51
|
A conformational transition of the D'D3 domain primes von Willebrand factor for multimerization. Blood Adv 2022; 6:5198-5209. [PMID: 36069828 PMCID: PMC9631632 DOI: 10.1182/bloodadvances.2022006978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022] Open
Abstract
Magnetic tweezers reveal a pH-dependent destabilization of the D3 interface priming VWF for multimerization by exposing Cys1099 and Cys1142. The stability of the D3 interface is increased by FVIII, suggesting a binding site within the D3 submodules.
Von Willebrand factor (VWF) is a multimeric plasma glycoprotein that is critically involved in hemostasis. Biosynthesis of long VWF concatemers in the endoplasmic reticulum and the trans-Golgi is still not fully understood. We use the single-molecule force spectroscopy technique magnetic tweezers to analyze a previously hypothesized conformational change in the D′D3 domain crucial for VWF multimerization. We find that the interface formed by submodules C8-3, TIL3, and E3 wrapping around VWD3 can open and expose 2 buried cysteines, Cys1099 and Cys1142, that are vital for multimerization. By characterizing the conformational change at varying levels of force, we can quantify the kinetics of the transition and stability of the interface. We find a pronounced destabilization of the interface on lowering the pH from 7.4 to 6.2 and 5.5. This is consistent with initiation of the conformational change that enables VWF multimerization at the D′D3 domain by a decrease in pH in the trans-Golgi network and Weibel-Palade bodies. Furthermore, we find a stabilization of the interface in the presence of coagulation factor VIII, providing evidence for a previously hypothesized binding site in submodule C8-3. Our findings highlight the critical role of the D′D3 domain in VWF biosynthesis and function, and we anticipate our methodology to be applicable to study other, similar conformational changes in VWF and beyond.
Collapse
|
52
|
Ma X, Sun H, Hong H, Guo Z, Su H, Chen H. Free-energy landscape of two-state protein acylphosphatase with large contact order revealed by force-dependent folding and unfolding dynamics. Phys Rev E 2022; 106:024404. [PMID: 36109974 DOI: 10.1103/physreve.106.024404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Acylphosphatase (AcP) is a small protein with 98 amino acid residues that catalyzes the hydrolysis of carboxyl-phosphate bonds. AcP is a typical two-state protein with slow folding rate due to its relatively large contact order in the native structure. The mechanical properties and unfolding behavior of AcP has been studied by atomic force microscope. Here using stable magnetic tweezers, we measured the force-dependent folding rates within a force range 1-3 pN, and unfolding rates 15-40 pN. The obtained unfolding rates show different force sensitivities at forces below and above ∼27 pN, which determines a free-energy landscape with two energy barriers. Our results indicate that the free-energy landscape of small globule proteins have general Bactrian camel shape, and large contact order of the native state produces a high barrier dominate at low forces.
Collapse
Affiliation(s)
- Xuening Ma
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Hao Sun
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- Oujiang Laboratory, Wenzhou, Zhejiang 325000, China
| | - Haiyan Hong
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Zilong Guo
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- Oujiang Laboratory, Wenzhou, Zhejiang 325000, China
| | - Huanhuan Su
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Hu Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- Oujiang Laboratory, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
53
|
Kubo M, Sakai K, Hayakawa M, Kashiwagi H, Yagi H, Seki Y, Hasegawa A, Tanaka H, Amano I, Tomiyama Y, Matsumoto M. Increased cleavage of von Willebrand factor by ADAMTS13 may contribute strongly to acquired von Willebrand syndrome development in patients with essential thrombocythemia. J Thromb Haemost 2022; 20:1589-1598. [PMID: 35352474 DOI: 10.1111/jth.15717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Patients with essential thrombocythemia (ET) often experience bleeding associated with acquired von Willebrand syndrome (AVWS) when the platelet count is markedly increased. OBJECTIVE We investigated whether von Willebrand factor (VWF) degradation is enhanced in patients with ET. METHODS Seventy patients with ET underwent VWF multimer (VWFM) analysis and measurement of VWF-related parameters. We calculated the VWFM index, defined as the ratio of intensities of a patient's molecular weight-categorized VWFMs, and those of a healthy subject's, using densitometric analysis. VWF degradation product (DP) was measured via ELISA using a monoclonal antibody that specifically recognizes Y1605 at the C-terminal boundary, which is exposed following ADAMTS13-mediated cleavage of the Y1605-M1606 bond of the VWF A2 domain. RESULTS Patients with higher platelet counts had a significantly reduced high molecular weight (HMW)-VWFM index and an increased VWF-DP:VWF antigen (Ag) ratio compared to those with lower platelet counts. On multivariate analysis, the VWF-DP/VWF:Ag ratio was an independent predictor of the HMW-VWFM index. Patients who underwent cytoreductive therapy had a significantly higher HMW-VWFM index and lower VWF-DP/VWF:Ag ratio than those who did not. Among individual patients, there was also a significant increase in the HMW-VWFM index and a decrease in the VWF-DP/VWF:Ag ratio after cytoreductive therapy compared to pre-therapy values. CONCLUSION In patients with ET, an increased platelet count is associated with enhanced cleavage of VWF at the Y1605-M1606 bond, primarily by ADAMTS13, leading to AVWS. Cytoreductive therapy reduces the platelet count, prevents excessive VWF cleavage, and improves VWFM distributions.
Collapse
Affiliation(s)
- Masayuki Kubo
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara, Japan
- Department of Hematology, Nara Medical University, Kashihara, Japan
| | - Kazuya Sakai
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara, Japan
| | - Masaki Hayakawa
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara, Japan
| | - Hirokazu Kashiwagi
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Blood Transfusion, Osaka University Hospital, Suita, Japan
| | - Hideo Yagi
- Department of Hematology and Oncology, Nara Prefecture General Medical Center, Nara, Japan
| | - Yoshinobu Seki
- Department of Hematology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minamiuonuma, Japan
| | - Atsushi Hasegawa
- Department of Hematology, Nara Medical University, Kashihara, Japan
| | - Haruyuki Tanaka
- Department of Hematology, Nara Medical University, Kashihara, Japan
| | - Itsuto Amano
- Department of Hematology, Nara Medical University, Kashihara, Japan
| | - Yoshiaki Tomiyama
- Department of Blood Transfusion, Osaka University Hospital, Suita, Japan
| | - Masanori Matsumoto
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara, Japan
| |
Collapse
|
54
|
Bai Y, Mi LZ. The effects of shear stress on the interaction between ADAMTS13 and VWF. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
55
|
Wang H, Chen G, Li H. Templated folding of the RTX domain of the bacterial toxin adenylate cyclase revealed by single molecule force spectroscopy. Nat Commun 2022; 13:2784. [PMID: 35589788 PMCID: PMC9120197 DOI: 10.1038/s41467-022-30448-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
The RTX (repeats-in-toxin) domain of the bacterial toxin adenylate cyclase (CyaA) contains five RTX blocks (RTX-i to RTX-v) and its folding is essential for CyaA’s functions. It was shown that the C-terminal capping structure of RTX-v is critical for the whole RTX to fold. However, it is unknown how the folding signal transmits within the RTX domain. Here we use optical tweezers to investigate the interplay between the folding of RTX-iv and RTX-v. Our results show that RTX-iv alone is disordered, but folds into a Ca2+-loaded-β-roll structure in the presence of a folded RTX-v. Folding trajectories of RTX-iv-v reveal that the folding of RTX-iv is strictly conditional upon the folding of RTX-v, suggesting that the folding of RTX-iv is templated by RTX-v. This templating effect allows RTX-iv to fold rapidly, and provides significant mutual stabilization. Our study reveals a possible mechanism for transmitting the folding signal within the RTX domain. The authors use optical tweezers to show that the folding of repeats-in-toxin (RTX) block-iv in adenylate cyclase is templated by the folded RTX block-v. The findings suggest a possible mechanism for transmitting the folding signal in the RTX domain.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.,State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 300072, Tianjin, P. R. China
| | - Guojun Chen
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
56
|
Bonazza K, Iacob RE, Hudson NE, Li J, Lu C, Engen JR, Springer TA. Von Willebrand factor A1 domain stability and affinity for GPIbα are differentially regulated by its O-glycosylated N- and C-linker. eLife 2022; 11:75760. [PMID: 35532124 PMCID: PMC9084892 DOI: 10.7554/elife.75760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/06/2022] [Indexed: 12/25/2022] Open
Abstract
Hemostasis in the arterial circulation is mediated by binding of the A1 domain of the ultralong protein von Willebrand factor (VWF) to GPIbα on platelets to form a platelet plug. A1 is activated by tensile force on VWF concatemers imparted by hydrodynamic drag force. The A1 core is protected from force-induced unfolding by a long-range disulfide that links cysteines near its N- and C-termini. The O-glycosylated linkers between A1 and its neighboring domains, which transmit tensile force to A1, are reported to regulate A1 activation for binding to GPIb, but the mechanism is controversial and incompletely defined. Here, we study how these linkers, and their polypeptide and O-glycan moieties, regulate A1 affinity by measuring affinity, kinetics, thermodynamics, hydrogen deuterium exchange (HDX), and unfolding by temperature and urea. The N-linker lowers A1 affinity 40-fold with a stronger contribution from its O-glycan than polypeptide moiety. The N-linker also decreases HDX in specific regions of A1 and increases thermal stability and the energy gap between its native state and an intermediate state, which is observed in urea-induced unfolding. The C-linker also decreases affinity of A1 for GPIbα, but in contrast to the N-linker, has no significant effect on HDX or A1 stability. Among different models for A1 activation, our data are consistent with the model that the intermediate state has high affinity for GPIbα, which is induced by tensile force physiologically and regulated allosterically by the N-linker.
Collapse
Affiliation(s)
- Klaus Bonazza
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Roxana E Iacob
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - Nathan E Hudson
- Department of Physics, East Carolina University, Greenville, United States
| | - Jing Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Chafen Lu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| |
Collapse
|
57
|
Engineered Molecular Therapeutics Targeting Fibrin and the Coagulation System: a Biophysical Perspective. Biophys Rev 2022; 14:427-461. [PMID: 35399372 PMCID: PMC8984085 DOI: 10.1007/s12551-022-00950-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
The coagulation cascade represents a sophisticated and highly choreographed series of molecular events taking place in the blood with important clinical implications. One key player in coagulation is fibrinogen, a highly abundant soluble blood protein that is processed by thrombin proteases at wound sites, triggering self-assembly of an insoluble protein hydrogel known as a fibrin clot. By forming the key protein component of blood clots, fibrin acts as a structural biomaterial with biophysical properties well suited to its role inhibiting fluid flow and maintaining hemostasis. Based on its clinical importance, fibrin is being investigated as a potentially valuable molecular target in the development of coagulation therapies. In this topical review, we summarize our current understanding of the coagulation cascade from a molecular, structural and biophysical perspective. We highlight single-molecule studies on proteins involved in blood coagulation and report on the current state of the art in directed evolution and molecular engineering of fibrin-targeted proteins and polymers for modulating coagulation. This biophysical overview will help acclimatize newcomers to the field and catalyze interdisciplinary work in biomolecular engineering toward the development of new therapies targeting fibrin and the coagulation system.
Collapse
|
58
|
Nascimbene A, Dong JF. Hydrodynamic Impact on Blood: From Left Ventricular Assist Devices to Artificial Hearts. Arterioscler Thromb Vasc Biol 2022; 42:481-483. [PMID: 35236108 PMCID: PMC8957568 DOI: 10.1161/atvbaha.122.317517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Angelo Nascimbene
- Center for Advanced Heart Failure, Health Science Center at Houston, University of Texas, Houston (A.N.)
| | - Jing-Fei Dong
- BloodWorks Northwest Research Institute, Seattle, WA (J.-f.D.)
- Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle (J.-f.D.)
| |
Collapse
|
59
|
Haller SJ, Dudley AT. Extracellular mechanotransduction. J Gen Physiol 2022; 154:213008. [PMID: 35171207 PMCID: PMC8855477 DOI: 10.1085/jgp.202113026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/04/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022] Open
Abstract
We highlight the force-sensing function of extracellular matrix and present a complementary mechanotransduction paradigm.
Collapse
Affiliation(s)
- Stephen J Haller
- Mary and Dick Holland Regenerative Medicine Program, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Andrew T Dudley
- Mary and Dick Holland Regenerative Medicine Program, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
60
|
Faravelli G, Mondani V, Mangione PP, Raimondi S, Marchese L, Lavatelli F, Stoppini M, Corazza A, Canetti D, Verona G, Obici L, Taylor GW, Gillmore JD, Giorgetti S, Bellotti V. Amyloid Formation by Globular Proteins: The Need to Narrow the Gap Between in Vitro and in Vivo Mechanisms. Front Mol Biosci 2022; 9:830006. [PMID: 35237660 PMCID: PMC8883118 DOI: 10.3389/fmolb.2022.830006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/20/2022] [Indexed: 11/15/2022] Open
Abstract
The globular to fibrillar transition of proteins represents a key pathogenic event in the development of amyloid diseases. Although systemic amyloidoses share the common characteristic of amyloid deposition in the extracellular matrix, they are clinically heterogeneous as the affected organs may vary. The observation that precursors of amyloid fibrils derived from circulating globular plasma proteins led to huge efforts in trying to elucidate the structural events determining the protein metamorphosis from their globular to fibrillar state. Whereas the process of metamorphosis has inspired poets and writers from Ovid to Kafka, protein metamorphism is a more recent concept. It is an ideal metaphor in biochemistry for studying the protein folding paradigm and investigating determinants of folding dynamics. Although we have learned how to transform both normal and pathogenic globular proteins into fibrillar polymers in vitro, the events occurring in vivo, are far more complex and yet to be explained. A major gap still exists between in vivo and in vitro models of fibrillogenesis as the biological complexity of the disease in living organisms cannot be reproduced at the same extent in the test tube. Reviewing the major scientific attempts to monitor the amyloidogenic metamorphosis of globular proteins in systems of increasing complexity, from cell culture to human tissues, may help to bridge the gap between the experimental models and the actual pathological events in patients.
Collapse
Affiliation(s)
- Giulia Faravelli
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Valentina Mondani
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - P. Patrizia Mangione
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Wolfson Drug Discovery Unit, Division of Medicine, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, United Kingdom
| | - Sara Raimondi
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Loredana Marchese
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Francesca Lavatelli
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Monica Stoppini
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessandra Corazza
- Department of Medicine (DAME), University of Udine, Udine, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
| | - Diana Canetti
- Wolfson Drug Discovery Unit, Division of Medicine, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, United Kingdom
| | - Guglielmo Verona
- Wolfson Drug Discovery Unit, Division of Medicine, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, United Kingdom
| | - Laura Obici
- Amyloidosis Research and Treatment Centre, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Graham W. Taylor
- Wolfson Drug Discovery Unit, Division of Medicine, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, United Kingdom
| | - Julian D. Gillmore
- National Amyloidosis Centre, University College London and Royal Free Hospital, London, United Kingdom
| | - Sofia Giorgetti
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
| | - Vittorio Bellotti
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Wolfson Drug Discovery Unit, Division of Medicine, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, United Kingdom
- Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
- Scientific Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- *Correspondence: Vittorio Bellotti, ,
| |
Collapse
|
61
|
Stirnemann G. Recent Advances and Emerging Challenges in the Molecular Modeling of Mechanobiological Processes. J Phys Chem B 2022; 126:1365-1374. [PMID: 35143190 DOI: 10.1021/acs.jpcb.1c10715] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many biological processes result from the effect of mechanical forces on macromolecular structures and on their interactions. In particular, the cell shape, motion, and differentiation directly depend on mechanical stimuli from the extracellular matrix or from neighboring cells. The development of experimental techniques that can measure and characterize the tiny forces acting at the cellular scale and down to the single-molecule, biomolecular level has enabled access to unprecedented details about the involved mechanisms. However, because the experimental observables often do not provide a direct atomistic picture of the corresponding phenomena, particle-based simulations performed at various scales are instrumental in complementing these experiments and in providing a molecular interpretation. Here, we will review the recent key achievements in the field, and we will highlight and discuss the many technical challenges these simulations are facing, as well as suggest future directions for improvement.
Collapse
Affiliation(s)
- Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
62
|
Michels A, Lillicrap D, Yacob M. Role of von Willebrand factor in venous thromboembolic disease. JVS Vasc Sci 2022; 3:17-29. [PMID: 35028601 PMCID: PMC8739873 DOI: 10.1016/j.jvssci.2021.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Objective Evolving evidence of the shared risk factors and pathogenic mechanisms in arterial and venous thrombosis questions of the strict vascular dichotomy of arterial vs venous. The connection between arterial and venous thrombosis has been highlighted by common underlying inflammatory processes, a concept known as thromboinflammatory disease. Using this relationship, we can apply knowledge from arterial disease to better understand and potentially mitigate venous disease. A protein that has been extensively studied in atherothrombotic disease and inflammation is von Willebrand factor (VWF). Because many predisposing and provoking factors of venous thromboembolism (VTE) have been shown to directly modulate VWF levels, it is, perhaps, not surprising that VWF has been highlighted by several recent association studies of patients with VTE. Methods In the present narrative review, we investigated more deeply the effects of VWF in venous disease by synthesizing the data from clinical studies of deep vein thrombosis of the limbs, pulmonary embolism, portal and cerebral vein thrombosis, and the complications of thrombosis, including post-thrombotic syndrome, venous insufficiency, and chronic thromboembolic pulmonary hypertension. We have also discussed the findings from preclinical studies to highlight novel VWF biochemistry in thrombosis and therapeutics. Results Across the spectrum of venous thromboembolic disease, we consistently observed that elevated VWF levels conferred an increased risk of VTE and long-term venous complications. We have highlighted important findings from VWF molecular research and have proposed mechanisms by which VWF participates in venous disease. Emerging evidence from preclinical studies might reveal novel targets for thromboinflammatory disease, including specific VWF pathophysiology. Furthermore, we have highlighted the utility of measuring VWF to prognosticate and risk stratify for VTE and its complications. Conclusions As the prevalence of inflammatory processes, such as aging, obesity, and diabetes increases in our population, it is critical to understand the evolving role of VWF in venous disease to guide clinical decisions and therapeutics.
Collapse
Affiliation(s)
- Alison Michels
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.,Division of Cardiovascular Surgery, Queen's University, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Michael Yacob
- Division of Cardiovascular Surgery, Queen's University, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| |
Collapse
|
63
|
Zhao YC, Wang H, Wang Y, Lou J, Ju LA. The N-terminal autoinhibitory module of the A1 domain in von Willebrand factor stabilizes the mechanosensor catch bond. RSC Chem Biol 2022; 3:707-720. [PMID: 35755187 PMCID: PMC9175105 DOI: 10.1039/d2cb00010e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 12/29/2022] Open
Abstract
The N-AIM of VWF-A1 forms a Rotini-like structure, therefore partially autoinhibit VWF-A1–GPIbα interaction. The N-AIM acts as a defending sword to protect and stabilize the VWF-A1 structure under harsh environments.
Collapse
Affiliation(s)
- Yunduo Charles Zhao
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Haoqing Wang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia
- Heart Research Institute, Newtown, NSW 2042, Australia
| | - Yao Wang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, NSW 2052, Australia
| | - Jizhong Lou
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lining Arnold Ju
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- Heart Research Institute, Newtown, NSW 2042, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2006, Australia
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
64
|
Li J, Li H. New insights into the folding–unfolding mechanism and conformations of cytochrome C. Chem Sci 2022; 13:7498-7508. [PMID: 35872809 PMCID: PMC9241957 DOI: 10.1039/d2sc01126c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/29/2022] [Indexed: 11/21/2022] Open
Abstract
Optical trapping experiments offer new insights into the folding and unfolding of cytochrome C.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
65
|
Begum Y, Pandit A, Swarnakar S. Insights Into the Regulation of Gynecological Inflammation-Mediated Malignancy by Metalloproteinases. Front Cell Dev Biol 2021; 9:780510. [PMID: 34912809 PMCID: PMC8667270 DOI: 10.3389/fcell.2021.780510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/12/2021] [Indexed: 12/09/2022] Open
Abstract
Gynecological illness accounts for around 4.5% of the global disease burden, which is higher than other key global health concerns such as malaria (1.04%), TB (1.9%), ischemic heart disease (2.2%), and maternal disorders (3.5%). Gynecological conditions in women of reproductive age are linked to both in terms of diagnosis and treatment, especially in low-income economies, which poses a serious social problem. A greater understanding of health promotion and illness management can help to prevent diseases in gynecology. Due to the lack of established biomarkers, the identification of gynecological diseases, including malignancies, has proven to be challenging in most situations, and histological exams remain the gold standard. Metalloproteinases (MMPs, ADAMs, ADAMTSs) and their endogenous inhibitors (TIMPs) modulate the protease-dependent bioavailability of local niche components (e.g., growth factors), matrix turnover, and cellular interactions to govern specific physical and biochemical characteristics of the environment. Matrix metalloproteinases (MMPs), A Disintegrin and Metalloproteinase (ADAM), and A Disintegrin and Metalloproteinase with Thrombospondin Motif (ADAMTS) are zinc-dependent endopeptidases that contribute significantly to the disintegration of extracellular matrix proteins and shedding of membrane-bound receptor molecules in several diseases, including arthritis. MMPs are noteworthy genes associated with cancer development, functional angiogenesis, invasion, metastasis, and immune surveillance evasion. These genes are often elevated in cancer and multiple benign gynecological disorders like endometriosis, according to research. Migration through the extracellular matrix, which involves proteolytic activity, is an essential step in tumor cell extravasation and metastasis. However, none of the MMPs’ expression patterns, as well as their diagnostic and prognostic potential, have been studied in a pan-cancer context. The latter plays a very important role in cell signaling and might be used as a cancer treatment target. ADAMs are implicated in tumor cell proliferation, angiogenesis, and metastasis. This review will focus on the contribution of the aforementioned metalloproteinases in regulating gynecological disorders and their subsequent manipulation for therapeutic intervention.
Collapse
Affiliation(s)
- Yasmin Begum
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Anuradha Pandit
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Snehasikta Swarnakar
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
66
|
Fu H, Jiang Y, Wong WP, Springer TA. Single-molecule imaging of von Willebrand factor reveals tension-dependent self-association. Blood 2021; 138:2425-2434. [PMID: 34882208 PMCID: PMC8662069 DOI: 10.1182/blood.2021012595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/22/2021] [Indexed: 11/20/2022] Open
Abstract
von Willebrand factor (VWF) is an ultralong concatemeric protein important in hemostasis and thrombosis. VWF molecules can associate with other VWF molecules, but little is known about the mechanism. Hydrodynamic drag exerts tensile force on surface-tethered VWF that extends it and is maximal at the tether point and declines linearly to 0 at the downstream free end. Using single-molecule fluorescence microscopy, we directly visualized the kinetics of binding of free VWF in flow to surface-tethered single VWF molecules. We showed that self-association requires elongation of tethered VWF and that association increases with tension in tethered VWF, reaches half maximum at a characteristic tension of ∼10 pN, and plateaus above ∼25 pN. Association is reversible and hence noncovalent; a sharp decrease in shear flow results in rapid dissociation of bound VWF. Tethered primary VWF molecules can recruit more than their own mass of secondary VWF molecules from the flow stream. Kinetics show that instead of accelerating, the rate of accumulation decreases with time, revealing an inherently self-limiting self-association mechanism. We propose that this may occur because multiple tether points between secondary and primary VWF result in lower tension on the secondary VWF, which shields more highly tensioned primary VWF from further association. Glycoprotein Ibα (GPIbα) binding and VWF self-association occur in the same region of high tension in tethered VWF concatemers; however, the half-maximal tension required for activation of GPIbα is higher, suggesting differences in molecular mechanisms. These results have important implications for the mechanism of platelet plug formation in hemostasis and thrombosis.
Collapse
Affiliation(s)
- Hongxia Fu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, and
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Division of Hematology, Department of Medicine
- Institute for Stem Cell and Regeneration Medicine, and
- Department of Bioengineering, University of Washington, Seattle, WA; and
- Bloodworks Northwest Research Institute, Seattle, WA
| | - Yan Jiang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, and
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Wesley P Wong
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, and
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, and
- Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
67
|
Shrestha P, Yang D, Tomov TE, MacDonald JI, Ward A, Bergal HT, Krieg E, Cabi S, Luo Y, Nathwani B, Johnson-Buck A, Shih WM, Wong WP. Single-molecule mechanical fingerprinting with DNA nanoswitch calipers. NATURE NANOTECHNOLOGY 2021; 16:1362-1370. [PMID: 34675411 PMCID: PMC8678201 DOI: 10.1038/s41565-021-00979-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/16/2021] [Indexed: 05/31/2023]
Abstract
Decoding the identity of biomolecules from trace samples is a longstanding goal in the field of biotechnology. Advances in DNA analysis have substantially affected clinical practice and basic research, but corresponding developments for proteins face challenges due to their relative complexity and our inability to amplify them. Despite progress in methods such as mass spectrometry and mass cytometry, single-molecule protein identification remains a highly challenging objective. Towards this end, we combine DNA nanotechnology with single-molecule force spectroscopy to create a mechanically reconfigurable DNA nanoswitch caliper capable of measuring multiple coordinates on single biomolecules with atomic resolution. Using optical tweezers, we demonstrate absolute distance measurements with ångström-level precision for both DNA and peptides, and using multiplexed magnetic tweezers, we demonstrate quantification of relative abundance in mixed samples. Measuring distances between DNA-labelled residues, we perform single-molecule fingerprinting of synthetic and natural peptides, and show discrimination, within a heterogeneous population, between different posttranslational modifications. DNA nanoswitch calipers are a powerful and accessible tool for characterizing distances within nanoscale complexes that will enable new applications in fields such as single-molecule proteomics.
Collapse
Affiliation(s)
- Prakash Shrestha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Darren Yang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Toma E Tomov
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - James I MacDonald
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Andrew Ward
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Hans T Bergal
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Biophysics Program, Harvard University, Cambridge, MA, USA
| | - Elisha Krieg
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Serkan Cabi
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yi Luo
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Bhavik Nathwani
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alexander Johnson-Buck
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Biophysics Program, Harvard University, Cambridge, MA, USA
| | - William M Shih
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Wesley P Wong
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
68
|
Languin-Cattoën O, Laborie E, Yurkova DO, Melchionna S, Derreumaux P, Belyaev AV, Sterpone F. Exposure of Von Willebrand Factor Cleavage Site in A1A2A3-Fragment under Extreme Hydrodynamic Shear. Polymers (Basel) 2021; 13:polym13223912. [PMID: 34833213 PMCID: PMC8625202 DOI: 10.3390/polym13223912] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022] Open
Abstract
Von Willebrand Factor (vWf) is a giant multimeric extracellular blood plasma involved in hemostasis. In this work we present multi-scale simulations of its three-domains fragment A1A2A3. These three domains are essential for the functional regulation of vWf. Namely the A2 domain hosts the site where the protease ADAMTS13 cleavages the multimeric vWf allowing for its length control that prevents thrombotic conditions. The exposure of the cleavage site follows the elongation/unfolding of the domain that is caused by an increased shear stress in blood. By deploying Lattice Boltzmann molecular dynamics simulations based on the OPEP coarse-grained model for proteins, we investigated at molecular level the unfolding of the A2 domain under the action of a perturbing shear flow. We described the structural steps of this unfolding that mainly concerns the β-strand structures of the domain, and we compared the process occurring under shear with that produced by the action of a directional pulling force, a typical condition of single molecule experiments. We observe, that under the action of shear flow, the competition among the elongational and rotational components of the fluid field leads to a complex behaviour of the domain, where elongated structures can be followed by partially collapsed melted globule structures with a very different degree of exposure of the cleavage site. Our simulations pose the base for the development of a multi-scale in-silico description of vWf dynamics and functionality in physiological conditions, including high resolution details for molecular relevant events, e.g., the binding to platelets and collagen during coagulation or thrombosis.
Collapse
Affiliation(s)
- Olivier Languin-Cattoën
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, 13 rue Pierre et Marie Curie, F-75005 Paris, France; (O.L.-C.); (E.L.); (P.D.)
| | - Emeline Laborie
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, 13 rue Pierre et Marie Curie, F-75005 Paris, France; (O.L.-C.); (E.L.); (P.D.)
| | - Daria O. Yurkova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Simone Melchionna
- Dipartimento di Fisica, Università Sapienza, P.le A. Moro 5, 00185 Rome, Italy;
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, 13 rue Pierre et Marie Curie, F-75005 Paris, France; (O.L.-C.); (E.L.); (P.D.)
| | - Aleksey V. Belyaev
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Correspondence: (A.V.B.); (F.S.)
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, 13 rue Pierre et Marie Curie, F-75005 Paris, France; (O.L.-C.); (E.L.); (P.D.)
- Correspondence: (A.V.B.); (F.S.)
| |
Collapse
|
69
|
Morimoto D, Osugi M, Mahana Y, Walinda E, Shirakawa M, Sugase K. Backbone resonance assignments of the A2 domain of mouse von Willebrand factor. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:427-431. [PMID: 34286417 DOI: 10.1007/s12104-021-10041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
von Willebrand factor (vWF) is an adhesive plasma protein that is important for platelet adhesion in normal hemostasis in response to vascular injury. Although large vWF multimers are released from storage granules of platelets and (sub-)endothelial cells in response to hemostatic stimuli, for normal physiological function, vWF multimers are required to be cleaved into smaller multimeric forms. The plasma metalloproteinase ADAMTS13 specifically cleaves the peptide bond located in the middle of the A2 domain of vWF (vWF-A2), but the cleavage site is buried inside the structure of vWF and is difficult to access in the absence of elevated flow shear stress. On the other hand, in the presence of high vascular shear stress, the structure of vWF-A2 is supposed to be unfolded, thereby becoming accessible for proteolysis by ADAMTS13. However, the atomic-level mechanism underlying shear-induced structural changes of vWF-A2 remains unclear and to date no solution NMR information is available. In this study, we present the backbone 1H, 13C, and 15N resonance assignments of mouse vWF-A2; side chain assignments of 13Cβ are also provided. Secondary structure propensity analysis based on the assigned chemical shifts showed that mouse vWF-A2 forms similar secondary structures in solution to the previously determined crystal structure of human vWF-A2. The obtained NMR assignment data will contribute to an atomic-level characterization of shear-induced unfolding of vWF-A2 in solution.
Collapse
Affiliation(s)
- Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan
| | - Masanori Osugi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan
| | - Yutaka Mahana
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan
| | - Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Sakyo-ku Yoshida Konoe-cho, Kyoto, 606-8501, Japan
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan.
| |
Collapse
|
70
|
Nguyen AH, Kania S, Cheng X, Oztekin A, Zhang XF, Webb EB. Unraveling Kinetics of Collapsed Polymers in Extensional Flow. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Anh H. Nguyen
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Sagar Kania
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Xuanhong Cheng
- Department of Material Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Alparslan Oztekin
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - X. Frank Zhang
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Edmund B. Webb
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
71
|
Chantraine C, Mathelié-Guinlet M, Pietrocola G, Speziale P, Dufrêne YF. AFM Identifies a Protein Complex Involved in Pathogen Adhesion Which Ruptures at Three Nanonewtons. NANO LETTERS 2021; 21:7595-7601. [PMID: 34469164 DOI: 10.1021/acs.nanolett.1c02105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Staphylococci bind to the blood protein von Willebrand Factor (vWF), thereby causing endovascular infections. Whether and how this interaction occurs with the medically important pathogen Staphylococcus epidermidis is unknown. Using single-molecule experiments, we demonstrate that the S. epidermidis protein Aap binds vWF via an ultrastrong force, ∼3 nN, the strongest noncovalent biological bond ever reported, and we show that this interaction is activated by tensile loading, suggesting a catch-bond behavior. Aap-vWF binding involves exclusively the A1 domain of vWF but requires both the A and B domains of Aap, as revealed by inhibition assays using specific monoclonal antibodies. Collectively, our results point to a mechanism where force-induced unfolding of the B repeats activates the A domain of Aap, shifting it from a weak- to a strong-binding state, which then engages into an ultrastrong interaction with vWF A1. This shear-dependent function of Aap offers promise for innovative antistaphylococcal therapies.
Collapse
Affiliation(s)
- Constance Chantraine
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
72
|
A Continuum Model for the Unfolding of von Willebrand Factor. Ann Biomed Eng 2021; 49:2646-2658. [PMID: 34401970 PMCID: PMC9847011 DOI: 10.1007/s10439-021-02845-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/31/2021] [Indexed: 01/21/2023]
Abstract
von Willebrand Factor is a mechano-sensitive protein circulating in blood that mediates platelet adhesion to subendothelial collagen and platelet aggregation at high shear rates. Its hemostatic function and thrombogenic effect, as well as susceptibility to enzymatic cleavage, are regulated by a conformational change from a collapsed globular state to a stretched state. Therefore, it is essential to account for the conformation of the vWF multimers when modeling vWF-mediated thrombosis or vWF degradation. We introduce a continuum model of vWF unfolding that is developed within the framework of our multi-constituent model of platelet-mediated thrombosis. The model considers two interconvertible vWF species corresponding to the collapsed and stretched conformational states. vWF unfolding takes place via two regimes: tumbling in simple shear and strong unfolding in flows with dominant extensional component. These two regimes were demonstrated in a Couette flow between parallel plates and an extensional flow in a cross-slot geometry. The vWF unfolding model was then verified in several microfluidic systems designed for inducing high-shear vWF-mediated thrombosis and screening for von Willebrand Disease. The model predicted high concentration of stretched vWF in key regions where occlusive thrombosis was observed experimentally. Strong unfolding caused by the extensional flow was limited to the center axis or middle plane of the channels, whereas vWF unfolding near the channel walls relied upon the shear tumbling mechanism. The continuum model of vWF unfolding presented in this work can be employed in numerical simulations of vWF-mediated thrombosis or vWF degradation in complex geometries. However, extending the model to 3-D arbitrary flows and turbulent flows will pose considerable challenges.
Collapse
|
73
|
McCaul N, Quandte M, Bontjer I, van Zadelhoff G, Land A, Crooks ET, Binley JM, Sanders RW, Braakman I. Intramolecular quality control: HIV-1 envelope gp160 signal-peptide cleavage as a functional folding checkpoint. Cell Rep 2021; 36:109646. [PMID: 34469718 DOI: 10.1016/j.celrep.2021.109646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/28/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
Removal of the membrane-tethering signal peptides that target secretory proteins to the endoplasmic reticulum is a prerequisite for proper folding. While generally thought to be removed co-translationally, we report two additional post-targeting functions for the HIV-1 gp120 signal peptide, which remains attached until gp120 folding triggers its removal. First, the signal peptide improves folding fidelity by enhancing conformational plasticity of gp120 by driving disulfide isomerization through a redox-active cysteine. Simultaneously, the signal peptide delays folding by tethering the N terminus to the membrane, until assembly with the C terminus. Second, its carefully timed cleavage represents intramolecular quality control and ensures release of (only) natively folded gp120. Postponed cleavage and the redox-active cysteine are both highly conserved and important for viral fitness. Considering the ∼15% proteins with signal peptides and the frequency of N-to-C contacts in protein structures, these regulatory roles of signal peptides are bound to be more common in secretory-protein biogenesis.
Collapse
Affiliation(s)
- Nicholas McCaul
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Matthias Quandte
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Ilja Bontjer
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, 1105 Amsterdam, the Netherlands
| | - Guus van Zadelhoff
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Aafke Land
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Ema T Crooks
- San Diego Biomedical Research Institute, 10865 Road to the Cure #100, San Diego, CA, USA
| | - James M Binley
- San Diego Biomedical Research Institute, 10865 Road to the Cure #100, San Diego, CA, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, 1105 Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands.
| |
Collapse
|
74
|
Ercig B, Arfman T, Hrdinova J, Wichapong K, Reutelingsperger CPM, Vanhoorelbeke K, Nicolaes GAF, Voorberg J. Conformational plasticity of ADAMTS13 in hemostasis and autoimmunity. J Biol Chem 2021; 297:101132. [PMID: 34461090 PMCID: PMC8449270 DOI: 10.1016/j.jbc.2021.101132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/08/2022] Open
Abstract
A disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) is a multidomain metalloprotease for which until now only a single substrate has been identified. ADAMTS13 cleaves the polymeric force-sensor von Willebrand factor (VWF) that unfolds under shear stress and recruits platelets to sites of vascular injury. Shear force–dependent cleavage at a single Tyr–Met peptide bond in the unfolded VWF A2 domain serves to reduce the size of VWF polymers in circulation. In patients with immune-mediated thrombotic thrombocytopenic purpura (iTTP), a rare life-threatening disease, ADAMTS13 is targeted by autoantibodies that inhibit its activity or promote its clearance. In the absence of ADAMTS13, VWF polymers are not adequately processed, resulting in spontaneous adhesion of blood platelets, which presents as severe, life-threatening microvascular thrombosis. In healthy individuals, ADAMTS13–VWF interactions are guided by controlled conversion of ADAMTS13 from a closed, inactive to an open, active conformation through a series of interdomain contacts that are now beginning to be defined. Recently, it has been shown that ADAMTS13 adopts an open conformation in the acute phase and during subclinical disease in iTTP patients, making open ADAMTS13 a novel biomarker for iTTP. In this review, we summarize our current knowledge on ADAMTS13 conformation and speculate on potential triggers inducing conformational changes of ADAMTS13 and how these relate to the pathogenesis of iTTP.
Collapse
Affiliation(s)
- Bogac Ercig
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Tom Arfman
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Johana Hrdinova
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Chris P M Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Jan Voorberg
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands; Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
75
|
Alegre-Cebollada J. Protein nanomechanics in biological context. Biophys Rev 2021; 13:435-454. [PMID: 34466164 PMCID: PMC8355295 DOI: 10.1007/s12551-021-00822-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
How proteins respond to pulling forces, or protein nanomechanics, is a key contributor to the form and function of biological systems. Indeed, the conventional view that proteins are able to diffuse in solution does not apply to the many polypeptides that are anchored to rigid supramolecular structures. These tethered proteins typically have important mechanical roles that enable cells to generate, sense, and transduce mechanical forces. To fully comprehend the interplay between mechanical forces and biology, we must understand how protein nanomechanics emerge in living matter. This endeavor is definitely challenging and only recently has it started to appear tractable. Here, I introduce the main in vitro single-molecule biophysics methods that have been instrumental to investigate protein nanomechanics over the last 2 decades. Then, I present the contemporary view on how mechanical force shapes the free energy of tethered proteins, as well as the effect of biological factors such as post-translational modifications and mutations. To illustrate the contribution of protein nanomechanics to biological function, I review current knowledge on the mechanobiology of selected muscle and cell adhesion proteins including titin, talin, and bacterial pilins. Finally, I discuss emerging methods to modulate protein nanomechanics in living matter, for instance by inducing specific mechanical loss-of-function (mLOF). By interrogating biological systems in a causative manner, these new tools can contribute to further place protein nanomechanics in a biological context.
Collapse
|
76
|
Wang Y, Pisapati AV, Zhang XF, Cheng X. Recent Developments in Nanomaterial-Based Shear-Sensitive Drug Delivery Systems. Adv Healthc Mater 2021; 10:e2002196. [PMID: 34076369 PMCID: PMC8273148 DOI: 10.1002/adhm.202002196] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/21/2021] [Indexed: 01/30/2023]
Abstract
Nanomaterial-based drug delivery systems (DDSs) increase the efficacy of various therapeutics, and shear stress has been shown to be a robust modulator of payload release. In the past few decades, a deeper understanding has been gained of the effects of flow in the body and its alteration in pathological microenvironments. More recently, shear-responsive nanomaterial DDSs have been developed. Studies on this subject mainly from the last decade are reviewed here, focusing on innovations of the material design and mechanisms of the shear response. The two most popular shear-controlled drug carriers distinguished by different release mechanisms, that is, shear-deformable nanoparticles (NPs) and shear-dissociated NP aggregates (NPAs), are surveyed. The influence of material structures on their properties such as drug loading, circulation time, and shear sensitivity are discussed. The drug development stages, therapeutic effects, limitations, and potential of these DDSs are further inspected. The reviewed research emphasizes the advantages and significance of nanomaterial-based shear-sensitive DDSs in the field of targeted drug delivery. It is also believed that efforts to rationally design nanomaterial DDSs responsive to shear may prompt a new class of diagnostics and therapeutics for signaling and rectifying pathological flows in the body.
Collapse
Affiliation(s)
- Yi Wang
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, 18015, United States
| | - Avani V. Pisapati
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, United States
| | - X. Frank Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, United States
| | - Xuanhong Cheng
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, 18015, United States
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, United States
| |
Collapse
|
77
|
Lin J, Sorrells MG, Lam WA, Neeves KB. Physical forces regulating hemostasis and thrombosis: Vessels, cells, and molecules in illustrated review. Res Pract Thromb Haemost 2021; 5:e12548. [PMID: 34278188 PMCID: PMC8279127 DOI: 10.1002/rth2.12548] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 01/31/2023] Open
Abstract
This illustrated review focuses on the physical forces that regulate hemostasis and thrombosis. These phenomena span from the vessel to the cellular to the molecular scales. Blood is a complex fluid with a viscosity that varies with how fast it flows and the size of the vessel through which it flows. Blood flow imposes forces on the vessel wall and blood cells that dictates the kinetics, structure, and stability of thrombi. The mechanical properties of blood cells create a segmented flowing fluid whereby red blood cells concentrate in the vessel core and platelets marginate to the near-wall region. At the vessel wall, shear stresses are highest, which requires a repertoire of receptors with different bond kinetics to roll, tether, adhere, and activate on inflamed endothelium and extracellular matrices. As a thrombus grows and then contracts, forces regulate platelet aggregation as well as von Willebrand factor function and fibrin mechanics. Forces can also originate from platelets as they respond to the external forces and sense the stiffness of their local environment.
Collapse
Affiliation(s)
- Jessica Lin
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyEmory UniversityAtlantaGAUSA
| | - Matthew G. Sorrells
- Department of Chemical and Biological EngineeringColorado School of MinesGoldenCOUSA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyEmory UniversityAtlantaGAUSA
- Division of Pediatric Hematology/OncologyDepartment of PediatricsAflac Cancer Center and Blood Disorder Service of Children’s Healthcare of AtlantaEmory University School of MedicineAtlantaGAUSA
| | - Keith B. Neeves
- Department of BioengineeringUniversity of Colorado DenverAnschutz Medical CampusAuroraCOUSA
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, Hemophilia and Thrombosis CenterUniversity of Colorado DenverAnschutz Medical CampusAuroraCOUSA
| |
Collapse
|
78
|
Avdonin PP, Tsvetaeva NV, Goncharov NV, Rybakova EY, Trufanov SK, Tsitrina AA, Avdonin PV. Von Willebrand Factor in Health and Disease. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2021. [DOI: 10.1134/s1990747821040036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract—
Von Willebrand factor (vWF), the key component of hemostasis, is synthesized in endothelial cells and megakaryocytes and released into the blood as high molecular weight multimeric glycoproteins weighing up to 20 million Daltons. Blood plasma metalloprotease ADAMTS13 cleaves ultra-large vWF multimers to smaller multimeric and oligomeric molecules. The vWF molecules attach to the sites of damage at the surface of arterioles and capillaries and unfold under conditions of shear stress. On the unfolded vWF molecule, the regions interacting with receptors on the platelet membrane are exposed. After binding to the vWF filaments, platelets are activated; platelets circulating in the vessels are additionally attached to them, leading to thrombus formation, blocking of microvessels, and cessation of bleeding. This review describes the history of the discovery of vWF, presents data on the mechanisms of vWF secretion and its structure, and characterizes the processes of vWF metabolism in the body under normal and pathological conditions.
Collapse
|
79
|
Antibodies that conformationally activate ADAMTS13 allosterically enhance metalloprotease domain function. Blood Adv 2021; 4:1072-1080. [PMID: 32196558 DOI: 10.1182/bloodadvances.2019001375] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/11/2020] [Indexed: 01/16/2023] Open
Abstract
Plasma ADAMTS13 circulates in a folded conformation that is stabilized by an interaction between the central Spacer domain and the C-terminal CUB (complement components C1r and C1s, sea urchin protein Uegf, and bone morphogenetic protein-1) domains. Binding of ADAMTS13 to the VWF D4(-CK) domains or to certain activating murine monoclonal antibodies (mAbs) induces a structural change that extends ADAMTS13 into an open conformation that enhances its function. The objective was to characterize the mechanism by which conformational activation enhances ADAMTS13-mediated proteolysis of VWF. The activating effects of a novel anti-Spacer (3E4) and the anti-CUB1 (17G2) mAbs on the kinetics of proteolysis of VWF A2 domain fragments by ADAMTS13 were analyzed. mAb-induced conformational changes in ADAMTS13 were investigated by enzyme-linked immunosorbent assay. Both mAbs enhanced ADAMTS13 catalytic efficiency (kcat/Km) by ∼twofold (3E4: 2.0-fold; 17G2: 1.8-fold). Contrary to previous hypotheses, ADAMTS13 activation was not mediated through exposure of the Spacer or cysteine-rich domain exosites. Kinetic analyses revealed that mAb-induced conformational extension of ADAMTS13 enhances the proteolytic function of the metalloprotease domain (kcat), rather than augmenting substrate binding (Km). A conformational effect on the metalloprotease domain was further corroborated by the finding that incubation of ADAMTS13 with either mAb exposed a cryptic epitope in the metalloprotease domain that is normally concealed when ADAMTS13 is in a closed conformation. We show for the first time that the primary mechanism of mAb-induced conformational activation of ADAMTS13 is not a consequence of functional exosite exposure. Rather, our data are consistent with an allosteric activation mechanism on the metalloprotease domain that augments active site function.
Collapse
|
80
|
Grob D, Conejeros I, López-Osorio S, Velásquez ZD, Segeritz L, Gärtner U, Schaper R, Hermosilla C, Taubert A. Canine Angiostrongylus vasorum-Induced Early Innate Immune Reactions Based on NETs Formation and Canine Vascular Endothelial Cell Activation In Vitro. BIOLOGY 2021; 10:biology10050427. [PMID: 34065858 PMCID: PMC8151090 DOI: 10.3390/biology10050427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary Angiostrongylus vasorum is a cardiopulmonary nematode that affects canids, residing in the pulmonary artery and right atrium/ventricle. Due to its location, the parasite will have a close interaction with the different components of the innate immune system, including endothelial cells and polymorphonuclear neutrophils (PMN). Here we evaluated the expression of adhesion molecules of canine aortic endothelial cells (CAEC), and NETs formation by co-culture of freshly isolated canine PMN with A. vasorum L3. Overall, we found distinct inter-donor variations in adhesion molecule expression among CAEC isolates. Additionally, PMN and A. vasorum co-culture induced NETs release without affecting larval viability. Abstract Due to its localization in the canine blood stream, Angiostrongylus vasorum is exposed to circulating polymorphonuclear neutrophils (PMN) and the endothelial cells of vessels. NETs release of canine PMN exposed to A. vasorum infective stages (third stage larvae, L3) and early pro-inflammatory immune reactions of primary canine aortic endothelial cells (CAEC) stimulated with A. vasorum L3-derived soluble antigens (AvAg) were analyzed. Expression profiles of the pro-inflammatory adhesion molecules ICAM-1, VCAM-1, P-selectin and E-selectin were analyzed in AvAg-stimulated CAEC. Immunofluorescence analyses demonstrated that motile A. vasorum L3 triggered different NETs phenotypes, with spread NETs (sprNETs) as the most abundant. Scanning electron microscopy confirmed that the co-culture of canine PMN with A. vasorum L3 resulted in significant larval entanglement. Distinct inter-donor variations of P-selectin, E-selectin, ICAM-1 and VCAM-1 gene transcription and protein expression were observed in CAEC isolates which might contribute to the high individual variability of pathological findings in severe canine angiostrongylosis. Even though canine NETs did not result in larval killing, the entanglement of L3 might facilitate further leukocyte attraction to their surface. Since NETs have already been documented as involved in both thrombosis and endothelium damage events, we speculate that A. vasorum-triggered NETs might play a critical role in disease outcome in vivo.
Collapse
Affiliation(s)
- Daniela Grob
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
- Correspondence:
| | - Iván Conejeros
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
| | - Sara López-Osorio
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
- Grupo de Investigación CIBAV, Universidad de Antioquia UdeA, Medellín 050034, Colombia
| | - Zahady D. Velásquez
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
| | - Lisa Segeritz
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | | | - Carlos Hermosilla
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
| | - Anja Taubert
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
| |
Collapse
|
81
|
Roka-Moiia Y, Ammann KR, Miller-Gutierrez S, Sweedo A, Palomares D, Italiano J, Sheriff J, Bluestein D, Slepian MJ. Shear-mediated platelet activation in the free flow II: Evolving mechanobiological mechanisms reveal an identifiable signature of activation and a bi-directional platelet dyscrasia with thrombotic and bleeding features. J Biomech 2021; 123:110415. [PMID: 34052772 DOI: 10.1016/j.jbiomech.2021.110415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 01/17/2023]
Abstract
Shear-mediated platelet activation (SMPA) in the "free flow" is the net result of a range of cell mechanobiological mechanisms. Previously, we outlined three main groups of mechanisms including: 1) mechano-destruction - i.e. additive platelet (membrane) damage; 2) mechano-activation - i.e. activation of shear-sensitive ion channels and pores; and 3) mechano-transduction - i.e. "outside-in" signaling via a range of transducers. Here, we report on recent advances since our original report which describes additional features of SMPA. A clear "signature" of SMPA has been defined, allowing differentiation from biochemically-mediated activation. Notably, SMPA is characterized by mitochondrial dysfunction, platelet membrane eversion, externalization of anionic phospholipids, and increased thrombin generation on the platelet surface. However, SMPA does not lead to integrin αIIbβ3 activation or P-selectin exposure due to platelet degranulation, as is commonly observed in biochemical activation. Rather, downregulation of GPIb, αIIbβ3, and P-selectin surface expression is evident. Furthermore, SMPA is accompanied by a decrease in overall platelet size coupled with a concomitant, progressive increase in microparticle generation. Shear-ejected microparticles are highly enriched in GPIb and αIIbβ3. These observations indicate the enhanced diffusion, migration, or otherwise dispersion of platelet adhesion receptors to membrane zones, which are ultimately shed as receptor-rich PDMPs. The pathophysiological consequence of this progressive shear accumulation phenomenon is an associated dyscrasia of remaining platelets - being both reduced in size and less activatable via biochemical means - a tendency to favor bleeding, while concomitantly shed microparticles are highly prothrombotic and increase the tendency for thrombosis in both local and systemic milieu. These mechanisms and observations offer direct clinical utility in allowing measurement and guidance of the net balance of platelet driven events in patients with implanted cardiovascular therapeutic devices.
Collapse
Affiliation(s)
- Yana Roka-Moiia
- Departments of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ 85721, United States; Arizona Center for Accelerated Biomedical Innovation, University of Arizona, Tucson, AZ 85721, United States
| | - Kaitlyn R Ammann
- Departments of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ 85721, United States; Arizona Center for Accelerated Biomedical Innovation, University of Arizona, Tucson, AZ 85721, United States
| | - Samuel Miller-Gutierrez
- Departments of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ 85721, United States; Arizona Center for Accelerated Biomedical Innovation, University of Arizona, Tucson, AZ 85721, United States
| | - Alice Sweedo
- Departments of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ 85721, United States; Arizona Center for Accelerated Biomedical Innovation, University of Arizona, Tucson, AZ 85721, United States
| | - Daniel Palomares
- Departments of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ 85721, United States; Arizona Center for Accelerated Biomedical Innovation, University of Arizona, Tucson, AZ 85721, United States
| | - Joseph Italiano
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Jawaad Sheriff
- Department of Biomedical Engineering, Stony Brook University, NY 11794, United States
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, NY 11794, United States
| | - Marvin J Slepian
- Departments of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ 85721, United States; Department of Biomedical Engineering, Stony Brook University, NY 11794, United States; Arizona Center for Accelerated Biomedical Innovation, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
82
|
Arce NA, Cao W, Brown AK, Legan ER, Wilson MS, Xu ER, Berndt MC, Emsley J, Zhang XF, Li R. Activation of von Willebrand factor via mechanical unfolding of its discontinuous autoinhibitory module. Nat Commun 2021; 12:2360. [PMID: 33883551 PMCID: PMC8060278 DOI: 10.1038/s41467-021-22634-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/16/2021] [Indexed: 01/05/2023] Open
Abstract
Von Willebrand factor (VWF) activates in response to shear flow to initiate hemostasis, while aberrant activation could lead to thrombosis. Above a critical shear force, the A1 domain of VWF becomes activated and captures platelets via the GPIb-IX complex. Here we show that the shear-responsive element controlling VWF activation resides in the discontinuous autoinhibitory module (AIM) flanking A1. Application of tensile force in a single-molecule setting induces cooperative unfolding of the AIM to expose A1. The AIM-unfolding force is lowered by truncating either N- or C-terminal AIM region, type 2B VWD mutations, or binding of a ristocetin-mimicking monoclonal antibody, all of which could activate A1. Furthermore, the AIM is mechanically stabilized by the nanobody that comprises caplacizumab, the only FDA-approved anti-thrombotic drug to-date that targets VWF. Thus, the AIM is a mechano-regulator of VWF activity. Its conformational dynamics may define the extent of VWF autoinhibition and subsequent activation under force.
Collapse
Affiliation(s)
- Nicholas A Arce
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Wenpeng Cao
- Department of Bioengineering, Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA, USA
| | - Alexander K Brown
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Emily R Legan
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Moriah S Wilson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Emma-Ruoqi Xu
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Michael C Berndt
- Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - X Frank Zhang
- Department of Bioengineering, Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA, USA.
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
83
|
The molecular basis of immune-based platelet disorders. Clin Sci (Lond) 2021; 134:2807-2822. [PMID: 33140828 DOI: 10.1042/cs20191101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/12/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
Platelets have a predominant role in haemostasis, the maintenance of blood volume and emerging roles as innate immune cells, in wound healing and in inflammatory responses. Platelets express receptors that are important for platelet adhesion, aggregation, participation in inflammatory responses, and for triggering degranulation and enhancing thrombin generation. They carry a cargo of granules bearing enzymes, adhesion molecules, growth factors and cytokines, and have the ability to generate reactive oxygen species. The platelet is at the frontline of a host of cellular responses to invading pathogens, injury, and infection. Perhaps because of this intrinsic responsibility of a platelet to rapidly respond to thrombotic, pathological and immunological factors as part of their infantry role; platelets are susceptible to targeted attack by the adaptive immune system. Such attacks are often transitory but result in aberrant platelet activation as well as significant loss of platelet numbers and platelet function, paradoxically leading to elevated risks of both thrombosis and bleeding. Here, we discuss the main molecular events underlying immune-based platelet disorders with specific focus on events occurring at the platelet surface leading to activation and clearance.
Collapse
|
84
|
Abnormalities in the Von Willebrand-Angiopoietin Axis Contribute to Dysregulated Angiogenesis and Angiodysplasia in Children With a Glenn Circulation. JACC Basic Transl Sci 2021; 6:222-235. [PMID: 33778210 PMCID: PMC7987544 DOI: 10.1016/j.jacbts.2020.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023]
Abstract
Children with a bidirectional superior cavopulmonary connection (Glenn circulation) develop dysregulated angiogenesis and pulmonary angiodysplasia in the form of arteriovenous malformations (AVMs). No targeted therapy exists. The von Willebrand factor (vWF)–angiopoietin axis plays a major role in normal angiogenesis, angiodysplasia, and AVM formation in multiple diseases. vWF and angiopoietin-2 (which destabilizes vessel formation) were abnormal in children with a Glenn circulation versus control children. Within Glenn patients, angiopoietin-1 (which stabilizes vessel formation) and angiogenesis were different in the systemic versus pulmonary circulation. Plasma angiopoietin-1 was lower in the pulmonary circulation of Glenn patients with pulmonary AVMs than Glenn patients without AVMs. In parallel, differences in multiple angiogenic and inflammatory signaling peptides were observed between Glenn patients and controls, which indicated derangements in multiple angiogenic pathways in Glenn patients. These findings support the novel hypothesis that abnormal vWF metabolism and angiopoietin signaling dysregulate angiogenesis and contribute to pulmonary AVM formation in children with a Glenn circulation. The vWF-angiopoietin axis may be a target to correct angiogenic imbalance and reduce pulmonary angiodysplasia in Glenn patients.
Children with a bidirectional superior cavopulmonary (Glenn) circulation develop angiodysplasia and pulmonary arteriovenous malformations (AVMs). The von Willebrand factor (vWF)–angiopoietin axis plays a major role in AVM formation in multiple diseases. We observed derangements in global angiogenic signaling, vWF metabolism, angiopoietins, and in vitro angiogenesis in children with a Glenn circulation versus controls and within Glenn pulmonary versus systemic circulations. These findings support the novel hypothesis that abnormalities in the vWF-angiopoietin axis may dysregulate angiogenesis and contribute to Glenn pulmonary AVMs. The vWF-angiopoietin axis may be a target to correct angiogenic imbalance in Glenn patients, for whom no targeted therapy exists.
Collapse
Key Words
- ADAMTS-13, a disintegrin and metalloproteinase thrombospondin (motif) #13
- AVM, arteriovenous malformation
- EBM, endothelial basal media
- EGM, endothelial growth media
- Glenn
- HUVEC, human umbilical vein endothelial cell
- IVC, inferior vena cava
- LVAD, left ventricular assist device
- PA, pulmonary artery
- SVC, superior vena cava
- angiogenesis
- angiopoietin
- arteriovenous malformation
- vWF, von Willebrand factor
- von Willebrand factor
Collapse
|
85
|
Kania S, Oztekin A, Cheng X, Zhang XF, Webb E. Predicting pathological von Willebrand factor unraveling in elongational flow. Biophys J 2021; 120:1903-1915. [PMID: 33737157 DOI: 10.1016/j.bpj.2021.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022] Open
Abstract
The globular-to-unraveled conformation transition of von Willebrand factor (vWF), a large polymeric glycoprotein in human blood plasma, is a crucial step in the process of clotting at sites of vascular injury. However, unraveling of vWF multimers in uninjured vasculature can lead to pathology (i.e., thrombus formation or degradation of vWF proteins by enzyme ADAMTS13, making them nonfunctional). To identify blood flow conditions that might induce pathological unraveling of vWF multimers, here we have computed the globular-to-unraveled transition rate of vWF multimers subjected to varying strain rate elongational flow by employing an enhanced sampling technique, the weighted ensemble method. Weighted ensemble sampling was employed instead of standard brute-force simulations because pathological blood flow conditions can induce undesired vWF unraveling on timescales potentially inaccessible to standard simulation methods. Results here indicate that brief but periodic exposure of vWF to the elongational flow of strain rate greater than or equal to 2500 s-1 represents a source of possible pathology caused by the undesired unraveling of vWF multimers.
Collapse
Affiliation(s)
- Sagar Kania
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania
| | - Alparslan Oztekin
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania
| | - Xuanhong Cheng
- Department of Material Science and Engineering, Lehigh University, Bethlehem, Pennsylvania; Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania
| | - X Frank Zhang
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania; Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania
| | - Edmund Webb
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania.
| |
Collapse
|
86
|
He Y, Wu N. Research Progress on Gestational Diabetes Mellitus and Endothelial Dysfunction Markers. Diabetes Metab Syndr Obes 2021; 14:983-990. [PMID: 33688231 PMCID: PMC7937366 DOI: 10.2147/dmso.s295737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/15/2021] [Indexed: 01/24/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is the onset or first recognition of diabetes during pregnancy in women with normal glucose metabolism or potentially impaired glucose tolerance before pregnancy. Studies have shown that vascular endothelial cells (VECs) are an important target organ of insulin, which is injured by multiple factors in the case of GDM, thereby leading to worsened insulin resistance (IR) and the further development of GDM. When VECs are abnormal, there will be changes in the content of a variety of cell markers, which may be helpful for the clinical prediction and diagnosis of GDM. This study attempted to investigate the mechanism and markers of VECs injury in GDM patients.
Collapse
Affiliation(s)
- Yujing He
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’ s Republic of China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’ s Republic of China
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
87
|
Roka-Moiia Y, Li M, Ivich A, Muslmani S, Kern KB, Slepian MJ. Impella 5.5 Versus Centrimag: A Head-to-Head Comparison of Device Hemocompatibility. ASAIO J 2021; 66:1142-1151. [PMID: 33136602 PMCID: PMC7594535 DOI: 10.1097/mat.0000000000001283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite growing use of mechanical circulatory support, limitations remain related to hemocompatibility. Here, we performed a head-to-head comparison of the hemocompatibility of a centrifugal cardiac assist system-the Centrimag, with that of the latest generation of an intravascular microaxial system-the Impella 5.5. Specifically, hemolysis, platelet activation, microparticle (MP) generation, and von Willebrand factor (vWF) degradation were evaluated for both devices. Freshly obtained porcine blood was recirculated within device propelled mock loops for 4 hours, and alteration of the hemocompatibility parameters was monitored over time. We found that the Impella 5.5 and Centrimag exhibited low levels of hemolysis, as indicated by minor increase in plasma free hemoglobin. Both devices did not induce platelet degranulation, as no alteration of β-thromboglobulin and P-selectin in plasma occurred, rather minor downregulation of platelet surface P-selectin was detected. Furthermore, blood exposure to shear stress via both Centrimag and Impella 5.5 resulted in a minor decrease of platelet count with associated ejection of procoagulant MPs, and a decrease of vWF functional activity (but not plasma level of vWF-antigen). Greater MP generation was observed with the Centrimag relative to the Impella 5.5. Thus, the Impella 5.5 despite having a lower profile and higher impeller rotational speed demonstrated good and equivalent hemocompatibility, in comparison with the predicate Centrimag, with the advantage of lower generation of MPs.
Collapse
Affiliation(s)
- Yana Roka-Moiia
- From the Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, Arizona
| | - Mengtang Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Adriana Ivich
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Sami Muslmani
- From the Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, Arizona
| | - Karl B. Kern
- From the Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, Arizona
| | - Marvin J. Slepian
- From the Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, Arizona
- Department of Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
88
|
Kim D, Shea SM, Ku DN. Lysis of arterial thrombi by perfusion of N,N'-Diacetyl-L-cystine (DiNAC). PLoS One 2021; 16:e0247496. [PMID: 33630932 PMCID: PMC7906380 DOI: 10.1371/journal.pone.0247496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/08/2021] [Indexed: 11/18/2022] Open
Abstract
The search persists for a safe and effective agent to lyse arterial thrombi in the event of acute heart attacks or strokes due to thrombotic occlusion. The culpable thrombi are composed either primarily of platelets and von Willebrand Factor (VWF), or polymerized fibrin, depending on the mechanism of formation. Current thrombolytics were designed to target red fibrin-rich clots, but may be not be efficacious on white VWF-platelet-rich arterial thrombi. We have developed an in vitro system to study the efficacy of known and proposed thrombolytic agents on white clots formed from whole blood in a stenosis with arterial conditions. The agents and adjuncts tested were tPA, ADAMTS-13, abciximab, N-acetyl cysteine, and N,N'-Diacetyl-L-cystine (DiNAC). Most of the agents, including tPA, had little thrombolytic effect on the white clots. In contrast, perfusion of DiNAC lysed thrombi as quickly as 1.5 min, which ranged up to 30 min at lower concentrations, and resulted in an average reduction in surface area of 71 ± 20%. The clot burden was significantly reduced compared to both tPA and a saline control (p<0.0001). We also tested the efficacy of all agents on red fibrinous clots formed in stagnant conditions. DiNAC did not lyse red clots, whereas tPA significantly lysed red clot over 48 h (p<0.01). These results lead to a novel use for DiNAC as a possible thrombolytic agent against acute arterial occlusions that could mitigate the risk of hyper-fibrinolytic bleeding.
Collapse
Affiliation(s)
- Dongjune Kim
- G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Susan M. Shea
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - David N. Ku
- G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
89
|
Zhang W, Lin Y, Gao Y, Guo Z, Li X, Hu Y, Dong P, Zhang Q, Fang X, Zhang M. Numerical and Experimental Investigation on the Optical Manipulation from an Axicon Lensed Fiber. MICROMACHINES 2021; 12:mi12020187. [PMID: 33673323 PMCID: PMC7918515 DOI: 10.3390/mi12020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/03/2022]
Abstract
Here we numerically and experimentally studied the optical trapping on a microsphere from an axicon lensed fiber (ALF). The optical force from the fiber with different tapered lengths and by incident light at different wavelengths is calculated. Numerically, the microsphere can be trapped by the fiber with tapered outline y=±x/0.5 and y=±x at a short incident wavelength of 900 nm. While for the fiber with tapered outline y=±x/2, the microsphere can be trapped by the light with longer wavelength of 1100 nm, 1300 nm, or 1500 nm. The optical trapping to a polystyrene microsphere is experimentally demonstrated in a microfluidic channel and the corresponding optical force is derived according to the fluid flow speed. This study can provide a guidance for future tapered fibre design for optical trapping to microspheres.
Collapse
Affiliation(s)
- Wu Zhang
- School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.G.); (Z.G.); (Y.H.); (P.D.); (Q.Z.); (X.F.)
- Correspondence: (W.Z.); (M.Z.)
| | - Yanxiao Lin
- School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.G.); (Z.G.); (Y.H.); (P.D.); (Q.Z.); (X.F.)
| | - Yusong Gao
- School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.G.); (Z.G.); (Y.H.); (P.D.); (Q.Z.); (X.F.)
| | - Zekai Guo
- School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.G.); (Z.G.); (Y.H.); (P.D.); (Q.Z.); (X.F.)
| | - Xiangling Li
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510006, China;
| | - Yuhong Hu
- School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.G.); (Z.G.); (Y.H.); (P.D.); (Q.Z.); (X.F.)
| | - Pengcai Dong
- School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.G.); (Z.G.); (Y.H.); (P.D.); (Q.Z.); (X.F.)
| | - Qifan Zhang
- School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.G.); (Z.G.); (Y.H.); (P.D.); (Q.Z.); (X.F.)
| | - Xiaohui Fang
- School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.G.); (Z.G.); (Y.H.); (P.D.); (Q.Z.); (X.F.)
| | - Meng Zhang
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510080, China
- Correspondence: (W.Z.); (M.Z.)
| |
Collapse
|
90
|
Shiraishi Y, Tachizaki Y, Inoue Y, Hayakawa M, Yamada A, Kayashima M, Matsumoto M, Horiuchi H, Yambe T. Hemolysis and von Willebrand factor degradation in mechanical shuttle shear flow tester. J Artif Organs 2021; 24:111-119. [PMID: 33559766 PMCID: PMC8154843 DOI: 10.1007/s10047-020-01219-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 04/15/2020] [Indexed: 12/02/2022]
Abstract
Chronic blood trauma caused by the shear stresses generated by mechanical circulatory support (MCS) systems is one of the major concerns to be considered during the development of ventricular assist devices. Large multimers with high-molecular-weight von Willebrand factor (VWF) are extended by the fluid forces in a shear flow and are cleaved by ADAMTS13. Since the mechanical revolving motions in artificial MCSs induce cleavage in large VWF multimers, nonsurgical bleeding associated with the MCS is likely to occur after mechanical hemodynamic support. In this study, the shear stress (~ 600 Pa) and exposure time related to hemolysis and VWF degradation were investigated using a newly designed mechanical shuttle shear flow tester. The device consisted of a pair of cylinders facing the test section of a small-sized pipe; both the cylinders were connected to composite mechanical heads with a sliding-sleeve structure for axial separation during the withdrawing motion. The influence of exposure time, in terms of the number of stress cycles, on hemolysis and VWF degradation was confirmed using fresh goat blood, and the differences in the rates of dissipation of the multimers were established. The plasma-free hemoglobin levels showed a logarithmic increase corresponding to the number of cycles, and the dissipation of large VWF multimers occurred within a few seconds under high shear stress flow conditions.
Collapse
Affiliation(s)
- Yasuyuki Shiraishi
- Department of Preclinical Evaluation, Pre-Clinical Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
- Department of Medical Engineering and Cardiology, Pre-Clinical Research Center, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Yuma Tachizaki
- Department of Medical Engineering and Cardiology, Pre-Clinical Research Center, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yusuke Inoue
- Department of Medical Engineering and Cardiology, Pre-Clinical Research Center, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Masaki Hayakawa
- Department of Blood Transfusion Medicine, Nara Medical University, Nara, Japan
| | - Akihiro Yamada
- Department of Medical Engineering and Cardiology, Pre-Clinical Research Center, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Michinori Kayashima
- Department of Blood Transfusion Medicine, Nara Medical University, Nara, Japan
| | - Masanori Matsumoto
- Department of Blood Transfusion Medicine, Nara Medical University, Nara, Japan
| | - Hisanori Horiuchi
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tomoyuki Yambe
- Department of Preclinical Evaluation, Pre-Clinical Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Medical Engineering and Cardiology, Pre-Clinical Research Center, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
91
|
van Rooij BJM, Závodszky G, Hoekstra AG, Ku DN. Haemodynamic flow conditions at the initiation of high-shear platelet aggregation: a combined in vitro and cellular in silico study. Interface Focus 2021; 11:20190126. [PMID: 33335707 PMCID: PMC7739908 DOI: 10.1098/rsfs.2019.0126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
The influence of the flow environment on platelet aggregation is not fully understood in high-shear thrombosis. The objective of this study is to investigate the role of a high shear rate in initial platelet aggregation. The haemodynamic conditions in a microfluidic device are studied using cell-based blood flow simulations. The results are compared with in vitro platelet aggregation experiments performed with porcine whole blood (WB) and platelet-rich-plasma (PRP). We studied whether the cell-depleted layer in combination with high shear and high platelet flux can account for the distribution of platelet aggregates. High platelet fluxes at the wall were found in silico. In WB, the platelet flux was about twice as high as in PRP. Additionally, initial platelet aggregation and occlusion were observed in vitro in the stenotic region. In PRP, the position of the occlusive thrombus was located more downstream than in WB. Furthermore, the shear rates and stresses in cell-based and continuum simulations were studied. We found that a continuum simulation is a good approximation for PRP. For WB, it cannot predict the correct values near the wall.
Collapse
Affiliation(s)
- B J M van Rooij
- Computational Science Lab, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - G Závodszky
- Computational Science Lab, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - A G Hoekstra
- Computational Science Lab, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - D N Ku
- Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
92
|
Mechanical Forces Impacting Cleavage of Von Willebrand Factor in Laminar and Turbulent Blood Flow. FLUIDS 2021. [DOI: 10.3390/fluids6020067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Von Willebrand factor (VWF) is a large multimeric hemostatic protein. VWF is critical in arresting platelets in regions of high shear stress found in blood circulation. Excessive cleavage of VWF that leads to reduced VWF multimer size in plasma can cause acquired von Willebrand syndrome, which is a bleeding disorder found in some heart valve diseases and in patients receiving mechanical circulatory support. It has been proposed that hemodynamics (blood flow) found in these environments ultimately leads to VWF cleavage. In the context of experiments reported in the literature, scission theory, developed for polymers, is applied here to provide insight into flow that can produce strong extensional forces on VWF that leads to domain unfolding and exposure of a cryptic site for cleavage through a metalloproteinase. Based on theoretical tensile forces, laminar flow only enables VWF cleavage when shear rate is large enough (>2800 s−1) or when VWF is exposed to constant shear stress for nonphysiological exposure times (>20 min). Predicted forces increase in turbulence, increasing the chance for VWF cleavage. These findings can be used when designing blood-contacting medical devices by providing hemodynamic limits to these devices that can otherwise lead to acquired von Willebrand syndrome.
Collapse
|
93
|
Sukumar S, Lämmle B, Cataland SR. Thrombotic Thrombocytopenic Purpura: Pathophysiology, Diagnosis, and Management. J Clin Med 2021; 10:536. [PMID: 33540569 PMCID: PMC7867179 DOI: 10.3390/jcm10030536] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Thrombotic thrombocytopenic purpura (TTP) is a rare thrombotic microangiopathy characterized by microangiopathic hemolytic anemia, severe thrombocytopenia, and ischemic end organ injury due to microvascular platelet-rich thrombi. TTP results from a severe deficiency of the specific von Willebrand factor (VWF)-cleaving protease, ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13). ADAMTS13 deficiency is most commonly acquired due to anti-ADAMTS13 autoantibodies. It can also be inherited in the congenital form as a result of biallelic mutations in the ADAMTS13 gene. In adults, the condition is most often immune-mediated (iTTP) whereas congenital TTP (cTTP) is often detected in childhood or during pregnancy. iTTP occurs more often in women and is potentially lethal without prompt recognition and treatment. Front-line therapy includes daily plasma exchange with fresh frozen plasma replacement and immunosuppression with corticosteroids. Immunosuppression targeting ADAMTS13 autoantibodies with the humanized anti-CD20 monoclonal antibody rituximab is frequently added to the initial therapy. If available, anti-VWF therapy with caplacizumab is also added to the front-line setting. While it is hypothesized that refractory TTP will be less common in the era of caplacizumab, in relapsed or refractory cases cyclosporine A, N-acetylcysteine, bortezomib, cyclophosphamide, vincristine, or splenectomy can be considered. Novel agents, such as recombinant ADAMTS13, are also currently under investigation and show promise for the treatment of TTP. Long-term follow-up after the acute episode is critical to monitor for relapse and to diagnose and manage chronic sequelae of this disease.
Collapse
Affiliation(s)
- Senthil Sukumar
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Bernhard Lämmle
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, CH 3010 Bern, Switzerland;
- Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
- Haemostasis Research Unit, University College London, London WC1E 6BT, UK
| | - Spero R. Cataland
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
94
|
Belyaev AV. Intradimer forces and their implication for conformations of von Willebrand factor multimers. Biophys J 2021; 120:899-911. [PMID: 33524374 DOI: 10.1016/j.bpj.2021.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 10/22/2022] Open
Abstract
The largest blood glycoprotein von Willebrand factor (VWF) responds to hydrodynamic stresses in the bloodstream with abrupt conformation changes, thus increasing its adhesivity to platelets and collagen. Arterial and microvascular hemostasis relies on mechanical and physicochemical properties of this macromolecule. Recently, it was discovered that the mechanical properties of VWF are controlled by multiple pH-dependent interactions with opposite trends within dimeric subunits. In this work, computer simulations reveal the effect of these intradimer forces on the conformation of VWF multimers in various hydrodynamic conditions. A coarse-grained computer model of VWF has been proposed and parameterized to give a good agreement with experimental data. The simulations suggest that strong attraction between VWF D4 domains increases the resistance to elongation under shear stress, whereas even intermediate attraction between VWF C domains contributes to VWF compaction in nonsheared fluid. It is hypothesized that the detailed subdimer dynamics of VWF concatamers may be one of the biophysical regulators of initial hemostasis and arterial thrombosis.
Collapse
Affiliation(s)
- Aleksey V Belyaev
- Lomonosov Moscow State University, Faculty of Physics, Moscow, Russia; IRC Mathematical modelling in Biomedicine, S.M. Nikolskii Mathematical Institute, RUDN University, Moscow, Russia.
| |
Collapse
|
95
|
Prevel R, Roubaud-Baudron C, Tellier E, Le Besnerais M, Kaplanski G, Veyradier A, Benhamou Y, Coppo P. [Endothelial dysfunction in thrombotic thrombocytopenic purpura: therapeutic perspectives]. Rev Med Interne 2021; 42:202-209. [PMID: 33455838 DOI: 10.1016/j.revmed.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/19/2020] [Accepted: 12/26/2020] [Indexed: 01/05/2023]
Abstract
Immune Thrombotic Thrombocytopenic Purpura (iTTP) is a rare but severe disease with a mortality rate of almost 100 % in the absence of adequate treatment. iTTP is caused by a severe deficiency in ADAMTS13 activity due to the production of inhibitory antibodies. Age has been shown to be a major prognostic factor. iTTP patients in the elderly (60yo and over) have more frequent organ involvement, especially heart and kidney failures compared with younger patients. They also have non-specific neurologic symptoms leading to a delayed diagnosis. Factors influencing this impaired survival among older patients remain unknown so far. Alteration of the functional capacity of involved organs could be part of the explanation as could be the consequences of vascular aging. In fact, severe ADAMTS13 deficiency is necessary but likely not sufficient for iTTP physiopathology. A second hit leading to endothelial activation is thought to play a central role in iTTP. Interestingly, the mechanisms involved in endothelial activation may share common features with those involved in vascular aging, potentially leading to endothelial dysfunction. It could thus be interesting to better investigate the causes of mid- and long-term mortality among older iTTP patients to confirm whether inflammation and endothelial activation really impact vascular aging and long-term mortality in those patients, in addition to their presumed role at iTTP acute phase. If so, further insights into the mechanisms involved could lead to new therapeutic targets.
Collapse
Affiliation(s)
- R Prevel
- CHU Bordeaux, Pôle de Gérontologie Clinique, 33000 Bordeaux, France; CHU Bordeaux, FHU Acronim 33000 Bordeaux, France; University Bordeaux, INSERM 1045 CRCTB 33000 Bordeaux, France
| | - C Roubaud-Baudron
- CHU Bordeaux, Pôle de Gérontologie Clinique, 33000 Bordeaux, France; University Bordeaux, INSERM UMR 1053 Bariton 33000 Bordeaux, France
| | - E Tellier
- Vascular Research Center of Marseille, Inserm, UMRS_1076, Aix-Marseille Université, Marseille, France
| | - M Le Besnerais
- Service de Médecine Interne, CHU Charles Nicolle, Rouen, France; INSERM U1096, UFR médecine pharmacie Rouen, Rouen, France
| | - G Kaplanski
- Vascular Research Center of Marseille, Inserm, UMRS_1076, Aix-Marseille Université, Marseille, France; Aix-Marseille université, 13284, Service de médecine interne, hôpital de la Conception, AP-HM, 147, boulevard Baille, 13385 Marseille cedex 05, France; Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT, www.cnr-mat.fr), Paris, France
| | - A Veyradier
- Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT, www.cnr-mat.fr), Paris, France; Hématologie biologique, Hôpital Lariboisière, AP-HP, Université Paris Diderot, Paris, France
| | - Y Benhamou
- Service de Médecine Interne, CHU Charles Nicolle, Rouen, France; INSERM U1096, UFR médecine pharmacie Rouen, Rouen, France; Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT, www.cnr-mat.fr), Paris, France
| | - P Coppo
- Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT, www.cnr-mat.fr), Paris, France; Service d'Hématologie, Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT, www.cnr-mat.fr), AP-HP.6, Paris, France.
| | | |
Collapse
|
96
|
Abstract
The a disintegrin-like and metalloproteinase with thrombospondin motif (ADAMTS) family comprises 19 proteases that regulate the structure and function of extracellular proteins in the extracellular matrix and blood. The best characterized cardiovascular role is that of ADAMTS-13 in blood. Moderately low ADAMTS-13 levels increase the risk of ischeamic stroke and very low levels (less than 10%) can cause thrombotic thrombocytopenic purpura (TTP). Recombinant ADAMTS-13 is currently in clinical trials for treatment of TTP. Recently, new cardiovascular roles for ADAMTS proteases have been discovered. Several ADAMTS family members are important in the development of blood vessels and the heart, especially the valves. A number of studies have also investigated the potential role of ADAMTS-1, -4 and -5 in cardiovascular disease. They cleave proteoglycans such as versican, which represent major structural components of the arteries. ADAMTS-7 and -8 are attracting considerable interest owing to their implication in atherosclerosis and pulmonary arterial hypertension, respectively. Mutations in the ADAMTS19 gene cause progressive heart valve disease and missense variants in ADAMTS6 are associated with cardiac conduction. In this review, we discuss in detail the evidence for these and other cardiovascular roles of ADAMTS family members, their proteolytic substrates and the potential molecular mechanisms involved.
Collapse
Affiliation(s)
- Salvatore Santamaria
- Centre for Haematology, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Rens de Groot
- Centre for Haematology, Imperial College London, Du Cane Road, London W12 0NN, UK.,Institute of Cardiovascular Science, University College London, 51 Chenies Mews, London WC1E 6HX, UK
| |
Collapse
|
97
|
Li J, Chen G, Guo Y, Wang H, Li H. Single molecule force spectroscopy reveals the context dependent folding pathway of the C-terminal fragment of Top7. Chem Sci 2020; 12:2876-2884. [PMID: 34164053 PMCID: PMC8179357 DOI: 10.1039/d0sc06344d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Top7 is a de novo designed protein with atomic level accuracy and shows a folded structure not found in nature. Previous studies showed that the folding of Top7 is not cooperative and involves various folding intermediate states. In addition, various fragments of Top7 were found to fold on their own in isolation. These features displayed by Top7 are distinct from those of naturally occurring proteins of a similar size and suggest a rough folding energy landscape. However, it remains unknown if and how the intra-polypeptide chain interactions among the neighboring sequences of Top7 affect the folding of these Top7 fragments. Here we used single-molecule optical tweezers to investigate the folding–unfolding pathways of full length Top7 as well as its C-terminal fragment (CFr) in different sequence environments. Our results showed that the mechanical folding of Top7 involves an intermediate state that likely involves non-native interactions/structure. More importantly, we found that the folding of CFr is entirely dependent upon its sequence context in which it is located. When in isolation, CFr indeed folds into a cooperative structure showing near-equilibrium unfolding–folding transitions at ∼6.5 pN in OT experiments. However, CFr loses its autonomous cooperative folding ability and displays a folding pathway that is dependent on its interactions with its neighboring sequence/structure. This context-dependent folding dynamics and pathway of CFr are distinct from those of naturally occurring proteins and highlight the critical importance of intra-chain interactions in shaping the overall energy landscape and the folding pathway of Top7. These new insights may have important implications on the de novo design of proteins. Optical tweezers experiments reveal that the folding of the C-terminal fragment of Top7 (cFr) is context-dependent. Depending on its neighboring sequence, cFr shows very different folding pathways and folding kinetics. ![]()
Collapse
Affiliation(s)
- Jiayu Li
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| | - Guojun Chen
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| | - Yabin Guo
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| | - Han Wang
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
98
|
Yang J, Wu Z, Long Q, Huang J, Hong T, Liu W, Lin J. Insights Into Immunothrombosis: The Interplay Among Neutrophil Extracellular Trap, von Willebrand Factor, and ADAMTS13. Front Immunol 2020; 11:610696. [PMID: 33343584 PMCID: PMC7738460 DOI: 10.3389/fimmu.2020.610696] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Both neutrophil extracellular traps (NETs) and von Willebrand factor (VWF) are essential for thrombosis and inflammation. During these processes, a complex series of events, including endothelial activation, NET formation, VWF secretion, and blood cell adhesion, aggregation and activation, occurs in an ordered manner in the vasculature. The adhesive activity of VWF multimers is regulated by a specific metalloprotease ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13). Increasing evidence indicates that the interaction between NETs and VWF contributes to arterial and venous thrombosis as well as inflammation. Furthermore, contents released from activated neutrophils or NETs induce the reduction of ADAMTS13 activity, which may occur in both thrombotic microangiopathies (TMAs) and acute ischemic stroke (AIS). Recently, NET is considered as a driver of endothelial damage and immunothrombosis in COVID-19. In addition, the levels of VWF and ADAMTS13 can predict the mortality of COVID-19. In this review, we summarize the biological characteristics and interactions of NETs, VWF, and ADAMTS13, and discuss their roles in TMAs, AIS, and COVID-19. Targeting the NET-VWF axis may be a novel therapeutic strategy for inflammation-associated TMAs, AIS, and COVID-19.
Collapse
Affiliation(s)
- Junxian Yang
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Zhiwei Wu
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Quan Long
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jiaqi Huang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Tiantian Hong
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Wang Liu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jiangguo Lin
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
99
|
Ferraro F, Patella F, Costa JR, Ketteler R, Kriston‐Vizi J, Cutler DF. Modulation of endothelial organelle size as an antithrombotic strategy. J Thromb Haemost 2020; 18:3296-3308. [PMID: 32881285 PMCID: PMC8436738 DOI: 10.1111/jth.15084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND It is long established that von Willebrand factor (VWF) is central to hemostasis and thrombosis. Endothelial VWF is stored in cell-specific secretory granules, Weibel-Palade bodies (WPBs), organelles generated in a wide range of lengths (0.5-5.0 µm). WPB size responds to physiological cues and pharmacological treatment, and VWF secretion from shortened WPBs dramatically reduces platelet and plasma VWF adhesion to an endothelial surface. OBJECTIVE We hypothesized that WPB-shortening represented a novel target for antithrombotic therapy. Our objective was to determine whether compounds exhibiting this activity do exist. METHODS Using a microscopy approach coupled to automated image analysis, we measured the size of WPB bodies in primary human endothelial cells treated with licensed compounds for 24 hours. RESULTS AND CONCLUSIONS A novel approach to identification of antithrombotic compounds generated a significant number of candidates with the ability to shorten WPBs. In vitro assays of two selected compounds confirm that they inhibit the pro-hemostatic activity of secreted VWF. This set of compounds acting at a very early stage of the hemostatic process could well prove to be a useful adjunct to current antithrombotic therapeutics. Further, in the current SARS-CoV-2 pandemic, with a considerable fraction of critically ill COVID-19 patients affected by hypercoagulability, these WPB size-reducing drugs might also provide welcome therapeutic leads for frontline clinicians and researchers.
Collapse
Affiliation(s)
- Francesco Ferraro
- Endothelial Cell Biology Group, MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
- Present address:
Department of Biology and Evolution of Marine Organisms (BEOM)Stazione Zoologica Anton DohrnVilla ComunaleNaplesItaly
| | - Francesca Patella
- Endothelial Cell Biology Group, MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Joana R. Costa
- Cell Signalling and Autophagy GroupMRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
- Present address:
Leukaemia Biology Research GroupDepartment of Haematology, Cancer InstituteUniversity College LondonLondonUK
| | - Robin Ketteler
- Cell Signalling and Autophagy GroupMRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Janos Kriston‐Vizi
- Bioinformatics Image Core (BIONIC)MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Daniel F. Cutler
- Endothelial Cell Biology Group, MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| |
Collapse
|
100
|
Abraham Punnoose J, Hayden A, Zhou L, Halvorsen K. Wi-Fi Live-Streaming Centrifuge Force Microscope for Benchtop Single-Molecule Experiments. Biophys J 2020; 119:2231-2239. [PMID: 33121943 PMCID: PMC7732769 DOI: 10.1016/j.bpj.2020.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 11/21/2022] Open
Abstract
The ability to apply controlled forces to individual molecules has been revolutionary in shaping our understanding of biophysics in areas as diverse as dynamic bond strength, biological motor operation, and DNA replication. However, the methodology to perform single-molecule experiments remains relatively inaccessible because of cost and complexity. In 2010, we introduced the centrifuge force microscope (CFM) as a platform for accessible and high-throughput single-molecule experimentation. The CFM consists of a rotating microscope with which prescribed centrifugal forces can be applied to microsphere-tethered biomolecules. In this work, we develop and demonstrate a next-generation Wi-Fi CFM that offers unprecedented ease of use and flexibility in design. The modular CFM unit fits within a standard benchtop centrifuge and connects by Wi-Fi to an external computer for live control and streaming at near gigabit speeds. The use of commercial wireless hardware allows for flexibility in programming and provides a streamlined upgrade path as Wi-Fi technology advances. To facilitate ease of use, detailed build and setup instructions, as well as LabVIEW-based control software and MATLAB-based analysis software, are provided. We demonstrate the instrument’s performance by analysis of force-dependent dissociation of short DNA duplexes of 7, 8, and 9 bp. We showcase the sensitivity of the approach by resolving distinct dissociation kinetic rates for a 7 bp duplex in which one G-C basepair is mutated to an A-T basepair.
Collapse
Affiliation(s)
| | | | - Lifeng Zhou
- RNA Institute, SUNY at Albany, Albany, New York
| | | |
Collapse
|