51
|
Roeschlin RA, Azad SM, Grove RP, Chuan A, García L, Niñoles R, Uviedo F, Villalobos L, Massimino ME, Marano MR, Boch J, Gadea J. Designer TALEs enable discovery of cell death-inducer genes. PLANT PHYSIOLOGY 2024; 195:2985-2996. [PMID: 38723194 PMCID: PMC11288752 DOI: 10.1093/plphys/kiae230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/26/2024] [Indexed: 08/02/2024]
Abstract
Transcription activator-like effectors (TALEs) in plant-pathogenic Xanthomonas bacteria activate expression of plant genes and support infection or cause a resistance response. PthA4AT is a TALE with a particularly short DNA-binding domain harboring only 7.5 repeats which triggers cell death in Nicotiana benthamiana; however, the genetic basis for this remains unknown. To identify possible target genes of PthA4AT that mediate cell death in N. benthamiana, we exploited the modularity of TALEs to stepwise enhance their specificity and reduce potential target sites. Substitutions of individual repeats suggested that PthA4AT-dependent cell death is sequence specific. Stepwise addition of repeats to the C-terminal or N-terminal end of the repeat region narrowed the sequence requirements in promoters of target genes. Transcriptome profiling and in silico target prediction allowed the isolation of two cell death inducer genes, which encode a patatin-like protein and a bifunctional monodehydroascorbate reductase/carbonic anhydrase protein. These two proteins are not linked to known TALE-dependent resistance genes. Our results show that the aberrant expression of different endogenous plant genes can cause a cell death reaction, which supports the hypothesis that TALE-dependent executor resistance genes can originate from various plant processes. Our strategy further demonstrates the use of TALEs to scan genomes for genes triggering cell death and other relevant phenotypes.
Collapse
Affiliation(s)
- Roxana A Roeschlin
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
| | - Sepideh M Azad
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - René P Grove
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Ana Chuan
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - Lucila García
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 590, S2002LRK, Rosario, Argentina
| | - Regina Niñoles
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - Facundo Uviedo
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
| | - Liara Villalobos
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
| | - Maria E Massimino
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - María R Marano
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 590, S2002LRK, Rosario, Argentina
| | - Jens Boch
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - José Gadea
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| |
Collapse
|
52
|
Elliott K, Veley KM, Jensen G, Gilbert KB, Norton J, Kambic L, Yoder M, Weil A, Motomura-Wages S, Bart RS. CRISPR/Cas9-generated mutations in a sugar transporter gene reduce cassava susceptibility to bacterial blight. PLANT PHYSIOLOGY 2024; 195:2566-2578. [PMID: 38701041 PMCID: PMC11288762 DOI: 10.1093/plphys/kiae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Bacteria from the genus Xanthomonas are prolific phytopathogens that elicit disease in over 400 plant species. Xanthomonads carry a repertoire of specialized proteins called transcription activator-like (TAL) effectors that promote disease and pathogen virulence by inducing the expression of host susceptibility (S) genes. Xanthomonas phaseoli pv. manihotis (Xpm) causes bacterial blight on the staple food crop cassava (Manihot esculenta Crantz). The Xpm effector TAL20 induces ectopic expression of the S gene Manihot esculenta Sugars Will Eventually be Exported Transporter 10a (MeSWEET10a), which encodes a sugar transporter that contributes to cassava bacterial blight (CBB) susceptibility. We used CRISPR/Cas9 to generate multiple cassava lines with edits to the MeSWEET10a TAL20 effector binding site and/or coding sequence. In several of the regenerated lines, MeSWEET10a expression was no longer induced by Xpm, and in these cases, we observed reduced CBB disease symptoms post Xpm infection. Because MeSWEET10a is expressed in cassava flowers, we further characterized the reproductive capability of the MeSWEET10a promoter and coding sequence mutants. Lines were crossed to themselves and to wild-type plants. The results indicated that expression of MeSWEET10a in female, but not male, flowers is critical to produce viable F1 seed. In the case of promoter mutations that left the coding sequence intact, viable F1 progeny were recovered. Taken together, these results demonstrate that blocking MeSWEET10a induction is a viable strategy for decreasing cassava susceptibility to CBB and that ideal lines will contain promoter mutations that block TAL effector binding while leaving endogenous expression of MeSWEET10a unaltered.
Collapse
Affiliation(s)
- Kiona Elliott
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
- Division of Biological and Biomedical Sciences, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Kira M Veley
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| | - Greg Jensen
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| | | | - Joanna Norton
- College of Tropical Agriculture & Human Resources, University of Hawaii at Manoa, Hilo, HI 96720, USA
| | - Lukas Kambic
- College of Tropical Agriculture & Human Resources, University of Hawaii at Manoa, Hilo, HI 96720, USA
| | - Marisa Yoder
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| | - Alex Weil
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| | - Sharon Motomura-Wages
- College of Tropical Agriculture & Human Resources, University of Hawaii at Manoa, Hilo, HI 96720, USA
| | - Rebecca S Bart
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| |
Collapse
|
53
|
González-Fuente M. Choose your own TALE: Two novel cell death-inducers identified by engineered effectors. PLANT PHYSIOLOGY 2024; 195:2493-2494. [PMID: 38662677 PMCID: PMC11288754 DOI: 10.1093/plphys/kiae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 08/02/2024]
Affiliation(s)
- Manuel González-Fuente
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Faculty of Biology & Biotechnology, Ruhr-University Bochum, D-44801 Bochum, Germany
| |
Collapse
|
54
|
Dey R, Raghuwanshi R. An insight into pathogenicity and virulence gene content of Xanthomonas spp. and its biocontrol strategies. Heliyon 2024; 10:e34275. [PMID: 39092245 PMCID: PMC11292268 DOI: 10.1016/j.heliyon.2024.e34275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 08/04/2024] Open
Abstract
The genus Xanthomonas primarily serves as a plant pathogen, targeting a diverse range of economically significant crops on a global scale. Xanthomonas spp. utilizes a collection of toxins, adhesins, and protein effectors as part of their toolkit to thrive in their surroundings, and establish themselves within plant hosts. The bacterial secretion systems (Type 1 to Type 6) assist in delivering the effector proteins to their intended destinations. These secretion systems are specialized multi-protein complexes responsible for transporting proteins into the extracellular milieu or directly into host cells. The potent virulence and systematic infection system result in rapid dissemination of the bacteria, posing significant challenges in management due to complexities and substantial loss incurred. Consequently, there has been a notable increase in the utilization of chemical pesticides, leading to bioaccumulation and raising concerns about adverse health effects. Biological control mechanisms through beneficial microorganism (Bacillus, Pseudomonas, Trichoderma, Burkholderia, AMF, etc.) have proven to be an appropriate alternative in integrative pest management system. This review details the pathogenicity and virulence factors of Xanthomonas, as well as its control strategies. It also encourages the use of biological control agents, which promotes sustainable and environmentally friendly agricultural practices.
Collapse
Affiliation(s)
- Riddha Dey
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Richa Raghuwanshi
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
55
|
Adegbaju MS, Ajose T, Adegbaju IE, Omosebi T, Ajenifujah-Solebo SO, Falana OY, Shittu OB, Adetunji CO, Akinbo O. Genetic engineering and genome editing technologies as catalyst for Africa's food security: the case of plant biotechnology in Nigeria. Front Genome Ed 2024; 6:1398813. [PMID: 39045572 PMCID: PMC11263695 DOI: 10.3389/fgeed.2024.1398813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/15/2024] [Indexed: 07/25/2024] Open
Abstract
Many African countries are unable to meet the food demands of their growing population and the situation is worsened by climate change and disease outbreaks. This issue of food insecurity may lead to a crisis of epic proportion if effective measures are not in place to make more food available. Thus, deploying biotechnology towards the improvement of existing crop varieties for tolerance or resistance to both biotic and abiotic stresses is crucial to increasing crop production. In order to optimize crop production, several African countries have implemented strategies to make the most of this innovative technology. For example, Nigerian government has implemented the National Biotechnology Policy to facilitate capacity building, research, bioresource development and commercialization of biotechnology products for over two decades. Several government ministries, research centers, universities, and agencies have worked together to implement the policy, resulting in the release of some genetically modified crops to farmers for cultivation and Commercialization, which is a significant accomplishment. However, the transgenic crops were only brought to Nigeria for confined field trials; the manufacturing of the transgenic crops took place outside the country. This may have contributed to the suspicion of pressure groups and embolden proponents of biotechnology as an alien technology. Likewise, this may also be the underlying issue preventing the adoption of biotechnology products in other African countries. It is therefore necessary that African universities develop capacity in various aspects of biotechnology, to continuously train indigenous scientists who can generate innovative ideas tailored towards solving problems that are peculiar to respective country. Therefore, this study intends to establish the role of genetic engineering and genome editing towards the achievement of food security in Africa while using Nigeria as a case study. In our opinion, biotechnology approaches will not only complement conventional breeding methods in the pursuit of crop improvements, but it remains a viable and sustainable means of tackling specific issues hindering optimal crop production. Furthermore, we suggest that financial institutions should offer low-interest loans to new businesses. In order to promote the growth of biotechnology products, especially through the creation of jobs and revenues through molecular farming.
Collapse
Affiliation(s)
- Muyiwa Seyi Adegbaju
- Department of Crop, Soil and Pest Management, Federal University of Technology Akure, Akure, Ondo, Nigeria
| | - Titilayo Ajose
- Fruits and Spices Department, National Horticultural Institute, Ibadan, Oyo, Nigeria
| | | | - Temitayo Omosebi
- Department of Agricultural Technology, Federal College of Forestry, Jos, Nigeria
| | | | - Olaitan Yetunde Falana
- Department of Genetics, Genomic and Bioinformatics, National Biotechnology Research and Development Agency, Abuja, Nigeria
| | - Olufunke Bolatito Shittu
- Department of Microbiology, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Olalekan Akinbo
- African Union Development Agency-NEPAD, Office of Science, Technology and Innovation, Midrand, South Africa
| |
Collapse
|
56
|
Xie H, Linning-Duffy K, Demireva EY, Toh H, Abolibdeh B, Shi J, Zhou B, Iwase S, Yan L. CRISPR-based genome editing of a diurnal rodent, Nile grass rat (Arvicanthis niloticus). BMC Biol 2024; 22:144. [PMID: 38956550 PMCID: PMC11218167 DOI: 10.1186/s12915-024-01943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Diurnal and nocturnal mammals have evolved distinct pathways to optimize survival for their chronotype-specific lifestyles. Conventional rodent models, being nocturnal, may not sufficiently recapitulate the biology of diurnal humans in health and disease. Although diurnal rodents are potentially advantageous for translational research, until recently, they have not been genetically tractable. The present study aims to address this major limitation by developing experimental procedures necessary for genome editing in a well-established diurnal rodent model, the Nile grass rat (Arvicanthis niloticus). RESULTS A superovulation protocol was established, which yielded nearly 30 eggs per female grass rat. Fertilized eggs were cultured in a modified rat 1-cell embryo culture medium (mR1ECM), in which grass rat embryos developed from the 1-cell stage into blastocysts. A CRISPR-based approach was then used for gene editing in vivo and in vitro, targeting Retinoic acid-induced 1 (Rai1), the causal gene for Smith-Magenis Syndrome, a neurodevelopmental disorder. The CRISPR reagents were delivered in vivo by electroporation using an improved Genome-editing via Oviductal Nucleic Acids Delivery (i-GONAD) method. The in vivo approach produced several edited founder grass rats with Rai1 null mutations, which showed stable transmission of the targeted allele to the next generation. CRISPR reagents were also microinjected into 2-cell embryos in vitro. Large deletion of the Rai1 gene was confirmed in 70% of the embryos injected, demonstrating high-efficiency genome editing in vitro. CONCLUSION We have established a set of methods that enabled the first successful CRISPR-based genome editing in Nile grass rats. The methods developed will guide future genome editing of this and other diurnal rodent species, which will promote greater utility of these models in basic and translational research.
Collapse
Affiliation(s)
- Huirong Xie
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science & Engineering, Research Technology Support Facility, Michigan State University, East Lansing, MI, 48824, USA.
| | | | - Elena Y Demireva
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science & Engineering, Research Technology Support Facility, Michigan State University, East Lansing, MI, 48824, USA
| | - Huishi Toh
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, USA
| | - Bana Abolibdeh
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science & Engineering, Research Technology Support Facility, Michigan State University, East Lansing, MI, 48824, USA
| | - Jiaming Shi
- Department of Psychology, Michigan State University, East Lansing, MI, 48824, USA
| | - Bo Zhou
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, USA
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, USA
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, MI, 48824, USA.
- Neuroscience Program, Michigan State University, East Lansing, USA.
| |
Collapse
|
57
|
Wu X, Yang J, Zhang J, Song Y. Gene editing therapy for cardiovascular diseases. MedComm (Beijing) 2024; 5:e639. [PMID: 38974714 PMCID: PMC11224995 DOI: 10.1002/mco2.639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
The development of gene editing tools has been a significant area of research in the life sciences for nearly 30 years. These tools have been widely utilized in disease detection and mechanism research. In the new century, they have shown potential in addressing various scientific challenges and saving lives through gene editing therapies, particularly in combating cardiovascular disease (CVD). The rapid advancement of gene editing therapies has provided optimism for CVD patients. The progress of gene editing therapy for CVDs is a comprehensive reflection of the practical implementation of gene editing technology in both clinical and basic research settings, as well as the steady advancement of research and treatment of CVDs. This article provides an overview of the commonly utilized DNA-targeted gene editing tools developed thus far, with a specific focus on the application of these tools, particularly the clustered regularly interspaced short palindromic repeat/CRISPR-associated genes (Cas) (CRISPR/Cas) system, in CVD gene editing therapy. It also delves into the challenges and limitations of current gene editing therapies, while summarizing ongoing research and clinical trials related to CVD. The aim is to facilitate further exploration by relevant researchers by summarizing the successful applications of gene editing tools in the field of CVD.
Collapse
Affiliation(s)
- Xinyu Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Jie Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Jiayao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Yuning Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| |
Collapse
|
58
|
Kumari R, Saha T, Kumar P, Singh AK. CRISPR/Cas9-mediated genome editing technique to control fall armyworm ( Spodoptera frugiperda) in crop plants with special reference to maize. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1161-1173. [PMID: 39100879 PMCID: PMC11291824 DOI: 10.1007/s12298-024-01486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Fall Armyworm imposes a major risk to agricultural losses. Insecticides have historically been used to manage its infestations, but it eventually becomes resistant to them. To combat the pest, a more recent strategy based on the use of transgenic maize that expresses Bt proteins such as Cry1F from the bacteria has been used. Nonetheless, there have been numerous reports of Cry1F maize resistance in FAW populations. Nowadays, the more effective and less time-consuming genome editing method known as CRISPR/Cas9 technology has gradually supplanted these various breeding techniques. This method successfully edits the genomes of various insects, including Spodoptera frugiperda. On the other hand, this new technique can change an insect's DNA to overcome its tolerance to specific insecticides or to generate a gene drive. The production of plant cultivars resistant to fall armyworms holds great potential for the sustainable management of this pest, given the swift advancement of CRISPR/Cas9 technology and its varied uses. Thus, this review article discussed and critically assessed the use of CRISPR/Cas9 genome-editing technology in long-term fall armyworm pest management. However, this review study focuses primarily on the mechanism of the CRISPR-Cas9 system in both crop plants and insects for FAW management.
Collapse
Affiliation(s)
- Rima Kumari
- Division of Plant Biotechnology, College of Agricultural Biotechnology, Bihar Agricultural University, Sabour, Bihar 813210 India
| | - Tamoghna Saha
- Department of Entomology, Bihar Agricultural University, Sabour, Bihar 813210 India
| | - Pankaj Kumar
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Sabour, Bihar 813210 India
| | - A. K. Singh
- Bihar Agricultural University, Sabour, 813210 Bihar India
| |
Collapse
|
59
|
Timilsina S, Kaur A, Sharma A, Ramamoorthy S, Vallad GE, Wang N, White FF, Potnis N, Goss EM, Jones JB. Xanthomonas as a Model System for Studying Pathogen Emergence and Evolution. PHYTOPATHOLOGY 2024; 114:1433-1446. [PMID: 38648116 DOI: 10.1094/phyto-03-24-0084-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In this review, we highlight studies in which whole-genome sequencing, comparative genomics, and population genomics have provided unprecedented insights into past and ongoing pathogen evolution. These include new understandings of the adaptive evolution of secretion systems and their effectors. We focus on Xanthomonas pathosystems that have seen intensive study and improved our understanding of pathogen emergence and evolution, particularly in the context of host specialization: citrus canker, bacterial blight of rice, and bacterial spot of tomato and pepper. Across pathosystems, pathogens appear to follow a pattern of bursts of evolution and diversification that impact host adaptation. There remains a need for studies on the mechanisms of host range evolution and genetic exchange among closely related but differentially host-specialized species and to start moving beyond the study of specific strain and host cultivar pairwise interactions to thinking about these pathosystems in a community context.
Collapse
Affiliation(s)
- Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Amandeep Kaur
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Anuj Sharma
- Department of Horticultural Sciences, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | | | - Gary E Vallad
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | - Nian Wang
- Department of Microbiology and Cell Science, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
60
|
Zhou J, Pan Q, Xue Y, Dong Y, Chen Y, Huang L, Zhang B, Liu ZQ, Zheng Y. Synthetic biology for Monascus: From strain breeding to industrial production. Biotechnol J 2024; 19:e2400180. [PMID: 39014924 DOI: 10.1002/biot.202400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/18/2024]
Abstract
Traditional Chinese food therapies often motivate the development of modern medicines, and learning from them will bring bright prospects. Monascus, a conventional Chinese fungus with centuries of use in the food industry, produces various metabolites, including natural pigments, lipid-lowering substances, and other bioactive ingredients. Recent Monascus studies focused on the metabolite biosynthesis mechanisms, strain modifications, and fermentation process optimizations, significantly advancing Monascus development on a lab scale. However, the advanced manufacture for Monascus is lacking, restricting its scale production. Here, the synthetic biology techniques and their challenges for engineering filamentous fungi were summarized, especially for Monascus. With further in-depth discussions of automatic solid-state fermentation manufacturing and prospects for combining synthetic biology and process intensification, the industrial scale production of Monascus will succeed with the help of Monascus improvement and intelligent fermentation control, promoting Monascus applications in food, cosmetic, agriculture, medicine, and environmental protection industries.
Collapse
Affiliation(s)
- Junping Zhou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Qilu Pan
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yinan Xue
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yaping Dong
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yihong Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Lianggang Huang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
61
|
Chen KS, Koubek EJ, Sakowski SA, Feldman EL. Stem cell therapeutics and gene therapy for neurologic disorders. Neurotherapeutics 2024; 21:e00427. [PMID: 39096590 PMCID: PMC11345629 DOI: 10.1016/j.neurot.2024.e00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
Rapid advances in biological knowledge and technological innovation have greatly advanced the fields of stem cell and gene therapies to combat a broad spectrum of neurologic disorders. Researchers are currently exploring a variety of stem cell types (e.g., embryonic, progenitor, induced pluripotent) and various transplantation strategies, each with its own advantages and drawbacks. Similarly, various gene modification techniques (zinc finger, TALENs, CRISPR-Cas9) are employed with various delivery vectors to modify underlying genetic contributors to neurologic disorders. While these two individual fields continue to blaze new trails, it is the combination of these technologies which enables genetically engineered stem cells and vastly increases investigational and therapeutic opportunities. The capability to culture and expand stem cells outside the body, along with their potential to correct genetic abnormalities in patient-derived cells or enhance cells with extra gene products, unleashes the full biological potential for innovative, multifaceted approaches to treat complex neurological disorders. In this review, we provide an overview of stem cell and gene therapies in the context of neurologic disorders, highlighting recent advances and current shortcomings, and discuss prospects for future therapies in clinical settings.
Collapse
Affiliation(s)
- Kevin S Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily J Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
62
|
Sonawala U, Beasley H, Thorpe P, Varypatakis K, Senatori B, Jones JT, Derevnina L, Eves-van den Akker S. A gene with a thousand alleles: The hyper-variable effectors of plant-parasitic nematodes. CELL GENOMICS 2024; 4:100580. [PMID: 38815588 PMCID: PMC11228951 DOI: 10.1016/j.xgen.2024.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Pathogens are engaged in a fierce evolutionary arms race with their host. The genes at the forefront of the engagement between kingdoms are often part of diverse and highly mutable gene families. Even in this context, we discovered unprecedented variation in the hyper-variable (HYP) effectors of plant-parasitic nematodes. HYP effectors are single-gene loci that potentially harbor thousands of alleles. Alleles vary in the organization, as well as the number, of motifs within a central hyper-variable domain (HVD). We dramatically expand the HYP repertoire of two plant-parasitic nematodes and define distinct species-specific "rules" underlying the apparently flawless genetic rearrangements. Finally, by analyzing the HYPs in 68 individual nematodes, we unexpectedly found that despite the huge number of alleles, most individuals are germline homozygous. These data support a mechanism of programmed genetic variation, termed HVD editing, where alterations are locus specific, strictly governed by rules, and theoretically produce thousands of variants without errors.
Collapse
Affiliation(s)
- Unnati Sonawala
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Helen Beasley
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Peter Thorpe
- The Data Analysis Group, School of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Kyriakos Varypatakis
- Cell & Molecular Sciences Department, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Beatrice Senatori
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - John T Jones
- Cell & Molecular Sciences Department, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Lida Derevnina
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | |
Collapse
|
63
|
Singh PK, Devanna BN, Dubey H, Singh P, Joshi G, Kumar R. The potential of genome editing to create novel alleles of resistance genes in rice. Front Genome Ed 2024; 6:1415244. [PMID: 38933684 PMCID: PMC11201548 DOI: 10.3389/fgeed.2024.1415244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Rice, a staple food for a significant portion of the global population, faces persistent threats from various pathogens and pests, necessitating the development of resilient crop varieties. Deployment of resistance genes in rice is the best practice to manage diseases and reduce environmental damage by reducing the application of agro-chemicals. Genome editing technologies, such as CRISPR-Cas, have revolutionized the field of molecular biology, offering precise and efficient tools for targeted modifications within the rice genome. This study delves into the application of these tools to engineer novel alleles of resistance genes in rice, aiming to enhance the plant's innate ability to combat evolving threats. By harnessing the power of genome editing, researchers can introduce tailored genetic modifications that bolster the plant's defense mechanisms without compromising its essential characteristics. In this study, we synthesize recent advancements in genome editing methodologies applicable to rice and discuss the ethical considerations and regulatory frameworks surrounding the creation of genetically modified crops. Additionally, it explores potential challenges and future prospects for deploying edited rice varieties in agricultural landscapes. In summary, this study highlights the promise of genome editing in reshaping the genetic landscape of rice to confront emerging challenges, contributing to global food security and sustainable agriculture practices.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Department of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, Punjab, India
| | | | - Himanshu Dubey
- Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, India
| | - Prabhakar Singh
- Botany Department, Banaras Hindu University, Varanasi, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal (A Central University), Tehri Garhwal, Uttarakhand, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
64
|
Carpenter SCD, Bogdanove AJ, Abbot B, Stajich JE, Uehling JK, Lovett B, Kasson MT, Carter ME. Prevalence and diversity of TAL effector-like proteins in fungal endosymbiotic Mycetohabitans spp. Microb Genom 2024; 10:001261. [PMID: 38860878 PMCID: PMC11261895 DOI: 10.1099/mgen.0.001261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
Endofungal Mycetohabitans (formerly Burkholderia) spp. rely on a type III secretion system to deliver mostly unidentified effector proteins when colonizing their host fungus, Rhizopus microsporus. The one known secreted effector family from Mycetohabitans consists of homologues of transcription activator-like (TAL) effectors, which are used by plant pathogenic Xanthomonas and Ralstonia spp. to activate host genes that promote disease. These 'Burkholderia TAL-like (Btl)' proteins bind corresponding specific DNA sequences in a predictable manner, but their genomic target(s) and impact on transcription in the fungus are unknown. Recent phenotyping of Btl mutants of two Mycetohabitans strains revealed that the single Btl in one Mycetohabitans endofungorum strain enhances fungal membrane stress tolerance, while others in a Mycetohabitans rhizoxinica strain promote bacterial colonization of the fungus. The phenotypic diversity underscores the need to assess the sequence diversity and, given that sequence diversity translates to DNA targeting specificity, the functional diversity of Btl proteins. Using a dual approach to maximize capture of Btl protein sequences for our analysis, we sequenced and assembled nine Mycetohabitans spp. genomes using long-read PacBio technology and also mined available short-read Illumina fungal-bacterial metagenomes. We show that btl genes are present across diverse Mycetohabitans strains from Mucoromycota fungal hosts yet vary in sequences and predicted DNA binding specificity. Phylogenetic analysis revealed distinct clades of Btl proteins and suggested that Mycetohabitans might contain more species than previously recognized. Within our data set, Btl proteins were more conserved across M. rhizoxinica strains than across M. endofungorum, but there was also evidence of greater overall strain diversity within the latter clade. Overall, the results suggest that Btl proteins contribute to bacterial-fungal symbioses in myriad ways.
Collapse
Affiliation(s)
- Sara C. D. Carpenter
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | - Adam J. Bogdanove
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | - Bhuwan Abbot
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, USA
- Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521, USA
| | - Jessie K. Uehling
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97333, USA
| | - Brian Lovett
- Emerging Pests and Pathogens Research Unit, USDA-ARS, Ithaca, NY 14850, USA
| | - Matt T. Kasson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Morgan E. Carter
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- CIPHER Center, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
65
|
Sojka J, Šamajová O, Šamaj J. Gene-edited protein kinases and phosphatases in molecular plant breeding. TRENDS IN PLANT SCIENCE 2024; 29:694-710. [PMID: 38151445 DOI: 10.1016/j.tplants.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
Protein phosphorylation, the most common and essential post-translational modification, belongs to crucial regulatory mechanisms in plants, affecting their metabolism, intracellular transport, cytoarchitecture, cell division, growth, development, and interactions with the environment. Protein kinases and phosphatases, two important families of enzymes optimally regulating phosphorylation, have now become important targets for gene editing in crops. We review progress on gene-edited protein kinases and phosphatases in crops using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). We also provide guidance for computational prediction of alterations and/or changes in function, activity, and binding of protein kinases and phosphatases as consequences of CRISPR/Cas9-based gene editing with its possible application in modern crop molecular breeding towards sustainable agriculture.
Collapse
Affiliation(s)
- Jiří Sojka
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
66
|
Puchta H. Regulation of gene-edited plants in Europe: from the valley of tears into the shining sun? ABIOTECH 2024; 5:231-238. [PMID: 38974871 PMCID: PMC11224193 DOI: 10.1007/s42994-023-00130-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/04/2023] [Indexed: 07/09/2024]
Abstract
Some 20 years ago, the EU introduced complex regulatory rules for the growth of transgenic crops, which resulted in a de facto ban to grow these plants in fields within most European countries. With the rise of novel genome editing technologies, it has become possible to improve crops genetically in a directed way without the need for incorporation of foreign genes. Unfortunately, in 2018, the European Court of Justice ruled that such gene-edited plants are to be regulated like transgenic plants. Since then, European scientists and breeders have challenged this decision and requested a revision of this outdated law. Finally, after 5 years, the European Commission has now published a proposal on how, in the future, to regulate crops produced by new breeding technologies. The proposal tries to find a balance between the different interest groups in Europe. On one side, genetically modified plants, which cannot be discerned from their natural counterparts, will exclusively be used for food and feed and are-besides a registration step-not to be regulated at all. On the other side, plants expressing herbicide resistance are to be excluded from this regulation, a concession to the strong environmental associations and NGOs in Europe. Moreover, edited crops are to be excluded from organic farming to protect the business interests of the strong organic sector in Europe. Nevertheless, if this law passes European parliament and council, unchanged, it will present a big step forward toward establishing a more sustainable European agricultural system. Thus, it might soon be possible to develop and grow crops that are more adapted to global warming and whose cultivation will require lower amounts of pesticides. However, there is still a long way to go until the law is passed. Too often, the storm of arguments raised by the opponents, based on irrational fears of mutations and a naive understanding of nature, has fallen on fruitful ground in Europe.
Collapse
Affiliation(s)
- Holger Puchta
- Department of Molecular Biology, Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| |
Collapse
|
67
|
Liu Y, Liu S, Zhen D, Huang J, He F. Ultrasensitive Detection of Tumor Suppressor Gene Methylation by Piezoelectric Sensing Based on Enrichment of Transcription Activator-Like Effectors. Anal Chem 2024; 96:8534-8542. [PMID: 38743638 DOI: 10.1021/acs.analchem.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The detection of DNA methylation at cytosine/guanine dinucleotide (CpG) islands in promoter regions of tumor suppressor genes has great potential for early cancer screening, diagnosis, and prognosis monitoring. Nevertheless, achieving accurate, sensitive, cost-effective, and quantitative detection of target methylated DNA remains challenging. Herein, we propose a novel piezoelectric sensor (series piezoelectric quartz crystal (SPQC)) based on transcription activator-like effectors (TALEs) for detecting DNA methylation of Ras association domain family 1 isoform A (RASSF1A) tumor suppressor genes (R-5mC). The sensor employs TALEs-Ni magnetic beads to specifically recognize and separate the R-5mC, thereby improving the detection selectivity. The TALEs-Ni magnetic beads-R-5mC complex is sheared by a nucleic acid enzyme (DNAzyme) to release the single-stranded DNA (ST). ST initiates a catalyzed hairpin assembly (CHA) reaction on the surface of the electrode, which in turn triggers the hybridization chain reaction (HCR) and silver staining for enhanced detection sensitivity. The strategy exhibits a linear response in the detection of R-5mC in the range of 1 fM to 1 nM with a detection limit of 0.79 fM. R-5mC as low as 0.01% can be detected, even in the presence of large numbers of unmethylated DNA. The detection of R-5mC in circulating cell-free DNA (cfDNA) derived from clinical plasma specimens of lung cancer patients yielded satisfactory results.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Shuyi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Deshuai Zhen
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, College of Public Health, University of South China, Hengyang 421001, PR China
| | - Ji Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Fengjiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
68
|
Castillo SR, Simone BW, Clark KJ, Devaux P, Ekker SC. Unconstrained Precision Mitochondrial Genome Editing with αDdCBEs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593977. [PMID: 38798498 PMCID: PMC11118498 DOI: 10.1101/2024.05.13.593977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
DddA-derived cytosine base editors (DdCBEs) enable the targeted introduction of C•G-to-T•A conversions in mitochondrial DNA (mtDNA). DdCBEs are often deployed as pairs, with each arm comprised of a transcription activator-like effector (TALE), a split double-stranded DNA deaminase half, and a uracil glycosylase inhibitor. This pioneering technology has helped improve our understanding of cellular processes involving mtDNA and has paved the way for the development of models and therapies for genetic disorders caused by pathogenic mtDNA variants. Nonetheless, given the intrinsic properties of TALE proteins, several target sites in human mtDNA remain out of reach to DdCBEs and other TALE-based technologies. Specifically, due to the conventional requirement for a thymine immediately upstream of the TALE target sequences (i.e., the 5'-T constraint), over 150 loci in the human mitochondrial genome are presumed to be inaccessible to DdCBEs. Previous attempts at circumventing this constraint, either by developing monomeric DdCBEs or utilizing DNA-binding domains alternative to TALEs, have resulted in suboptimal specificity profiles with reduced therapeutic potential. Here, aiming to challenge and elucidate the relevance of the 5'-T constraint in the context of DdCBE-mediated mtDNA editing, and to expand the range of motifs that are editable by this technology, we generated αDdCBEs that contain modified TALE proteins engineered to recognize all 5' bases. Notably, 5'-T-noncompliant, canonical DdCBEs efficiently edited mtDNA at diverse loci. However, DdCBEs were frequently outperformed by αDdCBEs, which consistently displayed significant improvements in activity and specificity, regardless of the 5'-most bases of their TALE binding sites. Furthermore, we showed that αDdCBEs are compatible with DddA tox and its derivatives DddA6, and DddA11, and we validated TALE shifting with αDdCBEs as an effective approach to optimize base editing outcomes at a single target site. Overall, αDdCBEs enable efficient, specific, and unconstrained mitochondrial base editing.
Collapse
|
69
|
Yuan YG, Liu SZ, Farhab M, Lv MY, Zhang T, Cao SX. Genome editing: An insight into disease resistance, production efficiency, and biomedical applications in livestock. Funct Integr Genomics 2024; 24:81. [PMID: 38709433 DOI: 10.1007/s10142-024-01364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
One of the primary concerns for the survival of the human species is the growing demand for food brought on by an increasing global population. New developments in genome-editing technology present promising opportunities for the growth of wholesome and prolific farm animals. Genome editing in large animals is used for a variety of purposes, including biotechnology to improve food production, animal health, and pest management, as well as the development of animal models for fundamental research and biomedicine. Genome editing entails modifying genetic material by removing, adding, or manipulating particular DNA sequences from a particular locus in a way that does not happen naturally. The three primary genome editors are CRISPR/Cas 9, TALENs, and ZFNs. Each of these enzymes is capable of precisely severing nuclear DNA at a predetermined location. One of the most effective inventions is base editing, which enables single base conversions without the requirement for a DNA double-strand break (DSB). As reliable methods for precise genome editing in studies involving animals, cytosine and adenine base editing are now well-established. Effective zygote editing with both cytosine and adenine base editors (ABE) has resulted in the production of animal models. Both base editors produced comparable outcomes for the precise editing of point mutations in somatic cells, advancing the field of gene therapy. This review focused on the principles, methods, recent developments, outstanding applications, the advantages and disadvantages of ZFNs, TALENs, and CRISPR/Cas9 base editors, and prime editing in diverse lab and farm animals. Additionally, we address the methodologies that can be used for gene regulation, base editing, and epigenetic alterations, as well as the significance of genome editing in animal models to better reflect real disease. We also look at methods designed to increase the effectiveness and precision of gene editing tools. Genome editing in large animals is used for a variety of purposes, including biotechnology to improve food production, animal health, and pest management, as well as the development of animal models for fundamental research and biomedicine. This review is an overview of the existing knowledge of the principles, methods, recent developments, outstanding applications, the advantages and disadvantages of zinc finger nucleases (ZFNs), transcription-activator-like endonucleases (TALENs), and clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR/Cas 9), base editors and prime editing in diverse lab and farm animals, which will offer better and healthier products for the entire human race.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Song-Zi Liu
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Muhammad Farhab
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Mei-Yun Lv
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Ting Zhang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212499, China
| | - Shao-Xiao Cao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Jiangsu Provincial Engineering Research Center for Precision animal Breeding, Nanjing, 210014, China
| |
Collapse
|
70
|
Mudde ACA, Kuo CY, Kohn DB, Booth C. What a Clinician Needs to Know About Genome Editing: Status and Opportunities for Inborn Errors of Immunity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1139-1149. [PMID: 38246560 DOI: 10.1016/j.jaip.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
During the past 20 years, gene editing has emerged as a novel form of gene therapy. Since the publication of the first potentially therapeutic gene editing platform for genetic disorders, increasingly sophisticated editing technologies have been developed. As with viral vector-mediated gene addition, inborn errors of immunity are excellent candidate diseases for a corrective autologous hematopoietic stem cell gene editing strategy. Research on gene editing for inborn errors of immunity is still entirely preclinical, with no trials yet underway. However, with editing techniques maturing, scientists are investigating this novel form of gene therapy in context of an increasing number of inborn errors of immunity. Here, we present an overview of these studies and the recent progress moving these technologies closer to clinical benefit.
Collapse
Affiliation(s)
- Anne C A Mudde
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Caroline Y Kuo
- Department of Pediatrics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, Calif
| | - Donald B Kohn
- Department of Pediatrics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, Calif; Department of Microbiology, Immunology & Molecular Genetics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, Calif
| | - Claire Booth
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
71
|
Locatelli F, Cavazzana M, Frangoul H, Fuente JDL, Algeri M, Meisel R. Autologous gene therapy for hemoglobinopathies: From bench to patient's bedside. Mol Ther 2024; 32:1202-1218. [PMID: 38454604 PMCID: PMC11081872 DOI: 10.1016/j.ymthe.2024.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
In recent years, a growing number of clinical trials have been initiated to evaluate gene therapy approaches for the treatment of patients with transfusion-dependent β-thalassemia and sickle cell disease (SCD). Therapeutic modalities being assessed in these trials utilize different molecular techniques, including lentiviral vectors to add functional copies of the gene encoding the hemoglobin β subunit in defective cells and CRISPR-Cas9, transcription activator-like effector protein nuclease, and zinc finger nuclease gene editing strategies to either directly address the underlying genetic cause of disease or induce fetal hemoglobin production by gene disruption. Here, we review the mechanisms of action of these various gene addition and gene editing approaches and describe the status of clinical trials designed to evaluate the potentially for these approaches to provide one-time functional cures to patients with transfusion-dependent β-thalassemia and SCD.
Collapse
Affiliation(s)
- Franco Locatelli
- Department of Pediatric Haematology/Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165 Rome, Italy; Catholic University of the Sacred Heart, 00168 Rome, Italy.
| | - Marina Cavazzana
- Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), University of Paris, 75006 Paris, France
| | - Haydar Frangoul
- Sarah Cannon Center for Blood Cancer at The Children's Hospital at TriStar Centennial, Nashville, TN 37203, USA
| | - Josu de la Fuente
- Imperial College Healthcare NHS Trust, St Mary's Hospital, London W21NY, UK
| | - Mattia Algeri
- Department of Pediatric Haematology/Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165 Rome, Italy; Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Roland Meisel
- Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| |
Collapse
|
72
|
Zhang D, Boch J. Development of TALE-adenine base editors in plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1067-1077. [PMID: 37997697 PMCID: PMC11022790 DOI: 10.1111/pbi.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/10/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Base editors enable precise nucleotide changes at targeted genomic loci without requiring double-stranded DNA breaks or repair templates. TALE-adenine base editors (TALE-ABEs) are genome editing tools, composed of a DNA-binding domain from transcription activator-like effectors (TALEs), an engineered adenosine deaminase (TadA8e), and a cytosine deaminase domain (DddA), that allow A•T-to-G•C editing in human mitochondrial DNA. However, the editing ability of TALE-ABEs in plants apart from chloroplast DNA has not been described, so far, and the functional role how DddA enhances TadA8e is still unclear. We tested a series of TALE-ABEs with different deaminase fusion architectures in Nicotiana benthamiana and rice. The results indicate that the double-stranded DNA-specific cytosine deaminase DddA can boost the activities of single-stranded DNA-specific deaminases (TadA8e or APOBEC3A) on double-stranded DNA. We analysed A•T-to-G•C editing efficiencies in a β-glucuronidase reporter system and showed precise adenine editing in genomic regions with high product purity in rice protoplasts. Furthermore, we have successfully regenerated rice plants with A•T-to-G•C mutations in the chloroplast genome using TALE-ABE. Consequently, TALE-adenine base editors provide alternatives for crop improvement and gene therapy by editing nuclear or organellar genomes.
Collapse
Affiliation(s)
- Dingbo Zhang
- Institute of Plant GeneticsLeibniz Universität HannoverHannoverGermany
| | - Jens Boch
- Institute of Plant GeneticsLeibniz Universität HannoverHannoverGermany
| |
Collapse
|
73
|
Zhang D, Pries V, Boch J. Targeted C•G-to-T•A base editing with TALE-cytosine deaminases in plants. BMC Biol 2024; 22:99. [PMID: 38679734 PMCID: PMC11057107 DOI: 10.1186/s12915-024-01895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/18/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND TALE-derived DddA-based cytosine base editors (TALE-DdCBEs) can perform efficient base editing of mitochondria and chloroplast genomes. They use transcription activator-like effector (TALE) arrays as programmable DNA-binding domains and a split version of the double-strand DNA cytidine deaminase (DddA) to catalyze C•G-to-T•A editing. This technology has not been optimized for use in plant cells. RESULTS To systematically investigate TALE-DdCBE architectures and editing rules, we established a β-glucuronidase reporter for transient assays in Nicotiana benthamiana. We show that TALE-DdCBEs function with distinct spacer lengths between the DNA-binding sites of their two TALE parts. Compared to canonical DddA, TALE-DdCBEs containing evolved DddA variants (DddA6 or DddA11) showed a significant improvement in editing efficiency in Nicotiana benthamiana and rice. Moreover, TALE-DdCBEs containing DddA11 have broader sequence compatibility for non-TC target editing. We have successfully regenerated rice with C•G-to-T•A conversions in their chloroplast genome, as well as N. benthamiana with C•G-to-T•A editing in the nuclear genome using TALE-DdCBE. We also found that the spontaneous assembly of split DddA halves can cause undesired editing by TALE-DdCBEs in plants. CONCLUSIONS Altogether, our results refined the targeting scope of TALE-DdCBEs and successfully applied them to target the chloroplast and nuclear genomes. Our study expands the base editing toolbox in plants and further defines parameters to optimize TALE-DdCBEs for high-fidelity crop improvement.
Collapse
Affiliation(s)
- Dingbo Zhang
- Leibniz University Hannover, Institute of Plant Genetics, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Vanessa Pries
- Leibniz University Hannover, Institute of Plant Genetics, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Jens Boch
- Leibniz University Hannover, Institute of Plant Genetics, Herrenhäuser Str. 2, Hannover, 30419, Germany.
| |
Collapse
|
74
|
Bi Y, Yu Y, Mao S, Wu T, Wang T, Zhou Y, Xie K, Zhang H, Liu L, Chu Z. Comparative transcriptomic profiling of the two-stage response of rice to Xanthomonas oryzae pv. oryzicola interaction with two different pathogenic strains. BMC PLANT BIOLOGY 2024; 24:347. [PMID: 38684939 PMCID: PMC11057074 DOI: 10.1186/s12870-024-05060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Two-tiered plant immune responses involve cross-talk among defense-responsive (DR) genes involved in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), effector-triggered immunity (ETI) and effector-triggered susceptibility (ETS). Bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an important bacterial disease that causes serious threats to rice yield and quality. Transcriptomic profiling provides an effective approach for the comprehensive and large-scale detection of DR genes that participate in the interactions between rice and Xoc. RESULTS In this study, we used RNA-seq to analyze the differentially expressed genes (DEGs) in susceptible rice after inoculation with two naturally pathogenic Xoc strains, a hypervirulent strain, HGA4, and a relatively hypovirulent strain, RS105. First, bacterial growth curve and biomass quantification revealed that differential growth occurred beginning at 1 day post inoculation (dpi) and became more significant at 3 dpi. Additionally, we analyzed the DEGs at 12 h and 3 days post inoculation with two strains, representing the DR genes involved in the PTI and ETI/ETS responses, respectively. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed on the common DEGs, which included 4380 upregulated and 4019 downregulated genes and 930 upregulated and 1383 downregulated genes identified for the two strains at 12 h post inoculation (hpi) and 3 dpi, respectively. Compared to those at 12 hpi, at 3 dpi the number of common DEGs decreased, while the degree of differential expression was intensified. In addition, more disease-related GO pathways were enriched, and more transcription activator-like effector (TALE) putative target genes were upregulated in plants inoculated with HGA4 than in those inoculated with RS105 at 3 dpi. Then, four DRs were randomly selected for the BLS resistance assay. We found that CDP3.10, LOC_Os11g03820, and OsDSR2 positively regulated rice resistance to Xoc, while OsSPX3 negatively regulated rice resistance. CONCLUSIONS By using an enrichment method for RNA-seq, we identified a group of DEGs related to the two stages of response to the Xoc strain, which included four functionally identified DR genes.
Collapse
Affiliation(s)
- Yunya Bi
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yue Yu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Shuaige Mao
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Tao Wu
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Tao Wang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying Zhou
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430072, China
| | - Kabin Xie
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Zhang
- Tancheng Jinghua Seed Co., LTD, Linyi, Shandong, 276100, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
75
|
Jones JDG, Staskawicz BJ, Dangl JL. The plant immune system: From discovery to deployment. Cell 2024; 187:2095-2116. [PMID: 38670067 DOI: 10.1016/j.cell.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land ∼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.
Collapse
Affiliation(s)
- Jonathan D G Jones
- Sainsbury Lab, University of East Anglia, Colney Lane, Norwich NR4 7UH, UK.
| | - Brian J Staskawicz
- Department of Plant and Microbial Biology and Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill and Howard Hughes Medical Institute, Chapel Hill, NC 27599, USA
| |
Collapse
|
76
|
Liu L, Li Y, Wang Q, Xu X, Yan J, Wang Y, Wang Y, Shah SMA, Peng Y, Zhu Z, Xu Z, Chen G. Constructed Rice Tracers Identify the Major Virulent Transcription Activator-Like Effectors of the Bacterial Leaf Blight Pathogen. RICE (NEW YORK, N.Y.) 2024; 17:30. [PMID: 38656724 PMCID: PMC11043257 DOI: 10.1186/s12284-024-00704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) injects major transcription activator-like effectors (TALEs) into plant cells to activate susceptibility (S) genes for promoting bacterial leaf blight in rice. Numerous resistance (R) genes have been used to construct differential cultivars of rice to identify races of Xoo, but the S genes were rarely considered. Different edited lines of rice cv. Kitaake were constructed using CRISPR/Cas9 gene-editing, including single, double and triple edits in the effector-binding elements (EBEs) located in the promoters of rice S genes OsSWEET11a, OsSWEET13 and OsSWEET14. The near-isogenic lines (NILs) were used as tracers to detect major TALEs (PthXo1, PthXo2, PthXo3 and their variants) in 50 Xoo strains. The pathotypes produced on the tracers determined six major TALE types in the 50 Xoo strains. The presence of the major TALEs in Xoo strains was consistent with the expression of S genes in the tracers, and it was also by known genome sequences. The EBE editing had little effect on agronomic traits, which was conducive to balancing yield and resistance. The rice-tracers generated here provide a valuable tool to track major TALEs of Xoo in Asia which then shows what rice cultivars are needed to combat Xoo in the field.
Collapse
Affiliation(s)
- Linlin Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Li
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiameng Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiali Yan
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yijie Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Syed Mashab Ali Shah
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongzheng Peng
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhangfei Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengyin Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Gongyou Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
77
|
Mariano CG, de Oliveira VC, Ambrósio CE. Gene editing in small and large animals for translational medicine: a review. Anim Reprod 2024; 21:e20230089. [PMID: 38628493 PMCID: PMC11019828 DOI: 10.1590/1984-3143-ar2023-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/16/2024] [Indexed: 04/19/2024] Open
Abstract
The CRISPR/Cas9 system is a simpler and more versatile method compared to other engineered nucleases such as Zinc Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs), and since its discovery, the efficiency of CRISPR-based genome editing has increased to the point that multiple and different types of edits can be made simultaneously. These advances in gene editing have revolutionized biotechnology by enabling precise genome editing with greater simplicity and efficacy than ever before. This tool has been successfully applied to a wide range of animal species, including cattle, pigs, dogs, and other small animals. Engineered nucleases cut the genome at specific target positions, triggering the cell's mechanisms to repair the damage and introduce a mutation to a specific genomic site. This review discusses novel genome-based CRISPR/Cas9 editing tools, methods developed to improve efficiency and specificity, the use of gene-editing on animal models and translational medicine, and the main challenges and limitations of CRISPR-based gene-editing approaches.
Collapse
Affiliation(s)
- Clésio Gomes Mariano
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Vanessa Cristina de Oliveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Carlos Eduardo Ambrósio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| |
Collapse
|
78
|
Xu Z, Qu M, Shi C, Zhang H, Chen W, Qian H, Zhang Z, Qiu J, Qian Q, Shang L. The MRE11-ATM-SOG1 DNA damage signaling pathway confers rice immunity to Xanthomonas oryzae. PLANT COMMUNICATIONS 2024; 5:100789. [PMID: 38160258 PMCID: PMC11009159 DOI: 10.1016/j.xplc.2023.100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/16/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Plants are constantly exposed to microbial pathogens in the environment. One branch of innate plant immunity is mediated by cell-membrane-localized receptors, but less is known about associations between DNA damage and plant immune responses. Here, we show that rice (Oryza sativa) mesophyll cells are prone to DNA double-stranded breaks (DSBs) in response to ZJ173, a strain of Xanthomonas oryzae pv. oryzae (Xoo). The DSB signal transducer ataxia telangiectasia mutated (ATM), but not the ATM and Rad3-related branch, confers resistance against Xoo. Mechanistically, the MRE11-ATM module phosphorylates suppressor of gamma response 1 (SOG1), which activates several phenylpropanoid pathway genes and prompts downstream phytoalexin biosynthesis during Xoo infection. Intriguingly, overexpression of the topoisomerase gene TOP6A3 causes a switch from the classic non-homologous end joining (NHEJ) pathway to the alternative NHEJ and homologous recombination pathways at Xoo-induced DSBs. The enhanced ATM signaling of the alternative NHEJ pathway strengthens the SOG1-regulated phenylpropanoid pathway and thereby boosts Xoo-induced phytoalexin biosynthesis in TOP6A3-OE1 overexpression lines. Overall, the MRE11-ATM-SOG1 pathway serves as a prime example of plant-pathogen interactions that occur via host non-specific recognition. The function of TOP6-facilitated ATM signaling in the defense response makes it a promising target for breeding of rice germplasm that exhibits resistance to bacterial blight disease without a growth penalty.
Collapse
Affiliation(s)
- Zhan Xu
- Guangzhou City Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding, Guangzhou 510000, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Mingnan Qu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Chuanlin Shi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hong Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wu Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hongge Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhipeng Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya City, Hainan Province 572024, China.
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya City, Hainan Province 572024, China.
| |
Collapse
|
79
|
He L, Liu P, Mei L, Luo H, Ban T, Chen X, Ma B. Disease resistance features of the executor R gene Xa7 reveal novel insights into the interaction between rice and Xanthomonas oryzae pv. oryzae. FRONTIERS IN PLANT SCIENCE 2024; 15:1365989. [PMID: 38633460 PMCID: PMC11021754 DOI: 10.3389/fpls.2024.1365989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is a widespread and destructive disease in rice production. Previously, we cloned an executor R gene, Xa7, which confers durable and broad-spectrum resistance to BB. Here, we further confirmed that the transcription activator-like effector (TALE) AvrXa7 in Xoo strains could directly bind to the effector-binding element (EBE) in the promoter of the Xa7 gene. Other executor R genes (Xa7, Xa10, Xa23, and Xa27) driven by the promoter of the Xa7 gene could be activated by AvrXa7 and trigger the hypersensitive response (HR) in tobacco leaves. When the expression of the Xa23 gene was driven by the Xa7 promoter, the transgenic rice plants displayed a similar resistance spectrum as the Xa7 gene, demonstrating that the disease resistance characteristics of executor R genes are mainly determined by their induction patterns. Xa7 gene is induced locally by Xoo in the infected leaves, and its induction not only inhibited the growth of incompatible strains but also enhanced the resistance of rice plants to compatible strains, which overcame the shortcomings of its race-specific resistance. Transcriptome analysis of the Xa7 gene constitutive expression in rice plants displayed that Xa7-mediated disease resistance was related to the biosynthesis of lignin and thus enhanced resistance to Xoo. Overall, our results provided novel insights and important resources for further clarifying the molecular mechanisms of the executor R genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Xifeng Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Bojun Ma
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
80
|
Djajawi TM, Wichmann J, Vervoort SJ, Kearney CJ. Tumor immune evasion: insights from CRISPR screens and future directions. FEBS J 2024; 291:1386-1399. [PMID: 37971319 DOI: 10.1111/febs.17003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Despite the clinical success of cancer immunotherapies including immune checkpoint blockade and adoptive cellular therapies across a variety of cancer types, many patients do not respond or ultimately relapse; however, the molecular underpinnings of this are not fully understood. Thus, a system-level understating of the routes to tumor immune evasion is required to inform the design of the next generation of immunotherapy approaches. CRISPR screening approaches have proved extremely powerful in identifying genes that promote tumor immune evasion or sensitize tumor cells to destruction by the immune system. These large-scale efforts have brought to light decades worth of fundamental immunology and have uncovered the key immune-evasion pathways subverted in cancers in an acquired manner in patients receiving immune-modulatory therapies. The comprehensive discovery of the main pathways involved in immune evasion has spurred the development and application of novel immune therapies to target this process. Although successful, conventional CRISPR screening approaches are hampered by a number of limitations, which obfuscate a complete understanding of the precise molecular regulation of immune evasion in cancer. Here, we provide a perspective on screening approaches to interrogate tumor-lymphocyte interactions and their limitations, and discuss further development of technologies to improve such approaches and discovery capability.
Collapse
Affiliation(s)
- Tirta Mario Djajawi
- Olivia Newton-John Cancer Research Institute, Heidelberg, Vic., Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Vic., Australia
| | - Johannes Wichmann
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Stephin J Vervoort
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Conor J Kearney
- Olivia Newton-John Cancer Research Institute, Heidelberg, Vic., Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Vic., Australia
| |
Collapse
|
81
|
Hassanien RT, Thieulent CJ, Carossino M, Li G, Balasuriya UBR. Modulation of Equid Herpesvirus-1 Replication Dynamics In Vitro Using CRISPR/Cas9-Assisted Genome Editing. Viruses 2024; 16:409. [PMID: 38543774 PMCID: PMC10975850 DOI: 10.3390/v16030409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 05/23/2024] Open
Abstract
(1) Background: equid alphaherpesvirus-1 (EHV-1) is a highly contagious viral pathogen prevalent in most horse populations worldwide. Genome-editing technologies such as CRISPR/Cas9 have become powerful tools for precise RNA-guided genome modifications; (2) Methods: we designed single guide RNAs (sgRNA) to target three essential (ORF30, ORF31, and ORF7) and one non-essential (ORF74) EHV-1 genes and determine their effect on viral replication dynamics in vitro; (3) Results: we demonstrated that sgRNAs targeting essential lytic genes reduced EHV-1 replication, whereas those targeting ORF74 had a negligible effect. The sgRNAs targeting ORF30 showed the strongest effect on the suppression of EHV-1 replication, with a reduction in viral genomic copy numbers and infectious progeny virus output. Next-generation sequencing identified variants with deletions in the specific cleavage site of selective sgRNAs. Moreover, we evaluated the combination between different sgRNAs and found that the dual combination of sgRNAs targeting ORF30 and ORF7 significantly suppressed viral replication to lower levels compared to the use of a single sgRNA, suggesting a synergic effect; (4) Conclusion: data demonstrate that sgRNA-guided CRISPR/Cas9 can be used to inhibit EHV-1 replication in vitro, indicating that this programmable technique can be used to develop a novel, safe, and efficacious therapeutic and prophylactic approach against EHV-1.
Collapse
Affiliation(s)
- Rabab T. Hassanien
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (R.T.H.); (C.J.T.); (M.C.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Virology Department, Animal Health Research Institute, Agriculture Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Côme J. Thieulent
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (R.T.H.); (C.J.T.); (M.C.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (R.T.H.); (C.J.T.); (M.C.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ganwu Li
- Department of Veterinary Diagnostics and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (R.T.H.); (C.J.T.); (M.C.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
82
|
Kim H, Kim S, Lim H, Chung AJ. Expanding CAR-T cell immunotherapy horizons through microfluidics. LAB ON A CHIP 2024; 24:1088-1120. [PMID: 38174732 DOI: 10.1039/d3lc00622k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapies have revolutionized cancer treatment, particularly in hematological malignancies. However, their application to solid tumors is limited, and they face challenges in safety, scalability, and cost. To enhance current CAR-T cell therapies, the integration of microfluidic technologies, harnessing their inherent advantages, such as reduced sample consumption, simplicity in operation, cost-effectiveness, automation, and high scalability, has emerged as a powerful solution. This review provides a comprehensive overview of the step-by-step manufacturing process of CAR-T cells, identifies existing difficulties at each production stage, and discusses the successful implementation of microfluidics and related technologies in addressing these challenges. Furthermore, this review investigates the potential of microfluidics-based methodologies in advancing cell-based therapy across various applications, including solid tumors, next-generation CAR constructs, T-cell receptors, and the development of allogeneic "off-the-shelf" CAR products.
Collapse
Affiliation(s)
- Hyelee Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Suyeon Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Hyunjung Lim
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Aram J Chung
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea.
- MxT Biotech, 04785 Seoul, Republic of Korea
| |
Collapse
|
83
|
Zheng Y, Li Y, Zhou K, Li T, VanDusen NJ, Hua Y. Precise genome-editing in human diseases: mechanisms, strategies and applications. Signal Transduct Target Ther 2024; 9:47. [PMID: 38409199 PMCID: PMC10897424 DOI: 10.1038/s41392-024-01750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Precise genome-editing platforms are versatile tools for generating specific, site-directed DNA insertions, deletions, and substitutions. The continuous enhancement of these tools has led to a revolution in the life sciences, which promises to deliver novel therapies for genetic disease. Precise genome-editing can be traced back to the 1950s with the discovery of DNA's double-helix and, after 70 years of development, has evolved from crude in vitro applications to a wide range of sophisticated capabilities, including in vivo applications. Nonetheless, precise genome-editing faces constraints such as modest efficiency, delivery challenges, and off-target effects. In this review, we explore precise genome-editing, with a focus on introduction of the landmark events in its history, various platforms, delivery systems, and applications. First, we discuss the landmark events in the history of precise genome-editing. Second, we describe the current state of precise genome-editing strategies and explain how these techniques offer unprecedented precision and versatility for modifying the human genome. Third, we introduce the current delivery systems used to deploy precise genome-editing components through DNA, RNA, and RNPs. Finally, we summarize the current applications of precise genome-editing in labeling endogenous genes, screening genetic variants, molecular recording, generating disease models, and gene therapy, including ex vivo therapy and in vivo therapy, and discuss potential future advances.
Collapse
Affiliation(s)
- Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Nathan J VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
84
|
Larriba E, Yaroshko O, Pérez-Pérez JM. Recent Advances in Tomato Gene Editing. Int J Mol Sci 2024; 25:2606. [PMID: 38473859 PMCID: PMC10932025 DOI: 10.3390/ijms25052606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The use of gene-editing tools, such as zinc finger nucleases, TALEN, and CRISPR/Cas, allows for the modification of physiological, morphological, and other characteristics in a wide range of crops to mitigate the negative effects of stress caused by anthropogenic climate change or biotic stresses. Importantly, these tools have the potential to improve crop resilience and increase yields in response to challenging environmental conditions. This review provides an overview of gene-editing techniques used in plants, focusing on the cultivated tomatoes. Several dozen genes that have been successfully edited with the CRISPR/Cas system were selected for inclusion to illustrate the possibilities of this technology in improving fruit yield and quality, tolerance to pathogens, or responses to drought and soil salinity, among other factors. Examples are also given of how the domestication of wild species can be accelerated using CRISPR/Cas to generate new crops that are better adapted to the new climatic situation or suited to use in indoor agriculture.
Collapse
Affiliation(s)
- Eduardo Larriba
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain;
| | | | | |
Collapse
|
85
|
Xu Z, Xu X, Li Y, Liu L, Wang Q, Wang Y, Wang Y, Yan J, Cheng G, Zou L, Zhu B, Chen G. Tal6b/AvrXa27A, a hidden TALE targeting the susceptibility gene OsSWEET11a and the resistance gene Xa27 in rice. PLANT COMMUNICATIONS 2024; 5:100721. [PMID: 37735868 PMCID: PMC10873877 DOI: 10.1016/j.xplc.2023.100721] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) secretes transcription activator-like effectors (TALEs) to activate rice susceptibility (S) genes, causing bacterial blight (BB), as well as resistance (R) genes, leading to defense against BB. This activation follows a gene-for-gene paradigm that results in an arms race between the TALE of the pathogen and effector-binding elements (EBEs) in the promoters of host genes. In this study, we characterized a novel TALE, designated Tal6b/AvrXa27A, that activates the rice S gene OsSWEET11a and the rice R gene Xa27. Tal6b/AvrXa27A is a member of the AvrXa27/TalAO class and contains 16 repeat variable diresidues (RVDs); one RVD is altered and one is deleted in Tal6b/AvrXa27A compared with AvrXa27, a known avirulence (avr) effector of Xa27. Tal6b/AvrXa27A can transcriptionally activate the expression of Xa27 and OsSWEET11a via EBEs in their corresponding promoters, leading to effector-triggered immunity and susceptibility, respectively. The 16 RVDs in Tal6b/AvrXa27A have no obvious similarity to the 24 RVDs in the effector PthXo1, but EBETal6b and EBEPthXo1 are overlapped in the OsSWEET11a promoter. Tal6b/AvrXa27A is prevalent among Asian Xoo isolates, but PthXo1 has only been reported in the Philippine strain PXO99A. Genome editing of EBETal6b in the OsSWEET11a promoter further confirmed the requirement for OsSWEET11a expression in Tal6b/AvrXa27A-dependent susceptibility to Xoo. Moreover, Tal6b/AvrXa27A resulted in higher transcription of Xa27 than of OsSWEET11a, which led to a strong, rapid resistance response that blocked disease development. These findings suggest that Tal6b/AvrXa27A has a dual function: triggering resistance by activating Xa27 gene expression as an avirulence factor and inducing transcription of the S gene OsSWEET11a, resulting in virulence. Intriguingly, Tal6b/AvrXa27A, but not AvrXa27, can bind to the promoter of OsSWEET11a. The underlying recognition mechanism for this binding remains unclear but appears to deviate from the currently accepted TALE code.
Collapse
Affiliation(s)
- Zhengyin Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiameng Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linlin Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yijie Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiali Yan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanyun Cheng
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lifang Zou
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gongyou Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
86
|
Tian D, Teo J, Yin Z. Ectopic Expression of the Executor-Type R Gene Paralog Xa27B in Rice Leads to Spontaneous Lesions and Enhanced Disease Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:143-154. [PMID: 38381127 DOI: 10.1094/mpmi-10-23-0153-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Plant disease resistance (R) gene-mediated effector-triggered immunity (ETI) is usually associated with hypersensitive response (HR) and provides robust and race-specific disease resistance against pathogenic infection. The activation of ETI and HR in plants is strictly regulated, and improper activation will lead to cell death. Xa27 is an executor-type R gene in rice induced by the TAL effector AvrXa27 and confers disease resistance to Xanthomonas oryzae pv. oryzae (Xoo). Here we reported the characterization of a transgenic line with lesion mimic phenotype, designated as Spotted leaf and resistance 1 (Slr1), which was derived from rice transformation with a genomic subclone located 5,125 bp downstream of the Xa27 gene. Slr1 develops spontaneous lesions on its leaves caused by cell death and confers disease resistance to both Xoo and Xanthomonas oryzae pv. oryzicola. Further investigation revealed that the Slr1 phenotype resulted from the ectopic expression of an Xa27 paralog gene, designated as Xa27B, in the inserted DNA fragment at the Slr1 locus driven by a truncated CaMV35Sx2 promoter in reverse orientation. Disease evaluation of IRBB27, IR24, and Xa27B mutants with Xoo strains expressing dTALE-Xa27B confirmed that Xa27B is a functional executor-type R gene. The functional XA27B-GFP protein was localized to the endoplasmic reticulum and apoplast. The identification of Xa27B as a new functional executor-type R gene provides additional genetic resources for studying the mechanism of executor-type R protein-mediated ETI and developing enhanced and broad-spectrum disease resistance to Xoo through promoter engineering. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Dongsheng Tian
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Joanne Teo
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Zhongchao Yin
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| |
Collapse
|
87
|
Zhu C, Hao Z, Liu D. Reshaping the Landscape of the Genome: Toolkits for Precise DNA Methylation Manipulation and Beyond. JACS AU 2024; 4:40-57. [PMID: 38274248 PMCID: PMC10806789 DOI: 10.1021/jacsau.3c00671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 01/27/2024]
Abstract
DNA methylation plays a pivotal role in various biological processes and is highly related to multiple diseases. The exact functions of DNA methylation are still puzzling due to its uneven distribution, dynamic conversion, and complex interactions with other substances. Current methods such as chemical- and enzyme-based sequencing techniques have enabled us to pinpoint DNA methylation at single-base resolution, which necessitated the manipulation of DNA methylation at comparable resolution to precisely illustrate the correlations and causal relationships between the functions of DNA methylation and its spatiotemporal patterns. Here a perspective on the past, recent process, and future of precise DNA methylation tools is provided. Specifically, genome-wide and site-specific manipulation of DNA methylation methods is discussed, with an emphasis on their principles, limitations, applications, and future developmental directions.
Collapse
Affiliation(s)
- Chenyou Zhu
- Engineering
Research Center of Advanced Rare Earth Materials, Ministry of Education,
Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ziyang Hao
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing, 100069, PR China
| | - Dongsheng Liu
- Engineering
Research Center of Advanced Rare Earth Materials, Ministry of Education,
Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
88
|
Shumega AR, Pavlov YI, Chirinskaite AV, Rubel AA, Inge-Vechtomov SG, Stepchenkova EI. CRISPR/Cas9 as a Mutagenic Factor. Int J Mol Sci 2024; 25:823. [PMID: 38255897 PMCID: PMC10815272 DOI: 10.3390/ijms25020823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The discovery of the CRISPR/Cas9 microbial adaptive immune system has revolutionized the field of genetics, by greatly enhancing the capacity for genome editing. CRISPR/Cas9-based editing starts with DNA breaks (or other lesions) predominantly at target sites and, unfortunately, at off-target genome sites. DNA repair systems differing in accuracy participate in establishing desired genetic changes but also introduce unwanted mutations, that may lead to hereditary, oncological, and other diseases. New approaches to alleviate the risks associated with genome editing include attenuating the off-target activity of editing complex through the use of modified forms of Cas9 nuclease and single guide RNA (sgRNA), improving delivery methods for sgRNA/Cas9 complex, and directing DNA lesions caused by the sgRNA/Cas9 to non-mutagenic repair pathways. Here, we have described CRISPR/Cas9 as a new powerful mutagenic factor, discussed its mutagenic properties, and reviewed factors influencing the mutagenic activity of CRISPR/Cas9.
Collapse
Affiliation(s)
- Andrey R. Shumega
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.R.S.); (S.G.I.-V.)
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Departments of Biochemistry and Molecular Biology, Pathology and Microbiology, Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Angelina V. Chirinskaite
- Center of Transgenesis and Genome Editing, St. Petersburg State University, Universitetskaja Emb., 7/9, 199034 St. Petersburg, Russia;
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Sergey G. Inge-Vechtomov
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.R.S.); (S.G.I.-V.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.R.S.); (S.G.I.-V.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| |
Collapse
|
89
|
Gim GM, Jang G. Outlook on genome editing application to cattle. J Vet Sci 2024; 25:e10. [PMID: 38311323 PMCID: PMC10839183 DOI: 10.4142/jvs.23133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 02/07/2024] Open
Abstract
In livestock industry, there is growing interest in methods to increase the production efficiency of livestock to address food shortages, given the increasing global population. With the advancements in gene engineering technology, it is a valuable tool and has been intensively utilized in research specifically focused on human disease. In historically, this technology has been used with livestock to create human disease models or to produce recombinant proteins from their byproducts. However, in recent years, utilizing gene editing technology, cattle with identified genes related to productivity can be edited, thereby enhancing productivity in response to climate change or specific disease instead of producing recombinant proteins. Furthermore, with the advancement in the efficiency of gene editing, it has become possible to edit multiple genes simultaneously. This cattle breed improvement has been achieved by discovering the genes through the comprehensive analysis of the entire genome of cattle. The cattle industry has been able to address gene bottlenecks that were previously impossible through conventional breeding systems. This review concludes that gene editing is necessary to expand the cattle industry, improving productivity in the future. Additionally, the enhancement of cattle through gene editing is expected to contribute to addressing environmental challenges associated with the cattle industry. Further research and development in gene editing, coupled with genomic analysis technologies, will significantly contribute to solving issues that conventional breeding systems have not been able to address.
Collapse
Affiliation(s)
| | - Goo Jang
- LARTBio Inco, Seoul 06221, Korea
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul 08826, Korea
- Comparative medicine Disease Research Center, Seoul National University, Seoul 08826, Korea
- Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia.
| |
Collapse
|
90
|
Gao Y, Guo L, Wang F, Wang Y, Li P, Zhang D. Development of mitochondrial gene-editing strategies and their potential applications in mitochondrial hereditary diseases: a review. Cytotherapy 2024; 26:11-24. [PMID: 37930294 DOI: 10.1016/j.jcyt.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023]
Abstract
Mitochondrial DNA (mtDNA) is a critical genome contained within the mitochondria of eukaryotic cells, with many copies present in each mitochondrion. Mutations in mtDNA often are inherited and can lead to severe health problems, including various inherited diseases and premature aging. The lack of efficient repair mechanisms and the susceptibility of mtDNA to damage exacerbate the threat to human health. Heteroplasmy, the presence of different mtDNA genotypes within a single cell, increases the complexity of these diseases and requires an effective editing method for correction. Recently, gene-editing techniques, including programmable nucleases such as restriction endonuclease, zinc finger nuclease, transcription activator-like effector nuclease, clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated 9 and base editors, have provided new tools for editing mtDNA in mammalian cells. Base editors are particularly promising because of their high efficiency and precision in correcting mtDNA mutations. In this review, we discuss the application of these techniques in mitochondrial gene editing and their limitations. We also explore the potential of base editors for mtDNA modification and discuss the opportunities and challenges associated with their application in mitochondrial gene editing. In conclusion, this review highlights the advancements, limitations and opportunities in current mitochondrial gene-editing technologies and approaches. Our insights aim to stimulate the development of new editing strategies that can ultimately alleviate the adverse effects of mitochondrial hereditary diseases.
Collapse
Affiliation(s)
- Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Linlin Guo
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
91
|
Singh K, Bhushan B, Kumar S, Singh S, Macadangdang RR, Pandey E, Varma AK, Kumar S. Precision Genome Editing Techniques in Gene Therapy: Current State and Future Prospects. Curr Gene Ther 2024; 24:377-394. [PMID: 38258771 DOI: 10.2174/0115665232279528240115075352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Precision genome editing is a rapidly evolving field in gene therapy, allowing for the precise modification of genetic material. The CRISPR and Cas systems, particularly the CRISPRCas9 system, have revolutionized genetic research and therapeutic development by enabling precise changes like single-nucleotide substitutions, insertions, and deletions. This technology has the potential to correct disease-causing mutations at their source, allowing for the treatment of various genetic diseases. Programmable nucleases like CRISPR-Cas9, transcription activator-like effector nucleases (TALENs), and zinc finger nucleases (ZFNs) can be used to restore normal gene function, paving the way for novel therapeutic interventions. However, challenges, such as off-target effects, unintended modifications, and ethical concerns surrounding germline editing, require careful consideration and mitigation strategies. Researchers are exploring innovative solutions, such as enhanced nucleases, refined delivery methods, and improved bioinformatics tools for predicting and minimizing off-target effects. The prospects of precision genome editing in gene therapy are promising, with continued research and innovation expected to refine existing techniques and uncover new therapeutic applications.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Bharat Bhushan
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Sunil Kumar
- Department of Pharmacology, P.K. University, Thanra, Karera, Shivpuri, Madhya Pradesh, India
| | - Supriya Singh
- Department of Pharmaceutics, Babu Banarasi Das Northern India Institute of Technology, Faizabaad road, Lucknow, Uttar Pradesh, India
| | | | - Ekta Pandey
- Department of Chemistry, Bundelkhand Institute of Engineering and Technology, Jhansi, Uttar Pradesh, India
| | - Ajit Kumar Varma
- Department of Pharmaceutics, Rama University, Kanpur, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| |
Collapse
|
92
|
Rots MG, Jeltsch A. Development of Locus-Directed Editing of the Epigenome from Basic Mechanistic Engineering to First Clinical Applications. Methods Mol Biol 2024; 2842:3-20. [PMID: 39012588 DOI: 10.1007/978-1-0716-4051-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The introduction of CRISPR/Cas systems has resulted in a strong impulse for the field of gene-targeted epigenome/epigenetic reprogramming (EpiEditing), where EpiEditors consisting of a DNA binding part for targeting and an enzymatic part for rewriting of chromatin modifications are applied in cells to alter chromatin modifications at targeted genome loci in a directed manner. Pioneering studies preceding this era indicated causal relationships of chromatin marks instructing gene expression. The accumulating evidence of chromatin reprogramming of a given genomic locus resulting in gene expression changes opened the field for mainstream applications of this technology in basic and clinical research. The growing knowledge on chromatin biology and application of EpiEditing tools, however, also revealed a lack of predictability of the efficiency of EpiEditing in some cases. In this perspective, the dependence of critical parameters such as specificity, effectivity, and sustainability of EpiEditing on experimental settings and conditions including the expression levels and expression times of the EpiEditors, their chromatin binding affinity and specificity, and the crosstalk between EpiEditors and cellular epigenome modifiers are discussed. These considerations highlight the intimate connection between the outcome of epigenome reprogramming and the details of the technical approaches toward EpiEditing, which are the main topic of this volume of Methods in Molecular Biology. Once established in a fully functional "plug-and-play" mode, EpiEditing will allow to better understand gene expression control and to translate such knowledge into therapeutic tools. These expectations are beginning to be met as shown by various in vivo EpiEditing applications published in recent years, several companies aiming to exploit the therapeutic power of EpiEditing and the first clinical trial initiated.
Collapse
Affiliation(s)
- Marianne G Rots
- Department Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
93
|
Hamilton PJ, Lim CJ, Nestler EJ, Heller EA. Neuroepigenetic Editing. Methods Mol Biol 2024; 2842:129-152. [PMID: 39012593 PMCID: PMC11520296 DOI: 10.1007/978-1-0716-4051-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Epigenetic regulation is intrinsic to basic neurobiological function as well as neurological disease. Regulation of chromatin-modifying enzymes in the brain is critical during both development and adulthood and in response to external stimuli. Biochemical studies are complemented by numerous next-generation sequencing (NGS) studies that quantify global changes in gene expression, chromatin accessibility, histone and DNA modifications in neurons and glial cells. Neuroepigenetic editing tools are essential to distinguish between the mere presence and functional relevance of histone and DNA modifications to gene transcription in the brain and animal behavior. This review discusses current advances in neuroepigenetic editing, highlighting methodological considerations pertinent to neuroscience, such as delivery methods and the spatiotemporal specificity of editing and it demonstrates the enormous potential of epigenetic editing for basic neurobiological research and therapeutic application.
Collapse
Affiliation(s)
- Peter J Hamilton
- Department of Anatomy & Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Carissa J Lim
- Department of Systems Pharmacology and Translational Therapeutics, The University of Pennsylvania, Philadelphia, PA, USA
| | - Eric J Nestler
- The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, The University of Pennsylvania, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, Philadelphia, PA, USA.
| |
Collapse
|
94
|
Liu N, Dong W, Yang H, Li JH, Chiu TY. Application of artificial scaffold systems in microbial metabolic engineering. Front Bioeng Biotechnol 2023; 11:1328141. [PMID: 38188488 PMCID: PMC10771841 DOI: 10.3389/fbioe.2023.1328141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
In nature, metabolic pathways are often organized into complex structures such as multienzyme complexes, enzyme molecular scaffolds, or reaction microcompartments. These structures help facilitate multi-step metabolic reactions. However, engineered metabolic pathways in microbial cell factories do not possess inherent metabolic regulatory mechanisms, which can result in metabolic imbalance. Taking inspiration from nature, scientists have successfully developed synthetic scaffolds to enhance the performance of engineered metabolic pathways in microbial cell factories. By recruiting enzymes, synthetic scaffolds facilitate the formation of multi-enzyme complexes, leading to the modulation of enzyme spatial distribution, increased enzyme activity, and a reduction in the loss of intermediate products and the toxicity associated with harmful intermediates within cells. In recent years, scaffolds based on proteins, nucleic acids, and various organelles have been developed and employed to facilitate multiple metabolic pathways. Despite varying degrees of success, synthetic scaffolds still encounter numerous challenges. The objective of this review is to provide a comprehensive introduction to these synthetic scaffolds and discuss their latest research advancements and challenges.
Collapse
Affiliation(s)
- Nana Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| | - Wei Dong
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| | - Huanming Yang
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| | - Jing-Hua Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Tsan-Yu Chiu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| |
Collapse
|
95
|
Richter I, Uzum Z, Wein P, Molloy EM, Moebius N, Stinear TP, Pidot SJ, Hertweck C. Transcription activator-like effectors from endosymbiotic bacteria control the reproduction of their fungal host. mBio 2023; 14:e0182423. [PMID: 37971247 PMCID: PMC10746252 DOI: 10.1128/mbio.01824-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Interactions between fungi and bacteria are critically important in ecology, medicine, and biotechnology. In this study, we shed light on factors that promote the persistence of a toxin-producing, phytopathogenic Rhizopus-Mycetohabitans symbiosis that causes severe crop losses in Asia. We present an unprecedented case where bacterially produced transcription activator-like (TAL) effectors are key to maintaining a stable endosymbiosis. In their absence, fungal sporulation is abrogated, leading to collapse of the phytopathogenic alliance. The Mycetohabitans TAL (MTAL)-mediated mechanism of host control illustrates a unique role of bacterial effector molecules that has broader implications, potentially serving as a model to understand how prokaryotic symbionts interact with their eukaryotic hosts.
Collapse
Affiliation(s)
- Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Zerrin Uzum
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Evelyn M. Molloy
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Nadine Moebius
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute, Melbourne, Australia
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, Doherty Institute, Melbourne, Australia
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
96
|
Klinkovskij A, Shepelev M, Isaakyan Y, Aniskin D, Ulasov I. Advances of Genome Editing with CRISPR/Cas9 in Neurodegeneration: The Right Path towards Therapy. Biomedicines 2023; 11:3333. [PMID: 38137554 PMCID: PMC10741756 DOI: 10.3390/biomedicines11123333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The rate of neurodegenerative disorders (NDDs) is rising rapidly as the world's population ages. Conditions such as Alzheimer's disease (AD), Parkinson's disease (PD), and dementia are becoming more prevalent and are now the fourth leading cause of death, following heart disease, cancer, and stroke. Although modern diagnostic techniques for detecting NDDs are varied, scientists are continuously seeking new and improved methods to enable early and precise detection. In addition to that, the present treatment options are limited to symptomatic therapy, which is effective in reducing the progression of neurodegeneration but lacks the ability to target the root cause-progressive loss of neuronal functioning. As a result, medical researchers continue to explore new treatments for these conditions. Here, we present a comprehensive summary of the key features of NDDs and an overview of the underlying mechanisms of neuroimmune dysfunction. Additionally, we dive into the cutting-edge treatment options that gene therapy provides in the quest to treat these disorders.
Collapse
Affiliation(s)
- Aleksandr Klinkovskij
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia; (A.K.); (D.A.)
| | - Mikhail Shepelev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Str., Moscow 119334, Russia
| | - Yuri Isaakyan
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya Str., Moscow 119991, Russia;
| | - Denis Aniskin
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia; (A.K.); (D.A.)
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia; (A.K.); (D.A.)
| |
Collapse
|
97
|
Kasianchuk N, Dobrowolska K, Harkava S, Bretcan A, Zarębska-Michaluk D, Jaroszewicz J, Flisiak R, Rzymski P. Gene-Editing and RNA Interference in Treating Hepatitis B: A Review. Viruses 2023; 15:2395. [PMID: 38140636 PMCID: PMC10747710 DOI: 10.3390/v15122395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The hepatitis B virus (HBV) continues to cause substantial health and economic burdens, and its target of elimination may not be reached in 2030 without further efforts in diagnostics, non-pharmaceutical prevention measures, vaccination, and treatment. Current therapeutic options in chronic HBV, based on interferons and/or nucleos(t)ide analogs, suppress the virus replication but do not eliminate the pathogen and suffer from several constraints. This paper reviews the progress on biotechnological approaches in functional and definitive HBV treatments, including gene-editing tools, i.e., zinc-finger proteins, transcription activator-like effector nucleases, and CRISPR/Cas9, as well as therapeutics based on RNA interference. The advantages and challenges of these approaches are also discussed. Although the safety and efficacy of gene-editing tools in HBV therapies are yet to be demonstrated, they show promise for the revitalization of a much-needed advance in the field and offer viral eradication. Particular hopes are related to CRISPR/Cas9; however, therapeutics employing this system are yet to enter the clinical testing phases. In contrast, a number of candidates based on RNA interference, intending to confer a functional cure, have already been introduced to human studies. However, larger and longer trials are required to assess their efficacy and safety. Considering that prevention is always superior to treatment, it is essential to pursue global efforts in HBV vaccination.
Collapse
Affiliation(s)
- Nadiia Kasianchuk
- Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | | | - Sofiia Harkava
- Junior Academy of Sciences of Ukraine, Regional Branch in Dnipro, 49000 Dnipro, Ukraine;
| | - Andreea Bretcan
- National College “Ienăchiță Văcărescu”, 130016 Târgoviște, Romania;
| | - Dorota Zarębska-Michaluk
- Department of Infectious Diseases and Allergology, Jan Kochanowski University, 25-317 Kielce, Poland;
| | - Jerzy Jaroszewicz
- Department of Infectious Diseases and Hepatology, Medical University of Silesia in Katowice, 41-902 Bytom, Poland;
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, 15-540 Białystok, Poland;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| |
Collapse
|
98
|
Bhuyan SJ, Kumar M, Ramrao Devde P, Rai AC, Mishra AK, Singh PK, Siddique KHM. Progress in gene editing tools, implications and success in plants: a review. Front Genome Ed 2023; 5:1272678. [PMID: 38144710 PMCID: PMC10744593 DOI: 10.3389/fgeed.2023.1272678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Genetic modifications are made through diverse mutagenesis techniques for crop improvement programs. Among these mutagenesis tools, the traditional methods involve chemical and radiation-induced mutagenesis, resulting in off-target and unintended mutations in the genome. However, recent advances have introduced site-directed nucleases (SDNs) for gene editing, significantly reducing off-target changes in the genome compared to induced mutagenesis and naturally occurring mutations in breeding populations. SDNs have revolutionized genetic engineering, enabling precise gene editing in recent decades. One widely used method, homology-directed repair (HDR), has been effective for accurate base substitution and gene alterations in some plant species. However, its application has been limited due to the inefficiency of HDR in plant cells and the prevalence of the error-prone repair pathway known as non-homologous end joining (NHEJ). The discovery of CRISPR-Cas has been a game-changer in this field. This system induces mutations by creating double-strand breaks (DSBs) in the genome and repairing them through associated repair pathways like NHEJ. As a result, the CRISPR-Cas system has been extensively used to transform plants for gene function analysis and to enhance desirable traits. Researchers have made significant progress in genetic engineering in recent years, particularly in understanding the CRISPR-Cas mechanism. This has led to various CRISPR-Cas variants, including CRISPR-Cas13, CRISPR interference, CRISPR activation, base editors, primes editors, and CRASPASE, a new CRISPR-Cas system for genetic engineering that cleaves proteins. Moreover, gene editing technologies like the prime editor and base editor approaches offer excellent opportunities for plant genome engineering. These cutting-edge tools have opened up new avenues for rapidly manipulating plant genomes. This review article provides a comprehensive overview of the current state of plant genetic engineering, focusing on recently developed tools for gene alteration and their potential applications in plant research.
Collapse
Affiliation(s)
- Suman Jyoti Bhuyan
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Pandurang Ramrao Devde
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Avinash Chandra Rai
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | | | - Prashant Kumar Singh
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | | |
Collapse
|
99
|
Chen K, Wang Y. CRISPR/Cas systems for in situ imaging of intracellular nucleic acids: Concepts and applications. Biotechnol Bioeng 2023; 120:3446-3464. [PMID: 37641170 DOI: 10.1002/bit.28543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Accurate and precise localization of intracellular nucleic acids is crucial for regulating genetic information transcription and diagnosing diseases. Although intracellular nucleic acid imaging methods are available for various cell types, their widespread utilization is impeded by the intricate nature of the process and its exorbitant cost. Recently, numerous intracellular nucleic acid labeling techniques based on clustered regularly interspaced short palindromic repeats (CRISPR) have been established due to their modularity, flexibility, and specificity. In this work, we present various CRISPR methods that are currently employed for visualizing intracellular genomic sequences and RNA, based on their detection principles and application scenarios. Furthermore, we discuss the advantages and drawbacks of the existing CRISPR imaging methods, as well as future research directions. We anticipate that with continued refinement, more advanced CRISPR-based imaging techniques can be developed to better elucidate the localization and dynamics of intracellular nucleic acids, thereby providing a powerful tool for molecular biology research and clinical molecular pathology diagnosis.
Collapse
Affiliation(s)
- Kun Chen
- Department of Clinical Laboratory, Peking University Cancer Hospital & Institute, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China
| | - Yufei Wang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| |
Collapse
|
100
|
Schornack S, Kamoun S. EVO-MPMI: From fundamental science to practical applications. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102469. [PMID: 37783039 DOI: 10.1016/j.pbi.2023.102469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
In the unending coevolutionary dance between plants and microbes, each player impacts the evolution of the other. Here, we provide an overview of the burgeoning field of evolutionary molecular plant-microbe interactions (EVO-MPMI)-the study of mechanisms of plant-microbe interactions in the context of their evolutionary history-tracing its progression from foundational science to practical implementation. We present a snapshot of current research and delve into central concepts, such as conserved features and convergent evolution, as well as methodologies such as ancestral reconstruction. Moreover, we shed light on the practical applications of EVO-MPMI, particularly within the realm of disease control. Looking ahead, we discuss potential future trajectories for EVO-MPMI research, spotlighting the innovative tools and technologies propelling the discipline forward.
Collapse
Affiliation(s)
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.
| |
Collapse
|