51
|
Paleskava A, Kaiumov MY, Kirillov SV, Konevega AL. Peculiarities in Activation of Hydrolytic Activity of Elongation Factors. BIOCHEMISTRY (MOSCOW) 2021; 85:1422-1433. [PMID: 33280582 DOI: 10.1134/s0006297920110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Translational GTPases (trGTPases) belong to the family of G proteins and play key roles at all stages of protein biosynthesis on the ribosome. Unidirectional and cyclic functioning of G proteins is ensured by their ability to switch between the active and inactive states due to GTP hydrolysis accelerated by the auxiliary GTPase-activating proteins. Although trGTPases interact with the ribosomes in different conformational states, they bind to the same conserved region, which, unlike in classical GTPase-activating proteins, is represented by ribosomal RNA. The resulting catalytic sites have almost identical structure in all elongation factors suggesting a common mechanism of GTP hydrolysis. However, fine details of the activated state formation and significantly different rates of GTP hydrolysis indicate the existence of distinctive features upon GTP hydrolysis catalyzed by the different factors. Here, we present a contemporary view on the mechanism of GTPase activation and GTP hydrolysis by the elongation factors EF-Tu, EF-G, and SelB based on the analysis of structural, biochemical, and bioinformatics data.
Collapse
Affiliation(s)
- A Paleskava
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - M Yu Kaiumov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - S V Kirillov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - A L Konevega
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia.
| |
Collapse
|
52
|
Koripella RK, Deep A, Agrawal EK, Keshavan P, Banavali NK, Agrawal RK. Distinct mechanisms of the human mitoribosome recycling and antibiotic resistance. Nat Commun 2021; 12:3607. [PMID: 34127662 PMCID: PMC8203779 DOI: 10.1038/s41467-021-23726-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
Ribosomes are recycled for a new round of translation initiation by dissociation of ribosomal subunits, messenger RNA and transfer RNA from their translational post-termination complex. Here we present cryo-EM structures of the human 55S mitochondrial ribosome (mitoribosome) and the mitoribosomal large 39S subunit in complex with mitoribosome recycling factor (RRFmt) and a recycling-specific homolog of elongation factor G (EF-G2mt). These structures clarify an unusual role of a mitochondria-specific segment of RRFmt, identify the structural distinctions that confer functional specificity to EF-G2mt, and show that the deacylated tRNA remains with the dissociated 39S subunit, suggesting a distinct sequence of events in mitoribosome recycling. Furthermore, biochemical and structural analyses reveal that the molecular mechanism of antibiotic fusidic acid resistance for EF-G2mt is markedly different from that of mitochondrial elongation factor EF-G1mt, suggesting that the two human EF-Gmts have evolved diversely to negate the effect of a bacterial antibiotic. High-resolution cryo-EM structures and biochemical analyses of the human mitoribosome, in complex with mitochondria-specific factors mediating mitoribosome recycling, RRFmt and EF-G2mt, offer insight into mechanisms of mitoribosome recycling and resistance to antibiotic fusidic acid.
Collapse
Affiliation(s)
- Ravi Kiran Koripella
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, USA
| | - Ayush Deep
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, USA
| | - Ekansh K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, USA
| | - Pooja Keshavan
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, USA
| | - Nilesh K Banavali
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, USA. .,Department of Biomedical Sciences, University at Albany, Albany, NY, USA.
| |
Collapse
|
53
|
Ero R, Yan XF, Gao YG. Ribosome Protection Proteins-"New" Players in the Global Arms Race with Antibiotic-Resistant Pathogens. Int J Mol Sci 2021; 22:5356. [PMID: 34069640 PMCID: PMC8161019 DOI: 10.3390/ijms22105356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/07/2023] Open
Abstract
Bacteria have evolved an array of mechanisms enabling them to resist the inhibitory effect of antibiotics, a significant proportion of which target the ribosome. Indeed, resistance mechanisms have been identified for nearly every antibiotic that is currently used in clinical practice. With the ever-increasing list of multi-drug-resistant pathogens and very few novel antibiotics in the pharmaceutical pipeline, treatable infections are likely to become life-threatening once again. Most of the prevalent resistance mechanisms are well understood and their clinical significance is recognized. In contrast, ribosome protection protein-mediated resistance has flown under the radar for a long time and has been considered a minor factor in the clinical setting. Not until the recent discovery of the ATP-binding cassette family F protein-mediated resistance in an extensive list of human pathogens has the significance of ribosome protection proteins been truly appreciated. Understanding the underlying resistance mechanism has the potential to guide the development of novel therapeutic approaches to evade or overcome the resistance. In this review, we discuss the latest developments regarding ribosome protection proteins focusing on the current antimicrobial arsenal and pharmaceutical pipeline as well as potential implications for the future of fighting bacterial infections in the time of "superbugs."
Collapse
Affiliation(s)
- Rya Ero
- Department of Molecular Biology, Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Xin-Fu Yan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
54
|
Kim C, Holm M, Mandava CS, Sanyal S. Optimization of a fluorescent-mRNA based real-time assay for precise kinetic measurements of ribosomal translocation. RNA Biol 2021; 18:2363-2375. [PMID: 33938388 PMCID: PMC8632105 DOI: 10.1080/15476286.2021.1913312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Kinetic characterization of ribosomal translocation is important for understanding the mechanism of elongation in protein synthesis. Here we have optimized a popular fluorescent-mRNA based translocation assay conducted in stopped-flow, by calibrating it with the functional tripeptide formation assay in quench-flow. We found that a fluorescently labelled mRNA, ten bases long from position +1 (mRNA+10), is best suited for both assays as it forms tripeptide at a fast rate equivalent to the longer mRNAs, and yet produces a large fluorescence change upon mRNA movement. Next, we compared the commonly used peptidyl tRNA analog, N-acetyl-Phe-tRNAPhe, with the natural dipeptidyl fMet-Phe-tRNAPhe in the stopped-flow assay. This analog translocates about two times slower than the natural dipeptidyl tRNA and produces biphasic kinetics. The rates reduce further at lower temperatures and with higher Mg2+ concentration, but improve with higher elongation factor G (EF-G) concentration, which increase both rate and amplitude of the fast phase significantly. In summary, we present here an improved real time assay for monitoring mRNA-translocation with the natural- and an N-Ac-analog of dipeptidyl tRNA.
Collapse
Affiliation(s)
- Changil Kim
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Mikael Holm
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
55
|
Evolution of Ribosomal Protein S14 Demonstrated by the Reconstruction of Chimeric Ribosomes in Bacillus subtilis. J Bacteriol 2021; 203:JB.00599-20. [PMID: 33649148 DOI: 10.1128/jb.00599-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 12/19/2022] Open
Abstract
Ribosomal protein S14 can be classified into three types. The first, the C+ type has a Zn2+ binding motif and is ancestral. The second and third are the C- short and C- long types, neither of which contain a Zn2+ binding motif and which are ca. 90 residues and 100 residues in length, respectively. In the present study, the C+ type S14 from Bacillus subtilis ribosomes (S14BsC+) were completely replaced by the heterologous C- long type of S14 from Escherichia coli (S14Ec) or Synechococcus elongatus (S14Se). Surprisingly, S14Ec and S14Se were incorporated fully into 70S ribosomes in B. subtilis However, the growth rates as well as the sporulation efficiency of the mutants harboring heterologous S14 were significantly decreased. In these mutants, the polysome fraction was decreased and the 30S and 50S subunits accumulated unusually, indicating that cellular translational activity of these mutants was decreased. In vitro analysis showed a reduction in the translational activity of the 70S ribosome fraction purified from these mutants. The abundance of ribosomal proteins S2 and S3 in the 30S fraction in these mutants was reduced while that of S14 was not significantly decreased. It seems likely that binding of heterologous S14 changes the structure of the 30S subunit, which causes a decrease in the assembly efficiency of S2 and S3, which are located near the binding site of S14. Moreover, we found that S3 from S. elongatus cannot function in B. subtilis unless S14Se is present.IMPORTANCE S14, an essential ribosomal protein, may have evolved to adapt bacteria to zinc-limited environments by replacement of a zinc-binding motif with a zinc-independent sequence. It was expected that the bacterial ribosome would be tolerant to replacement of S14 because of the previous prediction that the spread of C- type S14 involved horizontal gene transfer. In this study, we completely replaced the C+ type of S14 in B. subtilis ribosome with the heterologous C- long type of S14 and characterized the resulting chimeric ribosomes. Our results suggest that the B. subtilis ribosome is permissive for the replacement of S14, but coevolution of S3 might be required to utilize the C- long type of S14 more effectively.
Collapse
|
56
|
Maksimova EM, Vinogradova DS, Osterman IA, Kasatsky PS, Nikonov OS, Milón P, Dontsova OA, Sergiev PV, Paleskava A, Konevega AL. Multifaceted Mechanism of Amicoumacin A Inhibition of Bacterial Translation. Front Microbiol 2021; 12:618857. [PMID: 33643246 PMCID: PMC7907450 DOI: 10.3389/fmicb.2021.618857] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/19/2021] [Indexed: 01/07/2023] Open
Abstract
Amicoumacin A (Ami) halts bacterial growth by inhibiting the ribosome during translation. The Ami binding site locates in the vicinity of the E-site codon of mRNA. However, Ami does not clash with mRNA, rather stabilizes it, which is relatively unusual and implies a unique way of translation inhibition. In this work, we performed a kinetic and thermodynamic investigation of Ami influence on the main steps of polypeptide synthesis. We show that Ami reduces the rate of the functional canonical 70S initiation complex (IC) formation by 30-fold. Additionally, our results indicate that Ami promotes the formation of erroneous 30S ICs; however, IF3 prevents them from progressing towards translation initiation. During early elongation steps, Ami does not compromise EF-Tu-dependent A-site binding or peptide bond formation. On the other hand, Ami reduces the rate of peptidyl-tRNA movement from the A to the P site and significantly decreases the amount of the ribosomes capable of polypeptide synthesis. Our data indicate that Ami progressively decreases the activity of translating ribosomes that may appear to be the main inhibitory mechanism of Ami. Indeed, the use of EF-G mutants that confer resistance to Ami (G542V, G581A, or ins544V) leads to a complete restoration of the ribosome functionality. It is possible that the changes in translocation induced by EF-G mutants compensate for the activity loss caused by Ami.
Collapse
Affiliation(s)
- Elena M Maksimova
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia
| | - Daria S Vinogradova
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia.,NanoTemper Technologies Rus, St. Petersburg, Russia
| | - Ilya A Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel S Kasatsky
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia
| | - Oleg S Nikonov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Pohl Milón
- Centre for Research and Innovation, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Peru
| | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, Russia
| | - Alena Paleskava
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia
| | - Andrey L Konevega
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia.,National Research Centre "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
57
|
Mao Y, Lin R, Xu S, Wang Y. High-Resolution DNA Dual-Rulers Reveal a New Intermediate State in Ribosomal Frameshifting. Chembiochem 2021; 22:1775-1778. [PMID: 33458897 PMCID: PMC8014572 DOI: 10.1002/cbic.202000863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Indexed: 01/06/2023]
Abstract
Ribosomal frameshifting is an important pathway used by many viruses for protein synthesis that involves mRNA translocation of various numbers of nucleotides. Resolving the mRNA positions with subnucleotide precision will provide critical mechanistic information that is difficult to obtain with current techniques. We report a method of high‐resolution DNA rulers with subnucleotide precision and the discovery of new frameshifting intermediate states on mRNA containing a GA7G motif. Two intermediate states were observed with the aid of fusidic acid, one at the “0” reading frame and the other near the “−1” reading frame, in contrast to the “−2” and “−1” frameshifting products found in the absence of the antibiotic. We termed the new near‐“−1” intermediate the Post(−1*) state because it was shifted by approximately half a nucleotide compared to the normal “−1” reading frame at the 5’‐end. This indicates a ribosome conformation that is different from the conventional model of three reading frames. Our work reveals uniquely precise mRNA motions and subtle conformational changes that will complement structural and fluorescence studies.
Collapse
Affiliation(s)
- Yujia Mao
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX 77204, USA
| | - Ran Lin
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Shoujun Xu
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX 77204, USA
| | - Yuhong Wang
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
58
|
Garcia Chavez M, Garcia A, Lee HY, Lau GW, Parker EN, Komnick KE, Hergenrother PJ. Synthesis of Fusidic Acid Derivatives Yields a Potent Antibiotic with an Improved Resistance Profile. ACS Infect Dis 2021; 7:493-505. [PMID: 33522241 DOI: 10.1021/acsinfecdis.0c00869] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fusidic acid (FA) is a potent steroidal antibiotic that has been used in Europe for more than 60 years to treat a variety of infections caused by Gram-positive pathogens. Despite its clinical success, FA requires significantly elevated dosing (3 g on the first day, 1.2 g on subsequent days) to minimize resistance, as FA displays a high resistance frequency, and a large shift in minimum inhibitory concentration is observed for resistant bacteria. Despite efforts to improve on these aspects, all previously constructed derivatives of FA have worse antibacterial activity against Gram-positive bacteria than the parent natural product. Here, we report the creation of a novel FA analogue that has equivalent potency against clinical isolates of Staphylococcus aureus (S. aureus) and Enterococcus faecium (E. faecium) as well as an improved resistance profile in vitro when compared to FA. Importantly, this new compound displays efficacy against an FA-resistant strain of S. aureus in a soft-tissue murine infection model. This work delineates the structural features of FA necessary for potent antibiotic activity and demonstrates that the resistance profile can be improved for this scaffold and target.
Collapse
Affiliation(s)
- Martin Garcia Chavez
- Department of Chemistry, University of Illinois at Urbana−Champaign, Roger Adams
Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Alfredo Garcia
- Department of Chemistry, University of Illinois at Urbana−Champaign, Roger Adams
Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Hyang Yeon Lee
- Department of Chemistry, University of Illinois at Urbana−Champaign, Roger Adams
Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Gee W. Lau
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana−Champaign, 2001 South Lincoln Avenue, Urbana, Illinois 61801, United States
| | - Erica N. Parker
- Department of Chemistry, University of Illinois at Urbana−Champaign, Roger Adams
Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kailey E. Komnick
- Department of Chemistry, University of Illinois at Urbana−Champaign, Roger Adams
Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Paul J. Hergenrother
- Department of Chemistry, University of Illinois at Urbana−Champaign, Roger Adams
Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
59
|
Lee M, Matsunaga N, Akabane S, Yasuda I, Ueda T, Takeuchi-Tomita N. Reconstitution of mammalian mitochondrial translation system capable of correct initiation and long polypeptide synthesis from leaderless mRNA. Nucleic Acids Res 2021; 49:371-382. [PMID: 33300043 PMCID: PMC7797035 DOI: 10.1093/nar/gkaa1165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022] Open
Abstract
Mammalian mitochondria have their own dedicated protein synthesis system, which produces 13 essential subunits of the oxidative phosphorylation complexes. We have reconstituted an in vitro translation system from mammalian mitochondria, utilizing purified recombinant mitochondrial translation factors, 55S ribosomes from pig liver mitochondria, and a tRNA mixture from either Escherichia coli or yeast. The system is capable of translating leaderless mRNAs encoding model proteins (DHFR and nanoLuciferase) or some mtDNA-encoded proteins. We show that a leaderless mRNA, encoding nanoLuciferase, is faithfully initiated without the need for any auxiliary factors other than IF-2mt and IF-3mt. We found that the ribosome-dependent GTPase activities of both the translocase EF-G1mt and the recycling factor EF-G2mt are insensitive to fusidic acid (FA), the translation inhibitor that targets bacterial EF-G homologs, and consequently the system is resistant to FA. Moreover, we demonstrate that a polyproline sequence in the protein causes 55S mitochondrial ribosome stalling, yielding ribosome nascent chain complexes. Analyses of the effects of the Mg concentration on the polyproline-mediated ribosome stalling suggested the unique regulation of peptide elongation by the mitoribosome. This system will be useful for analyzing the mechanism of translation initiation, and the interactions between the nascent peptide chain and the mitochondrial ribosome.
Collapse
Affiliation(s)
- Muhoon Lee
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Noriko Matsunaga
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Shiori Akabane
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan.,Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Ippei Yasuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Takuya Ueda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan.,Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Tokyo, Shinjuku 162-8480, Japan
| | - Nono Takeuchi-Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| |
Collapse
|
60
|
Niblett D, Nelson C, Leung CS, Rexroad G, Cozy J, Zhou J, Lancaster L, Noller HF. Mutations in domain IV of elongation factor EF-G confer -1 frameshifting. RNA (NEW YORK, N.Y.) 2021; 27:40-53. [PMID: 33008838 PMCID: PMC7749637 DOI: 10.1261/rna.077339.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/24/2020] [Indexed: 05/25/2023]
Abstract
A recent crystal structure of a ribosome complex undergoing partial translocation in the absence of elongation factor EF-G showed disruption of codon-anticodon pairing and slippage of the reading frame by -1, directly implicating EF-G in preservation of the translational reading frame. Among mutations identified in a random screen for dominant-lethal mutations of EF-G were a cluster of six that map to the tip of domain IV, which has been shown to contact the codon-anticodon duplex in trapped translocation intermediates. In vitro synthesis of a full-length protein using these mutant EF-Gs revealed dramatically increased -1 frameshifting, providing new evidence for a role for domain IV of EF-G in maintaining the reading frame. These mutations also caused decreased rates of mRNA translocation and rotational movement of the head and body domains of the 30S ribosomal subunit during translocation. Our results are in general agreement with recent findings from Rodnina and coworkers based on in vitro translation of an oligopeptide using EF-Gs containing mutations at two positions in domain IV, who found an inverse correlation between the degree of frameshifting and rates of translocation. Four of our six mutations are substitutions at positions that interact with the translocating tRNA, in each case contacting the RNA backbone of the anticodon loop. We suggest that EF-G helps to preserve the translational reading frame by preventing uncoupled movement of the tRNA through these contacts; a further possibility is that these interactions may stabilize a conformation of the anticodon that favors base-pairing with its codon.
Collapse
Affiliation(s)
- Dustin Niblett
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Charlotte Nelson
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Calvin S Leung
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Gillian Rexroad
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Jake Cozy
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Jie Zhou
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Laura Lancaster
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Harry F Noller
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
61
|
Vila-Sanjurjo A, Smith PM, Elson JL. Heterologous Inferential Analysis (HIA) and Other Emerging Concepts: In Understanding Mitochondrial Variation In Pathogenesis: There is no More Low-Hanging Fruit. Methods Mol Biol 2021; 2277:203-245. [PMID: 34080154 DOI: 10.1007/978-1-0716-1270-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here we summarize our latest efforts to elucidate the role of mtDNA variants affecting the mitochondrial translation machinery, namely variants mapping to the mt-rRNA and mt-tRNA genes. Evidence is accumulating to suggest that the cellular response to interference with mitochondrial translation is different from that occurring as a result of mutations in genes encoding OXPHOS proteins. As a result, it appears safe to state that a complete view of mitochondrial disease will not be obtained until we understand the effect of mt-rRNA and mt-tRNA variants on mitochondrial protein synthesis. Despite the identification of a large number of potentially pathogenic variants in the mitochondrially encoded rRNA (mt-rRNA) genes, we lack direct methods to firmly establish their pathogenicity. In the absence of such methods, we have devised an indirect approach named heterologous inferential analysis (HIA ) that can be used to make predictions concerning the disruptive potential of a large subset of mt-rRNA variants. We have used HIA to explore the mutational landscape of 12S and 16S mt-rRNA genes. Our HIA studies include a thorough classification of all rare variants reported in the literature as well as others obtained from studies performed in collaboration with physicians. HIA has also been used with non-mammalian mt-rRNA genes to elucidate how mitotypes influence the interaction of the individual and the environment. Regarding mt-tRNA variations, rapidly growing evidence shows that the spectrum of mutations causing mitochondrial disease might differ between the different mitochondrial haplogroups seen in human populations.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Departamento de Bioloxía, Facultade de Ciencias, Centro de Investigacións en Ciencias Avanzadas (CICA), Universidade da Coruña, A Coruña, Spain.
| | - Paul M Smith
- Department of Paediatrics, Royal Aberdeen Children's Hospital, Aberdeen, UK
| | - Joanna L Elson
- Biosciences Institute Newcastle, Newcastle University, Newcastle upon Tyne, UK.
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
62
|
Abstract
Peptide-chain elongation during protein synthesis entails sequential aminoacyl-tRNA selection and translocation reactions that proceed rapidly (2-20 per second) and with a low error rate (around 10-3 to 10-5 at each step) over thousands of cycles1. The cadence and fidelity of ribosome transit through mRNA templates in discrete codon increments is a paradigm for movement in biological systems that must hold for diverse mRNA and tRNA substrates across domains of life. Here we use single-molecule fluorescence methods to guide the capture of structures of early translocation events on the bacterial ribosome. Our findings reveal that the bacterial GTPase elongation factor G specifically engages spontaneously achieved ribosome conformations while in an active, GTP-bound conformation to unlock and initiate peptidyl-tRNA translocation. These findings suggest that processes intrinsic to the pre-translocation ribosome complex can regulate the rate of protein synthesis, and that energy expenditure is used later in the translocation mechanism than previously proposed.
Collapse
|
63
|
Richardson JS, Richardson DC, Goodsell DS. Seeing the PDB. J Biol Chem 2021; 296:100742. [PMID: 33957126 PMCID: PMC8167287 DOI: 10.1016/j.jbc.2021.100742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 01/21/2023] Open
Abstract
Ever since the first structures of proteins were determined in the 1960s, structural biologists have required methods to visualize biomolecular structures, both as an essential tool for their research and also to promote 3D comprehension of structural results by a wide audience of researchers, students, and the general public. In this review to celebrate the 50th anniversary of the Protein Data Bank, we present our own experiences in developing and applying methods of visualization and analysis to the ever-expanding archive of protein and nucleic acid structures in the worldwide Protein Data Bank. Across that timespan, Jane and David Richardson have concentrated on the organization inside and between the macromolecules, with ribbons to show the overall backbone "fold" and contact dots to show how the all-atom details fit together locally. David Goodsell has explored surface-based representations to present and explore biological subjects that range from molecules to cells. This review concludes with some ideas about the current challenges being addressed by the field of biomolecular visualization.
Collapse
Affiliation(s)
- Jane S Richardson
- Department of Biochemistry, Duke University, Durham, North Carolina, USA.
| | - David C Richardson
- Department of Biochemistry, Duke University, Durham, North Carolina, USA
| | - David S Goodsell
- Department of Integrative and Computational Biology, The Scripps Research Institute, La Jolla, California, USA; Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA.
| |
Collapse
|
64
|
Systematic Investigation of Resistance Evolution to Common Antibiotics Reveals Conserved Collateral Responses across Common Human Pathogens. Antimicrob Agents Chemother 2020; 65:AAC.01273-20. [PMID: 33106260 PMCID: PMC7927859 DOI: 10.1128/aac.01273-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
As drug resistance continues to grow, treatment strategies that turn resistance into a disadvantage for the organism will be increasingly relied upon to treat infections and to lower the rate of multidrug resistance. The majority of work in this area has investigated how resistance evolution toward a single antibiotic effects a specific organism’s collateral response to a wide variety of antibiotics. The results of these studies have been used to identify networks of drugs which can be used to drive resistance in a particular direction. As drug resistance continues to grow, treatment strategies that turn resistance into a disadvantage for the organism will be increasingly relied upon to treat infections and to lower the rate of multidrug resistance. The majority of work in this area has investigated how resistance evolution toward a single antibiotic effects a specific organism’s collateral response to a wide variety of antibiotics. The results of these studies have been used to identify networks of drugs which can be used to drive resistance in a particular direction. However, little is known about the extent of evolutionary conservation of these responses across species. We sought to address this knowledge gap by performing a systematic resistance evolution study of the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae) under uniform growth conditions using five clinically relevant antibiotics with diverse modes of action. Evolved lineages were analyzed for collateral effects and the molecular mechanisms behind the observed phenotypes. Fourteen universal cross-resistance and two global collateral sensitivity relationships were found among the lineages. Genomic analyses revealed drug-dependent divergent and conserved evolutionary trajectories among the pathogens. Our findings suggest that collateral responses may be preserved across species. These findings may help extend the contribution of previous collateral network studies in the development of treatment strategies to address the problem of antibiotic resistance.
Collapse
|
65
|
Direct visualization of translational GTPase factor pool formed around the archaeal ribosomal P-stalk by high-speed AFM. Proc Natl Acad Sci U S A 2020; 117:32386-32394. [PMID: 33288716 PMCID: PMC7768734 DOI: 10.1073/pnas.2018975117] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Translation of genetic information by the ribosome is a core biological process in all organisms. The ribosomal stalk is a multimeric ribosomal protein complex which plays an essential role in translation elongation. However, the working mechanism of the ribosomal stalk still remains unclear. In this study, we applied HS-AFM to investigate the working mechanism of the archaeal ribosomal P-stalk. HS-AFM movies demonstrate that the P-stalk collects two translational GTPase factors (trGTPases), aEF1A and aEF2, and increases their local concentration near the ribosome. These direct visual evidences show that the multiple arms of the ribosomal P-stalk catch the trGTPases for efficient protein synthesis in the crowded intracellular environment. In translation elongation, two translational guanosine triphosphatase (trGTPase) factors EF1A and EF2 alternately bind to the ribosome and promote polypeptide elongation. The ribosomal stalk is a multimeric ribosomal protein complex which plays an essential role in the recruitment of EF1A and EF2 to the ribosome and their GTP hydrolysis for efficient and accurate translation elongation. However, due to the flexible nature of the ribosomal stalk, its structural dynamics and mechanism of action remain unclear. Here, we applied high-speed atomic force microscopy (HS-AFM) to directly visualize the action of the archaeal ribosomal heptameric stalk complex, aP0•(aP1•aP1)3 (P-stalk). HS-AFM movies clearly demonstrated the wobbling motion of the P-stalk on the large ribosomal subunit where the stalk base adopted two conformational states, a predicted canonical state, and a newly identified flipped state. Moreover, we showed that up to seven molecules of archaeal EF1A (aEF1A) and archaeal EF2 (aEF2) assembled around the ribosomal P-stalk, corresponding to the copy number of the common C-terminal factor-binding site of the P-stalk. These results provide visual evidence for the factor-pooling mechanism by the P-stalk within the ribosome and reveal that the ribosomal P-stalk promotes translation elongation by increasing the local concentration of translational GTPase factors.
Collapse
|
66
|
Desai N, Yang H, Chandrasekaran V, Kazi R, Minczuk M, Ramakrishnan V. Elongational stalling activates mitoribosome-associated quality control. Science 2020; 370:1105-1110. [PMID: 33243891 PMCID: PMC7116630 DOI: 10.1126/science.abc7782] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/24/2020] [Indexed: 02/02/2023]
Abstract
The human mitochondrial ribosome (mitoribosome) and associated proteins regulate the synthesis of 13 essential subunits of the oxidative phosphorylation complexes. We report the discovery of a mitoribosome-associated quality control pathway that responds to interruptions during elongation, and we present structures at 3.1- to 3.3-angstrom resolution of mitoribosomal large subunits trapped during ribosome rescue. Release factor homolog C12orf65 (mtRF-R) and RNA binding protein C6orf203 (MTRES1) eject the nascent chain and peptidyl transfer RNA (tRNA), respectively, from stalled ribosomes. Recruitment of mitoribosome biogenesis factors to these quality control intermediates suggests additional roles for these factors during mitoribosome rescue. We also report related cryo-electron microscopy structures (3.7 to 4.4 angstrom resolution) of elongating mitoribosomes bound to tRNAs, nascent polypeptides, the guanosine triphosphatase elongation factors mtEF-Tu and mtEF-G1, and the Oxa1L translocase.
Collapse
Affiliation(s)
- Nirupa Desai
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Hanting Yang
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Razina Kazi
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - V. Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK,Corresponding author.
| |
Collapse
|
67
|
Vind AC, Genzor AV, Bekker-Jensen S. Ribosomal stress-surveillance: three pathways is a magic number. Nucleic Acids Res 2020; 48:10648-10661. [PMID: 32941609 PMCID: PMC7641731 DOI: 10.1093/nar/gkaa757] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cells rely on stress response pathways to uphold cellular homeostasis and limit the negative effects of harmful environmental stimuli. The stress- and mitogen-activated protein (MAP) kinases, p38 and JNK, are at the nexus of numerous stress responses, among these the ribotoxic stress response (RSR). Ribosomal impairment is detrimental to cell function as it disrupts protein synthesis, increase inflammatory signaling and, if unresolved, lead to cell death. In this review, we offer a general overview of the three main translation surveillance pathways; the RSR, Ribosome-associated Quality Control (RQC) and the Integrated Stress Response (ISR). We highlight recent advances made in defining activation mechanisms for these pathways and discuss their commonalities and differences. Finally, we reflect on the physiological role of the RSR and consider the therapeutic potential of targeting the sensing kinase ZAKα for treatment of ribotoxin exposure.
Collapse
Affiliation(s)
- Anna Constance Vind
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Aitana Victoria Genzor
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
68
|
Tomlinson JH, Kalverda AP, Calabrese AN. Fusidic acid resistance through changes in the dynamics of the drug target. Proc Natl Acad Sci U S A 2020; 117:25523-25531. [PMID: 32999060 PMCID: PMC7568287 DOI: 10.1073/pnas.2008577117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Antibiotic resistance in clinically important bacteria can be mediated by target protection mechanisms, whereby a protein binds to the drug target and protects it from the inhibitory effects of the antibiotic. The most prevalent source of clinical resistance to the antibiotic fusidic acid (FA) is expression of the FusB family of proteins that bind to the drug target (Elongation factor G [EF-G]) and promote dissociation of EF-G from FA-stalled ribosome complexes. FusB binding causes changes in both the structure and conformational flexibility of EF-G, but which of these changes drives FA resistance was not understood. We present here detailed characterization of changes in the conformational flexibility of EF-G in response to FusB binding and show that these changes are responsible for conferring FA resistance. Binding of FusB to EF-G causes a significant change in the dynamics of domain III of EF-GC3 that leads to an increase in a minor, more disordered state of EF-G domain III. This is sufficient to overcome the steric block of transmission of conformational changes within EF-G by which FA prevents release of EF-G from the ribosome. This study has identified an antibiotic resistance mechanism mediated by allosteric effects on the dynamics of the drug target.
Collapse
Affiliation(s)
- Jennifer H Tomlinson
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT Leeds, United Kingdom;
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Arnout P Kalverda
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Antonio N Calabrese
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| |
Collapse
|
69
|
Calvet LE, Matviienko S, Ducluzaux P. Network theory of the bacterial ribosome. PLoS One 2020; 15:e0239700. [PMID: 33017414 PMCID: PMC7535068 DOI: 10.1371/journal.pone.0239700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
In the past two decades, research into the biochemical, biophysical and structural properties of the ribosome have revealed many different steps of protein translation. Nevertheless, a complete understanding of how they lead to a rapid and accurate protein synthesis still remains a challenge. Here we consider a coarse network analysis in the bacterial ribosome formed by the connectivity between ribosomal (r) proteins and RNAs at different stages in the elongation cycle. The ribosomal networks are found to be dis-assortative and small world, implying that the structure allows for an efficient exchange of information between distant locations. An analysis of centrality shows that the second and fifth domains of 23S rRNA are the most important elements in all of the networks. Ribosomal protein hubs connect to much fewer nodes but are shown to provide important connectivity within the network (high closeness centrality). A modularity analysis reveals some of the different functional communities, indicating some known and some new possible communication pathways Our mathematical results confirm important communication pathways that have been discussed in previous research, thus verifying the use of this technique for representing the ribosome, and also reveal new insights into the collective function of ribosomal elements.
Collapse
Affiliation(s)
- Laurie E. Calvet
- CNRS, Centre de Nanosciences et Nanotechnologies, Université Paris-Saclay, Palaiseau, France
- * E-mail:
| | - Serhii Matviienko
- CNRS, Centre de Nanosciences et Nanotechnologies, Université Paris-Saclay, Palaiseau, France
| | - Pierre Ducluzaux
- CNRS, Centre de Nanosciences et Nanotechnologies, Université Paris-Saclay, Palaiseau, France
| |
Collapse
|
70
|
Hoffer ED, Hong S, Sunita S, Maehigashi T, Gonzalez RL, Whitford PC, Dunham CM. Structural insights into mRNA reading frame regulation by tRNA modification and slippery codon-anticodon pairing. eLife 2020; 9:51898. [PMID: 33016876 PMCID: PMC7577736 DOI: 10.7554/elife.51898] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/02/2020] [Indexed: 01/10/2023] Open
Abstract
Modifications in the tRNA anticodon loop, adjacent to the three-nucleotide anticodon, influence translation fidelity by stabilizing the tRNA to allow for accurate reading of the mRNA genetic code. One example is the N1-methylguanosine modification at guanine nucleotide 37 (m1G37) located in the anticodon loop andimmediately adjacent to the anticodon nucleotides 34, 35, 36. The absence of m1G37 in tRNAPro causes +1 frameshifting on polynucleotide, slippery codons. Here, we report structures of the bacterial ribosome containing tRNAPro bound to either cognate or slippery codons to determine how the m1G37 modification prevents mRNA frameshifting. The structures reveal that certain codon–anticodon contexts and the lack of m1G37 destabilize interactions of tRNAPro with the P site of the ribosome, causing large conformational changes typically only seen during EF-G-mediated translocation of the mRNA-tRNA pairs. These studies provide molecular insights into how m1G37 stabilizes the interactions of tRNAPro with the ribosome in the context of a slippery mRNA codon.
Collapse
Affiliation(s)
- Eric D Hoffer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, United States
| | - Samuel Hong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, United States
| | - S Sunita
- Department of Biochemistry, Emory University School of Medicine, Atlanta, United States
| | - Tatsuya Maehigashi
- Department of Biochemistry, Emory University School of Medicine, Atlanta, United States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, United States
| | - Paul C Whitford
- Department of Physics, Northeastern University, Boston, United States
| | - Christine M Dunham
- Department of Biochemistry, Emory University School of Medicine, Atlanta, United States
| |
Collapse
|
71
|
Rodnina MV, Peske F, Peng BZ, Belardinelli R, Wintermeyer W. Converting GTP hydrolysis into motion: versatile translational elongation factor G. Biol Chem 2020; 401:131-142. [PMID: 31600135 DOI: 10.1515/hsz-2019-0313] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022]
Abstract
Elongation factor G (EF-G) is a translational GTPase that acts at several stages of protein synthesis. Its canonical function is to catalyze tRNA movement during translation elongation, but it also acts at the last step of translation to promote ribosome recycling. Moreover, EF-G has additional functions, such as helping the ribosome to maintain the mRNA reading frame or to slide over non-coding stretches of the mRNA. EF-G has an unconventional GTPase cycle that couples the energy of GTP hydrolysis to movement. EF-G facilitates movement in the GDP-Pi form. To convert the energy of hydrolysis to movement, it requires various ligands in the A site, such as a tRNA in translocation, an mRNA secondary structure element in ribosome sliding, or ribosome recycling factor in post-termination complex disassembly. The ligand defines the direction and timing of EF-G-facilitated motion. In this review, we summarize recent advances in understanding the mechanism of EF-G action as a remarkable force-generating GTPase.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Bee-Zen Peng
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Riccardo Belardinelli
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Wolfgang Wintermeyer
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
72
|
Kummer E, Ban N. Structural insights into mammalian mitochondrial translation elongation catalyzed by mtEFG1. EMBO J 2020; 39:e104820. [PMID: 32602580 PMCID: PMC7396830 DOI: 10.15252/embj.2020104820] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are eukaryotic organelles of bacterial origin where respiration takes place to produce cellular chemical energy. These reactions are catalyzed by the respiratory chain complexes located in the inner mitochondrial membrane. Notably, key components of the respiratory chain complexes are encoded on the mitochondrial chromosome and their expression relies on a dedicated mitochondrial translation machinery. Defects in the mitochondrial gene expression machinery lead to a variety of diseases in humans mostly affecting tissues with high energy demand such as the nervous system, the heart, or the muscles. The mitochondrial translation system has substantially diverged from its bacterial ancestor, including alterations in the mitoribosomal architecture, multiple changes to the set of translation factors and striking reductions in otherwise conserved tRNA elements. Although a number of structures of mitochondrial ribosomes from different species have been determined, our mechanistic understanding of the mitochondrial translation cycle remains largely unexplored. Here, we present two cryo-EM reconstructions of human mitochondrial elongation factor G1 bound to the mammalian mitochondrial ribosome at two different steps of the tRNA translocation reaction during translation elongation. Our structures explain the mechanism of tRNA and mRNA translocation on the mitoribosome, the regulation of mtEFG1 activity by the ribosomal GTPase-associated center, and the basis of decreased susceptibility of mtEFG1 to the commonly used antibiotic fusidic acid.
Collapse
Affiliation(s)
- Eva Kummer
- Department of BiologyInstitute of Molecular Biology and BiophysicsSwiss Federal Institute of Technology ZurichZurichSwitzerland
| | - Nenad Ban
- Department of BiologyInstitute of Molecular Biology and BiophysicsSwiss Federal Institute of Technology ZurichZurichSwitzerland
| |
Collapse
|
73
|
Koripella RK, Sharma MR, Bhargava K, Datta PP, Kaushal PS, Keshavan P, Spremulli LL, Banavali NK, Agrawal RK. Structures of the human mitochondrial ribosome bound to EF-G1 reveal distinct features of mitochondrial translation elongation. Nat Commun 2020; 11:3830. [PMID: 32737313 PMCID: PMC7395135 DOI: 10.1038/s41467-020-17715-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
The mammalian mitochondrial ribosome (mitoribosome) and its associated translational factors have evolved to accommodate greater participation of proteins in mitochondrial translation. Here we present the 2.68-3.96 Å cryo-EM structures of the human 55S mitoribosome in complex with the human mitochondrial elongation factor G1 (EF-G1mt) in three distinct conformational states, including an intermediate state and a post-translocational state. These structures reveal the role of several mitochondria-specific (mito-specific) mitoribosomal proteins (MRPs) and a mito-specific segment of EF-G1mt in mitochondrial tRNA (tRNAmt) translocation. In particular, the mito-specific C-terminal extension in EF-G1mt is directly involved in translocation of the acceptor arm of the A-site tRNAmt. In addition to the ratchet-like and independent head-swiveling motions exhibited by the small mitoribosomal subunit, we discover significant conformational changes in MRP mL45 at the nascent polypeptide-exit site within the large mitoribosomal subunit that could be critical for tethering of the elongating mitoribosome onto the inner-mitochondrial membrane.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Cryoelectron Microscopy
- HEK293 Cells
- Humans
- Mitochondria/metabolism
- Mitochondria/ultrastructure
- Mitochondrial Membranes/metabolism
- Mitochondrial Membranes/ultrastructure
- Mitochondrial Proteins/chemistry
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational
- Peptide Elongation Factor G/chemistry
- Peptide Elongation Factor G/genetics
- Peptide Elongation Factor G/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- RNA, Mitochondrial/chemistry
- RNA, Mitochondrial/genetics
- RNA, Mitochondrial/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Ravi Kiran Koripella
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA
| | - Manjuli R Sharma
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA
| | - Kalpana Bhargava
- Department of Chemistry, Campus Box 3290, University of North Carolina, Chapel Hill, NC, USA
- High Energy Material Research Lab, Defense Research and Development Organization, Sutarwadi, Pashan, Pune, Maharashtra, 411021, India
| | - Partha P Datta
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Prem S Kaushal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box # 3, Faridabad, Haryana, 121001, India
| | - Pooja Keshavan
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA
| | - Linda L Spremulli
- Department of Chemistry, Campus Box 3290, University of North Carolina, Chapel Hill, NC, USA
| | - Nilesh K Banavali
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY, 12201-0509, USA
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA.
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY, 12201-0509, USA.
| |
Collapse
|
74
|
Loveland AB, Demo G, Korostelev AA. Cryo-EM of elongating ribosome with EF-Tu•GTP elucidates tRNA proofreading. Nature 2020; 584:640-645. [PMID: 32612237 PMCID: PMC7483604 DOI: 10.1038/s41586-020-2447-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/10/2020] [Indexed: 11/13/2022]
Abstract
Ribosomes accurately decode mRNA by proofreading each aminoacyl-tRNA delivered by elongation factor EF-Tu1. Understanding the molecular mechanism of proofreading requires visualizing GTP-catalyzed elongation, which has remained a challenge2–4. Here, time-resolved cryo-EM revealed 33 states following aminoacyl-tRNA delivery by EF-Tu•GTP. Instead of locking cognate tRNA upon initial recognition, the ribosomal decoding center (DC) dynamically monitors codon-anticodon interactions before and after GTP hydrolysis. GTP hydrolysis allows EF-Tu’s GTPase domain to extend away, releasing EF-Tu from tRNA. Then, the 30S subunit locks cognate tRNA in the DC, and rotates, enabling the tRNA to bypass 50S protrusions during accommodation into the peptidyl transferase center. By contrast, the DC fails to lock near-cognate tRNA, allowing dissociation of near-cognate tRNA during both initial selection (before GTP hydrolysis) and proofreading (after GTP hydrolysis). These findings reveal structural similarity between initial selection5,6 and the previously unseen proofreading, which together govern efficient rejection of incorrect tRNA.
Collapse
Affiliation(s)
- Anna B Loveland
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Gabriel Demo
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
75
|
Abstract
Antibiotic resistance is mediated through several distinct mechanisms, most of which are relatively well understood and the clinical importance of which has long been recognized. Until very recently, neither of these statements was readily applicable to the class of resistance mechanism known as target protection, a phenomenon whereby a resistance protein physically associates with an antibiotic target to rescue it from antibiotic-mediated inhibition. In this Review, we summarize recent progress in understanding the nature and importance of target protection. In particular, we describe the molecular basis of the known target protection systems, emphasizing that target protection does not involve a single, uniform mechanism but is instead brought about in several mechanistically distinct ways.
Collapse
|
76
|
Jyoti K, Malik G, Chaudhary M, Sharma M, Goswami M, Katare OP, Singh SB, Madan J. Chitosan and phospholipid assisted topical fusidic acid drug delivery in burn wound: Strategies to conquer pharmaceutical and clinical challenges, opportunities and future panorama. Int J Biol Macromol 2020; 161:325-335. [PMID: 32485249 DOI: 10.1016/j.ijbiomac.2020.05.230] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
Abstract
Burn is the immense public health issue globally. Low and middle income countries face extensive deaths owing to burn injuries. Availability of conventional therapies for burns has always been painful for patients as well as expensive for our health system. Pharmaceutical experts are still searching reliable, cheap, safe and effective treatment options for burn injuries. Fusidic acid is an antibiotic of choice for the management of burns. However, fusidic acid is encountering several pharmaceutical and clinical challenges like poor skin permeability and growing drug resistance against burn wound microbes like Methicillin resistant Staphylococcus aureus (MRSA). Therefore, an effort has been made to present a concise review about molecular pathway followed by fusidic acid in the treatment of burn wound infection in addition to associated pros and cons. Furthermore, we have also summarized chitosan and phospholipid based topical dermal delivery systems customized by our team for the delivery of fusidic acid in burn wound infections on case-to-case basis. However, every coin has two sides. We recommend the integration of in-silico docking techniques with natural biomacromolecules while designing stable, patient friendly and cost effective topical drug delivery systems of fusidic acid for the management of burn wound infection as future opportunities.
Collapse
Affiliation(s)
- Kiran Jyoti
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India; IKG Punjab Technical University, Jalandhar, Punjab, India
| | - Garima Malik
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India
| | | | - Monika Sharma
- University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, Punjab, India
| | - Manish Goswami
- University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, Punjab, India
| | - Om Prakash Katare
- University Institute of Pharmaceutical Sciences, Punjab University, Chandigarh, India
| | - Shashi Bala Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
77
|
Bruni F, Proctor-Kent Y, Lightowlers RN, Chrzanowska-Lightowlers ZM. Messenger RNA delivery to mitoribosomes - hints from a bacterial toxin. FEBS J 2020; 288:437-451. [PMID: 32329962 PMCID: PMC7891357 DOI: 10.1111/febs.15342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/06/2020] [Accepted: 04/21/2020] [Indexed: 11/28/2022]
Abstract
In mammalian mitochondria, messenger RNA is processed and matured from large primary transcripts in structures known as RNA granules. The identity of the factors and process transferring the matured mRNA to the mitoribosome for translation is unclear. Nascent mature transcripts are believed to associate initially with the small mitoribosomal subunit prior to recruitment of the large subunit to form the translationally active monosome. When the small subunit fails to assemble, however, the stability of mt‐mRNA is only marginally affected, and under these conditions, the LRPPRC/SLIRP RNA‐binding complex has been implicated in maintaining mt‐mRNA stability. Here, we exploit the activity of a bacterial ribotoxin, VapC20, to show that in the absence of the large mitoribosomal subunit, mt‐mRNA species are selectively lost. Further, if the small subunit is also depleted, the mt‐mRNA levels are recovered. As a consequence of these data, we suggest a natural pathway for loading processed mt‐mRNA onto the mitoribosome.
Collapse
Affiliation(s)
- Francesco Bruni
- The Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, UK.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Italy
| | - Yasmin Proctor-Kent
- The Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, UK
| | - Robert N Lightowlers
- The Wellcome Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, UK
| | | |
Collapse
|
78
|
Synthesis, antifungal activity and potential mechanism of fusidic acid derivatives possessing amino-terminal groups. Future Med Chem 2020; 12:763-774. [PMID: 32208979 DOI: 10.4155/fmc-2019-0289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: Fusidic acid (FA) is a narrow-spectrum bacteriostatic antibiotic. We inadvertently discovered that a FA derivative modified by an amino-terminal group at the 3-OH position, namely 2, inhibited the growth of Cryptococcus neoformans. Methods & results: Multiscale molecular modeling approaches were used to analyze the binding modes of 2 with eEF2. FA derivatives modified at the 3-OH position were designed based on in silico models; seven derivatives possessing different amino-terminal groups were synthesized and tested in vitro for antifungal activity against C. neoformans. Conclusion: Compound 7 had the strongest minimum inhibitory concentration. Two protonated nitrogen atoms of 7 interacted with a negative electrostatic pocket of eEF2 likely explain the superiority of 7-2.
Collapse
|
79
|
Fenwick MK, Ealick SE. Structural basis of elongation factor 2 switching. Curr Res Struct Biol 2020; 2:25-34. [PMID: 34235467 PMCID: PMC8244253 DOI: 10.1016/j.crstbi.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Archaebacterial and eukaryotic elongation factor 2 (EF-2) and bacterial elongation factor G (EF-G) are five domain GTPases that catalyze the ribosomal translocation of tRNA and mRNA. In the classical mechanism of activation, GTPases are switched on through GDP/GTP exchange, which is accompanied by the ordering of two flexible segments called switch I and II. However, crystal structures of EF-2 and EF-G have thus far not revealed the conformations required by the classical mechanism. Here, we describe crystal structures of Methanoperedens nitroreducens EF-2 (MnEF-2) and MnEF-2-H595N bound to GMPPCP (GppCp) and magnesium displaying previously unreported compact conformations. Domain III forms interfaces with the other four domains and the overall conformations resemble that of SNU114, the eukaryotic spliceosomal GTPase. The gamma phosphate of GMPPCP is detected through interactions with switch I and a P-loop structural element. Switch II is highly ordered whereas switch I shows a variable degree of ordering. The ordered state results in a tight interdomain arrangement of domains I-III and the formation of a portion of a predicted monovalent cation site involving the P-loop and switch I. The side chain of an essential histidine residue in switch II is placed in the inactive conformation observed for the “on” state of elongation factor EF-Tu. The compact conformations of MnEF-2 and MnEF-2-H595N suggest an “on” ribosome-free conformational state. Crystal structures of ribosome-free elongation factor 2 (EF-2) bound to GTP analog and magnesium. Compact conformation and P-loop, switch I, and switch II structures suggest “on” state. Arrangement of domains I-III similar to that of ribosome-bound EF-2/EF-G complexed with GTP analog. Switch II histidine shows inactive conformation observed for “on” state of ribosome-free EF-Tu.
Collapse
Affiliation(s)
- Michael K Fenwick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Steven E Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
80
|
Welty R, Rau M, Pabit S, Dunstan MS, Conn GL, Pollack L, Hall KB. Ribosomal Protein L11 Selectively Stabilizes a Tertiary Structure of the GTPase Center rRNA Domain. J Mol Biol 2019; 432:991-1007. [PMID: 31874150 DOI: 10.1016/j.jmb.2019.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/14/2023]
Abstract
The GTPase Center (GAC) RNA domain in bacterial 23S rRNA is directly bound by ribosomal protein L11, and this complex is essential to ribosome function. Previous cocrystal structures of the 58-nucleotide GAC RNA bound to L11 revealed the intricate tertiary fold of the RNA domain, with one monovalent and several divalent ions located in specific sites within the structure. Here, we report a new crystal structure of the free GAC that is essentially identical to the L11-bound structure, which retains many common sites of divalent ion occupation. This new structure demonstrates that RNA alone folds into its tertiary structure with bound divalent ions. In solution, we find that this tertiary structure is not static, but rather is best described as an ensemble of states. While L11 protein cannot bind to the GAC until the RNA has adopted its tertiary structure, new experimental data show that L11 binds to Mg2+-dependent folded states, which we suggest lie along the folding pathway of the RNA. We propose that L11 stabilizes a specific GAC RNA tertiary state, corresponding to the crystal structure, and that this structure reflects the functionally critical conformation of the rRNA domain in the fully assembled ribosome.
Collapse
Affiliation(s)
- Robb Welty
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO, 63110, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael Rau
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO, 63110, USA
| | - Suzette Pabit
- School of Applied and Engineering Physics, Cornell University, Clark Hall, Ithaca, NY, 14853, USA
| | - Mark S Dunstan
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta GA, 30322, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Clark Hall, Ithaca, NY, 14853, USA
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO, 63110, USA.
| |
Collapse
|
81
|
Structural basis for ribosome recycling by RRF and tRNA. Nat Struct Mol Biol 2019; 27:25-32. [PMID: 31873307 DOI: 10.1038/s41594-019-0350-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 11/08/2022]
Abstract
The bacterial ribosome is recycled into subunits by two conserved proteins, elongation factor G (EF-G) and the ribosome recycling factor (RRF). The molecular basis for ribosome recycling by RRF and EF-G remains unclear. Here, we report the crystal structure of a posttermination Thermus thermophilus 70S ribosome complexed with EF-G, RRF and two transfer RNAs at a resolution of 3.5 Å. The deacylated tRNA in the peptidyl (P) site moves into a previously unsuspected state of binding (peptidyl/recycling, p/R) that is analogous to that seen during initiation. The terminal end of the p/R-tRNA forms nonfavorable contacts with the 50S subunit while RRF wedges next to central inter-subunit bridges, illuminating the active roles of tRNA and RRF in dissociation of ribosomal subunits. The structure uncovers a missing snapshot of tRNA as it transits between the P and exit (E) sites, providing insights into the mechanisms of ribosome recycling and tRNA translocation.
Collapse
|
82
|
Szajwaj M, Wawiórka L, Molestak E, Michalec-Wawiórka B, Mołoń M, Wojda I, Tchórzewski M. The influence of ricin-mediated rRNA depurination on the translational machinery in vivo - New insight into ricin toxicity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118554. [DOI: 10.1016/j.bbamcr.2019.118554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/10/2019] [Accepted: 09/04/2019] [Indexed: 11/29/2022]
|
83
|
Peng BZ, Bock LV, Belardinelli R, Peske F, Grubmüller H, Rodnina MV. Active role of elongation factor G in maintaining the mRNA reading frame during translation. SCIENCE ADVANCES 2019; 5:eaax8030. [PMID: 31903418 PMCID: PMC6924986 DOI: 10.1126/sciadv.aax8030] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/04/2019] [Indexed: 05/02/2023]
Abstract
During translation, the ribosome moves along the mRNA one codon at a time with the help of elongation factor G (EF-G). Spontaneous changes in the translational reading frame are extremely rare, yet how the precise triplet-wise step is maintained is not clear. Here, we show that the ribosome is prone to spontaneous frameshifting on mRNA slippery sequences, whereas EF-G restricts frameshifting. EF-G helps to maintain the mRNA reading frame by guiding the A-site transfer RNA during translocation due to specific interactions with the tip of EF-G domain 4. Furthermore, EF-G accelerates ribosome rearrangements that restore the ribosome's control over the codon-anticodon interaction at the end of the movement. Our data explain how the mRNA reading frame is maintained during translation.
Collapse
Affiliation(s)
- Bee-Zen Peng
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Lars V. Bock
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Riccardo Belardinelli
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Marina V. Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Corresponding author.
| |
Collapse
|
84
|
Ribosome collisions alter frameshifting at translational reprogramming motifs in bacterial mRNAs. Proc Natl Acad Sci U S A 2019; 116:21769-21779. [PMID: 31591196 PMCID: PMC6815119 DOI: 10.1073/pnas.1910613116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ribosomes move along mRNAs in 3-nucleotide steps as they interpret codons that specify which amino acid is required at each position in the protein. There are multiple examples of genes with DNA sequences that do not match the produced proteins because ribosomes move to a new reading frame in the message before finishing translation (so-called frameshifting). This report shows that, when ribosomes stall at mRNA regions prone to cause frameshifting events, trailing ribosomes that collide with them can significantly change the outcome and potentially regulate protein production. This work highlights the principle that biological macromolecules do not function in isolation, and it provides an example of how physical interactions between neighboring complexes can be used to augment their performance. Translational frameshifting involves the repositioning of ribosomes on their messages into decoding frames that differ from those dictated during initiation. Some messenger RNAs (mRNAs) contain motifs that promote deliberate frameshifting to regulate production of the encoded proteins. The mechanisms of frameshifting have been investigated in many systems, and the resulting models generally involve single ribosomes responding to stimulator sequences in their engaged mRNAs. We discovered that the abundance of ribosomes on messages containing the IS3, dnaX, and prfB frameshift motifs significantly influences the levels of frameshifting. We show that this phenomenon results from ribosome collisions that occur during translational stalling, which can alter frameshifting in both the stalled and trailing ribosomes. Bacteria missing ribosomal protein bL9 are known to exhibit a reduction in reading frame maintenance and to have a strong dependence on elongation factor P (EFP). We discovered that ribosomes lacking bL9 become compacted closer together during collisions and that the E-sites of the stalled ribosomes appear to become blocked, which suggests subsequent transpeptidation in transiently stalled ribosomes may become compromised in the absence of bL9. In addition, we determined that bL9 can suppress frameshifting of its host ribosome, likely by regulating E-site dynamics. These findings provide mechanistic insight into the behavior of colliding ribosomes during translation and suggest naturally occurring frameshift elements may be regulated by the abundance of ribosomes relative to an mRNA pool.
Collapse
|
85
|
Yin H, Gavriliuc M, Lin R, Xu S, Wang Y. Modulation and Visualization of EF-G Power Stroke During Ribosomal Translocation. Chembiochem 2019; 20:2927-2935. [PMID: 31194278 PMCID: PMC6888950 DOI: 10.1002/cbic.201900276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 11/30/2022]
Abstract
During ribosome translocation, the elongation factor EF‐G undergoes large conformational change while maintaining its contact with the moving tRNA. We previously measured a power stroke accompanying EF‐G catalysis, which was consistent with structural studies. However, the role of power stroke in translocation fidelity remains unclear. Here, we report quantitative measurements of the power strokes of structurally modified EF‐Gs by using two different techniques and reveal the correlation between power stroke and translocation efficiency and fidelity. We discovered that the reduced power stroke only lowered the percentage of translocation but did not introduce translocation error. The established force ‐structure–function correlation for EF‐G indicates that power stroke drives ribosomal translocation, but the mRNA reading frame is probably maintained by ribosome itself. Furthermore, the microscope detection method reported here can be simply implemented for other biochemical applications.
Collapse
Affiliation(s)
- Heng Yin
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | - Miriam Gavriliuc
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Ran Lin
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Shoujun Xu
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | - Yuhong Wang
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
86
|
Svidritskiy E, Demo G, Loveland AB, Xu C, Korostelev AA. Extensive ribosome and RF2 rearrangements during translation termination. eLife 2019; 8:46850. [PMID: 31513010 PMCID: PMC6742477 DOI: 10.7554/elife.46850] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022] Open
Abstract
Protein synthesis ends when a ribosome reaches an mRNA stop codon. Release factors (RFs) decode the stop codon, hydrolyze peptidyl-tRNA to release the nascent protein, and then dissociate to allow ribosome recycling. To visualize termination by RF2, we resolved a cryo-EM ensemble of E. coli 70S•RF2 structures at up to 3.3 Å in a single sample. Five structures suggest a highly dynamic termination pathway. Upon peptidyl-tRNA hydrolysis, the CCA end of deacyl-tRNA departs from the peptidyl transferase center. The catalytic GGQ loop of RF2 is rearranged into a long β-hairpin that plugs the peptide tunnel, biasing a nascent protein toward the ribosome exit. Ribosomal intersubunit rotation destabilizes the catalytic RF2 domain on the 50S subunit and disassembles the central intersubunit bridge B2a, resulting in RF2 departure. Our structures visualize how local rearrangements and spontaneous inter-subunit rotation poise the newly-made protein and RF2 to dissociate in preparation for ribosome recycling.
Collapse
Affiliation(s)
- Egor Svidritskiy
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Gabriel Demo
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Anna B Loveland
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Chen Xu
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States.,Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
87
|
Abstract
The large ribosomal subunit has a distinct feature, the stalk, extending outside the ribosome. In bacteria it is called the L12 stalk. The base of the stalk is protein uL10 to which two or three dimers of proteins bL12 bind. In archea and eukarya P1 and P2 proteins constitute the stalk. All these extending proteins, that have a high degree of flexibility due to a hinge between their N- and C-terminal parts, are essential for proper functionalization of some of the translation factors. The role of the stalk proteins has remained enigmatic for decades but is gradually approaching an understanding. In this review we summarise the knowhow about the structure and function of the ribosomal stalk till date starting from the early phase of ribosome research.
Collapse
|
88
|
Choi KHA, Yang L, Lee KM, Yu CWH, Banfield DK, Ito K, Uchiumi T, Wong KB. Structural and Mutagenesis Studies Evince the Role of the Extended Protuberant Domain of Ribosomal Protein uL10 in Protein Translation. Biochemistry 2019; 58:3744-3754. [PMID: 31419120 DOI: 10.1021/acs.biochem.9b00528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lateral stalk of ribosomes constitutes the GTPase-associated center and is responsible for recruiting translation factors to the ribosomes. The eukaryotic stalk contains a P-complex, in which one molecule of uL10 (formerly known as P0) protein binds two copies of P1/P2 heterodimers. Unlike bacterial uL10, eukaryotic uL10 has an extended protuberant (uL10ext) domain inserted into the N-terminal RNA-binding domain. Here, we determined the solution structure of the extended protuberant domain of Bombyx mori uL10 by nuclear magnetic resonance spectroscopy. Comparison of the structures of the B. mori uL10ext domain with eRF1-bound and eEF2-bound ribosomes revealed significant structural rearrangement in a "hinge" region surrounding Phe183, a residue conserved in eukaryotic but not in archaeal uL10. 15N relaxation analyses showed that residues in the hinge region have significantly large values of transverse relaxation rates. To test the role of the conserved phenylalanine residue, we created a yeast mutant strain expressing an F181A variant of uL10. An in vitro translation assay showed that the alanine substitution increased the level of polyphenylalanine synthesis by ∼33%. Taken together, our results suggest that the hinge motion of the uL10ext domain facilitates the binding of different translation factors to the GTPase-associated center during protein synthesis.
Collapse
Affiliation(s)
- Kwok-Ho Andrew Choi
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong, China
| | - Lei Yang
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong, China
| | - Ka-Ming Lee
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong, China
| | - Conny Wing-Heng Yu
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong, China
| | - David K Banfield
- Division of Life Science , Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong , China
| | - Kosuke Ito
- Department of Biology, Faculty of Science , Niigata University , Ikarashi 2-8050 , Nishi-ku, Niigata 950-2191 , Japan
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science , Niigata University , Ikarashi 2-8050 , Nishi-ku, Niigata 950-2191 , Japan
| | - Kam-Bo Wong
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong, China
| |
Collapse
|
89
|
Rae CD, Gordiyenko Y, Ramakrishnan V. How a circularized tmRNA moves through the ribosome. Science 2019; 363:740-744. [PMID: 30765567 DOI: 10.1126/science.aav9370] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/22/2019] [Indexed: 01/05/2023]
Abstract
During trans-translation, transfer-messenger RNA (tmRNA) and small protein B (SmpB) together rescue ribosomes stalled on a truncated mRNA and tag the nascent polypeptide for degradation. We used cryo-electron microscopy to determine the structures of three key states of the tmRNA-SmpB-ribosome complex during trans translation at resolutions of 3.7 to 4.4 angstroms. The results show how tmRNA and SmpB act specifically on stalled ribosomes and how the circularized complex moves through the ribosome, enabling translation to switch from the old defective message to the reading frame on tmRNA.
Collapse
Affiliation(s)
- Christopher D Rae
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, England, UK
| | - Yuliya Gordiyenko
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, England, UK
| | - V Ramakrishnan
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, England, UK.
| |
Collapse
|
90
|
Tanzawa T, Kato K, Girodat D, Ose T, Kumakura Y, Wieden HJ, Uchiumi T, Tanaka I, Yao M. The C-terminal helix of ribosomal P stalk recognizes a hydrophobic groove of elongation factor 2 in a novel fashion. Nucleic Acids Res 2019; 46:3232-3244. [PMID: 29471537 PMCID: PMC5887453 DOI: 10.1093/nar/gky115] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/09/2018] [Indexed: 01/17/2023] Open
Abstract
Archaea and eukaryotes have ribosomal P stalks composed of anchor protein P0 and aP1 homodimers (archaea) or P1•P2 heterodimers (eukaryotes). These P stalks recruit translational GTPases to the GTPase-associated center in ribosomes to provide energy during translation. The C-terminus of the P stalk is known to selectively recognize GTPases. Here we investigated the interaction between the P stalk and elongation factor 2 by determining the structures of Pyrococcus horikoshii EF-2 (PhoEF-2) in the Apo-form, GDP-form, GMPPCP-form (GTP-form), and GMPPCP-form bound with 11 C-terminal residues of P1 (P1C11). Helical structured P1C11 binds to a hydrophobic groove between domain G and subdomain G′ of PhoEF-2, where is completely different from that of aEF-1α in terms of both position and sequence, implying that such interaction characteristic may be requested by how GTPases perform their functions on the ribosome. Combining PhoEF-2 P1-binding assays with a structural comparison of current PhoEF-2 structures and molecular dynamics model of a P1C11-bound GDP form, the conformational changes of the P1C11-binding groove in each form suggest that in response to the translation process, the groove has three states: closed, open, and release for recruiting and releasing GTPases.
Collapse
Affiliation(s)
- Takehito Tanzawa
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Koji Kato
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Dylan Girodat
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Toyoyuki Ose
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yuki Kumakura
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Isao Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
91
|
Macé K, Giudice E, Chat S, Gillet R. The structure of an elongation factor G-ribosome complex captured in the absence of inhibitors. Nucleic Acids Res 2019; 46:3211-3217. [PMID: 29408956 PMCID: PMC5887593 DOI: 10.1093/nar/gky081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/27/2018] [Indexed: 12/25/2022] Open
Abstract
During translation’s elongation cycle, elongation factor G (EF-G) promotes messenger and transfer RNA translocation through the ribosome. Until now, the structures reported for EF-G–ribosome complexes have been obtained by trapping EF-G in the ribosome. These results were based on use of non-hydrolyzable guanosine 5′-triphosphate (GTP) analogs, specific inhibitors or a mutated EF-G form. Here, we present the first cryo-electron microscopy structure of EF-G bound to ribosome in the absence of an inhibitor. The structure reveals a natural conformation of EF-G·GDP in the ribosome, with a previously unseen conformation of its third domain. These data show how EF-G must affect translocation, and suggest the molecular mechanism by which fusidic acid antibiotic prevents the release of EF-G after GTP hydrolysis.
Collapse
Affiliation(s)
- Kevin Macé
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000 Rennes, France
| | - Emmanuel Giudice
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000 Rennes, France
| | - Sophie Chat
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000 Rennes, France
| | - Reynald Gillet
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000 Rennes, France
| |
Collapse
|
92
|
Abstract
Protein synthesis consumes a large fraction of available resources in the cell. When bacteria encounter unfavorable conditions and cease to grow, specialized mechanisms are in place to ensure the overall reduction of costly protein synthesis while maintaining a basal level of translation. A number of ribosome-associated factors are involved in this regulation; some confer an inactive, hibernating state of the ribosome in the form of 70S monomers (RaiA; this and the following are based on Escherichia coli nomenclature) or 100S dimers (RMF and HPF homologs), and others inhibit translation at different stages in the translation cycle (RsfS, YqjD and paralogs, SRA, and EttA). Stationary phase cells therefore exhibit a complex array of different ribosome subpopulations that adjusts the translational capacity of the cell to the encountered conditions and ensures efficient reactivation of translation when conditions improve. Here, we review the current state of research regarding stationary phase-specific translation factors, in particular ribosome hibernation factors and other forms of translational regulation in response to stress conditions.
Collapse
Affiliation(s)
- Thomas Prossliner
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | | | | | - Kenn Gerdes
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| |
Collapse
|
93
|
Integration of multiscale molecular modeling approaches with the design and discovery of fusidic acid derivatives. Future Med Chem 2019; 11:1427-1442. [DOI: 10.4155/fmc-2018-0567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Fusidic acid (FA) is an effective antibiotic against Staphylococcus aureus, but it is metabolically unstable. Methods & results: 14 derivatives were designed and synthesized by blocking the metabolic sites of FA (21-COOH and 3-OH) to maintain antibacterial activity and prolong the half-life. Six derivatives showed good antibacterial activity, and the pharmacokinetic experiments confirmed that two derivatives modified in 21-COOH released FA in vivo and showed longer half-lives than FA. Docking analysis and structure–activity relationships indicated that the 3-glycine derivatives with more hydrogen-bonding acceptor sites and positively charged surface areas were more likely to have good antibacterial activity. Conclusion: The results suggest that introducing groups that block the metabolic sites of FA could maintain antibacterial activity and prolong the half-lives.
Collapse
|
94
|
Spangler JR, Caruana JC, Phillips DA, Walper SA. Broad range shuttle vector construction and promoter evaluation for the use of Lactobacillus plantarum WCFS1 as a microbial engineering platform. Synth Biol (Oxf) 2019; 4:ysz012. [PMID: 32995537 DOI: 10.1093/synbio/ysz012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
As the field of synthetic biology grows, efforts to deploy complex genetic circuits in nonlaboratory strains of bacteria will continue to be a focus of research laboratories. Members of the Lactobacillus genus are good targets for synthetic biology research as several species are already used in many foods and as probiotics. Additionally, Lactobacilli offer a relatively safe vehicle for microbiological treatment of various health issues considering these commensals are often minor constituents of the gut microbial community and maintain allochthonous behavior. In order to generate a foundation for engineering, we developed a shuttle vector for subcloning in Escherichia coli and used it to characterize the transcriptional and translational activities of a number of promoters native to Lactobacillus plantarum WCFS1. Additionally, we demonstrated the use of this vector system in multiple Lactobacillus species, and provided examples of non-native promoter recognition by both L. plantarum and E. coli strains that might allow a shortcut assessment of circuit outputs. A variety of promoter activities were observed covering a range of protein expression levels peaking at various times throughout growth, and subsequent directed mutations were demonstrated and suggested to further increase the degree of output tuning. We believe these data show the potential for L. plantarum WCFS1 to be used as a nontraditional synthetic biology chassis and provide evidence that our system can be transitioned to other probiotic Lactobacillus species as well.
Collapse
Affiliation(s)
| | - Julie C Caruana
- American Society for Engineering Education, Washington, DC, United States
| | - Daniel A Phillips
- American Society for Engineering Education, Washington, DC, United States
| | - Scott A Walper
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Overlook Avenue, Washington, DC, USA
| |
Collapse
|
95
|
How Ricin Damages the Ribosome. Toxins (Basel) 2019; 11:toxins11050241. [PMID: 31035546 PMCID: PMC6562825 DOI: 10.3390/toxins11050241] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
Ricin belongs to the group of ribosome-inactivating proteins (RIPs), i.e., toxins that have evolved to provide particular species with an advantage over other competitors in nature. Ricin possesses RNA N-glycosidase activity enabling the toxin to eliminate a single adenine base from the sarcin-ricin RNA loop (SRL), which is a highly conserved structure present on the large ribosomal subunit in all species from the three domains of life. The SRL belongs to the GTPase associated center (GAC), i.e., a ribosomal element involved in conferring unidirectional trajectory for the translational apparatus at the expense of GTP hydrolysis by translational GTPases (trGTPases). The SRL represents a critical element in the GAC, being the main triggering factor of GTP hydrolysis by trGTPases. Enzymatic removal of a single adenine base at the tip of SRL by ricin blocks GTP hydrolysis and, at the same time, impedes functioning of the translational machinery. Here, we discuss the consequences of SRL depurination by ricin for ribosomal performance, with emphasis on the mechanistic model overview of the SRL modus operandi.
Collapse
|
96
|
Matsumoto A. Dynamic analysis of ribosome by a movie made from many three-dimensional electron-microscopy density maps. Biophys Physicobiol 2019; 16:108-113. [PMID: 31131181 PMCID: PMC6530885 DOI: 10.2142/biophysico.16.0_108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/12/2019] [Indexed: 12/01/2022] Open
Abstract
The atomic models of the 70S ribosome including the bound molecules were built from many 3D-EM density maps. The positions and conformations of the bound molecules were determined by fitting them to the regions in the density maps which remained after fitting the 70S ribosome. Then, using these atomic models, a movie for the elongation cycle was made. For determining the sequential order in which the models appeared in the movie, the knowledge about the bound molecules and the ratchet angles were used. The movie revealed several interesting points which were not apparent from each density map, suggesting the usefulness of a movie made from many 3D-EM density maps.
Collapse
|
97
|
Spontaneous ribosomal translocation of mRNA and tRNAs into a chimeric hybrid state. Proc Natl Acad Sci U S A 2019; 116:7813-7818. [PMID: 30936299 DOI: 10.1073/pnas.1901310116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The elongation factor G (EF-G)-catalyzed translocation of mRNA and tRNA through the ribosome is essential for vacating the ribosomal A site for the next incoming aminoacyl-tRNA, while precisely maintaining the translational reading frame. Here, the 3.2-Å crystal structure of a ribosome translocation intermediate complex containing mRNA and two tRNAs, formed in the absence of EF-G or GTP, provides insight into the respective roles of EF-G and the ribosome in translocation. Unexpectedly, the head domain of the 30S subunit is rotated by 21°, creating a ribosomal conformation closely resembling the two-tRNA chimeric hybrid state that was previously observed only in the presence of bound EF-G. The two tRNAs have moved spontaneously from their A/A and P/P binding states into ap/P and pe/E states, in which their anticodon loops are bound between the 30S body domain and its rotated head domain, while their acceptor ends have moved fully into the 50S P and E sites, respectively. Remarkably, the A-site tRNA translocates fully into the classical P-site position. Although the mRNA also undergoes movement, codon-anticodon interaction is disrupted in the absence of EF-G, resulting in slippage of the translational reading frame. We conclude that, although movement of both tRNAs and mRNA (along with rotation of the 30S head domain) can occur in the absence of EF-G and GTP, EF-G is essential for enforcing coupled movement of the tRNAs and their mRNA codons to maintain the reading frame.
Collapse
|
98
|
Li W, Agrawal RK. Joachim Frank's Binding with the Ribosome. Structure 2019; 27:411-419. [PMID: 30595455 PMCID: PMC11062599 DOI: 10.1016/j.str.2018.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 01/03/2023]
Abstract
With recent technological advancements, single-particle cryogenic electron microscopy (cryo-EM) is now the technique of choice to study structure and function of biological macromolecules at near-atomic resolution. Many single-particle EM reconstruction methods necessary for these advances were pioneered by Joachim Frank, and were optimized using the ribosome as a benchmark specimen. In doing so, he made several landmark contributions to the understanding of the structure and function of ribosomes. These include the first 3D visualization of ribosome-bound transfer RNAs, the first experimentally derived structures of the primary complexes formed during the bacterial translation elongation cycle, and the critical ribosomal conformational transitions required for translation. Over the years, his laboratory studied many important functional complexes of the ribosome from both eubacterial and eukaryotic systems, including ribosomes from pathogenic organisms. This article presents a brief account of the contributions made by Joachim Frank to the ribosome field.
Collapse
Affiliation(s)
- Wen Li
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY, USA.
| |
Collapse
|
99
|
Prabhakar A, Puglisi EV, Puglisi JD. Single-Molecule Fluorescence Applied to Translation. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032714. [PMID: 29891562 DOI: 10.1101/cshperspect.a032714] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Single-molecule fluorescence methods have illuminated the dynamics of the translational machinery. Structural and bulk biochemical experiments have provided detailed atomic and global mechanistic views of translation, respectively. Single-molecule studies of translation have bridged these views by temporally connecting the conformational and compositional states defined from structural data within the mechanistic framework of translation produced from biochemical studies. Here, we discuss the context for applying different single-molecule fluorescence experiments, and present recent applications to studying prokaryotic and eukaryotic translation. We underscore the power of observing single translating ribosomes to delineate and sort complex mechanistic pathways during initiation and elongation, and discuss future applications of current and improved technologies.
Collapse
Affiliation(s)
- Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Program in Biophysics, Stanford University, Stanford, California 94305
| | - Elisabetta Viani Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
100
|
|