' that initiates duplication, and passage through mitosis effects changes that license the centriole for a new round of duplication in the next cell cycle. We also focus on variations on the general theme in which many centrioles are created in a single cell cycle, including the specialized structures associated with these variations, the deuterosome in animal cells and the blepharoplast in lower plant cells.
Collapse
Affiliation(s)
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA Department of Genetics, Stanford University Medical School, Stanford, CA 94305-5120, USA
| |
Collapse
|
53
|
Urban JM, Foulk MS, Casella C, Gerbi SA. The hunt for origins of DNA replication in multicellular eukaryotes. F1000PRIME REPORTS 2015; 7:30. [PMID: 25926981 PMCID: PMC4371235 DOI: 10.12703/p7-30] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Origins of DNA replication (ORIs) occur at defined regions in the genome. Although DNA sequence defines the position of ORIs in budding yeast, the factors for ORI specification remain elusive in metazoa. Several methods have been used recently to map ORIs in metazoan genomes with the hope that features for ORI specification might emerge. These methods are reviewed here with analysis of their advantages and shortcomings. The various factors that may influence ORI selection for initiation of DNA replication are discussed.
Collapse
Affiliation(s)
- John M. Urban
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
| | - Michael S. Foulk
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
- Department of Biology, Mercyhurst University501 East 38th Street, Erie, PA 16546USA
| | - Cinzia Casella
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
- Institute for Molecular Medicine, University of Southern DenmarkJB Winsloews Vej 25, 5000 Odense CDenmark
| | - Susan A. Gerbi
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
| |
Collapse
|
54
|
Mouden C, de Tayrac M, Dubourg C, Rose S, Carré W, Hamdi-Rozé H, Babron MC, Akloul L, Héron-Longe B, Odent S, Dupé V, Giet R, David V. Homozygous STIL mutation causes holoprosencephaly and microcephaly in two siblings. PLoS One 2015; 10:e0117418. [PMID: 25658757 PMCID: PMC4319975 DOI: 10.1371/journal.pone.0117418] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/22/2014] [Indexed: 12/12/2022] Open
Abstract
Holoprosencephaly (HPE) is a frequent congenital malformation of the brain characterized by impaired forebrain cleavage and midline facial anomalies. Heterozygous mutations in 14 genes have been identified in HPE patients that account for only 30% of HPE cases, suggesting the existence of other HPE genes. Data from homozygosity mapping and whole-exome sequencing in a consanguineous Turkish family were combined to identify a homozygous missense mutation (c.2150G>A; p.Gly717Glu) in STIL, common to the two affected children. STIL has a role in centriole formation and has previously been described in rare cases of microcephaly. Rescue experiments in U2OS cells showed that the STIL p.Gly717Glu mutation was not able to fully restore the centriole duplication failure following depletion of endogenous STIL protein indicating the deleterious role of the mutation. In situ hybridization experiments using chick embryos demonstrated that expression of Stil was in accordance with a function during early patterning of the forebrain. It is only the second time that a STIL homozygous mutation causing a recessive form of HPE was reported. This result also supports the genetic heterogeneity of HPE and increases the panel of genes to be tested for HPE diagnosis.
Collapse
Affiliation(s)
- Charlotte Mouden
- Institut de Génétique et Développement de Rennes, Equipe Génétique des Pathologies Liées au Développement, Faculté de Médecine, Université de Rennes 1, 35043 Rennes, France
| | - Marie de Tayrac
- Institut de Génétique et Développement de Rennes, Equipe Génétique des Pathologies Liées au Développement, Faculté de Médecine, Université de Rennes 1, 35043 Rennes, France
- Plateforme Génomique Santé, Biosit, Université Rennes 1, 35033 Rennes, France
| | - Christèle Dubourg
- Institut de Génétique et Développement de Rennes, Equipe Génétique des Pathologies Liées au Développement, Faculté de Médecine, Université de Rennes 1, 35043 Rennes, France
- Laboratoire de Génétique Moléculaire et Génomique, CHU Pontchaillou, 35033 Rennes, France
| | - Sophie Rose
- Institut de Génétique et Développement de Rennes, Equipe Génétique des Pathologies Liées au Développement, Faculté de Médecine, Université de Rennes 1, 35043 Rennes, France
| | - Wilfrid Carré
- Laboratoire de Génétique Moléculaire et Génomique, CHU Pontchaillou, 35033 Rennes, France
| | - Houda Hamdi-Rozé
- Institut de Génétique et Développement de Rennes, Equipe Génétique des Pathologies Liées au Développement, Faculté de Médecine, Université de Rennes 1, 35043 Rennes, France
- Laboratoire de Génétique Moléculaire et Génomique, CHU Pontchaillou, 35033 Rennes, France
| | - Marie-Claude Babron
- Inserm U946, Variabilité Génétique et Maladies Humaines, Université Paris-Diderot, 75010 Paris, France
| | - Linda Akloul
- Service de Génétique Clinique, Hôpital Sud, 35200 Rennes, France
| | | | - Sylvie Odent
- Institut de Génétique et Développement de Rennes, Equipe Génétique des Pathologies Liées au Développement, Faculté de Médecine, Université de Rennes 1, 35043 Rennes, France
- Service de Génétique Clinique, Hôpital Sud, 35200 Rennes, France
| | - Valérie Dupé
- Institut de Génétique et Développement de Rennes, Equipe Génétique des Pathologies Liées au Développement, Faculté de Médecine, Université de Rennes 1, 35043 Rennes, France
| | - Régis Giet
- Institut de Génétique et Développement de Rennes, Equipe Cytosquelette et Prolifération Cellulaire, Faculté de Médecine, Université de Rennes 1, 35043 Rennes, France
| | - Véronique David
- Institut de Génétique et Développement de Rennes, Equipe Génétique des Pathologies Liées au Développement, Faculté de Médecine, Université de Rennes 1, 35043 Rennes, France
- Laboratoire de Génétique Moléculaire et Génomique, CHU Pontchaillou, 35033 Rennes, France
- * E-mail:
| |
Collapse
|
55
|
Abstract
The centrosome was discovered in the late 19th century when mitosis was first described. Long recognized as a key organelle of the spindle pole, its core component, the centriole, was realized more than 50 or so years later also to comprise the basal body of the cilium. Here, we chart the more recent acquisition of a molecular understanding of centrosome structure and function. The strategies for gaining such knowledge were quickly developed in the yeasts to decipher the structure and function of their distinctive spindle pole bodies. Only within the past decade have studies with model eukaryotes and cultured cells brought a similar degree of sophistication to our understanding of the centrosome duplication cycle and the multiple roles of this organelle and its component parts in cell division and signaling. Now as we begin to understand these functions in the context of development, the way is being opened up for studies of the roles of centrosomes in human disease.
Collapse
Affiliation(s)
- Jingyan Fu
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Iain M Hagan
- Cancer Research UK Manchester Institute, University of Manchester, Withington, Manchester M20 4BX, United Kingdom
| | - David M Glover
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
56
|
Kim GS, Kang J, Bang SW, Hwang DS. Cdc6 localizes to S- and G2-phase centrosomes in a cell cycle-dependent manner. Biochem Biophys Res Commun 2014; 456:763-7. [PMID: 25498505 DOI: 10.1016/j.bbrc.2014.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 12/24/2022]
Abstract
The Cdc6 protein has been primarily investigated as a component of the pre-replicative complex for the initiation of chromosome replication, which contributes to maintenance of chromosomal integrity. Here, we show that Cdc6 localized to the centrosomes during S and G2 phases of the cell cycle. The centrosomal localization was mediated by Cdc6 amino acid residues 311-366, which are conserved within other Cdc6 homologues and contains a putative nuclear export signal. Deletions or substitutions of the amino acid residues did not allow the proteins to localize to centrosomes. In contrast, DsRed tag fused to the amino acid residues localized to centrosomes. These results indicated that a centrosome localization signal is contained within amino acid residues 311-366. The cell cycle-dependent centrosomal localization of Cdc6 in S and G2 phases suggest a novel function of Cdc6 in centrosomes.
Collapse
Affiliation(s)
- Gwang Su Kim
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jeeheon Kang
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sung Woong Bang
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Deog Su Hwang
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
57
|
Sun X, Sui W, Huang M, Wang Y, Xuan Y, Wang Z. Partner of Sld five 3: a potential prognostic biomarker for colorectal cancer. Diagn Pathol 2014; 9:217. [PMID: 25403684 PMCID: PMC4244056 DOI: 10.1186/s13000-014-0217-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/26/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Partner of Sld five 3 (PSF3) is a member of the evolutionarily conserved heterotetrameric complex "Go-Ichi-Ni-San" (GINS), which consists of SLD5, PSF1, PSF2, and PSF3. Previous studies have suggested that some GINS complex members are upregulated in cancer, but the status of PSF3 expression in colorectal cancer has not been investigated. METHODS We investigated the status of PSF3 expression in 137 consecutive resected colorectal caners by quantitative reverse-transcription polymerase chain reaction. Univariable and multivariable Cox regression analyses were performed to assess independent prognostic factors for overall survival in colorectal cancer. RESULTS In 137 restected colorectal cancer samples, median messenger RNA (mRNA) expression levels of PSF3 were significantly higher in tumor tissues (1.35 × 10(-3), range 2.88 × 10(-4) to 3.16 × 10(-2)) than in adjacent normal tissues (2.94 × 10(-4), range 5.48 × 10(-5) to 1.27 × 10(-3)) (P < 0.05). Moreover, high expression of PSF3 in tumor tissues was associated with shorter disease-free survival and overall survival. When analyzed with a Cox regression model, the PSF3 expression was an independent prognostic factor for overall survival. In addition, in patients with early stage (stage I and II) colorectal cancer, the overall survival rate of the high PSF3 expression group was significantly lower than that of the low PSF3 expression group (P < 0.001). CONCLUSIONS The PSF3 expression plays an important role in the progression of colorectal cancer and acts as a factor significantly affecting the prognosis of patients. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_217.
Collapse
Affiliation(s)
- Xiaoli Sun
- Department of Laboratory, Yuhuangding Hospital, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China.
| | - Wu Sui
- General Surgery, Yuhuangding Hospital, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China.
| | - Miaoling Huang
- Anorectal Surgery, Yuhuangding Hospital, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China.
| | - Yeli Wang
- Anorectal Surgery, Yuhuangding Hospital, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China.
| | - Yuanjie Xuan
- Anorectal Surgery, Yuhuangding Hospital, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China.
| | - Zaiqiu Wang
- Anorectal Surgery, Yuhuangding Hospital, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China.
| |
Collapse
|
58
|
Lu Y, Roy R. Centrosome/Cell cycle uncoupling and elimination in the endoreduplicating intestinal cells of C. elegans. PLoS One 2014; 9:e110958. [PMID: 25360893 PMCID: PMC4215990 DOI: 10.1371/journal.pone.0110958] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 09/28/2014] [Indexed: 01/14/2023] Open
Abstract
The centrosome cycle is most often coordinated with mitotic cell division through the activity of various essential cell cycle regulators, consequently ensuring that the centriole is duplicated once, and only once, per cell cycle. However, this coupling can be altered in specific developmental contexts; for example, multi-ciliated cells generate hundreds of centrioles without any S-phase requirement for their biogenesis, while Drosophila follicle cells eliminate their centrosomes as they begin to endoreduplicate. In order to better understand how the centrosome cycle and the cell cycle are coordinated in a developmental context we use the endoreduplicating intestinal cell lineage of C. elegans to address how novel variations of the cell cycle impact this important process. In C. elegans, the larval intestinal cells undergo one nuclear division without subsequent cytokinesis, followed by four endocycles that are characterized by successive rounds of S-phase. We monitored the levels of centriolar/centrosomal markers and found that centrosomes lose their pericentriolar material following the nuclear division that occurs during the L1 stage and is thereafter never re-gained. The centrioles then become refractory to S phase regulators that would normally promote duplication during the first endocycle, after which they are eliminated during the L2 stage. Furthermore, we show that SPD-2 plays a central role in the numeral regulation of centrioles as a potential target of CDK activity. On the other hand, the phosphorylation on SPD-2 by Polo-like kinase, the transcriptional regulation of genes that affect centriole biogenesis, and the ubiquitin/proteasome degradation pathway, contribute collectively to the final elimination of the centrioles during the L2 stage.
Collapse
Affiliation(s)
- Yu Lu
- Department of Biology, The Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada
| | - Richard Roy
- Department of Biology, The Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
59
|
Zheng Y, Guo J, Li X, Xie Y, Hou M, Fu X, Dai S, Diao R, Miao Y, Ren J. An integrated overview of spatiotemporal organization and regulation in mitosis in terms of the proteins in the functional supercomplexes. Front Microbiol 2014; 5:573. [PMID: 25400627 PMCID: PMC4212687 DOI: 10.3389/fmicb.2014.00573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/11/2014] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic cells may divide via the critical cellular process of cell division/mitosis, resulting in two daughter cells with the same genetic information. A large number of dedicated proteins are involved in this process and spatiotemporally assembled into three distinct super-complex structures/organelles, including the centrosome/spindle pole body, kinetochore/centromere and cleavage furrow/midbody/bud neck, so as to precisely modulate the cell division/mitosis events of chromosome alignment, chromosome segregation and cytokinesis in an orderly fashion. In recent years, many efforts have been made to identify the protein components and architecture of these subcellular organelles, aiming to uncover the organelle assembly pathways, determine the molecular mechanisms underlying the organelle functions, and thereby provide new therapeutic strategies for a variety of diseases. However, the organelles are highly dynamic structures, making it difficult to identify the entire components. Here, we review the current knowledge of the identified protein components governing the organization and functioning of organelles, especially in human and yeast cells, and discuss the multi-localized protein components mediating the communication between organelles during cell division.
Collapse
Affiliation(s)
- Yueyuan Zheng
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Junjie Guo
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Xu Li
- Orthopaedic Department of Anhui Medical University Affiliated Provincial Hospital Hefei, China
| | - Yubin Xie
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Mingming Hou
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Xuyang Fu
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Shengkun Dai
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Rucheng Diao
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Yanyan Miao
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Jian Ren
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| |
Collapse
|
60
|
Alver RC, Chadha GS, Blow JJ. The contribution of dormant origins to genome stability: from cell biology to human genetics. DNA Repair (Amst) 2014; 19:182-9. [PMID: 24767947 PMCID: PMC4065331 DOI: 10.1016/j.dnarep.2014.03.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ability of a eukaryotic cell to precisely and accurately replicate its DNA is crucial to maintain genome stability. Here we describe our current understanding of the process by which origins are licensed for DNA replication and review recent work suggesting that fork stalling has exerted a strong selective pressure on the positioning of licensed origins. In light of this, we discuss the complex and disparate phenotypes observed in mouse models and humans patients that arise due to defects in replication licensing proteins.
Collapse
Affiliation(s)
- Robert C Alver
- Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Gaganmeet Singh Chadha
- Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - J Julian Blow
- Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
61
|
Alcantara D, O'Driscoll M. Congenital microcephaly. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2014; 166C:124-39. [PMID: 24816482 DOI: 10.1002/ajmg.c.31397] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The underlying etiologies of genetic congenital microcephaly are complex and multifactorial. Recently, with the exponential growth in the identification and characterization of novel genetic causes of congenital microcephaly, there has been a consolidation and emergence of certain themes concerning underlying pathomechanisms. These include abnormal mitotic microtubule spindle structure, numerical and structural abnormalities of the centrosome, altered cilia function, impaired DNA repair, DNA Damage Response signaling and DNA replication, along with attenuated cell cycle checkpoint proficiency. Many of these processes are highly interconnected. Interestingly, a defect in a gene whose encoded protein has a canonical function in one of these processes can often have multiple impacts at the cellular level involving several of these pathways. Here, we overview the key pathomechanistic themes underlying profound congenital microcephaly, and emphasize their interconnected nature.
Collapse
|
62
|
De Souza CP, Hashmi SB, Osmani AH, Osmani SA. Application of a new dual localization-affinity purification tag reveals novel aspects of protein kinase biology in Aspergillus nidulans. PLoS One 2014; 9:e90911. [PMID: 24599037 PMCID: PMC3944740 DOI: 10.1371/journal.pone.0090911] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/04/2014] [Indexed: 12/22/2022] Open
Abstract
Filamentous fungi occupy critical environmental niches and have numerous beneficial industrial applications but devastating effects as pathogens and agents of food spoilage. As regulators of essentially all biological processes protein kinases have been intensively studied but how they regulate the often unique biology of filamentous fungi is not completely understood. Significant understanding of filamentous fungal biology has come from the study of the model organism Aspergillus nidulans using a combination of molecular genetics, biochemistry, cell biology and genomic approaches. Here we describe dual localization-affinity purification (DLAP) tags enabling endogenous N or C-terminal protein tagging for localization and biochemical studies in A. nidulans. To establish DLAP tag utility we endogenously tagged 17 protein kinases for analysis by live cell imaging and affinity purification. Proteomic analysis of purifications by mass spectrometry confirmed association of the CotA and NimXCdk1 kinases with known binding partners and verified a predicted interaction of the SldABub1/R1 spindle assembly checkpoint kinase with SldBBub3. We demonstrate that the single TOR kinase of A. nidulans locates to vacuoles and vesicles, suggesting that the function of endomembranes as major TOR cellular hubs is conserved in filamentous fungi. Comparative analysis revealed 7 kinases with mitotic specific locations including An-Cdc7 which unexpectedly located to mitotic spindle pole bodies (SPBs), the first such localization described for this family of DNA replication kinases. We show that the SepH septation kinase locates to SPBs specifically in the basal region of apical cells in a biphasic manner during mitosis and again during septation. This results in gradients of SepH between G1 SPBs which shift along hyphae as each septum forms. We propose that SepH regulates the septation initiation network (SIN) specifically at SPBs in the basal region of G1 cells and that localized gradients of SIN activity promote asymmetric septation.
Collapse
Affiliation(s)
- Colin P. De Souza
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Shahr B. Hashmi
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Aysha H. Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Stephen A. Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
63
|
Xu Q, Zhang Y, Xiong X, Huang Y, Salisbury JL, Hu J, Ling K. PIPKIγ targets to the centrosome and restrains centriole duplication. J Cell Sci 2014; 127:1293-305. [PMID: 24434581 DOI: 10.1242/jcs.141465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Centriole biogenesis depends on the polo-like kinase (PLK4) and a small group of structural proteins. The spatiotemporal regulation of these proteins at pre-existing centrioles is essential to ensure that centriole duplication occurs once per cell cycle. Here, we report that phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1C, hereafter referred to as PIPKIγ) plays an important role in centriole fidelity. PIPKIγ localized in a ring-like pattern in the intermediate pericentriolar materials around the proximal end of the centriole in G1, S and G2 phases, but not in M phase. This localization was dependent upon an association with centrosomal protein of 152 KDa (CEP152). Without detaining cells in S or M phase, the depletion of PIPKIγ led to centriole amplification in a manner that was dependent upon PLK4 and spindle assembly abnormal protein 6 homolog (SAS6). The expression of exogenous PIPKIγ reduced centriole amplification that occurred as a result of endogenous PIPKIγ depletion, hydroxyurea treatment or PLK4 overexpression, suggesting that PIPKIγ is likely to function at the PLK4 level to restrain centriole duplication. Importantly, we found that PIPKIγ bound to the cryptic polo-box domain of PLK4 and that this binding reduced the kinase activity of PLK4. Together, our findings suggest that PIPKIγ is a novel negative regulator of centriole duplication, which acts by modulating the homeostasis of PLK4 activity.
Collapse
Affiliation(s)
- Qingwen Xu
- Department of Biochemistry and Molecular Biology, and Division of Hypertension and Nephrology, Mayo Clinic, 200 First Street SW, Rochester, MN 55902, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Kim SH, Park ER, Joo HY, Shen YN, Hong SH, Kim CH, Singh R, Lee KH, Shin HJ. RRM1 maintains centrosomal integrity via CHK1 and CDK1 signaling during replication stress. Cancer Lett 2014; 346:249-56. [PMID: 24434653 DOI: 10.1016/j.canlet.2013.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/12/2013] [Accepted: 12/26/2013] [Indexed: 01/14/2023]
Abstract
DNA lesion-induced centrosomal abnormalities during the replication phase are relatively unknown. Here, we report that RNAi-mediated depletion of RRM1 induces cell-cycle arrest at the replication phase, along with severe DNA damage and centrosomal amplification. Interestingly, CHK1 depletion synergistically increased RRM1-depletion-induced centrosomal amplification. In response to hydroxyurea, CHK1 was delocalized from the centrosome by RRM1 depletion. Moreover, CDK1, which functions in centrosome separation and is inhibited by CHK1, was found to be essential for RRMI1-depletion-induced centrosomal amplification. Thus, we herein demonstrate that RRM1 preserves chromosomal stability via the CHK1- and CDK1-dependent stabilization of the centrosomal integrity at the replication stage.
Collapse
Affiliation(s)
- Su-Hyeon Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Eun-Ran Park
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Hyun-Yoo Joo
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Yan Nan Shen
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Sung Hee Hong
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Chun Ho Kim
- Division of Radiation Effect, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Rachana Singh
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Kee-Ho Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea.
| | - Hyun-Jin Shin
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea.
| |
Collapse
|
65
|
Masyuk TV, Lee SO, Radtke BN, Stroope AJ, Huang B, Banales JM, Masyuk AI, Splinter PL, Gradilone SA, Gajdos GB, LaRusso NF. Centrosomal abnormalities characterize human and rodent cystic cholangiocytes and are associated with Cdc25A overexpression. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:110-21. [PMID: 24211536 DOI: 10.1016/j.ajpath.2013.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 01/31/2023]
Abstract
Hepatic cystogenesis in polycystic liver diseases is associated with abnormalities of cholangiocyte cilia. Given the crucial association between cilia and centrosomes, we tested the hypothesis that centrosomal defects occur in cystic cholangiocytes of rodents (Pkd2(WS25/-) mice and PCK rats) and of patients with polycystic liver diseases, contributing to disturbed ciliogenesis and cyst formation. We examined centrosomal cytoarchitecture in control and cystic cholangiocytes, the effects of centrosomal abnormalities on ciliogenesis, and the role of the cell-cycle regulator Cdc25A in centrosomal defects by depleting cholangiocytes of Cdc25A in vitro and in vivo and evaluating centrosome morphology, cell-cycle progression, proliferation, ciliogenesis, and cystogenesis. The cystic cholangiocytes had atypical centrosome positioning, supernumerary centrosomes, multipolar spindles, and extra cilia. Structurally aberrant cilia were present in cystic cholangiocytes during ciliogenesis. Depletion of Cdc25A resulted in i) a decreased number of centrosomes and multiciliated cholangiocytes, ii) an increased fraction of ciliated cholangiocytes with longer cilia, iii) a decreased proportion of cholangiocytes in G1/G0 and S phases of the cell cycle, iv) decreased cell proliferation, and v) reduced cyst growth in vitro and in vivo. Our data support the hypothesis that centrosomal abnormalities in cholangiocytes are associated with aberrant ciliogenesis and that accelerated cystogenesis is likely due to overexpression of Cdc25A, providing additional evidence that pharmacological targeting of Cdc25A has therapeutic potential in polycystic liver diseases.
Collapse
Affiliation(s)
- Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Seung-Ok Lee
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology, Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Brynn N Radtke
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Angela J Stroope
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Bing Huang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Jesús M Banales
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital-CIBERehd (Spanish Carlos III Health Institute), IKERBASQUE (Basque Foundation for Science) and University of Basque Country (UPV), San Sebastián, Spain
| | - Anatoliy I Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Patrick L Splinter
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Sergio A Gradilone
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Gabriella B Gajdos
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
66
|
Abstract
The onset of genomic DNA synthesis requires precise interactions of specialized initiator proteins with DNA at sites where the replication machinery can be loaded. These sites, defined as replication origins, are found at a few unique locations in all of the prokaryotic chromosomes examined so far. However, replication origins are dispersed among tens of thousands of loci in metazoan chromosomes, thereby raising questions regarding the role of specific nucleotide sequences and chromatin environment in origin selection and the mechanisms used by initiators to recognize replication origins. Close examination of bacterial and archaeal replication origins reveals an array of DNA sequence motifs that position individual initiator protein molecules and promote initiator oligomerization on origin DNA. Conversely, the need for specific recognition sequences in eukaryotic replication origins is relaxed. In fact, the primary rule for origin selection appears to be flexibility, a feature that is modulated either by structural elements or by epigenetic mechanisms at least partly linked to the organization of the genome for gene expression.
Collapse
Affiliation(s)
- Alan C Leonard
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida 32901
| | | |
Collapse
|
67
|
Hoshina S, Yura K, Teranishi H, Kiyasu N, Tominaga A, Kadoma H, Nakatsuka A, Kunichika T, Obuse C, Waga S. Human origin recognition complex binds preferentially to G-quadruplex-preferable RNA and single-stranded DNA. J Biol Chem 2013; 288:30161-30171. [PMID: 24003239 DOI: 10.1074/jbc.m113.492504] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Origin recognition complex (ORC), consisting of six subunits ORC1-6, is known to bind to replication origins and function in the initiation of DNA replication in eukaryotic cells. In contrast to the fact that Saccharomyces cerevisiae ORC recognizes the replication origin in a sequence-specific manner, metazoan ORC has not exhibited strict sequence-specificity for DNA binding. Here we report that human ORC binds preferentially to G-quadruplex (G4)-preferable G-rich RNA or single-stranded DNA (ssDNA). We mapped the G-rich RNA-binding domain in the ORC1 subunit, in a region adjacent to its ATPase domain. This domain itself has an ability to preferentially recognize G4-preferable sequences of ssDNA. Furthermore, we found, by structure modeling, that the G-rich RNA-binding domain is similar to the N-terminal portion of AdoMet_MTase domain of mammalian DNA methyltransferase 1. Therefore, in contrast with the binding to double-stranded DNA, human ORC has an apparent sequence preference with respect to its RNA/ssDNA binding. Interestingly, this specificity coincides with the common signature present in most of the human replication origins. We expect that our findings provide new insights into the regulations of function and chromatin binding of metazoan ORCs.
Collapse
Affiliation(s)
- Shoko Hoshina
- From the Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Kei Yura
- the Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Honami Teranishi
- From the Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Noriko Kiyasu
- From the Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Ayumi Tominaga
- From the Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Haruka Kadoma
- From the Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Ayaka Nakatsuka
- From the Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Tomoko Kunichika
- the Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan, and
| | - Chikashi Obuse
- the Division of Molecular Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Shou Waga
- From the Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan,.
| |
Collapse
|
68
|
Abstract
DNA replication is tightly controlled in eukaryotic cells to ensure that an exact copy of the genetic material is inherited by both daughter cells. Oscillating waves of cyclin-dependent kinase (CDK) and anaphase-promoting complex/cyclosome (APC/C) activities provide a binary switch that permits the replication of each chromosome exactly once per cell cycle. Work from several organisms has revealed a conserved strategy whereby inactive replication complexes are assembled onto DNA during periods of low CDK and high APC activity but are competent to execute genome duplication only when these activities are reversed. Periods of high CDK and low APC/C serve an essential function by blocking reassembly of replication complexes, thereby preventing rereplication. Higher eukaryotes have evolved additional CDK-independent mechanisms for preventing rereplication.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | | | | |
Collapse
|
69
|
Zou J, Tian F, Li J, Pickner W, Long M, Rezvani K, Wang H, Zhang D. FancJ regulates interstrand crosslinker induced centrosome amplification through the activation of polo-like kinase 1. Biol Open 2013; 2:1022-31. [PMID: 24167712 PMCID: PMC3798185 DOI: 10.1242/bio.20135801] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/03/2013] [Indexed: 01/05/2023] Open
Abstract
DNA damage response (DDR) and the centrosome cycle are two of the most critical processes for maintaining a stable genome in animals. Sporadic evidence suggests a connection between these two processes. Here, we report our findings that six Fanconi Anemia (FA) proteins, including FancI and FancJ, localize to the centrosome. Intriguingly, we found that the localization of FancJ to the mother centrosome is stimulated by a DNA interstrand crosslinker, Mitomycin C (MMC). We further show that, in addition to its role in interstrand crosslinking (ICL) repair, FancJ also regulates the normal centrosome cycle as well as ICL induced centrosome amplification by activating the polo-like kinase 1 (PLK1). We have uncovered a novel function of FancJ in centrosome biogenesis and established centrosome amplification as an integral part of the ICL response.
Collapse
Affiliation(s)
- Jianqiu Zou
- Basic Biomedical Science Division, Sanford School of Medicine, University of South Dakota , Vermillion, South Dakota, 57069 , USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Kerzendorfer C, Colnaghi R, Abramowicz I, Carpenter G, O'Driscoll M. Meier-Gorlin syndrome and Wolf-Hirschhorn syndrome: two developmental disorders highlighting the importance of efficient DNA replication for normal development and neurogenesis. DNA Repair (Amst) 2013; 12:637-44. [PMID: 23706772 DOI: 10.1016/j.dnarep.2013.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microcephaly represents one of the most obvious clinical manifestations of impaired neurogenesis. Defects in the DNA damage response, in DNA repair, and structural abnormalities in centrosomes, centrioles and the spindle microtubule network have all been demonstrated to cause microcephaly in humans. Work describing novel functional defects in cell lines from individuals with either Meier-Gorlin syndrome or Wolf-Hirschhorn syndrome highlight the significance of optimal DNA replication and S phase progression for normal human development, including neurogenesis. These findings illustrate how different primary defects in processes impacting upon DNA replication potentially influence similar phenotypic outcomes, including growth retardation and microcephaly. Herein, we will describe the nature of the S phase defects uncovered for each of these conditions and highlight some of the overlapping cellular features.
Collapse
Affiliation(s)
- Claudia Kerzendorfer
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, East Sussex BN1 9RQ, United Kingdom
| | | | | | | | | |
Collapse
|
71
|
O'Donnell M, Langston L, Stillman B. Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harb Perspect Biol 2013; 5:5/7/a010108. [PMID: 23818497 DOI: 10.1101/cshperspect.a010108] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The accurate copying of genetic information in the double helix of DNA is essential for inheritance of traits that define the phenotype of cells and the organism. The core machineries that copy DNA are conserved in all three domains of life: bacteria, archaea, and eukaryotes. This article outlines the general nature of the DNA replication machinery, but also points out important and key differences. The most complex organisms, eukaryotes, have to coordinate the initiation of DNA replication from many origins in each genome and impose regulation that maintains genomic integrity, not only for the sake of each cell, but for the organism as a whole. In addition, DNA replication in eukaryotes needs to be coordinated with inheritance of chromatin, developmental patterning of tissues, and cell division to ensure that the genome replicates once per cell division cycle.
Collapse
Affiliation(s)
- Michael O'Donnell
- The Rockefeller University and Howard Hughes Medical Institute, New York, New York 10065, USA
| | | | | |
Collapse
|
72
|
Abstract
ORC (origin recognition complex) serves as the initiator for the assembly of the pre-RC (pre-replication complex) and the subsequent DNA replication. Together with many of its non-replication functions, ORC is a pivotal regulator of various cellular processes. Notably, a number of reports connect ORC to numerous human diseases, including MGS (Meier-Gorlin syndrome), EBV (Epstein-Barr virus)-infected diseases, American trypanosomiasis and African trypanosomiasis. However, much of the underlying molecular mechanism remains unclear. In those genetic diseases, mutations in ORC alter its function and lead to the dysregulated phenotypes; whereas in some pathogen-induced symptoms, host ORC and archaeal-like ORC are exploited by these organisms to maintain their own genomes. In this review, I provide detailed examples of ORC-related human diseases, and summarize the current findings on how ORC is involved and/or dysregulated. I further discuss how these discoveries can be generalized as model systems, which can then be applied to elucidating other related diseases and revealing potential targets for developing effective therapies.
Collapse
|
73
|
Rozier L, Guo Y, Peterson S, Sato M, Baer R, Gautier J, Mao Y. The MRN-CtIP pathway is required for metaphase chromosome alignment. Mol Cell 2013; 49:1097-107. [PMID: 23434370 PMCID: PMC3615147 DOI: 10.1016/j.molcel.2013.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 10/30/2012] [Accepted: 01/17/2013] [Indexed: 02/01/2023]
Abstract
Faithful duplication of the genome in S phase followed by its accurate segregation in mitosis is essential to maintain genomic integrity. Recent studies have suggested that proteins involved in DNA transactions are also required for whole-chromosome stability. Here we demonstrate that the MRN (Mre11, Rad50, and Nbs1) complex and CtIP are required for accurate chromosome segregation. Depletion of Mre11 or CtIP, antibody-mediated inhibition of Mre11, or small-molecule inhibition of MRN using mirin results in metaphase chromosome alignment defects in Xenopus egg extracts. Similarly, loss of MRN function adversely affects spindle assembly around DNA-coated beads in egg extracts. Inhibition of MRN function in mammalian cells triggers a metaphase delay and disrupts the RCC1-dependent RanGTP gradient. Addition of the Mre11 inhibitor mirin to egg extracts and mammalian cells reduces RCC1 association with mitotic chromosomes. Thus, the MRN-CtIP pathway contributes to Ran-dependent mitotic spindle assembly by modulating RCC1 chromosome association.
Collapse
Affiliation(s)
- Lorene Rozier
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, 630 W 168Street, New York, NY 10032
| | - Yige Guo
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, 630 W 168Street, New York, NY 10032
| | - Shaun Peterson
- Institute for Cancer Genetics, Irving Cancer Research Center, 1130 St. Nicholas Avenue, New York, NY 10032
| | - Mai Sato
- Institute for Cancer Genetics, Irving Cancer Research Center, 1130 St. Nicholas Avenue, New York, NY 10032
| | - Richard Baer
- Institute for Cancer Genetics, Irving Cancer Research Center, 1130 St. Nicholas Avenue, New York, NY 10032
| | - Jean Gautier
- Institute for Cancer Genetics, Irving Cancer Research Center, 1130 St. Nicholas Avenue, New York, NY 10032
| | - Yinghui Mao
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, 630 W 168Street, New York, NY 10032
| |
Collapse
|
74
|
Stiff T, Alagoz M, Alcantara D, Outwin E, Brunner HG, Bongers EMHF, O'Driscoll M, Jeggo PA. Deficiency in origin licensing proteins impairs cilia formation: implications for the aetiology of Meier-Gorlin syndrome. PLoS Genet 2013; 9:e1003360. [PMID: 23516378 PMCID: PMC3597520 DOI: 10.1371/journal.pgen.1003360] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 01/18/2013] [Indexed: 11/19/2022] Open
Abstract
Mutations in ORC1, ORC4, ORC6, CDT1, and CDC6, which encode proteins required for DNA replication origin licensing, cause Meier-Gorlin syndrome (MGS), a disorder conferring microcephaly, primordial dwarfism, underdeveloped ears, and skeletal abnormalities. Mutations in ATR, which also functions during replication, can cause Seckel syndrome, a clinically related disorder. These findings suggest that impaired DNA replication could underlie the developmental defects characteristic of these disorders. Here, we show that although origin licensing capacity is impaired in all patient cells with mutations in origin licensing component proteins, this does not correlate with the rate of progression through S phase. Thus, the replicative capacity in MGS patient cells does not correlate with clinical manifestation. However, ORC1-deficient cells from MGS patients and siRNA-mediated depletion of origin licensing proteins also have impaired centrosome and centriole copy number. As a novel and unexpected finding, we show that they also display a striking defect in the rate of formation of primary cilia. We demonstrate that this impacts sonic hedgehog signalling in ORC1-deficient primary fibroblasts. Additionally, reduced growth factor-dependent signaling via primary cilia affects the kinetics of cell cycle progression following cell cycle exit and re-entry, highlighting an unexpected mechanism whereby origin licensing components can influence cell cycle progression. Finally, using a cell-based model, we show that defects in cilia function impair chondroinduction. Our findings raise the possibility that a reduced efficiency in forming cilia could contribute to the clinical features of MGS, particularly the bone development abnormalities, and could provide a new dimension for considering developmental impacts of licensing deficiency.
Collapse
Affiliation(s)
- Tom Stiff
- Double Strand Break Repair Laboratory, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Meryem Alagoz
- Double Strand Break Repair Laboratory, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Diana Alcantara
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Emily Outwin
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Han G. Brunner
- Department of Human Genetics, Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Ernie M. H. F. Bongers
- Department of Human Genetics, Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Mark O'Driscoll
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Penny A. Jeggo
- Double Strand Break Repair Laboratory, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
75
|
Brownlee CW, Rogers GC. Show me your license, please: deregulation of centriole duplication mechanisms that promote amplification. Cell Mol Life Sci 2013; 70:1021-34. [PMID: 22892665 PMCID: PMC11113234 DOI: 10.1007/s00018-012-1102-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/13/2012] [Accepted: 07/17/2012] [Indexed: 12/13/2022]
Abstract
Centrosomes are organelles involved in generating and organizing the interphase microtubule cytoskeleton, mitotic spindles and cilia. At the centrosome core are a pair of centrioles, structures that act as the duplicating elements of this organelle. Centrioles function to recruit and organize pericentriolar material which nucleates microtubules. While centrioles are relatively simple in construction, the mechanics of centriole biogenesis remain an important yet poorly understood process. More mysterious still are the regulatory mechanisms that oversee centriole assembly. The fidelity of centriole duplication is critical as defects in either the assembly or number of centrioles promote aneuploidy, primary microcephaly, birth defects, ciliopathies and tumorigenesis. In addition, some pathogens employ mechanisms to promote centriole overduplication to the detriment of the host cell. This review summarizes our current understanding of this important topic, highlighting the need for further study if new therapeutics are to be developed to treat diseases arising from defects of centrosome duplication.
Collapse
Affiliation(s)
- Christopher W. Brownlee
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| | - Gregory C. Rogers
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| |
Collapse
|
76
|
Qian W, Choi S, Gibson GA, Watkins SC, Bakkenist CJ, Van Houten B. Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress. J Cell Sci 2012; 125:5745-57. [PMID: 23015593 PMCID: PMC4074216 DOI: 10.1242/jcs.109769] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial fission and fusion cycles are integrated with cell cycle progression. In this paper, we demonstrate that the inhibition of mitochondrial fission protein Drp1 causes an unexpected delay in G2/M cell cycle progression and aneuploidy. In investigating the underlying molecular mechanism, we revealed that inhibiting Drp1 triggers replication stress, which is mediated by a hyperfused mitochondrial structure and unscheduled expression of cyclin E in the G2 phase. This persistent replication stress then induces an ATM-dependent activation of the G2 to M transition cell cycle checkpoint. Knockdown of ATR, an essential kinase in preventing replication stress, significantly enhanced DNA damage and cell death of Drp1-deficienct cells. Persistent mitochondrial hyperfusion also induces centrosomal overamplification and chromosomal instability, which are causes of aneuploidy. Analysis using cells depleted of mitochondrial DNA revealed that these events are not mediated by the defects in mitochondrial ATP production and reactive oxygen species (ROS) generation. Thus dysfunctional mitochondrial fission directly induces genome instability by replication stress, which then initiates the DNA damage response. Our findings provide a novel mechanism that contributes to the cellular dysfunction and diseases associated with altered mitochondrial dynamics.
Collapse
Affiliation(s)
- Wei Qian
- Department of Pharmacology and Chemical Biology, Hillman Cancer CenterPittsburgh, PA 15213USA
- The University of Pittsburgh Cancer Institute, Hillman Cancer CenterPittsburgh, PA 15213USA
| | - Serah Choi
- Medical Scientist Training Program, Molecular Pharmacology Graduate Program, Hillman Cancer CenterPittsburgh, PA 15213USA
- The University of Pittsburgh Cancer Institute, Hillman Cancer CenterPittsburgh, PA 15213USA
| | - Gregory A. Gibson
- Department of Cell Biology and Physiology, Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Simon C. Watkins
- Department of Cell Biology and Physiology, Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Christopher J. Bakkenist
- Department of Pharmacology and Chemical Biology, Hillman Cancer CenterPittsburgh, PA 15213USA
- Department of Radiation Oncology, University of Pittsburgh School of Medicine and, Hillman Cancer CenterPittsburgh, PA 15213USA
- The University of Pittsburgh Cancer Institute, Hillman Cancer CenterPittsburgh, PA 15213USA
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, Hillman Cancer CenterPittsburgh, PA 15213USA
- The University of Pittsburgh Cancer Institute, Hillman Cancer CenterPittsburgh, PA 15213USA
- Author for correspondence ()
| |
Collapse
|
77
|
A novel role of human holliday junction resolvase GEN1 in the maintenance of centrosome integrity. PLoS One 2012; 7:e49687. [PMID: 23166748 PMCID: PMC3500319 DOI: 10.1371/journal.pone.0049687] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/11/2012] [Indexed: 02/07/2023] Open
Abstract
The maintenance of genomic stability requires accurate genome replication, repair of DNA damage, and the precise segregation of chromosomes in mitosis. GEN1 possesses Holliday junction resolvase activity in vitro and presumably functions in homology driven repair of DNA double strand breaks. However, little is currently known about the cellular functions of human GEN1. In the present study we demonstrate that GEN1 is a novel centrosome associated protein and we characterize the various phenotypes associated with GEN1 deficiency. We identify an N-terminal centrosome localization signal in GEN1, which is required and sufficient for centrosome localization. We report that GEN1 depletion results in aberrant centrosome numbers associated with the formation of multiple spindle poles in mitosis, an increased number of cells with multi-nuclei, increased apoptosis and an elevated level of spontaneous DNA damage. We find homologous recombination severely impaired in GEN1 deficient cells, suggesting that GEN1 functions as a Holliday junction resolvase in vivo as well as in vitro. Complementation of GEN1 depleted cells with various GEN1 constructs revealed that centrosome association but not catalytic activity of GEN1 is required for preventing centrosome hyper-amplification, formation of multiple mitotic spindles, and multi-nucleation. Our findings provide novel insight into the biological functions of GEN1 by uncovering an important role of GEN1 in the regulation of centrosome integrity.
Collapse
|
78
|
Hossain M, Stillman B. Meier-Gorlin syndrome mutations disrupt an Orc1 CDK inhibitory domain and cause centrosome reduplication. Genes Dev 2012; 26:1797-810. [PMID: 22855792 DOI: 10.1101/gad.197178.112] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Like DNA replication, centrosomes are licensed to duplicate once per cell division cycle to ensure genetic stability. In addition to regulating DNA replication, the Orc1 subunit of the human origin recognition complex controls centriole and centrosome copy number. Here we report that Orc1 harbors a PACT centrosome-targeting domain and a separate domain that differentially inhibits the protein kinase activities of Cyclin E-CDK2 and Cyclin A-CDK2. A cyclin-binding motif (Cy motif) is required for Orc1 to bind Cyclin A and inhibit Cyclin A-CDK2 kinase activity but has no effect on Cyclin E-CDK2 kinase activity. In contrast, Orc1 inhibition of Cyclin E-CDK2 kinase activity occurs by a different mechanism that is affected by Orc1 mutations identified in Meier-Gorlin syndrome patients. The cyclin/CDK2 kinase inhibitory domain of Orc1, when tethered to the PACT domain, localizes to centrosomes and blocks centrosome reduplication. Meier-Gorlin syndrome mutations that disrupt Cyclin E-CDK2 kinase inhibition also allow centrosome reduplication. Thus, Orc1 contains distinct domains that control centrosome copy number and DNA replication. We suggest that the Orc1 mutations present in some Meier-Gorlin syndrome patients contribute to the pronounced microcephaly and dwarfism observed in these individuals by altering centrosome duplication in addition to DNA replication defects.
Collapse
Affiliation(s)
- Manzar Hossain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
79
|
Ogden A, Rida PCG, Aneja R. Let's huddle to prevent a muddle: centrosome declustering as an attractive anticancer strategy. Cell Death Differ 2012; 19:1255-67. [PMID: 22653338 DOI: 10.1038/cdd.2012.61] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nearly a century ago, cell biologists postulated that the chromosomal aberrations blighting cancer cells might be caused by a mysterious organelle-the centrosome-that had only just been discovered. For years, however, this enigmatic structure was neglected in oncologic investigations and has only recently reemerged as a key suspect in tumorigenesis. A majority of cancer cells, unlike healthy cells, possess an amplified centrosome complement, which they manage to coalesce neatly at two spindle poles during mitosis. This clustering mechanism permits the cell to form a pseudo-bipolar mitotic spindle for segregation of sister chromatids. On rare occasions this mechanism fails, resulting in declustered centrosomes and the assembly of a multipolar spindle. Spindle multipolarity consigns the cell to an almost certain fate of mitotic arrest or death. The catastrophic nature of multipolarity has attracted efforts to develop drugs that can induce declustering in cancer cells. Such chemotherapeutics would theoretically spare healthy cells, whose normal centrosome complement should preclude multipolar spindle formation. In search of the 'Holy Grail' of nontoxic, cancer cell-selective, and superiorly efficacious chemotherapy, research is underway to elucidate the underpinnings of centrosome clustering mechanisms. Here, we detail the progress made towards that end, highlighting seminal work and suggesting directions for future research, aimed at demystifying this riddling cellular tactic and exploiting it for chemotherapeutic purposes. We also propose a model to highlight the integral role of microtubule dynamicity and the delicate balance of forces on which cancer cells rely for effective centrosome clustering. Finally, we provide insights regarding how perturbation of this balance may pave an inroad for inducing lethal centrosome dispersal and death selectively in cancer cells.
Collapse
Affiliation(s)
- A Ogden
- Department of Biology, Georgia State University, Atlanta, 30303, USA
| | | | | |
Collapse
|
80
|
Abstract
As development unfolds, DNA replication is not only coordinated with cell proliferation, but is regulated uniquely in specific cell types and organs. This differential regulation of DNA synthesis requires crosstalk between DNA replication and differentiation. This dynamic aspect of DNA replication is highlighted by the finding that the distribution of replication origins varies between differentiated cell types and changes with differentiation. Moreover, differential DNA replication in some cell types can lead to increases or decreases in gene copy number along chromosomes. This review highlights the recent advances and technologies that have provided us with new insights into the developmental regulation of DNA replication.
Collapse
Affiliation(s)
- Jared Nordman
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | |
Collapse
|
81
|
Deshmukh AS, Srivastava S, Herrmann S, Gupta A, Mitra P, Gilberger TW, Dhar SK. The role of N-terminus of Plasmodium falciparum ORC1 in telomeric localization and var gene silencing. Nucleic Acids Res 2012; 40:5313-31. [PMID: 22379140 PMCID: PMC3384324 DOI: 10.1093/nar/gks202] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum origin recognition complex 1 (ORC1) protein has been implicated in DNA replication and silencing var gene family. However, the mechanism and the domain structure of ORC1 related to the regulation of var gene family are unknown. Here we show that the unique N-terminus of PfORC1 (PfORC1N1–238) is targeted to the nuclear periphery in vivo and this region binds to the telomeric DNA in vitro due to the presence of a leucine heptad repeats. Like PfORC1N1–238, endogenous full length ORC1, was found to be associated with sub telomeric repeat regions and promoters of various var genes. Additionally, binding and propagation of ORC1 to telomeric and subtelomeric regions was severely compromised in PfSir2 deficient parasites suggesting the dependence of endogenous ORC1 on Sir2 for var gene regulation. This feature is not previously described for Plasmodium ORC1 and contrary to yeast Saccharomyces cerevisiae where ORC function as a landing pad for Sir proteins. Interestingly, the overexpression of ORC1N1–238 compromises the binding of Sir2 at the subtelomeric loci and var gene promoters consistent with de-repression of some var genes. These results establish role of the N-terminus of PfORC1 in heterochromatin formation and regulation of var gene expression in co-ordination with Sir2 in P. falciparum.
Collapse
Affiliation(s)
- Abhijit S Deshmukh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
82
|
Narasimhachar Y, Webster DR, Gard DL, Coué M. Cdc6 is required for meiotic spindle assembly in Xenopus oocytes. Cell Cycle 2012; 11:524-31. [PMID: 22262174 DOI: 10.4161/cc.11.3.19033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
During the maturation of Xenopus oocytes, Cdc6 expression is necessary to establish replication competence to support early embryonic DNA replication. However, Cdc6 is expressed before the completion of MI, at a time when its function as a replication factor is not required, suggesting additional roles for Cdc6 in meiosis. Confocal immunofluorescence microscopy revealed that Cdc6 protein was distributed around the spindle precursor at the time of germinal vesicle breakdown (GVBD), and localized to the margin of the nascent spindle early in prometaphase. Cdc6 subsequently localized to spindle poles in late prometaphase, where it remained until metaphase arrest. Microinjection of antisense oligonucleotides specific for Cdc6 mRNA disrupted spindle assembly, resulting in defects including delayed spindle assembly, misoriented and unattached anaphase spindles, monasters, multiple spindles, microtubule aggregates associated with condensed chromosomes, or the absence of recognizable spindle-like structures, depending on the level of residual Cdc6 expression. Furthermore, Cdc6 co-localized with γ-tubulin in centrosomes during interphase in all somatic cells analyzed, and associated with spindle poles in mitotic COS cells. Our data suggest a role for Cdc6 in spindle formation in addition to its role as a DNA replication factor.
Collapse
Affiliation(s)
- Yadushyla Narasimhachar
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | | | | | | |
Collapse
|
83
|
Calderano SG, de Melo Godoy PD, Motta MCM, Mortara RA, Schenkman S, Elias MC. Trypanosoma cruzi DNA replication includes the sequential recruitment of pre-replication and replication machineries close to nuclear periphery. Nucleus 2012; 2:136-45. [PMID: 21738836 DOI: 10.4161/nucl.2.2.15134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 02/03/2011] [Accepted: 02/11/2011] [Indexed: 11/19/2022] Open
Abstract
In eukaryotes, many nuclear processes are spatially compartmentalized. Previously, we have shown that in Trypanosoma cruzi, an early-divergent eukaryote, DNA replication occurs at the nuclear periphery where chromosomes remain constrained during the S phase of the cell cycle. We followed Orc1/Cdc6, a pre-replication machinery component and the proliferating cell nuclear antigen (PCNA), a component of replication machinery, during the cell cycle of this protozoon. We found that, at the G(1) stage, TcOrc1/Cdc6 and TcPCNA are dispersed throughout the nuclear space. During the G(1)/S transition, TcOrc1/Cdc6 migrates to a region close to nuclear periphery. At the onset of S phase, TcPCNA is loaded onto the DNA and remains constrained close to nuclear periphery. Finally, in G(2), mitosis and cytokinesis, TcOrc1/Cdc6 and TcPCNA are dispersed throughout the nuclear space. Based on these findings, we propose that DNA replication in T. cruzi is accomplished by the organization of functional machineries in a spatial-temporal manner.
Collapse
Affiliation(s)
- Simone Guedes Calderano
- Laboratório de Parasitologia, Instituto Butantan, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
84
|
Jagannathan M, Sakwe AM, Nguyen T, Frappier L. The MCM-associated protein MCM-BP is important for human nuclear morphology. J Cell Sci 2012; 125:133-43. [PMID: 22250201 DOI: 10.1242/jcs.089938] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mini-chromosome maintenance complex-binding protein (MCM-BP) was discovered as a protein that is strongly associated with human MCM proteins, known to be crucial for DNA replication in providing DNA helicase activity. The Xenopus MCM-BP homologue appears to play a role in unloading MCM complexes from chromatin after DNA synthesis; however, the importance of MCM-BP and its functional contribution to human cells has been unclear. Here we show that depletion of MCM-BP by sustained expression of short hairpin RNA (shRNA) results in highly abnormal nuclear morphology and centrosome amplification. The abnormal nuclear morphology was not seen with depletion of other MCM proteins and was rescued with shRNA-resistant MCM-BP. MCM-BP depletion was also found to result in transient activation of the G2 checkpoint, slowed progression through G2 and increased replication protein A foci, indicative of replication stress. In addition, MCM-BP depletion led to increased cellular levels of MCM proteins throughout the cell cycle including soluble MCM pools. The results suggest that MCM-BP makes multiple contributions to human cells that are not limited to unloading of the MCM complex.
Collapse
Affiliation(s)
- Madhav Jagannathan
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | | | | |
Collapse
|
85
|
Abstract
The origin recognition complex (ORC) was first discovered in the baker's yeast in 1992. Identification of ORC opened up a path for subsequent molecular level investigations on how eukaryotic cells initiate and control genome duplication each cell cycle. Twenty years after the first biochemical isolation, ORC is now taking on a three-dimensional shape, although a very blurry shape at the moment, thanks to the recent electron microscopy and image reconstruction efforts. In this chapter, we outline the current biochemical knowledge about ORC from several eukaryotic systems, with emphasis on the most recent structural and biochemical studies. Despite many species-specific properties, an emerging consensus is that ORC is an ATP-dependent machine that recruits other key proteins to form pre-replicative complexes (pre-RCs) at many origins of DNA replication, enabling the subsequent initiation of DNA replication in S phase.
Collapse
Affiliation(s)
- Huilin Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA, And, Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA, , Tel: 631-344-2931, Fax: 631-344-3407
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA, , Tel: 516-367-8383
| |
Collapse
|
86
|
Ghosh S, Vassilev AP, Zhang J, Zhao Y, DePamphilis ML. Assembly of the human origin recognition complex occurs through independent nuclear localization of its components. J Biol Chem 2011; 286:23831-41. [PMID: 21555516 DOI: 10.1074/jbc.m110.215988] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Initiation of eukaryotic genome duplication begins when a six-subunit origin recognition complex (ORC) binds to DNA. However, the mechanism by which this occurs in vivo and the roles played by individual subunits appear to differ significantly among organisms. Previous studies identified a soluble human ORC(2-5) complex in the nucleus, an ORC(1-5) complex bound to chromatin, and an Orc6 protein that binds weakly, if at all, to other ORC subunits. Here we show that stable ORC(1-6) complexes also can be purified from human cell extracts and that Orc6 and Orc1 each contain a single nuclear localization signal that is essential for nuclear localization but not for ORC assembly. The Orc6 nuclear localization signal, which is essential for Orc6 function, is facilitated by phosphorylation at its cyclin-dependent kinase consensus site and by association with Kpna6/1, nuclear transport proteins that did not co-purify with other ORC subunits. These and other results support a model in which Orc6, Orc1, and ORC(2-5) are transported independently to the nucleus where they can either assemble into ORC(1-6) or function individually.
Collapse
Affiliation(s)
- Soma Ghosh
- NICHD, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | | | | | |
Collapse
|
87
|
Sld7, an Sld3-associated protein required for efficient chromosomal DNA replication in budding yeast. EMBO J 2011; 30:2019-30. [PMID: 21487389 DOI: 10.1038/emboj.2011.115] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 03/23/2011] [Indexed: 01/16/2023] Open
Abstract
Genetic screening of yeast for sld (synthetic lethality with dpb11) mutations has identified replication proteins, including Sld2, -3, and -5, and clarified the molecular mechanisms underlying eukaryotic chromosomal DNA replication. Here, we report a new replication protein, Sld7, identified by rescreening of sld mutations. Throughout the cell cycle, Sld7 forms a complex with Sld3, which associates with replication origins in a complex with Cdc45, binds to Dpb11 when phosphorylated by cyclin-dependent kinase, and dissociates from origins once DNA replication starts. However, Sld7 does not move with the replication fork. Sld7 binds to the nonessential N-terminal portion of Sld3 and reduces its affinity for Cdc45, a component of the replication fork. Although Sld7 is not essential for cell growth, its absence reduces the level of cellular Sld3, delays the dissociation from origins of GINS, a component of the replication fork, and slows S-phase progression. These results suggest that Sld7 is required for the proper function of Sld3 at the initiation of DNA replication.
Collapse
|
88
|
Munkley J, Copeland NA, Moignard V, Knight JRP, Greaves E, Ramsbottom SA, Pownall ME, Southgate J, Ainscough JFX, Coverley D. Cyclin E is recruited to the nuclear matrix during differentiation, but is not recruited in cancer cells. Nucleic Acids Res 2011; 39:2671-7. [PMID: 21109536 PMCID: PMC3074132 DOI: 10.1093/nar/gkq1190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/15/2010] [Accepted: 11/05/2010] [Indexed: 11/12/2022] Open
Abstract
Cyclin E supports pre-replication complex (pre-RC) assembly, while cyclin A-associated kinase activates DNA synthesis. We show that cyclin E, but not A, is mounted upon the nuclear matrix in sub-nuclear foci in differentiated vertebrate cells, but not in undifferentiated cells or cancer cells. In murine embryonic stem cells, Xenopus embryos and human urothelial cells, cyclin E is recruited to the nuclear matrix as cells differentiate and this can be manipulated in vitro. This suggests that pre-RC assembly becomes spatially restricted as template usage is defined. Furthermore, failure to become restricted may contribute to the plasticity of cancer cells.
Collapse
Affiliation(s)
- Jennifer Munkley
- Department of Biology, University of York, YO10 5YW and School of Medicine, Leeds University, LS2 9JT, UK
| | - Nikki A. Copeland
- Department of Biology, University of York, YO10 5YW and School of Medicine, Leeds University, LS2 9JT, UK
| | - Victoria Moignard
- Department of Biology, University of York, YO10 5YW and School of Medicine, Leeds University, LS2 9JT, UK
| | - John R. P. Knight
- Department of Biology, University of York, YO10 5YW and School of Medicine, Leeds University, LS2 9JT, UK
| | - Erin Greaves
- Department of Biology, University of York, YO10 5YW and School of Medicine, Leeds University, LS2 9JT, UK
| | - Simon A. Ramsbottom
- Department of Biology, University of York, YO10 5YW and School of Medicine, Leeds University, LS2 9JT, UK
| | - Mary E. Pownall
- Department of Biology, University of York, YO10 5YW and School of Medicine, Leeds University, LS2 9JT, UK
| | - Jennifer Southgate
- Department of Biology, University of York, YO10 5YW and School of Medicine, Leeds University, LS2 9JT, UK
| | - Justin F.-X. Ainscough
- Department of Biology, University of York, YO10 5YW and School of Medicine, Leeds University, LS2 9JT, UK
| | - Dawn Coverley
- Department of Biology, University of York, YO10 5YW and School of Medicine, Leeds University, LS2 9JT, UK
| |
Collapse
|
89
|
Eckerdt F, Yamamoto TM, Lewellyn AL, Maller JL. Identification of a polo-like kinase 4-dependent pathway for de novo centriole formation. Curr Biol 2011; 21:428-32. [PMID: 21353560 PMCID: PMC3093158 DOI: 10.1016/j.cub.2011.01.072] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/30/2010] [Accepted: 01/28/2011] [Indexed: 12/26/2022]
Abstract
Supernumerary centrosomes are a key cause of genomic instability in cancer cells. New centrioles can be generated by duplication with a mother centriole as a platform or, in the absence of preexisting centrioles, by formation de novo. Polo-like kinase 4 (Plk4) regulates both modes of centriole biogenesis, and Plk4 deregulation has been linked to tumor development. We show that Plx4, the Xenopus homolog of mammalian Plk4 and Drosophila Sak, induces de novo centriole formation in vivo in activated oocytes and in egg extracts, but not in immature or in vitro matured oocytes. Both kinase activity and the polo-box domain of Plx4 are required for de novo centriole biogenesis. Polarization microscopy in "cycling" egg extracts demonstrates that de novo centriole formation is independent of Cdk2 activity, a major difference compared to template-driven centrosome duplication that is linked to the nuclear cycle and requires cyclinA/E/Cdk2. Moreover, we show that the Mos-MAPK pathway blocks Plx4-dependent de novo centriole formation before fertilization, thereby ensuring paternal inheritance of the centrosome. The results define a new system for studying the biochemical and molecular basis of de novo centriole formation and centriole biogenesis in general.
Collapse
Affiliation(s)
- Frank Eckerdt
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Tomomi M. Yamamoto
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Andrea L. Lewellyn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - James L. Maller
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
90
|
Bicknell LS, Walker S, Klingseisen A, Stiff T, Leitch A, Kerzendorfer C, Martin CA, Yeyati P, Al Sanna N, Bober M, Johnson D, Wise C, Jackson AP, O'Driscoll M, Jeggo PA. Mutations in ORC1, encoding the largest subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome. Nat Genet 2011; 43:350-5. [PMID: 21358633 DOI: 10.1038/ng.776] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/25/2011] [Indexed: 11/09/2022]
Abstract
Studies into disorders of extreme growth failure (for example, Seckel syndrome and Majewski osteodysplastic primordial dwarfism type II) have implicated fundamental cellular processes of DNA damage response signaling and centrosome function in the regulation of human growth. Here we report that mutations in ORC1, encoding a subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome. We establish that these mutations disrupt known ORC1 functions including pre-replicative complex formation and origin activation. ORC1 deficiency perturbs S-phase entry and S-phase progression. Additionally, we show that Orc1 depletion in zebrafish is sufficient to markedly reduce body size during rapid embryonic growth. Our data suggest a model in which ORC1 mutations impair replication licensing, slowing cell cycle progression and consequently impeding growth during development, particularly at times of rapid proliferation. These findings establish a novel mechanism for the pathogenesis of microcephalic dwarfism and show a surprising but important developmental impact of impaired origin licensing.
Collapse
Affiliation(s)
- Louise S Bicknell
- Medical Research Council (MRC) Human Genetics Unit (HGU), Institute for Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Bang SW, Ko MJ, Kang S, Kim GS, Kang D, Lee J, Hwang DS. Human TopBP1 localization to the mitotic centrosome mediates mitotic progression. Exp Cell Res 2011; 317:994-1004. [PMID: 21291884 DOI: 10.1016/j.yexcr.2011.01.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/27/2010] [Accepted: 01/24/2011] [Indexed: 11/25/2022]
Abstract
TopBP1 contains repeats of the BRCA1 C-terminal (BRCT) domain and plays important roles in DNA damage response, DNA replication, and other cellular regulatory functions during the interphase. In prometaphase, metaphase, and anaphase, TopBP1 localizes to the mitotic centrosomes, which function as spindle-poles for the bipolar separation of sister chromatids. The localization of TopBP1 to the mitotic centrosomes is mediated by amino acid residues 1259 to 1420 in the TopBP1 C-terminal region (TbpCtr). GST and DsRed2 tags fused to TbpCtr were localized in the mitotic centrosomes, thereby suggesting that TbpCtr functions as a mitosis-specific centrosome localization signal (CLS). Mutations of Ser 1273 and/or Lys 1317, which were predicted to interact with a putative phosphoprotein, inhibited CLS function. Ectopic expression of TbpCtr specifically eliminated endogenous TopBP1 from the mitotic centrosomes, whereas mutant TbpCtr derivatives, containing substitutions at Ser 1273 and/or Lys 1317, did not. The specific elimination of TopBP1 from the mitotic centrosomes prolonged the durations of prometaphase and metaphase and shortened the inter-kinetochore distances of metaphase sister chromatids while maintaining the spindle assembly checkpoint. These results suggest that the localization of TopBP1 to the mitotic centrosomes is necessary for proper mitotic progression.
Collapse
Affiliation(s)
- Sung Woong Bang
- Department of Biological Sciences, and Institute for Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
92
|
Harrison MK, Adon AM, Saavedra HI. The G1 phase Cdks regulate the centrosome cycle and mediate oncogene-dependent centrosome amplification. Cell Div 2011; 6:2. [PMID: 21272329 PMCID: PMC3038874 DOI: 10.1186/1747-1028-6-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 01/27/2011] [Indexed: 11/10/2022] Open
Abstract
Because centrosome amplification generates aneuploidy and since centrosome amplification is ubiquitous in human tumors, a strong case is made for centrosome amplification being a major force in tumor biogenesis. Various evidence showing that oncogenes and altered tumor suppressors lead to centrosome amplification and aneuploidy suggests that oncogenes and altered tumor suppressors are a major source of genomic instability in tumors, and that they generate those abnormal processes to initiate and sustain tumorigenesis. We discuss how altered tumor suppressors and oncogenes utilize the cell cycle regulatory machinery to signal centrosome amplification and aneuploidy.
Collapse
Affiliation(s)
- Mary K Harrison
- Emory University, Department of Radiation Oncology, Winship Cancer Institute, 1701 Uppergate Drive, Atlanta, Georgia, 30322, USA.
| | | | | |
Collapse
|
93
|
Pascreau G, Churchill MEA, Maller JL. Centrosomal localization of cyclins E and A: structural similarities and functional differences. Cell Cycle 2011; 10:199-205. [PMID: 21217199 PMCID: PMC3048792 DOI: 10.4161/cc.10.2.14444] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 11/19/2022] Open
Abstract
Recent identification of the modular CLS motifs responsible for cyclins A and E localization on centrosomes has revealed a tight linkage between the nuclear and centrosomal cycles. These G1/S cyclins must localize on the centrosome in order for DNA replication to occur in the nucleus, whereas essential DNA replication factors also function on the centrosome to prevent centrosome overduplication. Both events are dependent on the presence of an intact CLS within each cyclin. Here we compare the cyclins A and E CLSs at the structural and functional levels and identify a new cyclin A CLS mutant that disrupts all CLS functions and reduces the affinity of cyclin A for Cdk2. Analysis of interactions of the CLS motif within the cyclin molecules highlights the importance of the cyclin CBOX1 region for Cdk2 binding.
Collapse
Affiliation(s)
- Gaetan Pascreau
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | |
Collapse
|
94
|
Scholefield G, Veening JW, Murray H. DnaA and ORC: more than DNA replication initiators. Trends Cell Biol 2010; 21:188-94. [PMID: 21123069 DOI: 10.1016/j.tcb.2010.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/15/2010] [Accepted: 10/25/2010] [Indexed: 12/17/2022]
Abstract
Mutations in DNA replication initiator genes in both prokaryotes and eukaryotes lead to a pleiotropic array of phenotypes, including defects in chromosome segregation, cytokinesis, cell cycle regulation and gene expression. For years, it was not clear whether these diverse effects were indirect consequences of perturbed DNA replication, or whether they indicated that DNA replication initiator proteins had roles beyond their activity in initiating DNA synthesis. Recent work from a range of organisms has demonstrated that DNA replication initiator proteins play direct roles in many cellular processes, often functioning to coordinate the initiation of DNA replication with essential cell-cycle activities. The aim of this review is to highlight these new findings, focusing on the pathways and mechanisms utilized by DNA replication initiator proteins to carry out a diverse array of cellular functions.
Collapse
Affiliation(s)
- Graham Scholefield
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | | | | |
Collapse
|
95
|
Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization. Proc Natl Acad Sci U S A 2010; 107:15093-8. [PMID: 20689044 DOI: 10.1073/pnas.1009945107] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The origin recognition complex (ORC) is a DNA replication initiator protein also known to be involved in diverse cellular functions including gene silencing, sister chromatid cohesion, telomere biology, heterochromatin localization, centromere and centrosome activity, and cytokinesis. We show that, in human cells, multiple ORC subunits associate with hetereochromatin protein 1 (HP1) alpha- and HP1beta-containing heterochromatic foci. Fluorescent bleaching studies indicate that multiple subcomplexes of ORC exist at heterochromatin, with Orc1 stably associating with heterochromatin in G1 phase, whereas other ORC subunits have transient interactions throughout the cell-division cycle. Both Orc1 and Orc3 directly bind to HP1alpha, and two domains of Orc3, a coiled-coil domain and a mod-interacting region domain, can independently bind to HP1alpha; however, both are essential for in vivo localization of Orc3 to heterochromatic foci. Direct binding of both Orc1 and Orc3 to HP1 suggests that, after the degradation of Orc1 at the G1/S boundary, Orc3 facilitates assembly of ORC/HP1 proteins to chromatin. Although depletion of Orc2 and Orc3 subunits by siRNA caused loss of HP1alpha association to heterochromatin, loss of Orc1 and Orc5 caused aberrant HP1alpha distribution only to pericentric heterochromatin-surrounding nucleoli. Depletion of HP1alpha from human cells also shows loss of Orc2 binding to heterochromatin, suggesting that ORC and HP1 proteins are mutually required for each other to bind to heterochromatin. Similar to HP1alpha-depleted cells, Orc2 and Orc3 siRNA-treated cells also show loss of compaction at satellite repeats, suggesting that ORC together with HP1 proteins may be involved in organizing higher-order chromatin structure and centromere function.
Collapse
|
96
|
Ferguson RL, Pascreau G, Maller JL. The cyclin A centrosomal localization sequence recruits MCM5 and Orc1 to regulate centrosome reduplication. J Cell Sci 2010; 123:2743-9. [PMID: 20663915 DOI: 10.1242/jcs.073098] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Centrosomes are the major microtubule-organizing centers in animal cells and regulate formation of a bipolar mitotic spindle. Aberrant centrosome number causes chromosome mis-segregation, and has been implicated in genomic instability and tumor development. Previous studies have demonstrated a role for the DNA replication factors MCM5 and Orc1 in preventing centrosome reduplication. Cyclin A-Cdk2 localizes on centrosomes by means of a modular centrosomal localization sequence (CLS) that is distinct from that of cyclin E. Here, we show that cyclin A interacts with both MCM5 and Orc1 in a CLS-dependent but Cdk-independent manner. Although the MRAIL hydrophobic patch is contained within the cyclin A CLS, binding of both MCM5 and Orc1 to cyclin A does not require a wild-type hydrophobic patch. The same domain in MCM5 that mediates interaction with cyclin E also binds cyclin A, resulting in centrosomal localization of MCM5. Finally, unlike its function in DNA synthesis, MCM5-mediated inhibition of centrosome reduplication in S-phase-arrested CHO cells does not require binding to other MCM family members. These results suggest that cyclins E and A sequentially prevent centrosome reduplication throughout interphase by recruitment of DNA replication factors such as MCM5 and Orc1.
Collapse
Affiliation(s)
- Rebecca L Ferguson
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | |
Collapse
|
97
|
Schepers A, Papior P. Why are we where we are? Understanding replication origins and initiation sites in eukaryotes using ChIP-approaches. Chromosome Res 2010; 18:63-77. [PMID: 19904620 DOI: 10.1007/s10577-009-9087-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA replication initiates from origins of replication following a strict sequential activation programme and a conserved temporal order of activation. The number of replication initiation sites varies between species, according to the complexity of the genomes, with an average spacing of 100,000 bp. In contrast to yeast genomes, the location and definition of origins in mammalian genomes has been elusive. Historically, mammalian replication initiation sites have been mapped in situ by systematically searching specific genomic loci for sites that preferentially initiated DNA replication, potential origins by start-site mapping and autonomously replicating sequence experiments, and potential ORC and pre-replicative complex (pre-RC) sites by chromatin immunoprecipitation (ChIP) using antibodies for pre-RC proteins. In the past decade, ChIP has become an important method for analyzing protein/DNA interactions. Classically, ChIP is combined with Southern blotting or PCR. Recently, whole genome-ChIP methods have been very successful in unicellular eukaryotes to understand molecular mechanisms coordinating replication initiation and its flexibility in response to environmental changes. However, in mammalian systems, ChIP with pre-RC antibodies has often been challenging and genome-wide studies are scarce. In this review, we will appraise the progress that has been made in understanding replication origin organization using immunoprecipitation of the ORC and Mcm2-7 complexes. A special focus will be on the advantages and disadvantages of genome-wide ChIP-technologies and their potential impact on understanding metazoan replicators.
Collapse
Affiliation(s)
- Aloys Schepers
- Department of Gene Vectors, Helmholtz Zentrum München-German Research Center for Environmental Health, Marchioninistrasse 25, 81377, München, Germany.
| | | |
Collapse
|
98
|
Ferguson RL, Maller JL. Centrosomal localization of cyclin E-Cdk2 is required for initiation of DNA synthesis. Curr Biol 2010; 20:856-60. [PMID: 20399658 PMCID: PMC2897751 DOI: 10.1016/j.cub.2010.03.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 03/02/2010] [Accepted: 03/02/2010] [Indexed: 12/28/2022]
Abstract
Cyclin E-Cdk2 is known to regulate both DNA replication and centrosome duplication during the G1-S transition in the cell cycle, and disruption of centrosomes results in a G1 arrest in some cell types. Localization of cyclin E on centrosomes is mediated by a 20 amino acid domain termed the centrosomal localization sequence (CLS), and expression of the GFP-tagged CLS displaces both cyclin E and cyclin A from the centrosome. In asynchronous cells, CLS expression inhibits the incorporation of bromodeoxyuridine (BrdU) into DNA, an effect proposed to reflect a G1 arrest. Here we show in synchronized cells that the reduction in BrdU incorporation reflects not a G1 arrest but rather direct inhibition of the initiation of DNA replication in S phase. The loading of essential DNA replication factors such as Cdc45 and proliferating cell nuclear antigen onto chromatin is blocked by CLS expression, but DNA synthesis can be rescued by retargeting active cyclin E-Cdk2 to the centrosome. These results suggest that initial steps of DNA replication require centrosomally localized Cdk activity and link the nuclear cycle with the centrosome cycle at the G1-S transition.
Collapse
Affiliation(s)
- Rebecca L Ferguson
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | |
Collapse
|
99
|
Kawakami H, Katayama T. DnaA, ORC, and Cdc6: similarity beyond the domains of life and diversity. Biochem Cell Biol 2010; 88:49-62. [PMID: 20130679 DOI: 10.1139/o09-154] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To initiate chromosomal DNA replication, specific proteins bind to the replication origin region and form multimeric and dynamic complexes. Bacterial DnaA, the eukaryotic origin recognition complex (ORC), and Cdc6 proteins, most of which include an AAA+(-like) motif, play crucial roles in replication initiation. The importance of ATP binding and hydrolysis in these proteins has recently become recognized. ATP binding of Escherichia coli DnaA is required for the formation of the activated form of a DnaA multimer on the replication origin. The ATP-DnaA multimer can unwind duplex DNA in an origin-dependent manner, which is supported by various specific functions of several AAA+ motifs. DnaA-ATP hydrolysis is stimulated after initiation, repressing extra initiations, and sustaining once-per-cell cycle replication. ATP binding of ORC and Cdc6 in Saccharomyces cerevisiae is required for heteromultimeric complex formation and specific DNA binding. ATP hydrolysis of these proteins is important for the efficient loading of the minichromosome maintenance protein complex, a component of the putative replicative helicase. In this review, we discuss the roles of DnaA, ORC, and Cdc6 in replication initiation and its regulation. We also summarize the functional features of the AAA+ domains of these proteins, and the functional divergence of ORC in chromosomal dynamics.
Collapse
Affiliation(s)
- Hironori Kawakami
- Cold Spring Harbor Laboratory, 1 Bungtown Rd., Cold Spring Harbor, NY 11724, USA.
| | | |
Collapse
|
100
|
Kiessling AA, Bletsa R, Desmarais B, Mara C, Kallianidis K, Loutradis D. Genome-wide microarray evidence that 8-cell human blastomeres over-express cell cycle drivers and under-express checkpoints. J Assist Reprod Genet 2010; 27:265-76. [PMID: 20358275 PMCID: PMC2914593 DOI: 10.1007/s10815-010-9407-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 03/04/2010] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To understand cell cycle controls in the 8-Cell human blastomere. METHODS Data from whole human genome (43,377 elements) microarray analyses of RNAs from normal 8-Cell human embryos were compiled with published microarrays of RNAs from human fibroblasts, before and after induced pluripotency, and embryonic stem cells. A sub database of 3,803 genes identified by high throughput RNA knock-down studies, plus genes that oscillate in human cells, was analyzed. RESULTS Thirty-five genes over-detected at least 7-fold specifically on the 8-Cell arrays were enriched for cell cycle drivers and for proteins that stabilize chromosome cohesion and spindle attachment and limit DNA and centrosome replication to once per cycle. CONCLUSIONS These results indicate that 8-cell human blastomere cleavage is guided by cyclic over-expression of key proteins, rather than canonical checkpoints, leading to rapidly increasing gene copy number and a susceptibility to chromosome and cytokinesis mishaps, well-noted characteristics of preimplantation human embryos.
Collapse
Affiliation(s)
- Ann A. Kiessling
- Bedford Stem Cell Research Foundation, 206 Elm St, Suite 106, Somerville, MA 02144 USA
| | - Ritsa Bletsa
- 1st Department of Obstetrics and Gynecology, Athens Medical School, “Alexandra” Maternity Hospital, Athens, Greece
| | - Bryan Desmarais
- Bedford Stem Cell Research Foundation, 206 Elm St, Suite 106, Somerville, MA 02144 USA
| | - Christina Mara
- 1st Department of Obstetrics and Gynecology, Athens Medical School, “Alexandra” Maternity Hospital, Athens, Greece
| | - Kostas Kallianidis
- 1st Department of Obstetrics and Gynecology, Athens Medical School, “Alexandra” Maternity Hospital, Athens, Greece
| | - Dimitris Loutradis
- 1st Department of Obstetrics and Gynecology, Athens Medical School, “Alexandra” Maternity Hospital, Athens, Greece
| |
Collapse
|