51
|
Leary A, Sim S, Nazarova E, Shulist K, Genthial R, Yang SK, Bui KH, Francois P, Vogel J. Successive Kinesin-5 Microtubule Crosslinking and Sliding Promote Fast, Irreversible Formation of a Stereotyped Bipolar Spindle. Curr Biol 2019; 29:3825-3837.e3. [DOI: 10.1016/j.cub.2019.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/24/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
|
52
|
von Loeffelholz O, Moores CA. Cryo-EM structure of the Ustilago maydis kinesin-5 motor domain bound to microtubules. J Struct Biol 2019; 207:312-316. [PMID: 31288039 PMCID: PMC6722389 DOI: 10.1016/j.jsb.2019.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 02/08/2023]
Abstract
The Ustilago maydis kinesin-5 N-terminus is disordered in cryo-EM reconstructions. AMPPNP-bound U. maydis kinesin-5 motor adopts a canonical ATP-like conformation. Fungal-specific inserts form non-canonical contacts with the microtubule. U. maydis kinesin-5 loop5 forms a distinct binding pocket for potential inhibitors.
In many eukaryotes, kinesin-5 motors are essential for mitosis, and small molecules that inhibit human kinesin-5 disrupt cell division. To investigate whether fungal kinesin-5s could be targets for novel fungicides, we studied kinesin-5 from the pathogenic fungus Ustilago maydis. We used cryo-electron microscopy to determine the microtubule-bound structure of its motor domain with and without the N-terminal extension. The ATP-like conformations of the motor in the presence or absence of this N-terminus are very similar, suggesting this region is structurally disordered and does not directly influence the motor ATPase. The Ustilago maydis kinesin-5 motor domain adopts a canonical ATP-like conformation, thereby allowing the neck linker to bind along the motor domain towards the microtubule plus end. However, several insertions within this motor domain are structurally distinct. Loop2 forms a non-canonical interaction with α-tubulin, while loop8 may bridge between two adjacent protofilaments. Furthermore, loop5 – which in human kinesin-5 is involved in binding allosteric inhibitors – protrudes above the nucleotide binding site, revealing a distinct binding pocket for potential inhibitors. This work highlights fungal-specific elaborations of the kinesin-5 motor domain and provides the structural basis for future investigations of kinesins as targets for novel fungicides.
Collapse
Affiliation(s)
| | - Carolyn Ann Moores
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK.
| |
Collapse
|
53
|
Prelogović M, Winters L, Milas A, Tolić IM, Pavin N. Pivot-and-bond model explains microtubule bundle formation. Phys Rev E 2019; 100:012403. [PMID: 31499770 DOI: 10.1103/physreve.100.012403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Indexed: 06/10/2023]
Abstract
During mitosis, microtubules form a spindle, which is responsible for proper segregation of the genetic material. A common structural element in a mitotic spindle is a parallel bundle, consisting of two or more microtubules growing from the same origin and held together by cross-linking proteins. An interesting question is what are the physical principles underlying the formation and stability of such microtubule bundles. Here we show, by introducing the pivot-and-bond model, that random angular movement of microtubules around the spindle pole and forces exerted by cross-linking proteins can explain the formation of microtubule bundles as observed in our experiments. The model predicts that stable parallel bundles can form in the presence of either passive crosslinkers or plus-end directed motors, but not minus-end directed motors. In the cases where bundles form, the time needed for their formation depends mainly on the concentration of cross-linking proteins and the angular diffusion of the microtubule. In conclusion, the angular motion drives the alignment of microtubules, which in turn allows the cross-linking proteins to connect the microtubules into a stable bundle.
Collapse
Affiliation(s)
- Marcel Prelogović
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Lora Winters
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Ana Milas
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| |
Collapse
|
54
|
Winters L, Ban I, Prelogović M, Kalinina I, Pavin N, Tolić IM. Pivoting of microtubules driven by minus-end-directed motors leads to spindle assembly. BMC Biol 2019; 17:42. [PMID: 31122217 PMCID: PMC6533735 DOI: 10.1186/s12915-019-0656-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/16/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND At the beginning of mitosis, the cell forms a spindle made of microtubules and associated proteins to segregate chromosomes. An important part of spindle architecture is a set of antiparallel microtubule bundles connecting the spindle poles. A key question is how microtubules extending at arbitrary angles form an antiparallel interpolar bundle. RESULTS Here, we show in fission yeast that microtubules meet at an oblique angle and subsequently rotate into antiparallel alignment. Our live-cell imaging approach provides a direct observation of interpolar bundle formation. By combining experiments with theory, we show that microtubules from each pole search for those from the opposite pole by performing random angular movement. Upon contact, two microtubules slide sideways along each other in a directed manner towards the antiparallel configuration. We introduce the contour length of microtubules as a measure of activity of motors that drive microtubule sliding, which we used together with observation of Cut7/kinesin-5 motors and our theory to reveal the minus-end-directed motility of this motor in vivo. CONCLUSION Random rotational motion helps microtubules from the opposite poles to find each other and subsequent accumulation of motors allows them to generate forces that drive interpolar bundle formation.
Collapse
Affiliation(s)
- Lora Winters
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Ivana Ban
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia
| | - Marcel Prelogović
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia
| | - Iana Kalinina
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia.
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
55
|
Souphron J, Bodakuntla S, Jijumon AS, Lakisic G, Gautreau AM, Janke C, Magiera MM. Purification of tubulin with controlled post-translational modifications by polymerization-depolymerization cycles. Nat Protoc 2019; 14:1634-1660. [PMID: 30996262 DOI: 10.1038/s41596-019-0153-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/22/2019] [Indexed: 12/27/2022]
Abstract
In vitro reconstitutions of microtubule assemblies have provided essential mechanistic insights into the molecular bases of microtubule dynamics and their interactions with associated proteins. The tubulin code has emerged as a regulatory mechanism for microtubule functions, which suggests that tubulin isotypes and post-translational modifications (PTMs) play important roles in controlling microtubule functions. To investigate the tubulin code mechanism, it is essential to analyze different tubulin variants in vitro. Until now, this has been difficult, as most reconstitution experiments have used heavily post-translationally modified tubulin purified from brain tissue. Therefore, we developed a protocol that allows purification of tubulin with controlled PTMs from limited sources through cycles of polymerization and depolymerization. Although alternative protocols using affinity purification of tubulin also yield very pure tubulin, our protocol has the unique advantage of selecting for fully functional tubulin, as non-polymerizable tubulin is excluded in the successive polymerization cycles. It thus provides a novel procedure for obtaining tubulin with controlled PTMs for in vitro reconstitution experiments. We describe specific procedures for tubulin purification from adherent cells, cells grown in suspension cultures and single mouse brains. The protocol can be combined with drug treatment, transfection of cells before tubulin purification or enzymatic treatment during the purification process. The amplification of cells and their growth in spinner bottles takes ~13 d; the tubulin purification takes 6-7 h. The tubulin can be used in total internal reflection fluorescence (TIRF)-microscopy-based experiments or pelleting assays for the investigation of intrinsic properties of microtubules and their interactions with associated proteins.
Collapse
Affiliation(s)
- Judith Souphron
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France
| | - Satish Bodakuntla
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France
| | - A S Jijumon
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France
| | - Goran Lakisic
- BIOC, CNRS, Ecole Polytechnique, IP Paris, Palaiseau, France
- Institut MICALIS, AgroParisTech, Université Paris Saclay, INRA, Jouy-en-Josas, France
| | | | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France.
| | - Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France.
| |
Collapse
|
56
|
Gicking AM, Qiu W, Hancock WO. Mitotic kinesins in action: diffusive searching, directional switching, and ensemble coordination. Mol Biol Cell 2019; 29:1153-1156. [PMID: 29757705 PMCID: PMC5935065 DOI: 10.1091/mbc.e17-10-0612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mitotic spindle assembly requires the collective action of multiple microtubule motors that coordinate their activities in ensembles. However, despite significant advances in our understanding of mitotic kinesins at the single-motor level, multi-motor systems are challenging to reconstitute in vitro and thus less well understood. Recent findings highlighted in this perspective demonstrate how various properties of kinesin-5 and -14 motors—diffusive searching, directional switching, and multivalent interactions—allow them to achieve their physiological roles of cross-linking parallel microtubules and sliding antiparallel ones during cell division. Additionally, we highlight new experimental techniques that will help bridge the gap between in vitro biophysical studies and in vivo cell biology investigations and provide new insights into how specific single-molecule mechanisms generate complex cellular behaviors.
Collapse
Affiliation(s)
- Allison M Gicking
- Department of Physics and, Oregon State University, Corvallis, OR 97331
| | - Weihong Qiu
- Department of Physics and, Oregon State University, Corvallis, OR 97331.,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - William O Hancock
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802.,Intercollege Graduate Degree Program in Bioengineering, Penn State University, University Park, PA 16802
| |
Collapse
|
57
|
Liang YJ, Yang WX. Kinesins in MAPK cascade: How kinesin motors are involved in the MAPK pathway? Gene 2019; 684:1-9. [DOI: 10.1016/j.gene.2018.10.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/27/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
|
58
|
von Loeffelholz O, Peña A, Drummond DR, Cross R, Moores CA. Cryo-EM Structure (4.5-Å) of Yeast Kinesin-5-Microtubule Complex Reveals a Distinct Binding Footprint and Mechanism of Drug Resistance. J Mol Biol 2019; 431:864-872. [PMID: 30659798 PMCID: PMC6378684 DOI: 10.1016/j.jmb.2019.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/30/2018] [Accepted: 01/03/2019] [Indexed: 01/18/2023]
Abstract
Kinesin-5s are microtubule-dependent motors that drive spindle pole separation during mitosis. We used cryo-electron microscopy to determine the 4.5-Å resolution structure of the motor domain of the fission yeast kinesin-5 Cut7 bound to fission yeast microtubules and explored the topology of the motor–microtubule interface and the susceptibility of the complex to drug binding. Despite their non-canonical architecture and mechanochemistry, Schizosaccharomyces pombe microtubules were stabilized by epothilone at the taxane binding pocket. The overall Cut7 footprint on the S. pombe microtubule surface is altered compared to mammalian tubulin microtubules because of their different polymer architectures. However, the core motor–microtubule interaction is tightly conserved, reflected in similar Cut7 ATPase activities on each microtubule type. AMPPNP-bound Cut7 adopts a kinesin-conserved ATP-like conformation including cover neck bundle formation. However, the Cut7 ATPase is not blocked by a mammalian-specific kinesin-5 inhibitor, consistent with the non-conserved sequence and structure of its loop5 insertion. Epothilone binds at the taxane binding site to stabilize S. pombe microtubules. S. pombe Cut7 has a distinct binding footprint on S. pombe microtubules. The core interface driving microtubule activation of motor ATPase is conserved. Loop5 of Cut7 adopts a distinctive conformation rendering Cut7 ATPase insensitive to STLC inhibition.
Collapse
Affiliation(s)
| | - Alejandro Peña
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK
| | | | - Robert Cross
- Division of Biomedical Cell Biology, Warwick Medical School, Coventry, CV4 7AL, UK
| | - Carolyn Ann Moores
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK.
| |
Collapse
|
59
|
Suppressor Analysis Uncovers That MAPs and Microtubule Dynamics Balance with the Cut7/Kinesin-5 Motor for Mitotic Spindle Assembly in Schizosaccharomyces pombe. G3-GENES GENOMES GENETICS 2019; 9:269-280. [PMID: 30463883 PMCID: PMC6325904 DOI: 10.1534/g3.118.200896] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Kinesin-5 motor Cut7 in Schizosaccharomyces pombe plays essential roles in spindle pole separation, leading to the assembly of bipolar spindle. In many organisms, simultaneous inactivation of Kinesin-14s neutralizes Kinesin-5 deficiency. To uncover the molecular network that counteracts Kinesin-5, we have conducted a genetic screening for suppressors that rescue the cut7-22 temperature sensitive mutation, and identified 10 loci. Next generation sequencing analysis reveals that causative mutations are mapped in genes encoding α-, β-tubulins and the microtubule plus-end tracking protein Mal3/EB1, in addition to the components of the Pkl1/Kinesin-14 complex. Moreover, the deletion of various genes required for microtubule nucleation/polymerization also suppresses the cut7 mutant. Intriguingly, Klp2/Kinesin-14 levels on the spindles are significantly increased in cut7 mutants, whereas these increases are negated by suppressors, which may explain the suppression by these mutations/deletions. Consistent with this notion, mild overproduction of Klp2 in these double mutant cells confers temperature sensitivity. Surprisingly, treatment with a microtubule-destabilizing drug not only suppresses cut7 temperature sensitivity but also rescues the lethality resulting from the deletion of cut7, though a single klp2 deletion per se cannot compensate for the loss of Cut7. We propose that microtubule assembly and/or dynamics antagonize Cut7 functions, and that the orchestration between these two factors is crucial for bipolar spindle assembly.
Collapse
|
60
|
Mann BJ, Wadsworth P. Kinesin-5 Regulation and Function in Mitosis. Trends Cell Biol 2019; 29:66-79. [DOI: 10.1016/j.tcb.2018.08.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
|
61
|
Zhou J, Chen WR, Yang LC, Wang J, Sun JY, Zhang WW, He ZY, Wu SG. KIF11 Functions as an Oncogene and Is Associated with Poor Outcomes from Breast Cancer. Cancer Res Treat 2018; 51:1207-1221. [PMID: 30590004 PMCID: PMC6639218 DOI: 10.4143/crt.2018.460] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022] Open
Abstract
Purpose The study aimed to search and identify genes that were differentially expressed in breast cancer, and their roles in cancer growth and progression. Materials and Methods The Gene Expression Omnibus (Oncomine) and The Cancer Genome Atlas databases (https://cancergenome.nih.gov/) were screened for genes that were expressed differentially in breast cancer and were closely related to a poor prognosis. Gene expressions were verified by quantitative real-time polymerase chain reaction, and genes were knocked down by a lentivirus-based system. Cell growth and motility were evaluated and in vivo nude mice were used to confirm the in vitro roles of genes. Markers of epithelial-to-mesenchymal transition and the associations of KIF11 with the classical cancer signaling pathways were detected by Western blot. Results A series of genes expressed differentially in patients with breast cancer. The prognosis associated with high KIF11 expression was poor, and the expression of KIF11 increased significantly in high stage and malignant tumor cells. Inhibiting KIF11 expression in lentivirus-suppressed cells revealed that KIF11 inhibition significantly reduced cell viability and colony formation, inhibited migration and invasion, but promoted apoptosis. The sizes and weights of KIF11-inhibited tumors in nude mice were significantly lower than in the negative controls. Western blot showed that E-cadherin in breast cancer was significantly upregulated in KIF-inhibited cells and tumor tissues, whereas N-cadherin and vimentin were significantly downregulated. BT549 and MDA231 cells with KIF11 knockdown exhibited decreased ERK, AMPK, AKT, and CREB phosphorylation. Conclusion KIF11 acts as a potential oncogene that regulates the development and progression of breast cancer.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Wei-Rong Chen
- Department of Breast Surgery, Zhuhai Maternity and Child Health Hospital, Zhuhai, China
| | - Li-Chao Yang
- Department of Basic Medical Science, Medical College of Xiamen University, Xiamen, China
| | - Jun Wang
- Department of Radiation Oncology, Xiamen Cancer Hospital, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jia-Yuan Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wen-Wen Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Zhen-Yu He
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - San-Gang Wu
- Department of Radiation Oncology, Xiamen Cancer Hospital, the First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
62
|
Mann BJ, Wadsworth P. Distribution of Eg5 and TPX2 in mitosis: Insight from CRISPR tagged cells. Cytoskeleton (Hoboken) 2018; 75:508-521. [DOI: 10.1002/cm.21486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/11/2018] [Accepted: 07/30/2018] [Indexed: 11/07/2022]
Affiliation(s)
- B. J. Mann
- Department of Biology, Program in Molecular and Cellular Biology University of Massachusetts Amherst Massachusetts
| | - P. Wadsworth
- Department of Biology, Program in Molecular and Cellular Biology University of Massachusetts Amherst Massachusetts
| |
Collapse
|
63
|
Roostalu J, Rickman J, Thomas C, Nédélec F, Surrey T. Determinants of Polar versus Nematic Organization in Networks of Dynamic Microtubules and Mitotic Motors. Cell 2018; 175:796-808.e14. [PMID: 30340043 PMCID: PMC6198040 DOI: 10.1016/j.cell.2018.09.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/25/2018] [Accepted: 09/13/2018] [Indexed: 11/03/2022]
Abstract
During cell division, mitotic motors organize microtubules in the bipolar spindle into either polar arrays at the spindle poles or a "nematic" network of aligned microtubules at the spindle center. The reasons for the distinct self-organizing capacities of dynamic microtubules and different motors are not understood. Using in vitro reconstitution experiments and computer simulations, we show that the human mitotic motors kinesin-5 KIF11 and kinesin-14 HSET, despite opposite directionalities, can both organize dynamic microtubules into either polar or nematic networks. We show that in addition to the motor properties the natural asymmetry between microtubule plus- and minus-end growth critically contributes to the organizational potential of the motors. We identify two control parameters that capture system composition and kinetic properties and predict the outcome of microtubule network organization. These results elucidate a fundamental design principle of spindle bipolarity and establish general rules for active filament network organization.
Collapse
Affiliation(s)
| | - Jamie Rickman
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Claire Thomas
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - François Nédélec
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Thomas Surrey
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
64
|
Suzuki A, Gupta A, Long SK, Evans R, Badger BL, Salmon ED, Biggins S, Bloom K. A Kinesin-5, Cin8, Recruits Protein Phosphatase 1 to Kinetochores and Regulates Chromosome Segregation. Curr Biol 2018; 28:2697-2704.e3. [PMID: 30174190 DOI: 10.1016/j.cub.2018.08.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/02/2018] [Accepted: 08/16/2018] [Indexed: 01/03/2023]
Abstract
Kinesin-5 is a highly conserved homo-tetrameric protein complex responsible for crosslinking microtubules and pushing spindle poles apart. The budding yeast Kinesin-5, Cin8, is highly concentrated at kinetochores in mitosis before anaphase, but its functions there are largely unsolved. Here, we show that Cin8 localizes to kinetochores in a cell-cycle-dependent manner and concentrates near the microtubule binding domains of Ndc80 at metaphase. Cin8's kinetochore localization depends on the Ndc80 complex, kinetochore microtubules, and the Dam1 complex. Consistent with its kinetochore localization, a Cin8 deletion induces a loss of tension at the Ndc80 microtubule binding domains and a major delay in mitotic progression. Cin8 associates with Protein Phosphatase 1 (PP1), and mutants that inhibit its PP1 binding also induce a loss of tension at the Ndc80 microtubule binding domains and delay mitotic progression. Taken together, our results suggest that Cin8-PP1 plays a critical role at kinetochores to promote accurate chromosome segregation by controlling Ndc80 attachment to microtubules.
Collapse
Affiliation(s)
- Aussie Suzuki
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Amitabha Gupta
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sarah K Long
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rena Evans
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Benjamin L Badger
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Edward D Salmon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
65
|
Chiang YH, Tsai SL, Tee SR, Nair OL, Loh IY, Liu MH, Wang ZS. Inchworm bipedal nanowalker. NANOSCALE 2018; 10:9199-9211. [PMID: 29726566 DOI: 10.1039/c7nr09724g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanowalkers take either inchworm (IW) or hand-over-hand (HOH) gait. The IW nanowalkers are advantageous over HOH ones in force generation, processivity and high-density integration, though both gaits occur in intracellular nanowalkers from biology. Artificial IW nanowalkers have been realized or proposed, but all rely on different 'head' and 'tail' to gain an adventitious direction. Here we report an inherently unidirectional IW nanowalker that is a biped with two identical legs (i.e., indistinguishable 'head' and 'tail'). This walker is made of DNA, and driven by a light-powered G-quadruplex engine. The directional inchworm motion is confirmed by operating the walker on a DNA duplex track that is designed to show a distinctive fluorescence pattern for IW walkers as compared to HOH ones. Interestingly, this walker exhibits stride-controlled IW-to-HOH gait switch and direction reversal when the track's periodic binding sites have wider and wider separation. The results altogether present an integrated mechanism for implementing nanowalkers of different gaits and directions on molecular tracks, optical potentials or even solid-state surfaces.
Collapse
Affiliation(s)
- Y H Chiang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542.
| | | | | | | | | | | | | |
Collapse
|
66
|
Singh SK, Pandey H, Al-Bassam J, Gheber L. Bidirectional motility of kinesin-5 motor proteins: structural determinants, cumulative functions and physiological roles. Cell Mol Life Sci 2018; 75:1757-1771. [PMID: 29397398 PMCID: PMC11105280 DOI: 10.1007/s00018-018-2754-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/03/2018] [Accepted: 01/17/2018] [Indexed: 01/27/2023]
Abstract
Mitotic kinesin-5 bipolar motor proteins perform essential functions in mitotic spindle dynamics by crosslinking and sliding antiparallel microtubules (MTs) apart within the mitotic spindle. Two recent studies have indicated that single molecules of Cin8, the Saccharomyces cerevisiae kinesin-5 homolog, are minus end-directed when moving on single MTs, yet switch directionality under certain experimental conditions (Gerson-Gurwitz et al., EMBO J 30:4942-4954, 2011; Roostalu et al., Science 332:94-99, 2011). This finding was unexpected since the Cin8 catalytic motor domain is located at the N-terminus of the protein, and such kinesins have been previously thought to be exclusively plus end-directed. In addition, the essential intracellular functions of kinesin-5 motors in separating spindle poles during mitosis can only be accomplished by plus end-directed motility during antiparallel sliding of the spindle MTs. Thus, the mechanism and possible physiological role of the minus end-directed motility of kinesin-5 motors remain unclear. Experimental and theoretical studies from several laboratories in recent years have identified additional kinesin-5 motors that are bidirectional, revealed structural determinants that regulate directionality, examined the possible mechanisms involved and have proposed physiological roles for the minus end-directed motility of kinesin-5 motors. Here, we summarize our current understanding of the remarkable ability of certain kinesin-5 motors to switch directionality when moving along MTs.
Collapse
Affiliation(s)
- Sudhir Kumar Singh
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Himanshu Pandey
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Jawdat Al-Bassam
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Larisa Gheber
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
67
|
Tolić IM. Mitotic spindle: kinetochore fibers hold on tight to interpolar bundles. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2018; 47:191-203. [PMID: 28725997 PMCID: PMC5845649 DOI: 10.1007/s00249-017-1244-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 12/24/2022]
Abstract
When a cell starts to divide, it forms a spindle, a micro-machine made of microtubules, which separates the duplicated chromosomes. The attachment of microtubules to chromosomes is mediated by kinetochores, protein complexes on the chromosome. Spindle microtubules can be divided into three major classes: kinetochore microtubules, which form k-fibers ending at the kinetochore; interpolar microtubules, which extend from the opposite sides of the spindle and interact in the middle; and astral microtubules, which extend towards the cell cortex. Recent work in human cells has shown a close relationship between interpolar and kinetochore microtubules, where interpolar bundles are attached laterally to kinetochore fibers almost all along their length, acting as a bridge between sister k-fibers. Most of the interpolar bundles are attached to a pair of sister kinetochore fibers and vice versa. Thus, the spindle is made of modules consisting of a pair of sister kinetochore fibers and a bundle of interpolar microtubules that connects them. These interpolar bundles, termed bridging fibers, balance the forces acting at kinetochores and support the rounded shape of the spindle during metaphase. This review discusses the structure, function, and formation of kinetochore fibers and interpolar bundles, with an emphasis on how they interact. Their connections have an impact on the force balance in the spindle and on chromosome movement during mitosis because the forces in interpolar bundles are transmitted to kinetochore fibers and hence to kinetochores through these connections.
Collapse
Affiliation(s)
- Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
68
|
Kolenda C, Ortiz J, Pelzl M, Norell S, Schmeiser V, Lechner J. Unattached kinetochores drive their own capturing by sequestering a CLASP. Nat Commun 2018; 9:886. [PMID: 29491436 PMCID: PMC5830412 DOI: 10.1038/s41467-018-03108-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/17/2018] [Indexed: 12/24/2022] Open
Abstract
Kinetochores that are not attached to microtubules prevent chromosome missegregation via the spindle assembly checkpoint. We show that they also promote their own capturing. Similar to what governs the localization of spindle assembly checkpoint proteins, the phosphorylation of Spc105 by Mps1 allows unattached kinetochores to sequester Stu1 in cooperation with Slk19. The withdrawal of Stu1, a CLASP essential for spindle integrity, from microtubules and attached kinetochores disrupts the organization of the spindle and thus allows the enhanced formation of dynamic random microtubules that span the nucleus and are ideal to capture unattached kinetochores. The enhanced formation of nuclear random microtubules does not occur if Stu1 sequestering to unattached kinetochores fails and the spindle remains uncompromised. Consequently, these cells exhibit a severely decreased capturing efficiency. After the capturing event, Stu1 is relocated to the capturing microtubule and prevents precocious microtubule depolymerization as long as kinetochores are laterally or incompletely end-on attached. Kinetochores (KT) that are not attached to microtubules prevent chromosome missegregation via the spindle assembly checkpoint. Here the authors show that Mps1 localizes Stu1 at unattached KTs together with Slk19, causing a reorganization of the nuclear MT network that favors the capturing of unattached KT.
Collapse
Affiliation(s)
- Caroline Kolenda
- Biochemie-Zentrum der Universität Heidelberg, INF 328, 69120, Heidelberg, Germany
| | - Jennifer Ortiz
- Biochemie-Zentrum der Universität Heidelberg, INF 328, 69120, Heidelberg, Germany
| | - Marina Pelzl
- Biochemie-Zentrum der Universität Heidelberg, INF 328, 69120, Heidelberg, Germany
| | - Sarina Norell
- Biochemie-Zentrum der Universität Heidelberg, INF 328, 69120, Heidelberg, Germany
| | - Verena Schmeiser
- Biochemie-Zentrum der Universität Heidelberg, INF 328, 69120, Heidelberg, Germany
| | - Johannes Lechner
- Biochemie-Zentrum der Universität Heidelberg, INF 328, 69120, Heidelberg, Germany.
| |
Collapse
|
69
|
Tubman E, He Y, Hays TS, Odde DJ. Kinesin-5 mediated chromosome congression in insect spindles. Cell Mol Bioeng 2018; 11:25-36. [PMID: 29552234 PMCID: PMC5849273 DOI: 10.1007/s12195-017-0500-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/31/2017] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The microtubule motor protein kinesin-5 is well known to establish the bipolar spindle by outward sliding of antiparallel interpolar microtubules. In yeast, kinesin-5 also facilitates chromosome alignment "congression" at the spindle equator by preferentially depolymerizing long kinetochore microtubules (kMTs). The motor protein kinesin-8 has also been linked to chromosome congression. Therefore, we sought to determine whether kinesin-5 or kinesin-8 facilitates chromosome congression in insect spindles. METHODS RNAi of the kinesin-5 Klp61F and kinesin-8 Klp67A were performed separately in Drosophila melanogaster S2 cells to test for inhibited chromosome congression. Klp61F RNAi, Klp67A RNAi, and control metaphase mitotic spindles expressing fluorescent tubulin and fluorescent Cid were imaged, and their fluorescence distributions were compared. RESULTS RNAi of Klp61F with a weak Klp61F knockdown resulted in longer kMTs and less congressed kinetochores compared to control over a range of conditions, consistent with kinesin-5 length-dependent depolymerase activity. RNAi of the kinesin-8 Klp67A revealed that kMTs relative to the spindle lengths were not longer compared to control, but rather that the spindles were longer, indicating that Klp67A acts preferentially as a length-dependent depolymerase on interpolar microtubules without significantly affecting kMT length and chromosome congression. CONCLUSIONS This study demonstrates that in addition to establishing the bipolar spindle, kinesin-5 regulates kMT length to facilitate chromosome congression in insect spindles. It expands on previous yeast studies, and it expands the role of kinesin-5 to include kMT assembly regulation in eukaryotic mitosis.
Collapse
Affiliation(s)
- Emily Tubman
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Yungui He
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Thomas S. Hays
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
70
|
Yukawa M, Yamada Y, Yamauchi T, Toda T. Two spatially distinct kinesin-14 proteins, Pkl1 and Klp2, generate collaborative inward forces against kinesin-5 Cut7 in S. pombe. J Cell Sci 2018; 131:jcs.210740. [PMID: 29167352 DOI: 10.1242/jcs.210740] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/16/2017] [Indexed: 01/15/2023] Open
Abstract
Kinesin motors play central roles in bipolar spindle assembly. In many eukaryotes, spindle pole separation is driven by kinesin-5, which generates outward force. This outward force is balanced by antagonistic inward force elicited by kinesin-14 and/or dynein. In fission yeast, two kinesin-14 proteins, Pkl1 and Klp2, play an opposing role against the kinesin-5 motor protein Cut7. However, how the two kinesin-14 proteins coordinate individual activities remains elusive. Here, we show that although deletion of either pkl1 or klp2 rescues temperature-sensitive cut7 mutants, deletion of only pkl1 can bypass the lethality caused by cut7 deletion. Pkl1 is tethered to the spindle pole body, whereas Klp2 is localized along the spindle microtubule. Forced targeting of Klp2 to the spindle pole body, however, compensates for Pkl1 functions, indicating that cellular localizations, rather than individual motor specificities, differentiate between the two kinesin-14 proteins. Interestingly, human kinesin-14 (KIFC1 or HSET) can replace either Pkl1 or Klp2. Moreover, overproduction of HSET induces monopolar spindles, reminiscent of the phenotype of Cut7 inactivation. Taken together, this study has uncovered the biological mechanism whereby two different Kinesin-14 motor proteins exert their antagonistic roles against kinesin-5 in a spatially distinct manner.
Collapse
Affiliation(s)
- Masashi Yukawa
- Hiroshima Research Center for Healthy Aging, and Laboratory of Molecular and Chemical Cell Biology, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Yusuke Yamada
- Hiroshima Research Center for Healthy Aging, and Laboratory of Molecular and Chemical Cell Biology, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Tomoaki Yamauchi
- Hiroshima Research Center for Healthy Aging, and Laboratory of Molecular and Chemical Cell Biology, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Takashi Toda
- Hiroshima Research Center for Healthy Aging, and Laboratory of Molecular and Chemical Cell Biology, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| |
Collapse
|
71
|
Jha R, Roostalu J, Cade NI, Trokter M, Surrey T. Combinatorial regulation of the balance between dynein microtubule end accumulation and initiation of directed motility. EMBO J 2017; 36:3387-3404. [PMID: 29038173 PMCID: PMC5686545 DOI: 10.15252/embj.201797077] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/04/2017] [Accepted: 09/13/2017] [Indexed: 11/14/2022] Open
Abstract
Cytoplasmic dynein is involved in a multitude of essential cellular functions. Dynein's activity is controlled by the combinatorial action of several regulatory proteins. The molecular mechanism of this regulation is still poorly understood. Using purified proteins, we reconstitute the regulation of the human dynein complex by three prominent regulators on dynamic microtubules in the presence of end binding proteins (EBs). We find that dynein can be in biochemically and functionally distinct pools: either tracking dynamic microtubule plus-ends in an EB-dependent manner or moving processively towards minus ends in an adaptor protein-dependent manner. Whereas both dynein pools share the dynactin complex, they have opposite preferences for binding other regulators, either the adaptor protein Bicaudal-D2 (BicD2) or the multifunctional regulator Lissencephaly-1 (Lis1). BicD2 and Lis1 together control the overall efficiency of motility initiation. Remarkably, dynactin can bias motility initiation locally from microtubule plus ends by autonomous plus-end recognition. This bias is further enhanced by EBs and Lis1. Our study provides insight into the mechanism of dynein regulation by dissecting the distinct functional contributions of the individual members of a dynein regulatory network.
Collapse
Affiliation(s)
- Rupam Jha
- The Francis Crick Institute, London, UK
| | | | | | | | | |
Collapse
|
72
|
Fallesen T, Roostalu J, Duellberg C, Pruessner G, Surrey T. Ensembles of Bidirectional Kinesin Cin8 Produce Additive Forces in Both Directions of Movement. Biophys J 2017; 113:2055-2067. [PMID: 29117528 PMCID: PMC5685778 DOI: 10.1016/j.bpj.2017.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
Most kinesin motors move in only one direction along microtubules. Members of the kinesin-5 subfamily were initially described as unidirectional plus-end-directed motors and shown to produce piconewton forces. However, some fungal kinesin-5 motors are bidirectional. The force production of a bidirectional kinesin-5 has not yet been measured. Therefore, it remains unknown whether the mechanism of the unconventional minus-end-directed motility differs fundamentally from that of plus-end-directed stepping. Using force spectroscopy, we have measured here the forces that ensembles of purified budding yeast kinesin-5 Cin8 produce in microtubule gliding assays in both plus- and minus-end direction. Correlation analysis of pause forces demonstrated that individual Cin8 molecules produce additive forces in both directions of movement. In ensembles, Cin8 motors were able to produce single-motor forces up to a magnitude of ∼1.5 pN. Hence, these properties appear to be conserved within the kinesin-5 subfamily. Force production was largely independent of the directionality of movement, indicating similarities between the motility mechanisms for both directions. These results provide constraints for the development of models for the bidirectional motility mechanism of fission yeast kinesin-5 and provide insight into the function of this mitotic motor.
Collapse
Affiliation(s)
- Todd Fallesen
- The Francis Crick Institute, Imperial College London, London, United Kingdom
| | - Johanna Roostalu
- The Francis Crick Institute, Imperial College London, London, United Kingdom
| | - Christian Duellberg
- The Francis Crick Institute, Imperial College London, London, United Kingdom
| | - Gunnar Pruessner
- Department of Mathematics, Imperial College London, London, United Kingdom.
| | - Thomas Surrey
- The Francis Crick Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
73
|
Goldstein A, Siegler N, Goldman D, Judah H, Valk E, Kõivomägi M, Loog M, Gheber L. Three Cdk1 sites in the kinesin-5 Cin8 catalytic domain coordinate motor localization and activity during anaphase. Cell Mol Life Sci 2017; 74:3395-3412. [PMID: 28455557 PMCID: PMC11107736 DOI: 10.1007/s00018-017-2523-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022]
Abstract
The bipolar kinesin-5 motors perform essential functions in mitotic spindle dynamics. We previously demonstrated that phosphorylation of at least one of the Cdk1 sites in the catalytic domain of the Saccharomyces cerevisiae kinesin-5 Cin8 (S277, T285, S493) regulates its localization to the anaphase spindle. The contribution of these three sites to phospho-regulation of Cin8, as well as the timing of such contributions, remains unknown. Here, we examined the function and spindle localization of phospho-deficient (serine/threonine to alanine) and phospho-mimic (serine/threonine to aspartic acid) Cin8 mutants. In vitro, the three Cdk1 sites undergo phosphorylation by Clb2-Cdk1. In cells, phosphorylation of Cin8 affects two aspects of its localization to the anaphase spindle, translocation from the spindle-pole bodies (SPBs) region to spindle microtubules (MTs) and the midzone, and detachment from the mitotic spindle. We found that phosphorylation of S277 is essential for the translocation of Cin8 from SPBs to spindle MTs and the subsequent detachment from the spindle. Phosphorylation of T285 mainly affects the detachment of Cin8 from spindle MTs during anaphase, while phosphorylation at S493 affects both the translocation of Cin8 from SPBs to the spindle and detachment from the spindle. Only S493 phosphorylation affected the anaphase spindle elongation rate. We conclude that each phosphorylation site plays a unique role in regulating Cin8 functions and postulate a model in which the timing and extent of phosphorylation of the three sites orchestrates the anaphase function of Cin8.
Collapse
Affiliation(s)
- Alina Goldstein
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Nurit Siegler
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Darya Goldman
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Haim Judah
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Ervin Valk
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mardo Kõivomägi
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mart Loog
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Larisa Gheber
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
74
|
Saito N, Sughiyama Y, Kaneko K. Motif analysis for small-number effects in chemical reaction dynamics. J Chem Phys 2017; 145:094111. [PMID: 27608993 DOI: 10.1063/1.4961675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The number of molecules involved in a cell or subcellular structure is sometimes rather small. In this situation, ordinary macroscopic-level fluctuations can be overwhelmed by non-negligible large fluctuations, which results in drastic changes in chemical-reaction dynamics and statistics compared to those observed under a macroscopic system (i.e., with a large number of molecules). In order to understand how salient changes emerge from fluctuations in molecular number, we here quantitatively define small-number effect by focusing on a "mesoscopic" level, in which the concentration distribution is distinguishable both from micro- and macroscopic ones and propose a criterion for determining whether or not such an effect can emerge in a given chemical reaction network. Using the proposed criterion, we systematically derive a list of motifs of chemical reaction networks that can show small-number effects, which includes motifs showing emergence of the power law and the bimodal distribution observable in a mesoscopic regime with respect to molecule number. The list of motifs provided herein is helpful in the search for candidates of biochemical reactions with a small-number effect for possible biological functions, as well as for designing a reaction system whose behavior can change drastically depending on molecule number, rather than concentration.
Collapse
Affiliation(s)
- Nen Saito
- Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yuki Sughiyama
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kunihiko Kaneko
- Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
75
|
Bell KM, Cha HK, Sindelar CV, Cochran JC. The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner. J Biol Chem 2017; 292:14680-14694. [PMID: 28701465 PMCID: PMC5582858 DOI: 10.1074/jbc.m117.797662] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/28/2017] [Indexed: 11/06/2022] Open
Abstract
Kinesin motors play central roles in establishing and maintaining the mitotic spindle during cell division. Unlike most other kinesins, Cin8, a kinesin-5 motor in Saccharomyces cerevisiae, can move bidirectionally along microtubules, switching directionality according to biochemical conditions, a behavior that remains largely unexplained. To this end, we used biochemical rate and equilibrium constant measurements as well as cryo-electron microscopy methodologies to investigate the microtubule interactions of the Cin8 motor domain. These experiments unexpectedly revealed that, whereas Cin8 ATPase kinetics fell within measured ranges for kinesins (especially kinesin-5 proteins), approximately four motors can bind each αβ-tubulin dimer within the microtubule lattice. This result contrasted with those observations on other known kinesins, which can bind only a single "canonical" site per tubulin dimer. Competition assays with human kinesin-5 (Eg5) only partially abrogated this behavior, indicating that Cin8 binds microtubules not only at the canonical site, but also one or more separate ("noncanonical") sites. Moreover, we found that deleting the large, class-specific insert in the microtubule-binding loop 8 reverts Cin8 to one motor per αβ-tubulin in the microtubule. The novel microtubule-binding mode of Cin8 identified here provides a potential explanation for Cin8 clustering along microtubules and potentially may contribute to the mechanism for direction reversal.
Collapse
Affiliation(s)
- Kayla M Bell
- From the Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Hyo Keun Cha
- the Department of Cell Biology, Yale School of Medicine, and
| | - Charles V Sindelar
- the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Jared C Cochran
- From the Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405,
| |
Collapse
|
76
|
Coordinated force generation of skeletal myosins in myofilaments through motor coupling. Nat Commun 2017; 8:16036. [PMID: 28681850 PMCID: PMC5504292 DOI: 10.1038/ncomms16036] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 05/18/2017] [Indexed: 12/31/2022] Open
Abstract
In contrast to processive molecular motors, skeletal myosins form a large motor ensemble for contraction of muscles against high loads. Despite numerous information on the molecular properties of skeletal myosin, its ensemble effects on collective force generation have not been rigorously clarified. Here we show 4 nm stepwise actin displacements generated by synthetic myofilaments beyond a load of 30 pN, implying that steps cannot be driven exclusively by single myosins, but potentially by coordinated force generations among multiple myosins. The simulation model shows that stepwise actin displacements are primarily caused by coordinated force generation among myosin molecules. Moreover, the probability of coordinated force generation can be enhanced against high loads by utilizing three factors: strain-dependent kinetics between force-generating states; multiple power stroke steps; and high ATP concentrations. Compared with other molecular motors, our findings reveal how the properties of skeletal myosin are tuned to perform cooperative force generation for efficient muscle contraction. Skeletal muscle myosin forms large ensembles to generate force against high loads. Using optical tweezers and simulation Kaya et al. provide experimental evidence for cooperative force generation, and describe how the molecular properties of skeletal myosins are tuned for coordinated power strokes.
Collapse
|
77
|
Embedding dual function into molecular motors through collective motion. Sci Rep 2017; 7:44288. [PMID: 28281683 PMCID: PMC5345074 DOI: 10.1038/srep44288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/06/2017] [Indexed: 12/26/2022] Open
Abstract
Protein motors, such as kinesins and dyneins, bind to a microtubule and travel along it in a specific direction. Previously, it was thought that the directionality for a given motor was constant in the absence of an external force. However, the directionality of the kinesin-5 Cin8 was recently found to change as the number of motors that bind to the same microtubule is increased. Here, we introduce a simple mechanical model of a microtubule-sliding assay in which multiple motors interact with the filament. We show that, due to the collective phenomenon, the directionality of the motor changes (e.g., from minus- to plus- end directionality), depending on the number of motors. This is induced by a large diffusive component in the directional walk and by the subsequent frustrated motor configuration, in which multiple motors pull the filament in opposite directions, similar to a game of tug-of-war. A possible role of the dual-directional motors for the mitotic spindle formation is also discussed. Our framework provides a general mechanism to embed two conflicting tasks into a single molecular machine, which works context-dependently.
Collapse
|
78
|
Prajapati HK, Rizvi SMA, Rathore I, Ghosh SK. Microtubule-associated proteins, Bik1 and Bim1, are required for faithful partitioning of the endogenous 2 micron plasmids in budding yeast. Mol Microbiol 2017; 103:1046-1064. [PMID: 28004422 DOI: 10.1111/mmi.13608] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2016] [Indexed: 12/01/2022]
Abstract
The 2 μ plasmid of budding yeast shows high mitotic stability similar to that of chromosomes by using its self-encoded systems, namely partitioning and amplification. The partitioning system consists of the plasmid-borne proteins Rep1, Rep2 and a cis-acting locus STB that, along with several host factors, ensures efficient segregation of the plasmid. The plasmids show high stability as they presumably co-segregate with chromosomes through utilization of various host factors. To acquire these host factors, the plasmids are thought to localize to a certain sub-nuclear locale probably assisted by the motor protein, Kip1 and microtubules. Here, we show that the microtubule-associated proteins Bik1 and Bim1 are also important host factors in this process, perhaps by acting as an adapter between the plasmid and the motor and thus helping to anchor the plasmid to microtubules. Abrogation of Kip1 recruitment at STB in the absence of Bik1 argues for its function at STB upstream of Kip1. Consistent with this, both Bik1 and Bim1 associate with plasmids without any assistance from the Rep proteins. As observed earlier with other host factors, lack of Bik1 or Bim1 also causes a cohesion defect between sister plasmids leading to plasmid missegregation.
Collapse
Affiliation(s)
- Hemant Kumar Prajapati
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Syed Meraj Azhar Rizvi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Ishan Rathore
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
79
|
Shapira O, Goldstein A, Al-Bassam J, Gheber L. A potential physiological role for bi-directional motility and motor clustering of mitotic kinesin-5 Cin8 in yeast mitosis. J Cell Sci 2017; 130:725-734. [PMID: 28069834 DOI: 10.1242/jcs.195040] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/29/2016] [Indexed: 01/25/2023] Open
Abstract
The bipolar kinesin-5 Cin8 switches from minus- to plus-end-directed motility under various conditions in vitro The mechanism and physiological significance of this switch remain unknown. Here, we show that under high ionic strength conditions, Cin8 moves towards and concentrates in clusters at the minus ends of stable and dynamic microtubules. Clustering of Cin8 induces a switch from fast minus- to slow plus-end-directed motility and forms sites that capture antiparallel microtubules (MTs) and induces their sliding apart through plus-end-directed motility. In early mitotic cells with monopolar spindles, Cin8 localizes near the spindle poles at microtubule minus ends. This localization is dependent on the minus-end-directed motility of Cin8. In cells with assembled bipolar spindles, Cin8 is distributed along the spindle microtubules. We propose that minus-end-directed motility is required for Cin8 clustering near the spindle poles before spindle assembly. Cin8 clusters promote the capture of microtubules emanating from the neighboring spindle poles and mediate their antiparallel sliding. This activity is essential to maximize microtubule crosslinking before bipolar spindle assembly and to induce the initial separation of the spindle poles.
Collapse
Affiliation(s)
- Ofer Shapira
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Alina Goldstein
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Jawdat Al-Bassam
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | - Larisa Gheber
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
80
|
The mitotic kinesin-14 KlpA contains a context-dependent directionality switch. Nat Commun 2017; 8:13999. [PMID: 28051135 PMCID: PMC5216134 DOI: 10.1038/ncomms13999] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/17/2016] [Indexed: 12/26/2022] Open
Abstract
Kinesin-14s are commonly known as nonprocessive minus end-directed microtubule motors that function mainly for mitotic spindle assembly. Here we show using total internal reflection fluorescence microscopy that KlpA—a kinesin-14 from Aspergillus nidulans—is a context-dependent bidirectional motor. KlpA exhibits plus end-directed processive motility on single microtubules, but reverts to canonical minus end-directed motility when anchored on the surface in microtubule-gliding experiments or interacting with a pair of microtubules in microtubule-sliding experiments. Plus end-directed processive motility of KlpA on single microtubules depends on its N-terminal nonmotor microtubule-binding tail, as KlpA without the tail is nonprocessive and minus end-directed. We suggest that the tail is a de facto directionality switch for KlpA motility: when the tail binds to the same microtubule as the motor domain, KlpA is a plus end-directed processive motor; in contrast, when the tail detaches from the microtubule to which the motor domain binds, KlpA becomes minus end-directed. Kinesin-14s are commonly considered to be minus end-directed microtubule motor proteins. Here the authors show that KlpA, a fungal kinesin-14 orthologue, relies on its N-terminal nonmotor microtubule-binding tail to achieve context-dependent bidirectional motility.
Collapse
|
81
|
Yoke H, Shingyoji C. Effects of external strain on the regulation of microtubule sliding induced by outer arm dynein of sea urchin sperm flagella. J Exp Biol 2017; 220:1122-1134. [DOI: 10.1242/jeb.147942] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022]
Abstract
Oscillatory bending movement of eukaryotic flagella is powered by orchestrated activity of dynein motor proteins that hydrolyze ATP and produce microtubule sliding. Although the ATP concentration within a flagellum is kept uniform at a few mmol l−1 level, sliding activities of dyneins are dynamically coordinated along the flagellum in accordance with the phase of bending waves. Thus, at the organellar level the dynein not only generates force for bending but also modulates its motile activity by responding to bending of the flagellum. Single molecule analyses have suggested that dynein at the molecular level, even if isolated from the axoneme, could alter the modes of motility in response to mechanical strain. However, it still remains unknown whether the coordinated activities of multiple dyneins can be modulated directly by mechanical signals. Here, we studied the effects of externally applied strain on the sliding movement of microtubules interacted with ensemble of dynein molecules adsorbed on a glass surface. We found that by bending the microtubules with a glass microneedle, three modes of motility that have not been previously characterized without bending can be induced: those were, stoppage, backward sliding and dissociation. Modification in sliding velocities was also induced by imposed bending. These results suggest that the activities of dyneins interacted with a microtubule can be modified and coordinated through external strain in a quite flexible manner and that such regulatory mechanism may be the basis of flagellar oscillation.
Collapse
Affiliation(s)
- Hiroshi Yoke
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Chikako Shingyoji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
82
|
Blackwell R, Edelmaier C, Sweezy-Schindler O, Lamson A, Gergely ZR, O’Toole E, Crapo A, Hough LE, McIntosh JR, Glaser MA, Betterton MD. Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast. SCIENCE ADVANCES 2017; 3:e1601603. [PMID: 28116355 PMCID: PMC5249259 DOI: 10.1126/sciadv.1601603] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/05/2016] [Indexed: 05/10/2023]
Abstract
Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and cross-linkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. We describe a physical model that exhibits de novo bipolar spindle formation. We began with physical properties of fission-yeast spindle pole body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive cross-linkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self-assembly. By varying the features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive cross-linkers alone. We also identify characteristic failed states of spindle assembly-the persistent monopole, X spindle, separated asters, and short spindle, which are avoided by the creation and maintenance of antiparallel microtubule overlaps. Our model can guide the identification of new, multifaceted strategies to induce mitotic catastrophes; these would constitute novel strategies for cancer chemotherapy.
Collapse
Affiliation(s)
- Robert Blackwell
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- PULS Group, Department of Physics and Cluster of Excellence: Engineering of Advanced Materials, Friedrich-Alexander University Erlangen-Nurnberg, Nagelsbachstr. 49b, Erlangen, Germany
| | | | | | - Adam Lamson
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Zachary R. Gergely
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Eileen O’Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Ammon Crapo
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Loren E. Hough
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - J. Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Matthew A. Glaser
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Meredith D. Betterton
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
83
|
Scholey JM, Civelekoglu-Scholey G, Brust-Mascher I. Anaphase B. BIOLOGY 2016; 5:biology5040051. [PMID: 27941648 PMCID: PMC5192431 DOI: 10.3390/biology5040051] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/16/2022]
Abstract
Anaphase B spindle elongation is characterized by the sliding apart of overlapping antiparallel interpolar (ip) microtubules (MTs) as the two opposite spindle poles separate, pulling along disjoined sister chromatids, thereby contributing to chromosome segregation and the propagation of all cellular life. The major biochemical “modules” that cooperate to mediate pole–pole separation include: (i) midzone pushing or (ii) braking by MT crosslinkers, such as kinesin-5 motors, which facilitate or restrict the outward sliding of antiparallel interpolar MTs (ipMTs); (iii) cortical pulling by disassembling astral MTs (aMTs) and/or dynein motors that pull aMTs outwards; (iv) ipMT plus end dynamics, notably net polymerization; and (v) ipMT minus end depolymerization manifest as poleward flux. The differential combination of these modules in different cell types produces diversity in the anaphase B mechanism. Combinations of antagonist modules can create a force balance that maintains the dynamic pre-anaphase B spindle at constant length. Tipping such a force balance at anaphase B onset can initiate and control the rate of spindle elongation. The activities of the basic motor filament components of the anaphase B machinery are controlled by a network of non-motor MT-associated proteins (MAPs), for example the key MT cross-linker, Ase1p/PRC1, and various cell-cycle kinases, phosphatases, and proteases. This review focuses on the molecular mechanisms of anaphase B spindle elongation in eukaryotic cells and briefly mentions bacterial DNA segregation systems that operate by spindle elongation.
Collapse
Affiliation(s)
- Jonathan M Scholey
- Department of Molecular and Cell Biology, University of California, Davis, CA 95616, USA.
| | | | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
84
|
Schizosaccharomyces pombe kinesin-5 switches direction using a steric blocking mechanism. Proc Natl Acad Sci U S A 2016; 113:E7483-E7489. [PMID: 27834216 DOI: 10.1073/pnas.1611581113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cut7, the sole kinesin-5 in Schizosaccharomyces pombe, is essential for mitosis. Like other yeast kinesin-5 motors, Cut7 can reverse its stepping direction, by mechanisms that are currently unclear. Here we show that for full-length Cut7, the key determinant of stepping direction is the degree of motor crowding on the microtubule lattice, with greater crowding converting the motor from minus end-directed to plus end-directed stepping. To explain how high Cut7 occupancy causes this reversal, we postulate a simple proximity sensing mechanism that operates via steric blocking. We propose that the minus end-directed stepping action of Cut7 is selectively inhibited by collisions with neighbors under crowded conditions, whereas its plus end-directed action, being less space-hungry, is not. In support of this idea, we show that the direction of Cut7-driven microtubule sliding can be reversed by crowding it with non-Cut7 proteins. Thus, crowding by either dynein microtubule binding domain or Klp2, a kinesin-14, converts Cut7 from net minus end-directed to net plus end-directed stepping. Biochemical assays confirm that the Cut7 N terminus increases Cut7 occupancy by binding directly to microtubules. Direct observation by cryoEM reveals that this occupancy-enhancing N-terminal domain is partially ordered. Overall, our data point to a steric blocking mechanism for directional reversal through which collisions of Cut7 motor domains with their neighbors inhibit their minus end-directed stepping action, but not their plus end-directed stepping action. Our model can potentially reconcile a number of previous, apparently conflicting, observations and proposals for the reversal mechanism of yeast kinesins-5.
Collapse
|
85
|
Chen GY, Mickolajczyk KJ, Hancock WO. The Kinesin-5 Chemomechanical Cycle Is Dominated by a Two-heads-bound State. J Biol Chem 2016; 291:20283-20294. [PMID: 27402829 DOI: 10.1074/jbc.m116.730697] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 12/29/2022] Open
Abstract
Single-molecule microscopy and stopped-flow kinetics assays were carried out to understand the microtubule polymerase activity of kinesin-5 (Eg5). Four lines of evidence argue that the motor primarily resides in a two-heads-bound (2HB) state. First, upon microtubule binding, dimeric Eg5 releases both bound ADPs. Second, microtubule dissociation in saturating ADP is 20-fold slower for the dimer than for the monomer. Third, ATP-triggered mant-ADP release is 5-fold faster than the stepping rate. Fourth, ATP binding is relatively fast when the motor is locked in a 2HB state. Shortening the neck-linker does not facilitate rear-head detachment, suggesting a minimal role for rear-head-gating. This 2HB state may enable Eg5 to stabilize incoming tubulin at the growing microtubule plus-end. The finding that slowly hydrolyzable ATP analogs trigger slower nucleotide release than ATP suggests that ATP hydrolysis in the bound head precedes stepping by the tethered head, leading to a mechanochemical cycle in which processivity is determined by the race between unbinding of the bound head and attachment of the tethered head.
Collapse
Affiliation(s)
- Geng-Yuan Chen
- From the Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Keith J Mickolajczyk
- From the Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - William O Hancock
- From the Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
86
|
Shapira O, Gheber L. Motile properties of the bi-directional kinesin-5 Cin8 are affected by phosphorylation in its motor domain. Sci Rep 2016; 6:25597. [PMID: 27216310 PMCID: PMC4877575 DOI: 10.1038/srep25597] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/20/2016] [Indexed: 12/25/2022] Open
Abstract
The Saccharomyces cerevisiae kinesin-5 Cin8 performs essential mitotic functions in spindle assembly and anaphase B spindle elongation. Recent work has shown that Cin8 is a bi-directional motor which moves towards the minus-end of microtubules (MTs) under high ionic strength (IS) conditions and changes directionality in low IS conditions and when bound between anti-parallel microtubules. Previous work from our laboratory has also indicated that Cin8 is differentially phosphorylated during late anaphase at cyclin-dependent kinase 1 (Cdk1)-specific sites located in its motor domain. In vivo, such phosphorylation causes Cin8 detachment from spindles and reduces the spindle elongation rate, while maintaining proper spindle morphology. To study the effect of phosphorylation on Cin8 motor function, we examined in vitro motile properties of wild type Cin8, as well as its phosphorylation using phospho-deficient and phospho-mimic variants, in a single molecule fluorescence motility assay. Analysis was performed on whole cell extracts and on purified Cin8 samples. We found that addition of negative charges in the phospho-mimic mutant weakened the MT-motor interaction, increased motor velocity and promoted minus-end-directed motility. These results indicate that phosphorylation in the catalytic domain of Cin8 regulates its motor function.
Collapse
Affiliation(s)
- Ofer Shapira
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Larisa Gheber
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
87
|
Multiscale method for modeling binding phenomena involving large objects: application to kinesin motor domains motion along microtubules. Sci Rep 2016; 6:23249. [PMID: 26988596 PMCID: PMC4796874 DOI: 10.1038/srep23249] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/03/2016] [Indexed: 11/30/2022] Open
Abstract
Many biological phenomena involve the binding of proteins to a large object. Because the electrostatic forces that guide binding act over large distances, truncating the size of the system to facilitate computational modeling frequently yields inaccurate results. Our multiscale approach implements a computational focusing method that permits computation of large systems without truncating the electrostatic potential and achieves the high resolution required for modeling macromolecular interactions, all while keeping the computational time reasonable. We tested our approach on the motility of various kinesin motor domains. We found that electrostatics help guide kinesins as they walk: N-kinesins towards the plus-end, and C-kinesins towards the minus-end of microtubules. Our methodology enables computation in similar, large systems including protein binding to DNA, viruses, and membranes.
Collapse
|
88
|
Biased Brownian motion as a mechanism to facilitate nanometer-scale exploration of the microtubule plus end by a kinesin-8. Proc Natl Acad Sci U S A 2015; 112:E3826-35. [PMID: 26150501 DOI: 10.1073/pnas.1500272112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Kinesin-8s are plus-end-directed motors that negatively regulate microtubule (MT) length. Well-characterized members of this subfamily (Kip3, Kif18A) exhibit two important properties: (i) They are "ultraprocessive," a feature enabled by a second MT-binding site that tethers the motors to a MT track, and (ii) they dissociate infrequently from the plus end. Together, these characteristics combined with their plus-end motility cause Kip3 and Kif18A to enrich preferentially at the plus ends of long MTs, promoting MT catastrophes or pausing. Kif18B, an understudied human kinesin-8, also limits MT growth during mitosis. In contrast to Kif18A and Kip3, localization of Kif18B to plus ends relies on binding to the plus-end tracking protein EB1, making the relationship between its potential plus-end-directed motility and plus-end accumulation unclear. Using single-molecule assays, we show that Kif18B is only modestly processive and that the motor switches frequently between directed and diffusive modes of motility. Diffusion is promoted by the tail domain, which also contains a second MT-binding site that decreases the off rate of the motor from the MT lattice. In cells, Kif18B concentrates at the extreme tip of a subset of MTs, superseding EB1. Our data demonstrate that kinesin-8 motors use diverse design principles to target MT plus ends, which likely target them to the plus ends of distinct MT subpopulations in the mitotic spindle.
Collapse
|
89
|
Vasil’yeva NA, Murzina GB, Pivovarov AS. Habituation-Like Decrease of Acetylcholine-Induced Inward Current in Helix Command Neurons: Role of Microtubule Motor Proteins. Cell Mol Neurobiol 2015; 35:703-12. [PMID: 25687906 PMCID: PMC11486294 DOI: 10.1007/s10571-015-0165-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
Abstract
The role of kinesin and dynein microtubule-associated molecular motors in the cellular mechanism of depression of acetylcholine-induced inward chloride current (ACh-current) was examined in command neurons of land snails (Helix lucorum) in response to repeated applications of ACh to neuronal soma. This pharmacological stimulation imitated the protocol of tactile stimulation evoking behavioural habituation of the defensive reaction. In this system, a dynein inhibitor (erythro-9-(2-hydroxy-3-nonyl)adenine, 50 µM) decreased the ACh-current depression rate. Kinesin Eg5 inhibitors (Eg5 inhibitor III, 10 µM and Eg5 inhibitor V, trans-24, 15 µM) reduced the degree of current depression, and Eg5 inhibitor V also reduced the initial rate of depression. The results of electrophysiological experiments in combination with mathematical modelling provided evidence of the participation of dyneins and kinesin Eg5 proteins in the radial transport of acetylcholine receptors in command neurons of H. lucorum in the cellular analogue of habituation. Furthermore, these results suggest that the reciprocal interaction between dynein and kinesin proteins located on the same vesicle can lead to reverse their usual direction of transport (dyneins-in exocytosis and kinesin Eg5-in endocytosis).
Collapse
Affiliation(s)
- Natal’ya A. Vasil’yeva
- Department of Higher Nervous Activity, Faculty of Biology, Moscow Lomonosov State University, Leninskie Gory dom 1, Stroenie 12, Moscow, 119991 Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Ulitsa Butlerova, dom 5A, Moscow, 117485 Russia
| | - Galina B. Murzina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Ulitsa Butlerova, dom 5A, Moscow, 117485 Russia
| | - Arkady S. Pivovarov
- Department of Higher Nervous Activity, Faculty of Biology, Moscow Lomonosov State University, Leninskie Gory dom 1, Stroenie 12, Moscow, 119991 Russia
| |
Collapse
|
90
|
Balchand SK, Mann BJ, Titus J, Ross JL, Wadsworth P. TPX2 Inhibits Eg5 by Interactions with Both Motor and Microtubule. J Biol Chem 2015; 290:17367-79. [PMID: 26018074 DOI: 10.1074/jbc.m114.612903] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Indexed: 12/27/2022] Open
Abstract
The microtubule-associated protein, TPX2, regulates the activity of the mitotic kinesin, Eg5, but the mechanism of regulation is not established. Using total internal reflection fluorescence microscopy, we observed that Eg5, in extracts of mammalian cells expressing Eg5-EGFP, moved processively toward the microtubule plus-end at an average velocity of 14 nm/s. TPX2 bound to microtubules with an apparent dissociation constant of ∼ 200 nm, and microtubule binding was not dependent on the C-terminal tails of tubulin. Using single molecule assays, we found that full-length TPX2 dramatically reduced Eg5 velocity, whereas truncated TPX2, which lacks the domain that is required for the interaction with Eg5, was a less effective inhibitor at the same concentration. To determine the region(s) of Eg5 that is required for interaction with TPX2, we performed microtubule gliding assays. Dimeric, but not monomeric, Eg5 was differentially inhibited by full-length and truncated TPX2, demonstrating that dimerization or residues in the neck region are important for the interaction of TPX2 with Eg5. These results show that both microtubule binding and interaction with Eg5 contribute to motor inhibition by TPX2 and demonstrate the utility of mammalian cell extracts for biophysical assays.
Collapse
Affiliation(s)
- Sai K Balchand
- the Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Barbara J Mann
- the Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Janel Titus
- the Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Jennifer L Ross
- the Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003 Physics and
| | - Patricia Wadsworth
- the Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003 From the Departments of Biology and
| |
Collapse
|
91
|
Düselder A, Fridman V, Thiede C, Wiesbaum A, Goldstein A, Klopfenstein DR, Zaitseva O, Janson ME, Gheber L, Schmidt CF. Deletion of the Tail Domain of the Kinesin-5 Cin8 Affects Its Directionality. J Biol Chem 2015; 290:16841-50. [PMID: 25991727 DOI: 10.1074/jbc.m114.620799] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 01/04/2023] Open
Abstract
The bipolar kinesin-5 motors are one of the major players that govern mitotic spindle dynamics. Their bipolar structure enables them to cross-link and slide apart antiparallel microtubules (MTs) emanating from the opposing spindle poles. The budding yeast kinesin-5 Cin8 was shown to switch from fast minus-end- to slow plus-end-directed motility upon binding between antiparallel MTs. This unexpected finding revealed a new dimension of cellular control of transport, the mechanism of which is unknown. Here we have examined the role of the C-terminal tail domain of Cin8 in regulating directionality. We first constructed a stable dimeric Cin8/kinesin-1 chimera (Cin8Kin), consisting of head and neck linker of Cin8 fused to the stalk of kinesin-1. As a single dimeric motor, Cin8Kin switched frequently between plus and minus directionality along single MTs, demonstrating that the Cin8 head domains are inherently bidirectional, but control over directionality was lost. We next examined the activity of a tetrameric Cin8 lacking only the tail domains (Cin8Δtail). In contrast to wild-type Cin8, the motility of single molecules of Cin8Δtail in high ionic strength was slow and bidirectional, with almost no directionality switches. Cin8Δtail showed only a weak ability to cross-link MTs in vitro. In vivo, Cin8Δtail exhibited bias toward the plus-end of the MTs and was unable to support viability of cells as the sole kinesin-5 motor. We conclude that the tail of Cin8 is not necessary for bidirectional processive motion, but is controlling the switch between plus- and minus-end-directed motility.
Collapse
Affiliation(s)
- André Düselder
- From the Drittes Physikalisches Institut, Georg-August-Universität, 37077 Göttingen, Germany
| | | | - Christina Thiede
- From the Drittes Physikalisches Institut, Georg-August-Universität, 37077 Göttingen, Germany
| | - Alice Wiesbaum
- From the Drittes Physikalisches Institut, Georg-August-Universität, 37077 Göttingen, Germany
| | | | - Dieter R Klopfenstein
- From the Drittes Physikalisches Institut, Georg-August-Universität, 37077 Göttingen, Germany
| | - Olga Zaitseva
- the Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Marcel E Janson
- the Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Larisa Gheber
- the Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel, and
| | - Christoph F Schmidt
- From the Drittes Physikalisches Institut, Georg-August-Universität, 37077 Göttingen, Germany,
| |
Collapse
|
92
|
Yukawa M, Ikebe C, Toda T. The Msd1-Wdr8-Pkl1 complex anchors microtubule minus ends to fission yeast spindle pole bodies. ACTA ACUST UNITED AC 2015; 209:549-62. [PMID: 25987607 PMCID: PMC4442821 DOI: 10.1083/jcb.201412111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/16/2015] [Indexed: 12/26/2022]
Abstract
Msd1–Wdr8 are delivered by Pkl1 to mitotic spindle pole bodies, where the Msd1–Wdr8–Pkl1 complex anchors the minus ends of spindle microtubules and antagonizes the outward-pushing forces generated by Cut7/kinesin-5 in fission yeast. The minus ends of spindle microtubules are anchored to a microtubule-organizing center. The conserved Msd1/SSX2IP proteins are localized to the spindle pole body (SPB) and the centrosome in fission yeast and humans, respectively, and play a critical role in microtubule anchoring. In this paper, we show that fission yeast Msd1 forms a ternary complex with another conserved protein, Wdr8, and the minus end–directed Pkl1/kinesin-14. Individual deletion mutants displayed the identical spindle-protrusion phenotypes. Msd1 and Wdr8 were delivered by Pkl1 to mitotic SPBs, where Pkl1 was tethered through Msd1–Wdr8. The spindle-anchoring defect imposed by msd1/wdr8/pkl1 deletions was suppressed by a mutation of the plus end–directed Cut7/kinesin-5, which was shown to be mutual. Intriguingly, Pkl1 motor activity was not required for its anchoring role once targeted to the SPB. Therefore, spindle anchoring through Msd1–Wdr8–Pkl1 is crucial for balancing the Cut7/kinesin-5–mediated outward force at the SPB. Our analysis provides mechanistic insight into the spatiotemporal regulation of two opposing kinesins to ensure mitotic spindle bipolarity.
Collapse
Affiliation(s)
- Masashi Yukawa
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, England, UK Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Chiho Ikebe
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, England, UK
| | - Takashi Toda
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, England, UK
| |
Collapse
|
93
|
Lansky Z, Braun M, Lüdecke A, Schlierf M, ten Wolde P, Janson M, Diez S. Diffusible Crosslinkers Generate Directed Forces in Microtubule Networks. Cell 2015; 160:1159-68. [DOI: 10.1016/j.cell.2015.01.051] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/11/2014] [Accepted: 01/06/2015] [Indexed: 10/23/2022]
|
94
|
Cochran JC. Kinesin Motor Enzymology: Chemistry, Structure, and Physics of Nanoscale Molecular Machines. Biophys Rev 2015; 7:269-299. [PMID: 28510227 DOI: 10.1007/s12551-014-0150-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/16/2014] [Indexed: 11/25/2022] Open
Abstract
Molecular motors are enzymes that convert chemical potential energy into controlled kinetic energy for mechanical work inside cells. Understanding the biophysics of these motors is essential for appreciating life as well as apprehending diseases that arise from motor malfunction. This review focuses on kinesin motor enzymology with special emphasis on the literature that reports the chemistry, structure and physics of several different kinesin superfamily members.
Collapse
Affiliation(s)
- J C Cochran
- Department of Molecular & Cellular Biochemistry, Indiana University, Simon Hall Room 405C, 212 S. Hawthorne Dr., Bloomington, IN, 47405, USA.
| |
Collapse
|
95
|
Vilfan A. Ensemble velocity of non-processive molecular motors with multiple chemical states. Interface Focus 2014; 4:20140032. [PMID: 25485083 DOI: 10.1098/rsfs.2014.0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We study the ensemble velocity of non-processive motor proteins, described with multiple chemical states. In particular, we discuss the velocity as a function of ATP concentration. Even a simple model which neglects the strain dependence of transition rates, reverse transition rates and nonlinearities in the elasticity can show interesting functional dependencies, which deviate significantly from the frequently assumed Michaelis-Menten form. We discuss how the order of events in the duty cycle can be inferred from the measured dependence. The model also predicts the possibility of velocity reversal at a certain ATP concentration if the duty cycle contains several conformational changes of opposite directionalities.
Collapse
Affiliation(s)
- Andrej Vilfan
- J. Stefan Institute , Jamova 39, 1000 Ljubljana , Slovenia ; Faculty of Mathematics and Physics , University of Ljubljana , Jadranska 19, 1000 Ljubljana , Slovenia
| |
Collapse
|
96
|
Thiede C, Fridman V, Gerson-Gurwitz A, Gheber L, Schmidt CF. Regulation of bi-directional movement of single kinesin-5 Cin8 molecules. BIOARCHITECTURE 2014; 2:70-74. [PMID: 22754632 PMCID: PMC3383724 DOI: 10.4161/bioa.20395] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Kinesin-5 mechanoenzymes drive mitotic spindle dynamics as slow, processive microtubule (MT)-plus-end directed motors. Surprisingly, the Saccharomyces cerevisiae kinesin-5 Cin8 was recently found to be bi-directional: it can move processively in both directions on MTs. Two hypotheses have been suggested for the mechanism of the directionality switch: (1) single molecules of Cin8 are intrinsically minus-end directed, but mechanical coupling between two or more motors triggers the switch; (2) a single motor can switch direction, and "cargo binding" i.e., binding between two MTs triggers the switch to plus-end motility. Single-molecule fluorescence data we published recently, and augment here, favor hypothesis (2). In low-ionic-strength conditions, single molecules of Cin8 move in both minus- and plus-end directions. Fluorescence photo bleaching data rule out aggregation of Cin8 while they move in the plus and in the minus direction. The evidence thus points toward cargo regulation of directionality, which is likely to be related to cargo regulation in other kinesins. The molecular mechanisms of this regulation, however, remain to be elucidated.
Collapse
|
97
|
Schlager MA, Hoang HT, Urnavicius L, Bullock SL, Carter AP. In vitro reconstitution of a highly processive recombinant human dynein complex. EMBO J 2014; 33:1855-68. [PMID: 24986880 PMCID: PMC4158905 DOI: 10.15252/embj.201488792] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cytoplasmic dynein is an approximately 1.4 MDa multi-protein complex that transports many cellular cargoes towards the minus ends of microtubules. Several in vitro studies of mammalian dynein have suggested that individual motors are not robustly processive, raising questions about how dynein-associated cargoes can move over long distances in cells. Here, we report the production of a fully recombinant human dynein complex from a single baculovirus in insect cells. Individual complexes very rarely show directional movement in vitro. However, addition of dynactin together with the N-terminal region of the cargo adaptor BICD2 (BICD2N) gives rise to unidirectional dynein movement over remarkably long distances. Single-molecule fluorescence microscopy provides evidence that BICD2N and dynactin stimulate processivity by regulating individual dynein complexes, rather than by promoting oligomerisation of the motor complex. Negative stain electron microscopy reveals the dynein–dynactin–BICD2N complex to be well ordered, with dynactin positioned approximately along the length of the dynein tail. Collectively, our results provide insight into a novel mechanism for coordinating cargo binding with long-distance motor movement.
Collapse
Affiliation(s)
- Max A Schlager
- Division of Structural Studies, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Ha Thi Hoang
- Division of Cell Biology, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Linas Urnavicius
- Division of Structural Studies, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Simon L Bullock
- Division of Cell Biology, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Andrew P Carter
- Division of Structural Studies, MRC-Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
98
|
Cross RA, McAinsh A. Prime movers: the mechanochemistry of mitotic kinesins. Nat Rev Mol Cell Biol 2014; 15:257-71. [PMID: 24651543 DOI: 10.1038/nrm3768] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation.
Collapse
Affiliation(s)
- Robert A Cross
- Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, UK
| | - Andrew McAinsh
- Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, UK
| |
Collapse
|
99
|
Aiken J, Sept D, Costanzo M, Boone C, Cooper JA, Moore JK. Genome-wide analysis reveals novel and discrete functions for tubulin carboxy-terminal tails. Curr Biol 2014; 24:1295-1303. [PMID: 24835459 DOI: 10.1016/j.cub.2014.03.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/27/2014] [Accepted: 03/31/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Microtubules (MTs) support diverse transport and force generation processes in cells. Both α- and β-tubulin proteins possess carboxy-terminal tail regions (CTTs) that are negatively charged, intrinsically disordered, and project from the MT surface where they interact with motors and other proteins. Although CTTs are presumed to play important roles in MT networks, these roles have not been determined in vivo. RESULTS We examined the function of CTTs in vivo by using a systematic collection of mutants in budding yeast. We find that CTTs are not essential; however, loss of either α- or β-CTT sensitizes cells to MT-destabilizing drugs. β-CTT, but not α-CTT, regulates MT dynamics by increasing frequencies of catastrophe and rescue events. In addition, β-CTT is critical for the assembly of the mitotic spindle and its elongation during anaphase. We use genome-wide genetic interaction screens to identify roles for α- and β-CTTs, including a specific role for β-CTT in supporting kinesin-5/Cin8. Our genetic screens also identified novel interactions with pathways not related to canonical MT functions. CONCLUSIONS We conclude that α- and β-CTTs play important and largely discrete roles in MT networks. β-CTT promotes MT dynamics. β-CTT also regulates force generation in the mitotic spindle by supporting kinesin-5/Cin8 and dampening dynein. Our genetic screens identify links between α- and β-CTT and additional cellular pathways and suggest novel functions.
Collapse
Affiliation(s)
- Jayne Aiken
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David Sept
- Department of Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael Costanzo
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Charles Boone
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - John A Cooper
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
100
|
Soundararajan HC, Bullock SL. The influence of dynein processivity control, MAPs, and microtubule ends on directional movement of a localising mRNA. eLife 2014; 3:e01596. [PMID: 24737859 PMCID: PMC3985186 DOI: 10.7554/elife.01596] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Many cellular constituents travel along microtubules in association with multiple copies of motor proteins. How the activity of these motors is regulated during cargo sorting is poorly understood. In this study, we address this issue using a novel in vitro assay for the motility of localising Drosophila mRNAs bound to native dynein-dynactin complexes. High precision tracking reveals that individual RNPs within a population undergo either diffusive, or highly processive, minus end-directed movements along microtubules. RNA localisation signals stimulate the processive movements, with regulation of dynein-dynactin’s activity rather than its total copy number per RNP, responsible for this effect. Our data support a novel mechanism for multi-motor translocation based on the regulation of dynein processivity by discrete cargo-associated features. Studying the in vitro responses of RNPs to microtubule-associated proteins (MAPs) and microtubule ends provides insights into how an RNA population could navigate the cytoskeletal network and become anchored at its destination in cells. DOI:http://dx.doi.org/10.7554/eLife.01596.001 For a cell to do its job, the different components inside it need to be moved to different locations. This is achieved by an elaborate cellular transport system. To move a component to where it needs to be, motor proteins bind to it, often with the assistance of other ‘accessory’ proteins. This cargo-motor complex then moves along a network of tracks within the cell. Viruses also exploit this transport system in order to be trafficked to specific parts of the cell during their life cycles. Many cargos are moved along microtubule tracks. Multiple microtubule motor proteins often attach to the same cargo, but it is unclear how they work together during transport. Previous studies have attempted to address this issue by attaching motor proteins to artificial cargoes, such as synthetic beads. However, these experiments did not include some of the accessory proteins that are thought to play a role during transport within the living cell. Soundararajan and Bullock have now examined how complexes containing multiple motors bound to accessory proteins move molecules of messenger RNA to specific sites within cells. By visualising fruit fly mRNA moving along microtubules attached to a glass surface, the transport process can be studied in detail. It appears that the complexes travel using one of two methods: they either diffuse along the microtubules, which they can do in either direction, or they power themselves along the microtubules, which they can only do in one direction. Although previous experiments with artificial cargos suggested that the number of motors in the complex determines the likelihood of one-way traffic, it appears that one or more accessory proteins are actually in control during mRNA transport. Soundararajan and Bullock also documented how the mRNA-motor complexes react to roadblocks and dead-ends on the microtubule highway. Rather than letting go of the microtubule upon such an encounter, the complexes can reverse back down the track. This behaviour may help them to find a new route to their destination. DOI:http://dx.doi.org/10.7554/eLife.01596.002
Collapse
|