51
|
Reinhart M, Carney T, Clark AG, Fiumera AC. Characterizing male-female interactions using natural genetic variation in Drosophila melanogaster. J Hered 2014; 106:67-79. [PMID: 25425680 DOI: 10.1093/jhered/esu076] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Drosophila melanogaster females commonly mate with multiple males establishing the opportunity for pre- and postcopulatory sexual selection. Traits impacting sexual selection can be affected by a complex interplay of the genotypes of the competing males, the genotype of the female, and compatibilities between the males and females. We scored males from 96 2nd and 94 3rd chromosome substitution lines for traits affecting reproductive success when mated with females from 3 different genetic backgrounds. The traits included male-induced female refractoriness, male remating ability, the proportion of offspring sired under competitive conditions and male-induced female fecundity. We observed significant effects of male line, female genetic background, and strong male by female interactions. Some males appeared to be "generalists" and performed consistently across the different females; other males appeared to be "specialists" and performed very well with a particular female and poorly with others. "Specialist" males did not, however, prefer to court those females with whom they had the highest reproductive fitness. Using 143 polymorphisms in male reproductive genes, we mapped several genes that had consistent effects across the different females including a derived, high fitness allele in Acp26Aa that may be the target of adaptive evolution. We also identified a polymorphism upstream of PebII that may interact with the female genetic background to affect male-induced refractoriness to remating. These results suggest that natural variation in PebII might contribute to the observed male-female interactions.
Collapse
Affiliation(s)
- Michael Reinhart
- From the Department of Biological Sciences, Binghamton University, Binghamton, NY (Reinhart, Carney, and Fiumera); and the Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY(Clark)
| | - Tara Carney
- From the Department of Biological Sciences, Binghamton University, Binghamton, NY (Reinhart, Carney, and Fiumera); and the Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY(Clark)
| | - Andrew G Clark
- From the Department of Biological Sciences, Binghamton University, Binghamton, NY (Reinhart, Carney, and Fiumera); and the Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY(Clark)
| | - Anthony C Fiumera
- From the Department of Biological Sciences, Binghamton University, Binghamton, NY (Reinhart, Carney, and Fiumera); and the Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY(Clark).
| |
Collapse
|
52
|
Schnell SJ, Ma J, Yang W. Three-Dimensional Mapping of mRNA Export through the Nuclear Pore Complex. Genes (Basel) 2014; 5:1032-49. [PMID: 25393401 PMCID: PMC4276925 DOI: 10.3390/genes5041032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/02/2014] [Accepted: 10/20/2014] [Indexed: 11/30/2022] Open
Abstract
The locations of transcription and translation of mRNA in eukaryotic cells are spatially separated by the nuclear envelope (NE). Plenty of nuclear pore complexes (NPCs) embedded in the NE function as the major gateway for the export of transcribed mRNAs from the nucleus to the cytoplasm. Whereas the NPC, perhaps one of the largest protein complexes, provides a relatively large channel for macromolecules to selectively pass through it in inherently three-dimensional (3D) movements, this channel is nonetheless below the diffraction limit of conventional light microscopy. A full understanding of the mRNA export mechanism urgently requires real-time mapping of the 3D dynamics of mRNA in the NPC of live cells with innovative imaging techniques breaking the diffraction limit of conventional light microscopy. Recently, super-resolution fluorescence microscopy and single-particle tracking (SPT) techniques have been applied to the study of nuclear export of mRNA in live cells. In this review, we emphasize the necessity of 3D mapping techniques in the study of mRNA export, briefly summarize the feasibility of current 3D imaging approaches, and highlight the new features of mRNA nuclear export elucidated with a newly developed 3D imaging approach combining SPT-based super-resolution imaging and 2D-to-3D deconvolution algorithms.
Collapse
Affiliation(s)
- Steven J Schnell
- Department of Biology, Temple University, Philadelphia, PA 19122, USA.
| | - Jiong Ma
- Department of Biology, Temple University, Philadelphia, PA 19122, USA.
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
53
|
Brekke TD, Good JM. Parent-of-origin growth effects and the evolution of hybrid inviability in dwarf hamsters. Evolution 2014; 68:3134-48. [PMID: 25130206 PMCID: PMC4437546 DOI: 10.1111/evo.12500] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 07/11/2014] [Indexed: 12/24/2022]
Abstract
Mammalian hybrids often show abnormal growth, indicating that developmental inviability may play an important role in mammalian speciation. Yet, it is unclear if this recurrent phenotype reflects a common genetic basis. Here, we describe extreme parent-of-origin-dependent growth in hybrids from crosses between two species of dwarf hamsters, Phodopus campbelli and Phodopus sungorus. One cross type resulted in massive placental and embryonic overgrowth, severe developmental defects, and maternal death. Embryos from the reciprocal cross were viable and normal sized, but adult hybrid males were relatively small. These effects are strikingly similar to patterns from several other mammalian hybrids. Using comparative sequence data from dwarf hamsters and several other hybridizing mammals, we argue that extreme hybrid growth can contribute to reproductive isolation during the early stages of species divergence. Next, we tested if abnormal growth in hybrid hamsters was associated with disrupted genomic imprinting. We found no association between imprinting status at several candidate genes and hybrid growth, though two interacting genes involved in embryonic growth did show reduced expression in overgrown hybrids. Collectively, our study indicates that growth-related hybrid inviability may play an important role in mammalian speciation but that the genetic underpinnings of these phenotypes remain unresolved.
Collapse
Affiliation(s)
- Thomas D. Brekke
- Division of Biological Sciences, The University of Montana, Missoula Montana, 59812
| | - Jeffrey M. Good
- Division of Biological Sciences, The University of Montana, Missoula Montana, 59812
| |
Collapse
|
54
|
A screen for F1 hybrid male rescue reveals no major-effect hybrid lethality loci in the Drosophila melanogaster autosomal genome. G3-GENES GENOMES GENETICS 2014; 4:2451-60. [PMID: 25352540 PMCID: PMC4267940 DOI: 10.1534/g3.114.014076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hybrid sons between Drosophila melanogaster females and D. simulans males die as 3rd instar larvae. Two genes, D. melanogaster Hybrid male rescue (Hmr) on the X chromosome, and D. simulans Lethal hybrid rescue (Lhr) on chromosome II, interact to cause this lethality. Loss-of-function mutations in either gene suppress lethality, but several pieces of evidence suggest that additional factors are required for hybrid lethality. Here we screen the D. melanogaster autosomal genome by using the Bloomington Stock Center Deficiency kit to search for additional regions that can rescue hybrid male lethality. Our screen is designed to identify putative hybrid incompatibility (HI) genes similar to Hmr and Lhr which, when removed, are dominant suppressors of lethality. After screening 89% of the autosomal genome, we found no regions that rescue males to the adult stage. We did, however, identify several regions that rescue up to 13% of males to the pharate adult stage. This weak rescue suggests the presence of multiple minor-effect HI loci, but we were unable to map these loci to high resolution, presumably because weak rescue can be masked by genetic background effects. We attempted to test one candidate, the dosage compensation gene male specific lethal-3 (msl-3), by using RNA interference with short hairpin microRNA constructs targeted specifically against D. simulans msl-3 but failed to achieve knockdown, in part due to off-target effects. We conclude that the D. melanogaster autosomal genome likely does not contain additional major-effect HI loci. We also show that Hmr is insufficient to fully account for the lethality associated with the D. melanogaster X chromosome, suggesting that additional X-linked genes contribute to hybrid lethality.
Collapse
|
55
|
Mensch J, Serra F, Lavagnino NJ, Dopazo H, Hasson E. Positive selection in nucleoporins challenges constraints on early expressed genes in Drosophila development. Genome Biol Evol 2014; 5:2231-41. [PMID: 24171912 PMCID: PMC3845637 DOI: 10.1093/gbe/evt156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Developmental conservation among related species is a common generalization known as von Baer’s third law and implies that early stages of development are the most refractory to change. The “hourglass model” is an alternative view that proposes that middle stages are the most constrained during development. To investigate this issue, we undertook a genomic approach and provide insights into how natural selection operates on genes expressed during the first 24 h of Drosophila ontogeny in the six species of the melanogaster group for which whole genome sequences are available. Having studied the rate of evolution of more than 2,000 developmental genes, our results showed differential selective pressures at different moments of embryogenesis. In many Drosophila species, early zygotic genes evolved slower than maternal genes indicating that mid-embryogenesis is the stage most refractory to evolutionary change. Interestingly, positively selected genes were found in all embryonic stages even during the period with the highest developmental constraint, emphasizing that positive selection and negative selection are not mutually exclusive as it is often mistakenly considered. Among the fastest evolving genes, we identified a network of nucleoporins (Nups) as part of the maternal transcriptome. Specifically, the acceleration of Nups was driven by positive selection only in the more recently diverged species. Because many Nups are involved in hybrid incompatibilities between species of the Drosophila melanogaster subgroup, our results link rapid evolution of early developmental genes with reproductive isolation. In summary, our study revealed that even within functional groups of genes evolving under strong negative selection many positively selected genes could be recognized. Understanding these exceptions to the broad evolutionary conservation of early expressed developmental genes can shed light into relevant processes driving the evolution of species divergence.
Collapse
Affiliation(s)
- Julián Mensch
- Departamento de Ecología, Genética y Evolución-IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
56
|
Garrigan D, Kingan SB, Geneva AJ, Vedanayagam JP, Presgraves DC. Genome diversity and divergence in Drosophila mauritiana: multiple signatures of faster X evolution. Genome Biol Evol 2014; 6:2444-58. [PMID: 25193308 PMCID: PMC4202334 DOI: 10.1093/gbe/evu198] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Drosophila mauritiana is an Indian Ocean island endemic species that diverged from its two sister species, Drosophila simulans and Drosophila sechellia, approximately 240,000 years ago. Multiple forms of incomplete reproductive isolation have evolved among these species, including sexual, gametic, ecological, and intrinsic postzygotic barriers, with crosses among all three species conforming to Haldane’s rule: F1 hybrid males are sterile and F1 hybrid females are fertile. Extensive genetic resources and the fertility of hybrid females have made D. mauritiana, in particular, an important model for speciation genetics. Analyses between D. mauritiana and both of its siblings have shown that the X chromosome makes a disproportionate contribution to hybrid male sterility. But why the X plays a special role in the evolution of hybrid sterility in these, and other, species remains an unsolved problem. To complement functional genetic analyses, we have investigated the population genomics of D. mauritiana, giving special attention to differences between the X and the autosomes. We present a de novo genome assembly of D. mauritiana annotated with RNAseq data and a whole-genome analysis of polymorphism and divergence from ten individuals. Our analyses show that, relative to the autosomes, the X chromosome has reduced nucleotide diversity but elevated nucleotide divergence; an excess of recurrent adaptive evolution at its protein-coding genes; an excess of recent, strong selective sweeps; and a large excess of satellite DNA. Interestingly, one of two centimorgan-scale selective sweeps on the D. mauritiana X chromosome spans a region containing two sex-ratio meiotic drive elements and a high concentration of satellite DNA. Furthermore, genes with roles in reproduction and chromosome biology are enriched among genes that have histories of recurrent adaptive protein evolution. Together, these genome-wide analyses suggest that genetic conflict and frequent positive natural selection on the X chromosome have shaped the molecular evolutionary history of D. mauritiana, refining our understanding of the possible causes of the large X-effect in speciation.
Collapse
|
57
|
Sherman NA, Victorine A, Wang RJ, Moyle LC. Interspecific tests of allelism reveal the evolutionary timing and pattern of accumulation of reproductive isolation mutations. PLoS Genet 2014; 10:e1004623. [PMID: 25211473 PMCID: PMC4161300 DOI: 10.1371/journal.pgen.1004623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/23/2014] [Indexed: 01/23/2023] Open
Abstract
Despite extensive theory, little is known about the empirical accumulation and evolutionary timing of mutations that contribute to speciation. Here we combined QTL (Quantitative Trait Loci) analyses of reproductive isolation, with information on species evolutionary relationships, to reconstruct the order and timing of mutations contributing to reproductive isolation between three plant (Solanum) species. To evaluate whether reproductive isolation QTL that appear to coincide in more than one species pair are homologous, we used cross-specific tests of allelism and found evidence for both homologous and lineage-specific (non-homologous) alleles at these co-localized loci. These data, along with isolation QTL unique to single species pairs, indicate that >85% of isolation-causing mutations arose later in the history of divergence between species. Phylogenetically explicit analyses of these data support non-linear models of accumulation of hybrid incompatibility, although the specific best-fit model differs between seed (pairwise interactions) and pollen (multi-locus interactions) sterility traits. Our findings corroborate theory that predicts an acceleration ('snowballing') in the accumulation of isolation loci as lineages progressively diverge, and suggest different underlying genetic bases for pollen versus seed sterility. Pollen sterility in particular appears to be due to complex genetic interactions, and we show this is consistent with a snowball model where later arising mutations are more likely to be involved in pairwise or multi-locus interactions that specifically involve ancestral alleles, compared to earlier arising mutations.
Collapse
Affiliation(s)
- Natasha A. Sherman
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Anna Victorine
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Richard J. Wang
- Laboratory of Genetics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Leonie C. Moyle
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
58
|
A test of double interspecific introgression of nucleoporin genes in Drosophila. G3-GENES GENOMES GENETICS 2014; 4:2101-6. [PMID: 25172915 PMCID: PMC4232535 DOI: 10.1534/g3.114.014027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In interspecific hybrids between Drosophila melanogaster and Drosophila simulans, the D. simulans nucleoporin-encoding Nup96sim and Nup160sim can cause recessive lethality if the hybrid does not also inherit the D. simulans X chromosome. In addition, Nup160sim leads to recessive female sterility in the D. melanogaster genetic background. Here, we conducted carefully controlled crosses to better understand the relationship between Nup96sim and Nup160sim. Nup96sim did not lead to female sterility in the D. melanogaster genetic background, and double introgression of Nup96sim and Nup160sim did not generally lead to lethality when one was heterozygous and the other homozygous (hemizygous). It appears that introgression of additional autosomal D. simulans genes is necessary to cause lethality and that the effect of the introgression is dominant to D. melanogaster alleles. Interestingly, the genetic background affected dominance of Nup96sim, and double introgression carrying homozygous Nup96sim and hemizygous Nup160sim resulted in lethality. Thus, Nup96sim and Nup160sim seem to be two components of the same incompatibility.
Collapse
|
59
|
Matute DR, Gavin-Smyth J, Liu G. Variable post-zygotic isolation in Drosophila melanogaster/D. simulans
hybrids. J Evol Biol 2014; 27:1691-705. [DOI: 10.1111/jeb.12422] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/13/2014] [Accepted: 04/28/2014] [Indexed: 11/29/2022]
Affiliation(s)
- D. R. Matute
- Department of Human Genetics; The University of Chicago; Chicago IL USA
- The Chicago Fellows Program; The University of Chicago; Chicago IL USA
| | - J. Gavin-Smyth
- The Chicago Fellows Program; The University of Chicago; Chicago IL USA
- Department of Ecology and Evolution; The University of Chicago; Chicago IL USA
| | - G. Liu
- Department of Human Genetics; The University of Chicago; Chicago IL USA
| |
Collapse
|
60
|
Schumer M, Cui R, Powell DL, Dresner R, Rosenthal GG, Andolfatto P. High-resolution mapping reveals hundreds of genetic incompatibilities in hybridizing fish species. eLife 2014; 3. [PMID: 24898754 PMCID: PMC4080447 DOI: 10.7554/elife.02535] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/02/2014] [Indexed: 12/18/2022] Open
Abstract
Hybridization is increasingly being recognized as a common process in both animal and plant species. Negative epistatic interactions between genes from different parental genomes decrease the fitness of hybrids and can limit gene flow between species. However, little is known about the number and genome-wide distribution of genetic incompatibilities separating species. To detect interacting genes, we perform a high-resolution genome scan for linkage disequilibrium between unlinked genomic regions in naturally occurring hybrid populations of swordtail fish. We estimate that hundreds of pairs of genomic regions contribute to reproductive isolation between these species, despite them being recently diverged. Many of these incompatibilities are likely the result of natural or sexual selection on hybrids, since intrinsic isolation is known to be weak. Patterns of genomic divergence at these regions imply that genetic incompatibilities play a significant role in limiting gene flow even in young species.
Collapse
Affiliation(s)
- Molly Schumer
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
| | - Rongfeng Cui
- Department of Biology, Texas A&M University, College Station, United States
| | - Daniel L Powell
- Department of Biology, Texas A&M University, College Station, United States
| | - Rebecca Dresner
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
| | - Gil G Rosenthal
- Department of Biology, Texas A&M University, College Station, United States
| | - Peter Andolfatto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
| |
Collapse
|
61
|
Matute DR, Gavin-Smyth J. Fine mapping of dominant X-linked incompatibility alleles in Drosophila hybrids. PLoS Genet 2014; 10:e1004270. [PMID: 24743238 PMCID: PMC3990725 DOI: 10.1371/journal.pgen.1004270] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 02/12/2014] [Indexed: 11/18/2022] Open
Abstract
Sex chromosomes have a large effect on reproductive isolation and play an important role in hybrid inviability. In Drosophila hybrids, X-linked genes have pronounced deleterious effects on fitness in male hybrids, which have only one X chromosome. Several studies have succeeded at locating and identifying recessive X-linked alleles involved in hybrid inviability. Nonetheless, the density of dominant X-linked alleles involved in interspecific hybrid viability remains largely unknown. In this report, we study the effects of a panel of small fragments of the D. melanogaster X-chromosome carried on the D. melanogaster Y-chromosome in three kinds of hybrid males: D. melanogaster/D. santomea, D. melanogaster/D. simulans and D. melanogaster/D. mauritiana. D. santomea and D. melanogaster diverged over 10 million years ago, while D. simulans (and D. mauritiana) diverged from D. melanogaster over 3 million years ago. We find that the X-chromosome from D. melanogaster carries dominant alleles that are lethal in mel/san, mel/sim, and mel/mau hybrids, and more of these alleles are revealed in the most divergent cross. We then compare these effects on hybrid viability with two D. melanogaster intraspecific crosses. Unlike the interspecific crosses, we found no X-linked alleles that cause lethality in intraspecific crosses. Our results reveal the existence of dominant alleles on the X-chromosome of D. melanogaster which cause lethality in three different interspecific hybrids. These alleles only cause inviability in hybrid males, yet have little effect in hybrid females. This suggests that X-linked elements that cause hybrid inviability in males might not do so in hybrid females due to differing sex chromosome interactions.
Collapse
Affiliation(s)
- Daniel R. Matute
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
- The Chicago Fellows Program, The University of Chicago, Chicago, Illinois, United States of America
| | - Jackie Gavin-Smyth
- The Chicago Fellows Program, The University of Chicago, Chicago, Illinois, United States of America
- Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
62
|
Satyaki PRV, Cuykendall TN, Wei KHC, Brideau NJ, Kwak H, Aruna S, Ferree PM, Ji S, Barbash DA. The Hmr and Lhr hybrid incompatibility genes suppress a broad range of heterochromatic repeats. PLoS Genet 2014; 10:e1004240. [PMID: 24651406 PMCID: PMC3961192 DOI: 10.1371/journal.pgen.1004240] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/30/2014] [Indexed: 11/19/2022] Open
Abstract
Hybrid incompatibilities (HIs) cause reproductive isolation between species and thus contribute to speciation. Several HI genes encode adaptively evolving proteins that localize to or interact with heterochromatin, suggesting that HIs may result from co-evolution with rapidly evolving heterochromatic DNA. Little is known, however, about the intraspecific function of these HI genes, the specific sequences they interact with, or the evolutionary forces that drive their divergence. The genes Hmr and Lhr genetically interact to cause hybrid lethality between Drosophila melanogaster and D. simulans, yet mutations in both genes are viable. Here, we report that Hmr and Lhr encode proteins that form a heterochromatic complex with Heterochromatin Protein 1 (HP1a). Using RNA-Seq analyses we discovered that Hmr and Lhr are required to repress transcripts from satellite DNAs and many families of transposable elements (TEs). By comparing Hmr and Lhr function between D. melanogaster and D. simulans we identify several satellite DNAs and TEs that are differentially regulated between the species. Hmr and Lhr mutations also cause massive overexpression of telomeric TEs and significant telomere lengthening. Hmr and Lhr therefore regulate three types of heterochromatic sequences that are responsible for the significant differences in genome size and structure between D. melanogaster and D. simulans and have high potential to cause genetic conflicts with host fitness. We further find that many TEs are overexpressed in hybrids but that those specifically mis-expressed in lethal hybrids do not closely correlate with Hmr function. Our results therefore argue that adaptive divergence of heterochromatin proteins in response to repetitive DNAs is an important underlying force driving the evolution of hybrid incompatibility genes, but that hybrid lethality likely results from novel epistatic genetic interactions that are distinct to the hybrid background. Sister species capable of mating often produce hybrids that are sterile or die during development. This reproductive isolation is caused by incompatibilities between the two sister species' genomes. Some hybrid incompatibilities involve genes that encode rapidly evolving proteins that localize to heterochromatin. Heterochromatin is largely made up of highly repetitive transposable elements and satellite DNAs. It has been hypothesized that rapid changes in heterochromatic DNA drives the changes in these HI genes and thus the evolution of reproductive isolation. In support of this model, we show that two rapidly evolving HI proteins, Lhr and Hmr, which reproductively isolate the fruit fly sister species D. melanogaster and D. simulans, repress transposable elements and satellite DNAs. These proteins also help regulate the length of the atypical Drosophila telomeres, which are themselves made of domesticated transposable elements. Our data suggest that these proteins are part of the adaptive machinery that allows the host to respond to changes and increases in heterochromatin and to maintain the activity of genes located within or adjacent to heterochromatin.
Collapse
Affiliation(s)
- P. R. V. Satyaki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Tawny N. Cuykendall
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Kevin H-C. Wei
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Nicholas J. Brideau
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - S. Aruna
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Patrick M. Ferree
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Shuqing Ji
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Daniel A. Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
63
|
Fraïsse C, Elderfield JAD, Welch JJ. The genetics of speciation: are complex incompatibilities easier to evolve? J Evol Biol 2014; 27:688-99. [PMID: 24581268 DOI: 10.1111/jeb.12339] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/11/2013] [Accepted: 01/04/2014] [Indexed: 01/22/2023]
Abstract
Reproductive isolation can evolve readily when genotypes containing incompatible alleles are connected by chains of fit intermediates. Experimental crosses show that such Dobzhansky-Muller incompatibilities (DMIs) are often complex (involving alleles at three or more loci) and asymmetrical (such that reciprocal introgressions have very different effects on fitness). One possible explanation is that asymmetrical and complex DMIs are 'easier to evolve', because they block fewer of the possible evolutionary paths between the parental genotypes. To assess this argument, we model evolutionary divergence in allopatry and calculate the delays to divergence caused by DMIs of different kinds. We find that the number of paths is sometimes, though not always, a reliable predictor of the time to divergence. In particular, we find limited support for the idea that symmetrical DMIs take longer to evolve, but this applies largely to two-locus symmetrical DMIs (which leave no path of fit intermediates). Symmetrical complex DMIs can also delay divergence, but only in a limited region of parameter space. In most other cases, the presence and form of DMIs have little influence on times to divergence, and so we argue that ease of evolution is unlikely to be important in explaining the experimental data.
Collapse
Affiliation(s)
- C Fraïsse
- Université Montpellier 2, Montpellier Cedex 5, France; Station Méditerranéenne de l'Environnement Littoral, CNRS, Institut des Sciences de l'Evolution (ISEM UMR 5554), Sete, France; Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
64
|
Morán T, Fontdevila A. Genome-wide dissection of hybrid sterility in Drosophila confirms a polygenic threshold architecture. J Hered 2014; 105:381-96. [PMID: 24489077 DOI: 10.1093/jhered/esu003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To date, different studies about the genetic basis of hybrid male sterility (HMS), a postzygotic reproductive barrier thoroughly investigated using Drosophila species, have demonstrated that no single major gene can produce hybrid sterility without the cooperation of several genetic factors. Early work using hybrids between Drosophila koepferae (Dk) and Drosophila buzzatii (Db) was consistent with the idea that HMS requires the cooperation of several genetic factors, supporting a polygenic threshold (PT) model. Here we present a genome-wide mapping strategy to test the PT model, analyzing serially backcrossed fertile and sterile males in which the Dk genome was introgressed into the Db background. We identified 32 Dk-specific markers significantly associated with hybrid sterility. Our results demonstrate 1) a strong correlation between the number of segregated sterility markers and males' degree of sterility, 2) the exchangeability among markers, 3) their tendency to cluster into low-recombining chromosomal regions, and 4) the requirement for a minimum number (threshold) of markers to elicit sterility. Although our findings do not contradict a role for occasional major hybrid-sterility genes, they conform more to the view that HMS primarily evolves by the cumulative action of many interacting genes of minor effect in a complex PT architecture.
Collapse
Affiliation(s)
- Tomás Morán
- the Grup de Biologia Evolutiva, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | |
Collapse
|
65
|
Shirata M, Araye Q, Maehara K, Enya S, Takano-Shimizu T, Sawamura K. Allelic asymmetry of the Lethal hybrid rescue (Lhr) gene expression in the hybrid between Drosophila melanogaster and D. simulans: confirmation by using genetic variations of D. melanogaster. Genetica 2013; 142:43-8. [PMID: 24379167 DOI: 10.1007/s10709-013-9752-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/14/2013] [Indexed: 11/29/2022]
Abstract
In the cross between Drosophila melanogaster females and D. simulans males, hybrid males die at the late larval stage, and the sibling females also die at later stages at high temperatures. Removing the D. simulans allele of the Lethal hybrid rescue gene (Lhr (sim) ) improves the hybrid incompatibility phenotypes. However, the loss-of-function mutation of Lhr (sim) (Lhr (sim0) ) does not rescue the hybrid males in crosses with several D. melanogaster strains. We first describe the genetic factor possessed by the D. melanogaster strains. It has been suggested that removing the D. melanogaster allele of Lhr (Lhr (mel) ), that is Lhr (mel0) , does not have the hybrid male rescue effect, contrasting to Lhr (sim0) . Because the expression level of the Lhr gene is known to be Lhr (sim) > Lhr (mel) in the hybrid, Lhr (mel0) may not lead to enough of a reduction in total Lhr expression. Then, there is a possibility that the D. melanogaster factor changes the expression level to Lhr (sim) < Lhr (mel) . But in fact, the expression level was Lhr (sim) > Lhr (mel) in the hybrid irrespectively of the presence of the factor. At last, we showed that Lhr (mel0) slightly improves the viability of hybrid females, which was not realized previously. All of the present results are consistent with the allelic asymmetry model of the Lhr gene expression in the hybrid.
Collapse
Affiliation(s)
- Mika Shirata
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | |
Collapse
|
66
|
Thomae AW, Schade GOM, Padeken J, Borath M, Vetter I, Kremmer E, Heun P, Imhof A. A pair of centromeric proteins mediates reproductive isolation in Drosophila species. Dev Cell 2013; 27:412-24. [PMID: 24239514 DOI: 10.1016/j.devcel.2013.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/26/2013] [Accepted: 10/01/2013] [Indexed: 01/09/2023]
Abstract
Speciation involves the reproductive isolation of natural populations due to the sterility or lethality of their hybrids. However, the molecular basis of hybrid lethality and the evolutionary driving forces that provoke it remain largely elusive. The hybrid male rescue (Hmr) and the lethal hybrid rescue (Lhr) genes serve as a model to study speciation in Drosophilids because their interaction causes lethality in male hybrid offspring. Here, we show that HMR and LHR form a centromeric complex necessary for proper chromosome segregation. We find that the Hmr expression level is substantially higher in Drosophila melanogaster, whereas Lhr expression levels are increased in Drosophila simulans. The resulting elevated amount of HMR/LHR complex in hybrids results in an extensive mislocalization of the complex, an interference with the regulation of transposable elements, and an impairment of cell proliferation. Our findings provide evidence for a major role of centromere divergence in the generation of biodiversity.
Collapse
Affiliation(s)
- Andreas W Thomae
- Munich Centre of Integrated Protein Science and Adolf-Butenandt Institute, Ludwig Maximilians University of Munich, 80336 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Wang RJ, Ané C, Payseur BA. The evolution of hybrid incompatibilities along a phylogeny. Evolution 2013; 67:2905-22. [PMID: 24094342 DOI: 10.1111/evo.12173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/22/2013] [Indexed: 01/23/2023]
Abstract
The Dobzhansky-Muller model of speciation posits that defects in hybrids between species are the result of negative epistatic interactions between alleles that arose in independent genetic backgrounds. Tests of one important prediction from this model, that incompatibilities "snowball," have relied on comparisons of the number of incompatibilities between closely related pairs of species separated by different divergence times. How incompatibilities accumulate along phylogenies, however, remains poorly understood. We extend the Dobzhansky-Muller model to multispecies clades to describe the mathematical relationship between tree topology and the number of shared incompatibilities among related pairs of species. We use these results to develop a statistical test that distinguishes between the snowball and alternative incompatibility accumulation models, including nonepistatic and multilocus incompatibility models, in a phylogenetic context. We further demonstrate that patterns of incompatibility sharing across species pairs can be used to estimate the relative frequencies of different types of incompatibilities, including derived-derived versus derived-ancestral incompatibilities. Our results and statistical methods should motivate comparative genetic mapping of hybrid incompatibilities to evaluate competing models of speciation.
Collapse
Affiliation(s)
- Richard J Wang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | | | | |
Collapse
|
68
|
Gavin-Smyth J, Matute DR. Embryonic lethality leads to hybrid male inviability in hybrids between Drosophila melanogaster and D. santomea. Ecol Evol 2013; 3:1580-9. [PMID: 23789069 PMCID: PMC3686193 DOI: 10.1002/ece3.573] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/21/2013] [Accepted: 03/25/2013] [Indexed: 01/27/2023] Open
Abstract
The study of the morphological defects unique to interspecific hybrids can reveal which developmental pathways have diverged between species. Drosophila melanogaster and D. santomea diverged more than 10 million years ago, and when crossed produce sterile adult females. Adult hybrid males are absent from all interspecific crosses. We aimed to determine the fate of these hybrid males. To do so, we tracked the development of hybrid females and males using classic genetic markers and techniques. We found that hybrid males die predominantly as embryos with severe segment-specification defects while a large proportion of hybrid females embryos hatch and survive to adulthood. In particular, we show that most male embryos show a characteristic abdominal ablation phenotype, not observed in either parental species. This suggests that sex-specific embryonic developmental defects eliminate hybrid males in this interspecific cross. The study of the developmental abnormalities that occur in hybrids can lead to the understanding of cryptic molecular divergence between species sharing a conserved body plan.
Collapse
Affiliation(s)
- Jackie Gavin-Smyth
- Ecology and Evolution, The University of Chicago 920 East 58th Street, Chicago, Illinois, 60637, USA ; The Chicago Fellows Program, The University of Chicago 920 East 58th Street, Chicago, Illinois, 60637, USA
| | | |
Collapse
|
69
|
Parchman TL, Gompert Z, Braun MJ, Brumfield RT, McDonald DB, Uy JAC, Zhang G, Jarvis ED, Schlinger BA, Buerkle CA. The genomic consequences of adaptive divergence and reproductive isolation between species of manakins. Mol Ecol 2013; 22:3304-17. [DOI: 10.1111/mec.12201] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 11/30/2022]
Affiliation(s)
- T. L. Parchman
- Department of Botany; University of Wyoming; Laramie WY 82071 USA
| | - Z. Gompert
- Department of Botany; University of Wyoming; Laramie WY 82071 USA
| | - M. J. Braun
- National Museum of Natural History; Smithsonian Institution; Washington D.C. 20560 USA
| | - R. T. Brumfield
- Department of Biological Sciences and Museum of Natural Science; Louisiana State University; Baton Rouge LA 70803 USA
| | - D. B. McDonald
- Department of Zoology and Physiology; University of Wyoming; Laramie WY 82071 USA
| | - J. A. C. Uy
- Department of Biology; University of Miami; Miami FL 33146 USA
| | - G. Zhang
- Beijing Genome Institute; Beijing China
| | - E. D. Jarvis
- Department of Neurobiology; Duke University Medical Center; Durham NC 27710 USA
| | - B. A. Schlinger
- Department of Integrative Biology and Physiology; University of California-Los Angeles; Los Angeles CA 90095 USA
| | - C. A. Buerkle
- Department of Botany; University of Wyoming; Laramie WY 82071 USA
| |
Collapse
|
70
|
Nolte V, Pandey RV, Kofler R, Schlötterer C. Genome-wide patterns of natural variation reveal strong selective sweeps and ongoing genomic conflict in Drosophila mauritiana. Genome Res 2013; 23:99-110. [PMID: 23051690 PMCID: PMC3530687 DOI: 10.1101/gr.139873.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 09/24/2012] [Indexed: 12/25/2022]
Abstract
Although it is well understood that selection shapes the polymorphism pattern in Drosophila, signatures of classic selective sweeps are scarce. Here, we focus on Drosophila mauritiana, an island endemic, which is closely related to Drosophila melanogaster. Based on a new, annotated genome sequence, we characterized the genome-wide polymorphism by sequencing pooled individuals (Pool-seq). We show that the interplay between selection and recombination results in a genome-wide polymorphism pattern characteristic for D. mauritiana. Two large genomic regions (>500 kb) showed the signature of almost complete selective sweeps. We propose that the absence of population structure and limited geographic distribution could explain why such pronounced sweep patterns are restricted to D. mauritiana. Further evidence for strong adaptive evolution was detected for several nucleoporin genes, some of which were not previously identified as genes involved in genomic conflict. Since this adaptive evolution is continuing after the split of D. mauritiana and Drosophila simulans, we conclude that genomic conflict is not restricted to short episodes, but rather an ongoing process in Drosophila.
Collapse
Affiliation(s)
- Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
| | - Ram Vinay Pandey
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
| | | |
Collapse
|
71
|
Gompert Z, Lucas LK, Nice CC, Buerkle CA. GENOME DIVERGENCE AND THE GENETIC ARCHITECTURE OF BARRIERS TO GENE FLOW BETWEENLYCAEIDES IDASANDL. MELISSA. Evolution 2012; 67:2498-514. [DOI: 10.1111/evo.12021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/30/2012] [Indexed: 01/28/2023]
Affiliation(s)
| | - Lauren K. Lucas
- Department of Biology; Texas State University; San Marcos; Texas
| | - Chris C. Nice
- Department of Biology; Texas State University; San Marcos; Texas
| | - C. Alex Buerkle
- Department of Botany; University of Wyoming; Laramie; Wyoming
| |
Collapse
|
72
|
Wang RX. Gene flow across a hybrid zone maintained by a weak heterogametic incompatibility and positive selection of incompatible alleles. J Evol Biol 2012; 26:386-98. [PMID: 23279645 DOI: 10.1111/jeb.12057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/18/2012] [Accepted: 10/24/2012] [Indexed: 11/27/2022]
Abstract
Hybridization between incipient species is more likely to produce sterile or inviable F(1) offspring in the heterogametic (XY or ZW) sex than in the homogametic (XX or ZZ) sex, a phenomenon known as Haldane's rule. Population dynamics associated with Haldane's rule may play an important role in early speciation of sexually reproducing organisms. The dynamics of the hybrid zone maintained by incomplete hybrid inferiority (sterility/inviability) in the heterogametic sex (a 'weak' Haldane's rule) caused by a Bateson-Dobzhansky-Muller incompatibility was modelled. The influences and interplays of the strengths of incompatibility, dispersal, density-dependent regulation (DDR) and local adaptation of incompatible alleles in a scenario of short-range dispersal (the stepping-stone model) were examined. It was found that a partial heterogametic hybrid incompatibility could efficiently impede gene flow and maintain characteristic clinal noncoincidence and discordance of alleles. Density-dependent regulation appears to be an important factor affecting hybrid zone dynamics: it can effectively skew the effects of the partial incompatibility and dispersal as measured by effective dispersal, clinal structures and density depression. Unexpectedly, local adaptation of incompatible alleles in the parental populations, which would be critical for the establishment of the incompatibility, exerts little effect on hybrid zone dynamics. These results strongly support the plausibility of the adaptive origin of hybrid incompatibility and ecological speciation: an adaptive mutation, if it confers a marginal fitness advantage in the local population and happens to cause epistatic inferiority in hybrids, could efficiently drive further genetic divergence that may result in the gene becoming an evolutionary hotspot.
Collapse
Affiliation(s)
- R-X Wang
- BC Cancer Agency, Vancouver, BC, Canada.
| |
Collapse
|
73
|
Sex and speciation: Drosophila reproductive tract proteins- twenty five years later. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:191495. [PMID: 23119225 PMCID: PMC3483712 DOI: 10.1155/2012/191495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/16/2012] [Indexed: 11/20/2022]
Abstract
The protein electrophoresis revolution, nearly fifty years ago, provided the first glimpse into the nature of molecular genetic variation within and between species and showed that the amount of genetic differences between newly arisen species was minimal. Twenty years later, 2D electrophoresis showed that, in contrast to general gene-enzyme variation, reproductive tract proteins were less polymorphic within species but highly diverged between species. The 2D results were interesting and revolutionary, but somewhat uninterpretable because, at the time, rapid evolution and selective sweeps were not yet part of the common vocabulary of evolutionary biologists. Since then, genomic studies of sex and reproduction-related (SRR) genes have grown rapidly into a large area of research in evolutionary biology and are shedding light on a number of phenomena. Here we review some of the major and current fields of research that have greatly contributed to our understanding of the evolutionary dynamics and importance of SRR genes and genetic systems in understanding reproductive biology and speciation.
Collapse
|
74
|
Conflictual speciation: species formation via genomic conflict. Trends Ecol Evol 2012; 28:48-57. [PMID: 22995895 DOI: 10.1016/j.tree.2012.08.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 11/23/2022]
Abstract
A remarkable suite of forms of genomic conflict has recently been implicated in speciation. We propose that these diverse roles of genomic conflict in speciation processes can be unified using the concept of 'conflictual speciation'. Conflictual speciation centers on the evolution of reproductive isolation as a byproduct of antagonistic selection among genomic elements with divergent fitness interests. Intragenomic conflicts are expected to readily generate Dobzhansky-Muller incompatibilities, due to population-specific interactions between opposing elements, and thus they could be especially important in speciation. Moreover, selection from genomic conflicts should be relatively unrelenting across ecological and evolutionary time scales. We explain how intragenomic conflicts can promote, or sometimes constrain, speciation, and describe evidence relating conflicts to the evolution of reproductive isolation.
Collapse
|
75
|
Maehara K, Murata T, Aoyama N, Matsuno K, Sawamura K. Genetic dissection of Nucleoporin 160 (Nup160), a gene involved in multiple phenotypes of reproductive isolation in Drosophila. Genes Genet Syst 2012; 87:99-106. [PMID: 22820383 DOI: 10.1266/ggs.87.99] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Previous reports have suggested that the Nucleoporin 160 (Nup160) gene of Drosophila simulans (Nup160(sim)) causes the hybrid inviability, female sterility, and morphological anomalies that are observed in crosses with D. melanogaster. Here we have confirmed this observation by transposon excision from the P{EP}Nup160(EP372) insertion mutation of D. melanogaster. Null mutations of the Nup160 gene resulted in the three phenotypes caused by Nup160(sim), but revertants of the gene did not. Interestingly, several mutations produced by excision partially complemented hybrid inviability, female sterility, or morphological anomalies. In the future, these mutations will be useful to further our understanding of the developmental mechanisms of reproductive isolation. Based on our analyses with the Nup160(sim) introgression line, the lethal phase of hybrid inviability was determined to be during the early pupal stage. Our analysis also suggested that homozygous Nup160(sim) in D. melanogaster leads to slow development. Thus, Nup160(sim) is involved in multiple aspects of reproductive isolation between these two species.
Collapse
Affiliation(s)
- Kazunori Maehara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
76
|
White MA, Stubbings M, Dumont BL, Payseur BA. Genetics and evolution of hybrid male sterility in house mice. Genetics 2012; 191:917-34. [PMID: 22554891 PMCID: PMC3389984 DOI: 10.1534/genetics.112.140251] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 04/23/2012] [Indexed: 12/12/2022] Open
Abstract
Comparative genetic mapping provides insights into the evolution of the reproductive barriers that separate closely related species. This approach has been used to document the accumulation of reproductive incompatibilities over time, but has only been applied to a few taxa. House mice offer a powerful system to reconstruct the evolution of reproductive isolation between multiple subspecies pairs. However, studies of the primary reproductive barrier in house mice-hybrid male sterility-have been restricted to a single subspecies pair: Mus musculus musculus and Mus musculus domesticus. To provide a more complete characterization of reproductive isolation in house mice, we conducted an F(2) intercross between wild-derived inbred strains from Mus musculus castaneus and M. m. domesticus. We identified autosomal and X-linked QTL associated with a range of hybrid male sterility phenotypes, including testis weight, sperm density, and sperm morphology. The pseudoautosomal region (PAR) was strongly associated with hybrid sterility phenotypes when heterozygous. We compared QTL found in this cross with QTL identified in a previous F(2) intercross between M. m. musculus and M. m. domesticus and found three shared autosomal QTL. Most QTL were not shared, demonstrating that the genetic basis of hybrid male sterility largely differs between these closely related subspecies pairs. These results lay the groundwork for identifying genes responsible for the early stages of speciation in house mice.
Collapse
Affiliation(s)
| | - Maria Stubbings
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Bret A. Payseur
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
77
|
Johnson NA, Lachance J. The genetics of sex chromosomes: evolution and implications for hybrid incompatibility. Ann N Y Acad Sci 2012; 1256:E1-22. [PMID: 23025408 PMCID: PMC3509754 DOI: 10.1111/j.1749-6632.2012.06748.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Heteromorphic sex chromosomes, where one sex has two different types of sex chromosomes, face very different evolutionary consequences than do autosomes. Two important features of sex chromosomes arise from being present in only one copy in one of the sexes: dosage compensation and the meiotic silencing of sex chromosomes. Other differences arise because sex chromosomes spend unequal amounts of time in each sex. Thus, the impact of evolutionary processes (mutation, selection, genetic drift, and meiotic drive) differs substantially between each sex chromosome, and between the sex chromosomes and the autosomes. Sex chromosomes also play a disproportionate role in Haldane's rule and other important patterns related to hybrid incompatibility, and thus speciation. We review the consequences of sex chromosomes on hybrid incompatibility. A theme running through this review is that epigenetic processes, notably those related to chromatin, may be more important to the evolution of sex chromosomes and the evolution of hybrid incompatibility than previously recognized.
Collapse
Affiliation(s)
- Norman A Johnson
- Department of Plant, Soil, and Insect Sciences, and Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA.
| | | |
Collapse
|
78
|
McNabney DR. The genetic basis of behavioral isolation between Drosophila mauritiana and D. sechellia. Evolution 2012; 66:2182-90. [PMID: 22759294 DOI: 10.1111/j.1558-5646.2012.01600.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Understanding how species form is a fundamental question in evolutionary biology. Identifying the genetic bases of barriers that prevent gene flow between species provides insight into how speciation occurs. Here, I analyze a poorly understood reproductive isolating barrier, prezygotic reproductive isolation. I perform a genetic analysis of prezygotic isolation between two closely related species of Drosophila, D. mauritiana and D. sechellia. I first confirm the existence of strong behavioral isolation between D. mauritiana females and D. sechellia males. Next, I examine the genetic basis of behavioral isolation by (1) scanning an existing set of introgression lines for chromosomal regions that have a large effect on isolation; and (2) mapping quantitative trait loci (QTL) that underlie behavioral isolation via backcross analysis. In particular, I map QTL that determine whether a hybrid backcross female and a D. sechellia male will mate. I identify a single significant QTL, on the X chromosome, suggesting that few major-effect loci contribute to behavioral isolation between these species. In further work, I refine the map position of the QTL to a small region of the X chromosome.
Collapse
Affiliation(s)
- Daniel R McNabney
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
79
|
Incompatibility between X chromosome factor and pericentric heterochromatic region causes lethality in hybrids between Drosophila melanogaster and its sibling species. Genetics 2012; 191:549-59. [PMID: 22446316 DOI: 10.1534/genetics.112.139683] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Dobzhansky-Muller model posits that postzygotic reproductive isolation results from the evolution of incompatible epistatic interactions between species: alleles that function in the genetic background of one species can cause sterility or lethality in the genetic background of another species. Progress in identifying and characterizing factors involved in postzygotic isolation in Drosophila has remained slow, mainly because Drosophila melanogaster, with all of its genetic tools, forms dead or sterile hybrids when crossed to its sister species, D. simulans, D. sechellia, and D. mauritiana. To circumvent this problem, we used chromosome deletions and duplications from D. melanogaster to map two hybrid incompatibility loci in F(1) hybrids with its sister species. We mapped a recessive factor to the pericentromeric heterochromatin of the X chromosome in D. simulans and D. mauritiana, which we call heterochromatin hybrid lethal (hhl), which causes lethality in F(1) hybrid females with D. melanogaster. As F(1) hybrid males hemizygous for a D. mauritiana (or D. simulans) X chromosome are viable, the lethality of deficiency hybrid females implies that a dominant incompatible partner locus exists on the D. melanogaster X. Using small segments of the D. melanogaster X chromosome duplicated onto the Y chromosome, we mapped a dominant factor that causes hybrid lethality to a small 24-gene region of the D. melanogaster X. We provide evidence suggesting that it interacts with hhl(mau). The location of hhl is consistent with the emerging theme that hybrid incompatibilities in Drosophila involve heterochromatic regions and factors that interact with the heterochromatin.
Collapse
|
80
|
Peromyscus as a Mammalian epigenetic model. GENETICS RESEARCH INTERNATIONAL 2012; 2012:179159. [PMID: 22567379 PMCID: PMC3335729 DOI: 10.1155/2012/179159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/10/2011] [Accepted: 12/02/2011] [Indexed: 12/12/2022]
Abstract
Deer mice (Peromyscus) offer an opportunity for studying the effects of natural genetic/epigenetic variation with several advantages over other mammalian models. These advantages include the ability to study natural genetic variation and behaviors not present in other models. Moreover, their life histories in diverse habitats are well studied. Peromyscus resources include genome sequencing in progress, a nascent genetic map, and >90,000 ESTs. Here we review epigenetic studies and relevant areas of research involving Peromyscus models. These include differences in epigenetic control between species and substance effects on behavior. We also present new data on the epigenetic effects of diet on coat-color using a Peromyscus model of agouti overexpression. We suggest that in terms of tying natural genetic variants with environmental effects in producing specific epigenetic effects, Peromyscus models have a great potential.
Collapse
|
81
|
Gompert Z, Lucas LK, Nice CC, Fordyce JA, Forister ML, Buerkle CA. GENOMIC REGIONS WITH A HISTORY OF DIVERGENT SELECTION AFFECT FITNESS OF HYBRIDS BETWEEN TWO BUTTERFLY SPECIES. Evolution 2012; 66:2167-81. [DOI: 10.1111/j.1558-5646.2012.01587.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
82
|
Nei M, Nozawa M. Roles of mutation and selection in speciation: from Hugo de Vries to the modern genomic era. Genome Biol Evol 2011; 3:812-29. [PMID: 21903731 PMCID: PMC3227404 DOI: 10.1093/gbe/evr028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
One of the most important problems in evolutionary biology is to understand how new species are generated in nature. In the past, it was difficult to study this problem because our lifetime is too short to observe the entire process of speciation. In recent years, however, molecular and genomic techniques have been developed for identifying and studying the genes involved in speciation. Using these techniques, many investigators have already obtained new findings. At present, however, the results obtained are complex and quite confusing. We have therefore attempted to understand these findings coherently with a historical perspective and clarify the roles of mutation and natural selection in speciation. We have first indicated that the root of the currently burgeoning field of plant genomics goes back to Hugo de Vries, who proposed the mutation theory of evolution more than a century ago and that he unknowingly found the importance of polyploidy and chromosomal rearrangements in plant speciation. We have then shown that the currently popular Dobzhansky–Muller model of evolution of reproductive isolation is only one of many possible mechanisms. Some of them are Oka’s model of duplicate gene mutations, multiallelic speciation, mutation-rescue model, segregation-distorter gene model, heterochromatin-associated speciation, single-locus model, etc. The occurrence of speciation also depends on the reproductive system, population size, bottleneck effects, and environmental factors, such as temperature and day length. Some authors emphasized the importance of natural selection to speed up speciation, but mutation is crucial in speciation because reproductive barriers cannot be generated without mutations.
Collapse
Affiliation(s)
- Masatoshi Nei
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University.
| | | |
Collapse
|
83
|
Phadnis N, Hsieh E, Malik HS. Birth, death, and replacement of karyopherins in Drosophila. Mol Biol Evol 2011; 29:1429-40. [PMID: 22160828 DOI: 10.1093/molbev/msr306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nucleocytoplasmic transport is a broadly conserved process across eukaryotes. Despite its essential function and conserved mechanism, components of the nuclear transport apparatus have been implicated in genetic conflicts in Drosophila, especially in the male germ line. The best understood case is represented by a truncated RanGAP gene duplication that is part of the segregation distorter system in Drosophila melanogaster. Consistent with the hypothesis that the nuclear transport pathway is at the heart of mediating genetic conflicts, both nucleoporins and directionality imposing components of nuclear transport have previously been shown to evolve under positive selection. Here, we present a comprehensive phylogenomic analysis of importins (karyopherins) in Drosophila evolution. Importins are adaptor molecules that physically mediate the transport of cargo molecules and comprise the third component of the nuclear transport apparatus. We find that importins have been repeatedly gained and lost throughout various stages of Drosophila evolution, including two intriguing examples of an apparently coincident loss and gain of nonorthologous and noncanonical importin-α. Although there are a few signatures of episodic positive selection, genetic innovation in importin evolution is more evident in patterns of recurrent gene birth and loss specifically for function in Drosophila testes, which is consistent with their role in supporting host genomes defense against segregation distortion.
Collapse
Affiliation(s)
- Nitin Phadnis
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | |
Collapse
|
84
|
The case of the fickle fingers: how the PRDM9 zinc finger protein specifies meiotic recombination hotspots in humans. PLoS Biol 2011; 9:e1001211. [PMID: 22162947 PMCID: PMC3232208 DOI: 10.1371/journal.pbio.1001211] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Recent discoveries have revealed the central role of PRDM9 in mammalian recombination. The precise function of this protein, however, remains poorly understood, as do the causes for its rapid evolution and its role in reproductive isolation. During mammalian meiosis, double-strand breaks are deliberately made throughout the genome and then repaired, leading to the exchange of genetic material between copies of chromosomes. How the locations of breaks are specified was largely unknown until a fortuitous confluence of statistical genetics and molecular biology uncovered the role of PRDM9, a DNA binding protein. Many properties of this protein remain mysterious, however, including how it binds to DNA, how it contributes to male infertility—both in humans, and in hybrid mice—and why, in spite of its fundamental function in meiosis, its binding domain varies extensively among humans and across mammals. We present a brief summary of what has recently been learned about PRDM9 in different fields, focusing on the puzzles yet to be resolved.
Collapse
|
85
|
Chromatin evolution and molecular drive in speciation. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2011; 2012:301894. [PMID: 22191063 PMCID: PMC3235502 DOI: 10.1155/2012/301894] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/05/2011] [Indexed: 11/17/2022]
Abstract
Are there biological generalities that underlie hybrid sterility or inviability? Recently, around a dozen "speciation genes" have been identified mainly in Drosophila, and the biological functions of these genes are revealing molecular generalities. Major cases of hybrid sterility and inviability seem to result from chromatin evolution and molecular drive in speciation. Repetitive satellite DNAs within heterochromatin, especially at centromeres, evolve rapidly through molecular drive mechanisms (both meiotic and centromeric). Chromatin-binding proteins, therefore, must also evolve rapidly to maintain binding capability. As a result, chromatin binding proteins may not be able to interact with chromosomes from another species in a hybrid, causing hybrid sterility and inviability.
Collapse
|
86
|
Barbash DA. Comment on "A test of the snowball theory for the rate of evolution of hybrid incompatibilities". Science 2011; 333:1576; author reply 1576. [PMID: 21921181 DOI: 10.1126/science.1203149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Matute et al. (Reports, 17 September 2010, p. 1518) tested the theory that the number of genes involved in hybrid incompatibility increases faster than linearly. However, the method they used is inappropriate because it detects genes that are haploinsufficient in a hybrid background but that would not contribute to lethality in wild-type hybrids, thus overestimating the frequency of hybrid inviability.
Collapse
Affiliation(s)
- Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
87
|
Abstract
Incompatibilities in interspecific hybrids, such as sterility and lethality, are widely observed causes of reproductive isolation and thus contribute to speciation. Because hybrid incompatibilities are caused by divergence in each of the hybridizing species, they also reveal genomic changes occurring on short evolutionary time scales that have functional consequences. These changes include divergence in protein-coding gene sequence, structure, and location, as well as divergence in noncoding DNAs. The most important unresolved issue is understanding the evolutionary causes of the divergence within species that in turn leads to incompatibility between species. Surprisingly, much of this divergence does not appear to be driven by ecological adaptation but may instead result from responses to purely mutational mechanisms or to internal genetic conflicts.
Collapse
Affiliation(s)
- Shamoni Maheshwari
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
88
|
Genetic dissection of a key reproductive barrier between nascent species of house mice. Genetics 2011; 189:289-304. [PMID: 21750261 DOI: 10.1534/genetics.111.129171] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Reproductive isolation between species is often caused by deleterious interactions among loci in hybrids. Finding the genes involved in these incompatibilities provides insight into the mechanisms of speciation. With recently diverged subspecies, house mice provide a powerful system for understanding the genetics of reproductive isolation early in the speciation process. Although previous studies have yielded important clues about the genetics of hybrid male sterility in house mice, they have been restricted to F1 sterility or incompatibilities involving the X chromosome. To provide a more complete characterization of this key reproductive barrier, we conducted an F2 intercross between wild-derived inbred strains from two subspecies of house mice, Mus musculus musculus and Mus musculus domesticus. We identified a suite of autosomal and X-linked QTL that underlie measures of hybrid male sterility, including testis weight, sperm density, and sperm morphology. In many cases, the autosomal loci were unique to a specific sterility trait and exhibited an effect only when homozygous, underscoring the importance of examining reproductive barriers beyond the F1 generation. We also found novel two-locus incompatibilities between the M. m. musculus X chromosome and M. m. domesticus autosomal alleles. Our results reveal a complex genetic architecture for hybrid male sterility and suggest a prominent role for reproductive barriers in advanced generations in maintaining subspecies integrity in house mice.
Collapse
|
89
|
Pereira RJ, Monahan WB, Wake DB. Predictors for reproductive isolation in a ring species complex following genetic and ecological divergence. BMC Evol Biol 2011; 11:194. [PMID: 21733173 PMCID: PMC3225234 DOI: 10.1186/1471-2148-11-194] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 07/06/2011] [Indexed: 11/15/2022] Open
Abstract
Background Reproductive isolation (RI) is widely accepted as an important "check point" in the diversification process, since it defines irreversible evolutionary trajectories. Much less consensus exists about the processes that might drive RI. Here, we employ a formal quantitative analysis of genetic interactions at several stages of divergence within the ring species complex Ensatina eschscholtzii in order to assess the relative contribution of genetic and ecological divergence for the development of RI. Results By augmenting previous genetic datasets and adding new ecological data, we quantify levels of genetic and ecological divergence between populations and test how they correlate with a restriction of genetic admixture upon secondary contact. Our results indicate that the isolated effect of ecological divergence between parental populations does not result in reproductively isolated taxa, even when genetic transitions between parental taxa are narrow. Instead, processes associated with overall genetic divergence are the best predictors of reproductive isolation, and when parental taxa diverge in nuclear markers we observe a complete cessation of hybridization, even to sympatric occurrence of distinct evolutionary lineages. Although every parental population has diverged in mitochondrial DNA, its degree of divergence does not predict the extent of RI. Conclusions These results show that in Ensatina, the evolutionary outcomes of ecological divergence differ from those of genetic divergence. While evident properties of taxa may emerge via ecological divergence, such as adaptation to local environment, RI is likely to be a byproduct of processes that contribute to overall genetic divergence, such as time in geographic isolation, rather than being a direct outcome of local adaptation.
Collapse
Affiliation(s)
- Ricardo J Pereira
- Museum of Vertebrate Zoology and Department of Integrative Biology, 3101 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3160, USA.
| | | | | |
Collapse
|
90
|
Complex deleterious interactions associated with malic enzyme may contribute to reproductive isolation in the copepod Tigriopus californicus. PLoS One 2011; 6:e21177. [PMID: 21731664 PMCID: PMC3120845 DOI: 10.1371/journal.pone.0021177] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 05/22/2011] [Indexed: 11/24/2022] Open
Abstract
Dobzhansky-Muller incompatibilities can result from the interactions of more than a single pair of interacting genes and there are several different models of how such complex interactions can be structured. Previous empirical work has identified complex conspecific epistasis as a form of complex interaction that has contributed to postzygotic reproductive isolation between taxa, but other forms of complexity are also possible. Here, I probe the genetic basis of reproductive isolation in crosses of the intertidal copepod Tigriopus californicus by looking at the impact of markers in genes encoding metabolic enzymes in F2 hybrids. The region of the genome associated with the locus ME2 is shown to have strong, repeatable impacts on the fitness of hybrids in crosses and epistatic interactions with another chromosomal region marked by the GOT2 locus in one set of crosses. In a cross between one of these populations and a third population, these two regions do not appear to interact despite the continuation of a large effect of the ME2 region itself in both crosses. The combined results suggest that the ME2 chromosomal region is involved in incompatibilities with several unique partners. If these deleterious interactions all stem from the same factor in this region, that would suggest a different form of complexity from complex conspecific epistasis, namely, multiple independent deleterious interactions stemming from the same factor. Confirmation of this idea will require more fine-scale mapping of the interactions of the ME2 region of the genome.
Collapse
|
91
|
Leppälä J, Savolainen O. Nuclear-cytoplasmic interactions reduce male fertility in hybrids of Arabidopsis lyrata subspecies. Evolution 2011; 65:2959-72. [PMID: 21967435 DOI: 10.1111/j.1558-5646.2011.01361.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We examined the level of postzygotic reproductive isolation in F(1) and F(2) hybrids of reciprocal crosses between the Arabidopsis lyrata subspecies lyrata (North American) and petraea (European). Our main results are: first, the percentage of fertile pollen was significantly reduced in the F(1) and F(2) compared to the parental populations. Second, mean pollen fertility differed markedly between reciprocal crosses: 84% in the F(2) with ssp. lyrata cytoplasm and 61% in the F(2) with ssp. petraea cytoplasm. Third, 17% of the F(2) with ssp. petraea cytoplasm showed male sterility (produced less than 30 pollen grains in our subsample). The hybrids were female fertile. We used QTL mapping to find the genomic regions that determine pollen fertility and that restore cytoplasmic male sterility (CMS). In the F(2) with ssp. lyrata cytoplasm, an epistatic pair of QTLs was detected. In the reciprocal F(2) progeny, four QTLs demonstrated within-population polymorphism for hybrid male sterility. In addition, in the F(2) with ssp. petraea cytoplasm, there was a strong male fertility restorer locus on chromosome 2 where a cluster of CMS restorer gene-related PPR genes have been found in A. lyrata. Our results underline the importance of cytonuclear interactions in understanding genetics of the early stages of speciation.
Collapse
Affiliation(s)
- Johanna Leppälä
- Department of Biology and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland.
| | | |
Collapse
|
92
|
Genetic incompatibility dampens hybrid fertility more than hybrid viability: yeast as a case study. PLoS One 2011; 6:e18341. [PMID: 21494679 PMCID: PMC3071822 DOI: 10.1371/journal.pone.0018341] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 02/25/2011] [Indexed: 11/19/2022] Open
Abstract
Genetic incompatibility is believed to be the major cause of postzygotic
reproductive isolation. Despite huge efforts seeking for speciation-related
incompatibilities in the past several decades, a general understanding of how
genetic incompatibility evolves in affecting hybrid fitness is not available,
primarily due to the fact that the number of known incompatibilities is small.
Instead of further mapping specific incompatible genes, in this paper we aimed
to know the overall effects of incompatibility on fertility and viability, the
two aspects of fitness, by examining 89 gametes produced by yeast S.
cerevisiae - S. paradoxus F1 hybrids. Homozygous
F2 hybrids formed by autodiploidization of F1 gametes were subject to tests for
growth rate and sporulation efficiency. We observed much stronger defects in
sporulation than in clonal growth for every single F2 hybrid strain, indicating
that genetic incompatibility affects hybrid fertility more than hybrid viability
in yeast. We related this finding in part to the fast-evolving nature of
meiosis-related genes, and proposed that the generally low expression levels of
these genes might be a cause of the observation.
Collapse
|
93
|
Nosil P, Schluter D. The genes underlying the process of speciation. Trends Ecol Evol 2011; 26:160-7. [DOI: 10.1016/j.tree.2011.01.001] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 12/31/2010] [Accepted: 01/03/2011] [Indexed: 11/30/2022]
|
94
|
Presgraves DC. Darwin and the origin of interspecific genetic incompatibilities. Am Nat 2011; 176 Suppl 1:S45-60. [PMID: 21043780 DOI: 10.1086/657058] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Darwin's Origin of Species is often criticized for having little to say about speciation. The complaint focuses in particular on Darwin's supposed failure to explain the evolution of the sterility and inviability of interspecific hybrids. But in his chapter on hybridism, Darwin, working without genetics, got as close to the modern understanding of the evolution of hybrid sterility and inviability as might reasonably be expected. In particular, after surveying what was then known about interspecific crosses and the resulting hybrids, he established two facts that, while now taken for granted, were at the time radical. First, the sterility barriers between species are neither specially endowed by a creator nor directly favored by natural selection but rather evolve as incidental by-products of interspecific divergence. Second, the sterility of species hybrids results when their development is "disturbed by two organizations having been compounded into one." Bateson, Dobzhansky, and Muller later put Mendelian detail to Darwin's inference that the species-specific factors controlling development (i.e., genes) are sometimes incompatible. In this article, I highlight the major developments in our understanding of these interspecific genetic incompatibilities--from Darwin to Muller to modern theory--and review comparative, genetic, and molecular rules that characterize the evolution of hybrid sterility and inviability.
Collapse
Affiliation(s)
- Daven C Presgraves
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
95
|
Abstract
Within 10 years of the beginning of experimental genetic research on Drosophila melanogaster, in 1919, A. H. Sturtevant discovered its sibling species, D. simulans. He hybridized the two species and made fundamental discoveries about the genetic basis of hybrid incompatibility. The complete sterility of surviving F(1) hybrids frustrated Sturtevant and his vision of comprehensively exploring the genetics of interspecific differences. But over the next 90 years, a combination of clever genetic tricks and close observation of natural variation has led to a wealth of discovery using these and other hybrids of D. melanogaster and D. simulans, resulting in an advanced understanding of speciation and the evolution of morphology, gene regulation, and behavior.
Collapse
|
96
|
Ecological Divergence and the Origins of Intrinsic Postmating Isolation with Gene Flow. INTERNATIONAL JOURNAL OF ECOLOGY 2011. [DOI: 10.1155/2011/435357] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The evolution of intrinsic postmating isolation has received much attention, both historically and in recent studies of speciation genes. Intrinsic isolation often stems from between-locus genetic incompatibilities, where alleles that function well within species are incompatible with one another when brought together in the genome of a hybrid. It can be difficult for such incompatibilities to originate when populations diverge with gene flow, because deleterious genotypic combinations will be created and then purged by selection. However, it has been argued that if genes underlying incompatibilities are themselves subject to divergent selection, then they might overcome gene flow to diverge between populations, resulting in the origin of incompatibilities. Nonetheless, there has been little explicit mathematical exploration of such scenarios for the origin of intrinsic incompatibilities during ecological speciation with gene flow. Here we explore theoretical models for the origin of intrinsic isolation where genes subject to divergent natural selection also affect intrinsic isolation, either directly or via linkage disequilibrium with other loci. Such genes indeed overcome gene flow, diverge between populations, and thus result in the evolution of intrinsic isolation. We also examine barriers to neutral gene flow. Surprisingly, we find that intrinsic isolation sometimes weakens this barrier, by impeding differentiation via ecologically based divergent selection.
Collapse
|
97
|
Araripe LO, Montenegro H, Lemos B, Hartl DL. Fine-scale genetic mapping of a hybrid sterility factor between Drosophila simulans and D. mauritiana: the varied and elusive functions of "speciation genes". BMC Evol Biol 2010; 10:385. [PMID: 21144061 PMCID: PMC3020225 DOI: 10.1186/1471-2148-10-385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 12/14/2010] [Indexed: 11/10/2022] Open
Abstract
Background Hybrid male sterility (HMS) is a usual outcome of hybridization between closely related animal species. It arises because interactions between alleles that are functional within one species may be disrupted in hybrids. The identification of genes leading to hybrid sterility is of great interest for understanding the evolutionary process of speciation. In the current work we used marked P-element insertions as dominant markers to efficiently locate one genetic factor causing a severe reduction in fertility in hybrid males of Drosophila simulans and D. mauritiana. Results Our mapping effort identified a region of 9 kb on chromosome 3, containing three complete and one partial coding sequences. Within this region, two annotated genes are suggested as candidates for the HMS factor, based on the comparative molecular characterization and public-source information. Gene Taf1 is partially contained in the region, but yet shows high polymorphism with four fixed non-synonymous substitutions between the two species. Its molecular functions involve sequence-specific DNA binding and transcription factor activity. Gene agt is a small, intronless gene, whose molecular function is annotated as methylated-DNA-protein-cysteine S-methyltransferase activity. High polymorphism and one fixed non-synonymous substitution suggest this is a fast evolving gene. The gene trees of both genes perfectly separate D. simulans and D. mauritiana into monophyletic groups. Analysis of gene expression using microarray revealed trends that were similar to those previously found in comparisons between whole-genome hybrids and parental species. Conclusions The identification following confirmation of the HMS candidate gene will add another case study leading to understanding the evolutionary process of hybrid incompatibility.
Collapse
Affiliation(s)
- Luciana O Araripe
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | |
Collapse
|
98
|
Willett CS. The nature of interactions that contribute to postzygotic reproductive isolation in hybrid copepods. Genetica 2010; 139:575-88. [PMID: 21104425 DOI: 10.1007/s10709-010-9525-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 11/09/2010] [Indexed: 11/24/2022]
Abstract
Deleterious interactions within the genome of hybrids can lower fitness and result in postzygotic reproductive isolation. Understanding the genetic basis of these deleterious interactions, known as Dobzhansky-Muller incompatibilities, is the subject of intense current study that seeks to elucidate the nature of these deleterious interactions. Hybrids from crosses of individuals from genetically divergent populations of the intertidal copepod Tigriopus californicus provide a useful model in which to study Dobzhansky-Muller incompatibilities. Studies of the basis of postzygotic reproductive isolation in this species have revealed a number of patterns. First, there is evidence for a breakdown in genomic coadaptation between mtDNA-encoded and nuclear-encoded proteins that can result in a reduction in hybrid fitness in some crosses. It appears from studies of the individual genes involved in these interactions that although this coadaptation could lead to asymmetries between crosses, patterns of genotypic viabilities are not often consistent with simple models of genomic coadaptation. Second, there is a large impact of environmental factors on these deleterious interactions suggesting that they are not strictly intrinsic in nature. Temperature in particular appears to play an important role in determining the nature of these interactions. Finally, deleterious interactions in these hybrid copepods appear to be complex in terms of the number of genetic factors that interact to lead to reductions in hybrid fitness. This complexity may stem from three or more factors that all interact to cause a single incompatibility or the same factor interacting with multiple other factors independently leading to multiple incompatibilities.
Collapse
Affiliation(s)
- Christopher S Willett
- Department of Biology, University of North Carolina, CB#3280 Coker Hall, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
99
|
Woodruff GC, Eke O, Baird SE, Félix MA, Haag ES. Insights into species divergence and the evolution of hermaphroditism from fertile interspecies hybrids of Caenorhabditis nematodes. Genetics 2010; 186:997-1012. [PMID: 20823339 PMCID: PMC2975280 DOI: 10.1534/genetics.110.120550] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/27/2010] [Indexed: 11/18/2022] Open
Abstract
The architecture of both phenotypic variation and reproductive isolation are important problems in evolutionary genetics. The nematode genus Caenorhabditis includes both gonochoristic (male/female) and androdioecious (male/hermaprodite) species. However, the natural genetic variants distinguishing reproductive mode remain unknown, and nothing is known about the genetic basis of postzygotic isolation in the genus. Here we describe the hybrid genetics of the first Caenorhabditis species pair capable of producing fertile hybrid progeny, the gonochoristic Caenorhabditis sp. 9 and the androdioecious C. briggsae. Though many interspecies F(1) arrest during embryogenesis, a viable subset develops into fertile females and sterile males. Reciprocal parental crosses reveal asymmetry in male-specific viability, female fertility, and backcross viability. Selfing and spermatogenesis are extremely rare in XX F(1), and almost all hybrid self-progeny are inviable. Consistent with this, F(1) females do not express male-specific molecular germline markers. We also investigated three approaches to producing hybrid hermaphrodites. A dominant mutagenesis screen for self-fertile F(1) hybrids was unsuccessful. Polyploid F(1) hybrids with increased C. briggsae genomic material did show elevated rates of selfing, but selfed progeny were mostly inviable. Finally, the use of backcrosses to render the hybrid genome partial homozygous for C. briggsae alleles did not increase the incidence of selfing or spermatogenesis relative to the F(1) generation. These hybrid animals were genotyped at 23 loci, and significant segregation distortion (biased against C. briggsae) was detected at 13 loci. This, combined with an absence of productive hybrid selfing, prevents formulation of simple hypotheses about the genetic architecture of hermaphroditism. In the near future, this hybrid system will likely be fruitful for understanding the genetics of reproductive isolation in Caenorhabditis.
Collapse
Affiliation(s)
- Gavin C. Woodruff
- Department of Biology, University of Maryland, College Park, Maryland 20742, Department of Biological Sciences, Wright State University, Dayton, Ohio 45435 and Institut Jacques Monod, 75205 Paris Cedex 13, France
| | - Onyinyechi Eke
- Department of Biology, University of Maryland, College Park, Maryland 20742, Department of Biological Sciences, Wright State University, Dayton, Ohio 45435 and Institut Jacques Monod, 75205 Paris Cedex 13, France
| | - Scott E. Baird
- Department of Biology, University of Maryland, College Park, Maryland 20742, Department of Biological Sciences, Wright State University, Dayton, Ohio 45435 and Institut Jacques Monod, 75205 Paris Cedex 13, France
| | - Marie-Anne Félix
- Department of Biology, University of Maryland, College Park, Maryland 20742, Department of Biological Sciences, Wright State University, Dayton, Ohio 45435 and Institut Jacques Monod, 75205 Paris Cedex 13, France
| | - Eric S. Haag
- Department of Biology, University of Maryland, College Park, Maryland 20742, Department of Biological Sciences, Wright State University, Dayton, Ohio 45435 and Institut Jacques Monod, 75205 Paris Cedex 13, France
| |
Collapse
|
100
|
Nunes MDS, Wengel POT, Kreissl M, Schlötterer C. Multiple hybridization events between Drosophila simulans and Drosophila mauritiana are supported by mtDNA introgression. Mol Ecol 2010; 19:4695-707. [PMID: 20958812 PMCID: PMC3035818 DOI: 10.1111/j.1365-294x.2010.04838.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 06/17/2010] [Accepted: 06/19/2010] [Indexed: 11/30/2022]
Abstract
The study of speciation has advanced considerably in the last decades because of the increased application of molecular tools. In particular, the quantification of gene flow between recently diverged species could be addressed. Drosophila simulans and Drosophila mauritiana diverged, probably allopatrically, from a common ancestor approximately 250,000 years ago. However, these species share one mitochondrial DNA (mtDNA) haplotype indicative of a recent episode of introgression. To study the extent of gene flow between these species, we took advantage of a large sample of D. mauritiana and employed a range of different markers, i.e. nuclear and mitochondrial sequences, and microsatellites. This allowed us to detect two new mtDNA haplotypes (MAU3 and MAU4). These haplotypes diverged quite recently from haplotypes of the siII group present in cosmopolitan populations of D. simulans. The mean divergence time of the most diverged haplotype (MAU4) is approximately 127,000 years, which is more than 100,000 years before the assumed speciation time. Interestingly, we also found some evidence for gene flow at the nuclear level because an excess of putatively neutral loci shows significantly reduced differentiation between D. simulans and D. mauritiana. Our results suggest that these species are exchanging genes more frequently than previously thought.
Collapse
Affiliation(s)
- Maria D S Nunes
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Vienna, Austria
| | | | | | | |
Collapse
|