51
|
Miller N, Xu Z, Quinlan KA, Ji A, McGivern JV, Feng Z, Shi H, Ko CP, Tsai LH, Heckman CJ, Ebert AD, Ma YC. Mitigating aberrant Cdk5 activation alleviates mitochondrial defects and motor neuron disease symptoms in spinal muscular atrophy. Proc Natl Acad Sci U S A 2023; 120:e2300308120. [PMID: 37976261 PMCID: PMC10666147 DOI: 10.1073/pnas.2300308120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/31/2023] [Indexed: 11/19/2023] Open
Abstract
Spinal muscular atrophy (SMA), the top genetic cause of infant mortality, is characterized by motor neuron degeneration. Mechanisms underlying SMA pathogenesis remain largely unknown. Here, we report that the activity of cyclin-dependent kinase 5 (Cdk5) and the conversion of its activating subunit p35 to the more potent activator p25 are significantly up-regulated in mouse models and human induced pluripotent stem cell (iPSC) models of SMA. The increase of Cdk5 activity occurs before the onset of SMA phenotypes, suggesting that it may be an initiator of the disease. Importantly, aberrant Cdk5 activation causes mitochondrial defects and motor neuron degeneration, as the genetic knockout of p35 in an SMA mouse model rescues mitochondrial transport and fragmentation defects, and alleviates SMA phenotypes including motor neuron hyperexcitability, loss of excitatory synapses, neuromuscular junction denervation, and motor neuron degeneration. Inhibition of the Cdk5 signaling pathway reduces the degeneration of motor neurons derived from SMA mice and human SMA iPSCs. Altogether, our studies reveal a critical role for the aberrant activation of Cdk5 in SMA pathogenesis and suggest a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Nimrod Miller
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611
| | - Zhaofa Xu
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611
| | - Katharina A. Quinlan
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI02881
| | - Amy Ji
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Jered V. McGivern
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI53226
| | - Zhihua Feng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Han Shi
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611
| | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Charles J. Heckman
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI53226
| | - Yongchao C. Ma
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
52
|
Valsecchi V, Errico F, Bassareo V, Marino C, Nuzzo T, Brancaccio P, Laudati G, Casamassa A, Grimaldi M, D'Amico A, Carta M, Bertini E, Pignataro G, D'Ursi AM, Usiello A. SMN deficiency perturbs monoamine neurotransmitter metabolism in spinal muscular atrophy. Commun Biol 2023; 6:1155. [PMID: 37957344 PMCID: PMC10643621 DOI: 10.1038/s42003-023-05543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Beyond motor neuron degeneration, homozygous mutations in the survival motor neuron 1 (SMN1) gene cause multiorgan and metabolic defects in patients with spinal muscular atrophy (SMA). However, the precise biochemical features of these alterations and the age of onset in the brain and peripheral organs remain unclear. Using untargeted NMR-based metabolomics in SMA mice, we identify cerebral and hepatic abnormalities related to energy homeostasis pathways and amino acid metabolism, emerging already at postnatal day 3 (P3) in the liver. Through HPLC, we find that SMN deficiency induces a drop in cerebral norepinephrine levels in overt symptomatic SMA mice at P11, affecting the mRNA and protein expression of key genes regulating monoamine metabolism, including aromatic L-amino acid decarboxylase (AADC), dopamine beta-hydroxylase (DβH) and monoamine oxidase A (MAO-A). In support of the translational value of our preclinical observations, we also discovered that SMN upregulation increases cerebrospinal fluid norepinephrine concentration in Nusinersen-treated SMA1 patients. Our findings highlight a previously unrecognized harmful influence of low SMN levels on the expression of critical enzymes involved in monoamine metabolism, suggesting that SMN-inducing therapies may modulate catecholamine neurotransmission. These results may also be relevant for setting therapeutic approaches to counteract peripheral metabolic defects in SMA.
Collapse
Affiliation(s)
- Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | - Francesco Errico
- Department of Agricultural Sciences, University of Naples "Federico II", 80055, Portici, Italy
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate, 80145, Naples, Italy
| | - Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Carmen Marino
- Department of Pharmacy, University of Salerno, 84084, Fisciano, Salerno, Italy
| | - Tommaso Nuzzo
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate, 80145, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | | | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, 84084, Fisciano, Salerno, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital IRCCS, 00163, Rome, Italy
| | - Manolo Carta
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital IRCCS, 00163, Rome, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | - Anna Maria D'Ursi
- Department of Pharmacy, University of Salerno, 84084, Fisciano, Salerno, Italy
| | - Alessandro Usiello
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate, 80145, Naples, Italy.
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100, Caserta, Italy.
| |
Collapse
|
53
|
Kordala AJ, Stoodley J, Ahlskog N, Hanifi M, Garcia Guerra A, Bhomra A, Lim WF, Murray LM, Talbot K, Hammond SM, Wood MJA, Rinaldi C. PRMT inhibitor promotes SMN2 exon 7 inclusion and synergizes with nusinersen to rescue SMA mice. EMBO Mol Med 2023; 15:e17683. [PMID: 37724723 PMCID: PMC10630883 DOI: 10.15252/emmm.202317683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. The advent of approved treatments for this devastating condition has significantly changed SMA patients' life expectancy and quality of life. Nevertheless, these are not without limitations, and research efforts are underway to develop new approaches for improved and long-lasting benefits for patients. Protein arginine methyltransferases (PRMTs) are emerging as druggable epigenetic targets, with several small-molecule PRMT inhibitors already in clinical trials. From a screen of epigenetic molecules, we have identified MS023, a potent and selective type I PRMT inhibitor able to promote SMN2 exon 7 inclusion in preclinical SMA models. Treatment of SMA mice with MS023 results in amelioration of the disease phenotype, with strong synergistic amplification of the positive effect when delivered in combination with the antisense oligonucleotide nusinersen. Moreover, transcriptomic analysis revealed that MS023 treatment has minimal off-target effects, and the added benefit is mainly due to targeting neuroinflammation. Our study warrants further clinical investigation of PRMT inhibition both as a stand-alone and add-on therapy for SMA.
Collapse
Affiliation(s)
- Anna J Kordala
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Jessica Stoodley
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Nina Ahlskog
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | | | - Antonio Garcia Guerra
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Amarjit Bhomra
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Wooi Fang Lim
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Lyndsay M Murray
- Centre for Discovery Brain Sciences, College of Medicine and Veterinary MedicineUniversity of EdinburghEdinburghUK
- Euan McDonald Centre for Motor Neuron Disease ResearchUniversity of EdinburghEdinburghUK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | | | - Matthew JA Wood
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
- MDUK Oxford Neuromuscular CentreOxfordUK
| | - Carlo Rinaldi
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
- MDUK Oxford Neuromuscular CentreOxfordUK
| |
Collapse
|
54
|
Crisafulli S, Boccanegra B, Vitturi G, Trifirò G, De Luca A. Pharmacological Therapies of Spinal Muscular Atrophy: A Narrative Review of Preclinical, Clinical-Experimental, and Real-World Evidence. Brain Sci 2023; 13:1446. [PMID: 37891814 PMCID: PMC10605203 DOI: 10.3390/brainsci13101446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a rare neuromuscular disease, with an estimated incidence of about 1 in 10,000 live births. To date, three orphan drugs have been approved for the treatment of SMA: nusinersen, onasemnogene abeparvovec, and risdiplam. The aim of this narrative review was to provide an overview of the pre- and post-marketing evidence on the pharmacological treatments approved for the treatment of SMA by identifying preclinical and clinical studies registered in clinicaltrials.gov and in the EU PAS register from their inception until the 4 January 2023. The preclinical evidence on the drugs approved for SMA allowed a significant acceleration in the experimental phase of these drugs. However, since these drugs had been authorized through accelerated programs, the conduction of post-marketing studies was requested as a condition of their marketing approval to better understand their risk-benefit profiles in real-world settings. As of the 4 January 2023, a total of 69 post-marketing studies concerning the three orphan drugs approved for SMA were identified in clinicaltrials.gov (N = 65; 94.2%) and in the EU PAS register (N = 4; 5.8%). Currently, ongoing studies are primarily aimed at providing evidence concerning the risk-benefit profile of the three drugs in specific populations that were not included in the pivotal trials and to investigate the long-term safety and clinical benefits of these drugs. Real-world data sources collecting information regarding the natural history of the disease and post-marketing surveillance of the available therapies are increasingly becoming essential for generating real-world evidence on this rare disease and its orphan drugs.
Collapse
Affiliation(s)
- Salvatore Crisafulli
- Department of Medicine, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124 Verona, Italy;
| | - Brigida Boccanegra
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (B.B.); (A.D.L.)
| | - Giacomo Vitturi
- Department of Diagnostics and Public Health, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124 Verona, Italy;
| | - Gianluca Trifirò
- Department of Diagnostics and Public Health, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124 Verona, Italy;
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (B.B.); (A.D.L.)
| |
Collapse
|
55
|
Qiao Y, Chi Y, Gu J, Ma Y. Safety and Efficacy of Nusinersen and Risdiplam for Spinal Muscular Atrophy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Brain Sci 2023; 13:1419. [PMID: 37891788 PMCID: PMC10605531 DOI: 10.3390/brainsci13101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
OBJECTIVE We performed a systematic review and meta-analysis of the efficacy and safety of nusinersen and risdiplam in the treatment of spinal muscular disease (SMA). METHODS We screened the literature published in Pubmed, Web of Science, Embase, and Cochrane before July 2023 to conduct randomized controlled trials to test the treatment of SMA patients with nusinersen and risdiplam. The data were analyzed using Review Manager 5.4 software and Stata version 15.0 software. RESULTS A total of six randomized controlled trials were included, involving 728 SMA patients, to synthesize evidence. It is reported that nusinersen treatment was beneficial for increasing the score of the Hammersmith Functional Motor Scale-Expanded (HFMSE) (WMD: 4.90; 95% CI: 3.17, 6.63; p < 0.00001), Revised Upper Limb Module (RULM) (WMD: 3.70; 95% CI: 3.30, 4.10; p < 0.00001), and Hammersmith Infant Neurological Evaluation Section 2 (HINE-2) (WMD: 5.21; 95% CI: 4.83, 5.60; p < 0.00001). In addition, the risdiplam treatment group also showed statistically significant improvements in the HFMSE score (WMD:0.87; 95% CI: 0.05, 1.68; p = 0.04), the 32-item Motor Function Measure (MFM32) (WMD:1.48; 95% CI: 0.58, 2.38; p = 0.001), and (WMD: 1.29; 95% CI: 0.57, 2.01; p = 0.0005). Nusinersen and risdiplam did not cause a statistically significant increase in the RULM score for adverse events (OR: 0.93; 95% CI: 0.51, 1.7; p = 0.82) and for severe adverse events (OR: 0.77; 95% CI: 0.47, 1.27; p = 0.31). CONCLUSION Our analysis found that nusinersen and risdiplam treatment showed clinically meaningful improvement in motor function and a similar incidence rate of adverse events compared with the placebo. Further research should be carried out to provide a direct comparison between the two drugs in terms of safety and efficacy.
Collapse
Affiliation(s)
| | | | | | - Ying Ma
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110055, China
| |
Collapse
|
56
|
El Khoury M, Biondi O, Bruneteau G, Sapaly D, Bendris S, Bezier C, Clerc Z, Akar EA, Weill L, Eid AA, Charbonnier F. NADPH oxidase 4 inhibition is a complementary therapeutic strategy for spinal muscular atrophy. Front Cell Neurosci 2023; 17:1242828. [PMID: 37780204 PMCID: PMC10536974 DOI: 10.3389/fncel.2023.1242828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Spinal muscular atrophy (SMA) is a fatal neurodegenerative disorder, characterized by motor neuron (MN) degeneration and severe muscular atrophy and caused by Survival of Motor Neuron (SMN) depletion. Therapies aimed at increasing SMN in patients have proven their efficiency in alleviating SMA symptoms but not for all patients. Thus, combinational therapies are warranted. Here, we investigated the involvement of NADPH oxidase 4 (NOX4) in SMA-induced spinal MN death and if the modulation of Nox4 activity could be beneficial for SMA patients. Methods We analysed in the spinal cord of severe type SMA-like mice before and at the disease onset, the level of oxidative stress and Nox4 expression. Then, we tested the effect of Nox4 inhibition by GKT137831/Setanaxib, a drug presently in clinical development, by intrathecal injection on MN survival and motor behaviour. Finally, we tested if GKT137831/Setanaxib could act synergistically with FDA-validated SMN-upregulating treatment (nusinersen). Results We show that NOX4 is overexpressed in SMA and its inhibition by GKT137831/Setanaxib protected spinal MN from SMA-induced degeneration. These improvements were associated with a significant increase in lifespan and motor behaviour of the mice. At the molecular level, GKT137831 activated the pro-survival AKT/CREB signaling pathway, leading to an increase in SMN expression in SMA MNs. Most importantly, we found that the per os administration of GKT137831 acted synergistically with a FDA-validated SMN-upregulating treatment. Conclusion The pharmacological inhibition of NOX4 by GKT137831/Setanaxib is neuroprotector and could represent a complementary therapeutic strategy to fight against SMA.
Collapse
Affiliation(s)
- Mirella El Khoury
- Faculty of Basic and Biomedical Sciences, University Paris Cité & Inserm UMR_S1124, Paris, France
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Olivier Biondi
- Faculty of Basic and Biomedical Sciences, University Paris Cité & Inserm UMR_S1124, Paris, France
| | - Gaelle Bruneteau
- Centre de Recherche en Myologie, UMRS974, Association Institut de Myologie, Sorbonne Université, INSERM, Paris, France
- Département de Neurologie, Centre référent SLA, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Delphine Sapaly
- Faculty of Basic and Biomedical Sciences, University Paris Cité & Inserm UMR_S1124, Paris, France
| | - Sabrina Bendris
- Faculty of Basic and Biomedical Sciences, University Paris Cité & Inserm UMR_S1124, Paris, France
| | - Cynthia Bezier
- Faculty of Basic and Biomedical Sciences, University Paris Cité & Inserm UMR_S1124, Paris, France
| | - Zoé Clerc
- Faculty of Basic and Biomedical Sciences, University Paris Cité & Inserm UMR_S1124, Paris, France
| | - Elias Abi Akar
- Faculty of Basic and Biomedical Sciences, University Paris Cité & Inserm UMR_S1124, Paris, France
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Laure Weill
- Faculty of Basic and Biomedical Sciences, University Paris Cité & Inserm UMR_S1124, Paris, France
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Frédéric Charbonnier
- Faculty of Basic and Biomedical Sciences, University Paris Cité & Inserm UMR_S1124, Paris, France
| |
Collapse
|
57
|
Olenginski LT, Attionu SK, Henninger EN, LeBlanc RM, Longhini AP, Dayie TK. Hepatitis B Virus Epsilon (ε) RNA Element: Dynamic Regulator of Viral Replication and Attractive Therapeutic Target. Viruses 2023; 15:1913. [PMID: 37766319 PMCID: PMC10534774 DOI: 10.3390/v15091913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatitis B virus (HBV) chronically infects millions of people worldwide, which underscores the importance of discovering and designing novel anti-HBV therapeutics to complement current treatment strategies. An underexploited but attractive therapeutic target is ε, a cis-acting regulatory stem-loop RNA situated within the HBV pregenomic RNA (pgRNA). The binding of ε to the viral polymerase protein (P) is pivotal, as it triggers the packaging of pgRNA and P, as well as the reverse transcription of the viral genome. Consequently, small molecules capable of disrupting this interaction hold the potential to inhibit the early stages of HBV replication. The rational design of such ligands necessitates high-resolution structural information for the ε-P complex or its individual components. While these data are currently unavailable for P, our recent structural elucidation of ε through solution nuclear magnetic resonance spectroscopy marks a significant advancement in this area. In this review, we provide a brief overview of HBV replication and some of the therapeutic strategies to combat chronic HBV infection. These descriptions are intended to contextualize our recent experimental efforts to characterize ε and identify ε-targeting ligands, with the ultimate goal of developing novel anti-HBV therapeutics.
Collapse
Affiliation(s)
- Lukasz T. Olenginski
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Solomon K. Attionu
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
| | - Erica N. Henninger
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
| | - Regan M. LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
| | - Andrew P. Longhini
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Theodore K. Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
| |
Collapse
|
58
|
Signoria I, van der Pol WL, Groen EJN. Innovating spinal muscular atrophy models in the therapeutic era. Dis Model Mech 2023; 16:dmm050352. [PMID: 37787662 PMCID: PMC10565113 DOI: 10.1242/dmm.050352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe, monogenetic, neuromuscular disease. A thorough understanding of its genetic cause and the availability of robust models has led to the development and approval of three gene-targeting therapies. This is a unique and exciting development for the field of neuromuscular diseases, many of which remain untreatable. The development of therapies for SMA not only opens the door to future therapeutic possibilities for other genetic neuromuscular diseases, but also informs us about the limitations of such treatments. For example, treatment response varies widely and, for many patients, significant disability remains. Currently available SMA models best recapitulate the severe types of SMA, and these models are genetically and phenotypically more homogeneous than patients. Furthermore, treating patients is leading to a shift in phenotypes with increased variability in SMA clinical presentation. Therefore, there is a need to generate model systems that better reflect these developments. Here, we will first discuss current animal models of SMA and their limitations. Next, we will discuss the characteristics required to future-proof models to assist the field in the development of additional, novel therapies for SMA.
Collapse
Affiliation(s)
- Ilaria Signoria
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - W. Ludo van der Pol
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Ewout J. N. Groen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
59
|
Bergant V, Schnepf D, de Andrade Krätzig N, Hubel P, Urban C, Engleitner T, Dijkman R, Ryffel B, Steiger K, Knolle PA, Kochs G, Rad R, Staeheli P, Pichlmair A. mRNA 3'UTR lengthening by alternative polyadenylation attenuates inflammatory responses and correlates with virulence of Influenza A virus. Nat Commun 2023; 14:4906. [PMID: 37582777 PMCID: PMC10427651 DOI: 10.1038/s41467-023-40469-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023] Open
Abstract
Changes of mRNA 3'UTRs by alternative polyadenylation (APA) have been associated to numerous pathologies, but the mechanisms and consequences often remain enigmatic. By combining transcriptomics, proteomics and recombinant viruses we show that all tested strains of IAV, including A/PR/8/34(H1N1) (PR8) and A/Cal/07/2009 (H1N1) (Cal09), cause APA. We mapped the effect to the highly conserved glycine residue at position 184 (G184) of the viral non-structural protein 1 (NS1). Unbiased mass spectrometry-based analyses indicate that NS1 causes APA by perturbing the function of CPSF4 and that this function is unrelated to virus-induced transcriptional shutoff. Accordingly, IAV strain PR8, expressing an NS1 variant with weak CPSF binding, does not induce host shutoff but only APA. However, recombinant IAV (PR8) expressing NS1(G184R) lacks binding to CPSF4 and thereby also the ability to cause APA. Functionally, the impaired ability to induce APA leads to an increased inflammatory cytokine production and an attenuated phenotype in a mouse infection model. Investigating diverse viral infection models showed that APA induction is a frequent ability of many pathogens. Collectively, we propose that targeting of the CPSF complex, leading to widespread alternative polyadenylation of host transcripts, constitutes a general immunevasion mechanism employed by a variety of pathogenic viruses.
Collapse
Affiliation(s)
- Valter Bergant
- Institute of Virology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Max Planck Institute of Biochemistry, Munich, Germany
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | - Niklas de Andrade Krätzig
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Philipp Hubel
- Max Planck Institute of Biochemistry, Munich, Germany
| | - Christian Urban
- Institute of Virology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Max Planck Institute of Biochemistry, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Ronald Dijkman
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland
- Department of Infectious diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Bernhard Ryffel
- CNRS, UMR7355, Orleans, France
- Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Katja Steiger
- Institut für allgemeine Pathologie und Pathologische Anatomie, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, Munich, Germany
- Department of Medicine II, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Peter Staeheli
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Andreas Pichlmair
- Institute of Virology, TUM School of Medicine, Technical University of Munich, Munich, Germany.
- Max Planck Institute of Biochemistry, Munich, Germany.
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany.
| |
Collapse
|
60
|
Nishio H, Niba ETE, Saito T, Okamoto K, Takeshima Y, Awano H. Spinal Muscular Atrophy: The Past, Present, and Future of Diagnosis and Treatment. Int J Mol Sci 2023; 24:11939. [PMID: 37569314 PMCID: PMC10418635 DOI: 10.3390/ijms241511939] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a lower motor neuron disease with autosomal recessive inheritance. The first cases of SMA were reported by Werdnig in 1891. Although the phenotypic variation of SMA led to controversy regarding the clinical entity of the disease, the genetic homogeneity of SMA was proved in 1990. Five years later, in 1995, the gene responsible for SMA, SMN1, was identified. Genetic testing of SMN1 has enabled precise epidemiological studies, revealing that SMA occurs in 1 of 10,000 to 20,000 live births and that more than 95% of affected patients are homozygous for SMN1 deletion. In 2016, nusinersen was the first drug approved for treatment of SMA in the United States. Two other drugs were subsequently approved: onasemnogene abeparvovec and risdiplam. Clinical trials with these drugs targeting patients with pre-symptomatic SMA (those who were diagnosed by genetic testing but showed no symptoms) revealed that such patients could achieve the milestones of independent sitting and/or walking. Following the great success of these trials, population-based newborn screening programs for SMA (more precisely, SMN1-deleted SMA) have been increasingly implemented worldwide. Early detection by newborn screening and early treatment with new drugs are expected to soon become the standards in the field of SMA.
Collapse
Affiliation(s)
- Hisahide Nishio
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | - Emma Tabe Eko Niba
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishi-cho, Imabari 794-0006, Japan;
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Hiroyuki Awano
- Organization for Research Initiative and Promotion, Research Initiative Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| |
Collapse
|
61
|
Ottesen EW, Singh NN, Luo D, Kaas B, Gillette B, Seo J, Jorgensen H, Singh RN. Diverse targets of SMN2-directed splicing-modulating small molecule therapeutics for spinal muscular atrophy. Nucleic Acids Res 2023; 51:5948-5980. [PMID: 37026480 PMCID: PMC10325915 DOI: 10.1093/nar/gkad259] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Designing an RNA-interacting molecule that displays high therapeutic efficacy while retaining specificity within a broad concentration range remains a challenging task. Risdiplam is an FDA-approved small molecule for the treatment of spinal muscular atrophy (SMA), the leading genetic cause of infant mortality. Branaplam is another small molecule which has undergone clinical trials. The therapeutic merit of both compounds is based on their ability to restore body-wide inclusion of Survival Motor Neuron 2 (SMN2) exon 7 upon oral administration. Here we compare the transcriptome-wide off-target effects of these compounds in SMA patient cells. We captured concentration-dependent compound-specific changes, including aberrant expression of genes associated with DNA replication, cell cycle, RNA metabolism, cell signaling and metabolic pathways. Both compounds triggered massive perturbations of splicing events, inducing off-target exon inclusion, exon skipping, intron retention, intron removal and alternative splice site usage. Our results of minigenes expressed in HeLa cells provide mechanistic insights into how these molecules targeted towards a single gene produce different off-target effects. We show the advantages of combined treatments with low doses of risdiplam and branaplam. Our findings are instructive for devising better dosing regimens as well as for developing the next generation of small molecule therapeutics aimed at splicing modulation.
Collapse
Affiliation(s)
- Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Diou Luo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Bailey Kaas
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Benjamin J Gillette
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Hannah J Jorgensen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
62
|
Zhang L, Xie X, Djokovic N, Nikolic K, Kosenkov D, Abendroth F, Vázquez O. Reversible Control of RNA Splicing by Photoswitchable Small Molecules. J Am Chem Soc 2023. [PMID: 37276581 DOI: 10.1021/jacs.3c03275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dynamics are intrinsic to both RNA function and structure. Yet, the available means to precisely provide RNA-based processes with spatiotemporal resolution are scarce. Here, our work pioneers a reversible approach to regulate RNA splicing within primary patient-derived cells by synthetic photoswitches. Our small molecule enables conditional real-time control at mRNA and protein levels. NMR experiments, together with theoretical calculations, photochemical characterization, fluorescence polarization measurements, and living cell-based assays, confirmed light-dependent exon inclusion as well as an increase in the target functional protein. Therefore, we first demonstrated the potential of photopharmacology modulation in splicing, tweaking the current optochemical toolkit. The timeliness on the consolidation of RNA research as the driving force toward therapeutical innovation holds the promise that our approach will contribute to redrawing the vision of RNA.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry, University of Marburg, Marburg, D-35043, Germany
| | - Xiulan Xie
- Department of Chemistry, University of Marburg, Marburg, D-35043, Germany
| | - Nemanja Djokovic
- Department of Pharmaceutical Chemistry, University of Belgrade, Belgrade, 11000, Serbia
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, University of Belgrade, Belgrade, 11000, Serbia
| | - Dmitri Kosenkov
- Department of Chemistry and Physics, Monmouth University, West Long Branch, New Jersey 07764, United States
| | - Frank Abendroth
- Department of Chemistry, University of Marburg, Marburg, D-35043, Germany
| | - Olalla Vázquez
- Department of Chemistry, University of Marburg, Marburg, D-35043, Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Marburg, D-35043, Germany
| |
Collapse
|
63
|
Loewa A, Feng JJ, Hedtrich S. Human disease models in drug development. NATURE REVIEWS BIOENGINEERING 2023; 1:1-15. [PMID: 37359774 PMCID: PMC10173243 DOI: 10.1038/s44222-023-00063-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 06/20/2023]
Abstract
Biomedical research is undergoing a paradigm shift towards approaches centred on human disease models owing to the notoriously high failure rates of the current drug development process. Major drivers for this transition are the limitations of animal models, which, despite remaining the gold standard in basic and preclinical research, suffer from interspecies differences and poor prediction of human physiological and pathological conditions. To bridge this translational gap, bioengineered human disease models with high clinical mimicry are being developed. In this Review, we discuss preclinical and clinical studies that benefited from these models, focusing on organoids, bioengineered tissue models and organs-on-chips. Furthermore, we provide a high-level design framework to facilitate clinical translation and accelerate drug development using bioengineered human disease models.
Collapse
Affiliation(s)
- Anna Loewa
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - James J. Feng
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC Canada
- Department of Mathematics, University of British Columbia, Vancouver, BC Canada
| | - Sarah Hedtrich
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Center of Biological Design, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC Canada
- Max-Delbrück Center for Molecular Medicine (MCD), Helmholtz Association, Berlin, Germany
| |
Collapse
|
64
|
Lu L, Wang L, Shen W, Fang S, Zhao L, Hu X, Yang L, Wang G. Molecular pathogenesis of a novel Met394Thr variant causing hemophilia B. Mol Genet Genomic Med 2023; 11:e2147. [PMID: 36795372 PMCID: PMC10178796 DOI: 10.1002/mgg3.2147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Hemophilia B (HB), a rare bleeding disorder, shows X-linked recessive inheritance and is caused by heterogeneous variants in the FIX gene (F9) encoding coagulation factor IX (FIX). This study aimed to investigate the molecular pathogenesis of a novel Met394Thr variant causing HB. METHODS We used Sanger sequencing to analyze F9 sequence variants in members of a Chinese family with moderate HB. Subsequently, we performed in vitro experiments on the identified novel FIX-Met394Thr variant. In addition, we performed bioinformatics analysis of the novel variant. RESULTS We identified a novel missense variant (c.1181T>C, p.Met394Thr) in a Chinese family with moderate HB in the proband. The proband's mother and grandmother were carriers for the variant. The identified FIX-Met394Thr variant did not affect the transcription of F9 and the synthesis and secretion of FIX protein. The variant may, therefore, affect the physiological function of FIX protein by disrupting its spatial conformation. In addition, another variant (c.88+75A>G) in intron 1 of F9 was identified in the grandmother, which may also affect FIX protein function. CONCLUSION We identified FIX-Met394Thr as a novel causative variant of HB. Further understanding of the molecular pathogenesis underlying FIX deficiency may guide novel strategies for precision HB therapy.
Collapse
Affiliation(s)
- Linna Lu
- Institute of HematologyThe Second Hospital of Shanxi Medical UniversityTaiyuanPeople's Republic of China
| | - Lingyu Wang
- Institute of HematologyThe Second Hospital of Shanxi Medical UniversityTaiyuanPeople's Republic of China
| | - Wukang Shen
- Institute of HematologyThe Second Hospital of Shanxi Medical UniversityTaiyuanPeople's Republic of China
| | - Shuai Fang
- Institute of HematologyThe Second Hospital of Shanxi Medical UniversityTaiyuanPeople's Republic of China
| | - Lidong Zhao
- Institute of HematologyThe Second Hospital of Shanxi Medical UniversityTaiyuanPeople's Republic of China
| | - Xuchen Hu
- Institute of HematologyThe Second Hospital of Shanxi Medical UniversityTaiyuanPeople's Republic of China
| | - Linhua Yang
- Institute of HematologyThe Second Hospital of Shanxi Medical UniversityTaiyuanPeople's Republic of China
| | - Gang Wang
- Institute of HematologyThe Second Hospital of Shanxi Medical UniversityTaiyuanPeople's Republic of China
| |
Collapse
|
65
|
Arbab M, Matuszek Z, Kray KM, Du A, Newby GA, Blatnik AJ, Raguram A, Richter MF, Zhao KT, Levy JM, Shen MW, Arnold WD, Wang D, Xie J, Gao G, Burghes AHM, Liu DR. Base editing rescue of spinal muscular atrophy in cells and in mice. Science 2023; 380:eadg6518. [PMID: 36996170 PMCID: PMC10270003 DOI: 10.1126/science.adg6518] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, arises from survival motor neuron (SMN) protein insufficiency resulting from SMN1 loss. Approved therapies circumvent endogenous SMN regulation and require repeated dosing or may wane. We describe genome editing of SMN2, an insufficient copy of SMN1 harboring a C6>T mutation, to permanently restore SMN protein levels and rescue SMA phenotypes. We used nucleases or base editors to modify five SMN2 regulatory regions. Base editing converted SMN2 T6>C, restoring SMN protein levels to wild type. Adeno-associated virus serotype 9-mediated base editor delivery in Δ7SMA mice yielded 87% average T6>C conversion, improved motor function, and extended average life span, which was enhanced by one-time base editor and nusinersen coadministration (111 versus 17 days untreated). These findings demonstrate the potential of a one-time base editing treatment for SMA.
Collapse
Affiliation(s)
- Mandana Arbab
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Zaneta Matuszek
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Kaitlyn M. Kray
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA
| | - Ailing Du
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA 01605, USA
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anton J. Blatnik
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA
| | - Aditya Raguram
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michelle F. Richter
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kevin T. Zhao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jonathan M. Levy
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Max W. Shen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - W. David Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA
- NextGen Precision Health, University of Missouri, Columbia, MO 65212, USA
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center and RNA Therapeutics Institute, University of Massachusetts, Medical School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA 01605, USA
- Microbiology and Physiological Systems, University of Massachusetts, Medical School, Worcester, MA 01605, USA
| | - Arthur H. M. Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
66
|
Garner AL. Contemporary Progress and Opportunities in RNA-Targeted Drug Discovery. ACS Med Chem Lett 2023; 14:251-259. [PMID: 36923915 PMCID: PMC10009794 DOI: 10.1021/acsmedchemlett.3c00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The surprising discovery that RNAs are the predominant gene products to emerge from the human genome catalyzed a renaissance in RNA biology. It is now well-understood that RNAs act as more than just a messenger and comprise a large and diverse family of ribonucleic acids of differing sizes, structures, and functions. RNAs play expansive roles in the cell, contributing to the regulation and fine-tuning of nearly all aspects of gene expression and genome architecture. In line with the significance of these functions, we have witnessed an explosion in discoveries connecting RNAs with a variety of human diseases. Consequently, the targeting of RNAs, and more broadly RNA biology, has emerged as an untapped area of drug discovery, making the search for RNA-targeted therapeutics of great interest. In this Microperspective, I highlight contemporary learnings in the field and present my views on how to catapult us toward the systematic discovery of RNA-targeted medicines.
Collapse
Affiliation(s)
- Amanda L. Garner
- Department of Medicinal Chemistry,
College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
67
|
Li Y, Zeng H, Wei Y, Ma X, He Z. An Overview of the Therapeutic Strategies for the Treatment of Spinal Muscular Atrophy. Hum Gene Ther 2023; 34:180-191. [PMID: 36762938 DOI: 10.1089/hum.2022.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a recessive, neurodegenerative disorder. It is one of the most common genetic causes of infant mortality and is characterized by muscle weakness, loss of ambulation, and respiratory failure. SMA is primarily caused by a homozygous deletion or mutation of the survival motor neuron 1 (SMN1) gene. Humans possess a second, nearly identical copy of SMN, known as the SMN2 gene. Although the disease severity correlates inversely with the number of SMN2 copies present, it can never completely compensate for the loss of SMN1 in patients with SMA; SMN2 expresses only a fraction of the functional SMN transcript. The SMN protein is ubiquitous in human cells and plays several roles, ranging from assembling the spliceosome machinery to autophagy, RNA metabolism, signal transduction, cellular homeostasis, DNA repair, and recombination. Although the underlying mechanism remains unclear, anterior horn cells of the spinal cord gray matter are highly vulnerable to decreased SMN protein levels. To harness SMN2's ability to provide SMN function, two treatment strategies have been approved by the Food and Drug Administration (FDA), including an antisense oligonucleotide, nusinersen (Spinraza), and a small molecule, risdiplam (Evrysdi). Onasemnogene abeparvovec (Zolgensma) is an FDA-approved adeno-associated virus 9-mediated gene replacement therapy that creates a copy of the human SMN1 gene. In this review, we summarize the SMA etiology and FDA-approved therapies, and discuss the development of SMA therapeutic strategies and the challenges we faced.
Collapse
Affiliation(s)
- Yueyi Li
- Division of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyu Zeng
- Division of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhao Wei
- Division of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Division of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyao He
- Division of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
68
|
Günther R. [Gene Therapies in Motor Neuron Diseases ALS and SMA]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023; 91:153-163. [PMID: 36822211 DOI: 10.1055/a-2002-5215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
In the past, the diagnosis of motor neuron diseases such as amyotrophic lateral sclerosis (ALS) and 5q-associated spinal muscular atrophy (SMA) meant powerlessness in the face of seemingly untreatable diseases with severe motor-functional limitations and sometimes fatal courses. Recent advances in an understanding of the genetic causalities of these diseases, combined with success in the development of targeted gene therapy strategies, spell hope for effective, innovative therapeutic approaches, pioneering the ability to treat neurodegenerative diseases. While gene therapies have been approved for SMA since a few years, gene therapy research in ALS is still in clinical trials with encouraging results. This article provides an overview of the genetic background of ALS and SMA known to date and gene therapy approaches to them with a focus on therapy candidates that are in clinical trials or have already gained market approval.
Collapse
Affiliation(s)
- René Günther
- Klinik und Poliklinik für Neurologie, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
69
|
Zhong Z, Jiang Y, Zhao L, Wang Y, Zhang Z. Establishment and characterization of the ovary cell line derived from two-spot puffer Takifugu bimaculatus and its application for gene editing and marine toxicology. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109528. [PMID: 36470397 DOI: 10.1016/j.cbpc.2022.109528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Takifugu bimaculatus is a marine fish with high nutritional value. Its ovary contains tetrodotoxin (TTX) which is a severe neurotoxin that limits its edible value of it. To understand the mechanism of oogenesis and production of TTX in T. bimaculatus, an ovarian cell line named TBO from an adolescent ovary was established. TBO was composed of fibroblast-like cells that expressed the ovarian follicle cells marker gene Foxl2 and highly expressed TTX binding protein 2 (PSTBP2) but did not express the germ cells marker gene Vasa. Therefore, TBO seems to be mainly composed of follicle cells and possibly a small percentage of oocytes. Electroporation was used to successfully transfect the pEGFP-N1 and pNanog-N1 vectors into the TBO cell line with a high transfection efficiency. The morphological changes and survival rates of the exposed cells proved that this cell line was effective for exposure to conotoxins (CTXs), another group of toxins related to food safety. Furthermore, PSTBP2 was knocked out in TBO using CRISPR/Cas9 technology, showing that sgRNA2 could mutate PSTBP2. The results suggested that TBO will be more convenient, efficient, and rapid for reproduction and toxicology investigation, and gene editing. This study laid the groundwork for future research into the fish gonadal cell culture and food-related marine toxins. In conclusion, a cell line has been generated from T. bimaculatus, which might represent a valuable model for fish studies in the fields of toxicology and gene editing.
Collapse
Affiliation(s)
- Zhaowei Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.
| | - Yonghua Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Liping Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
70
|
Yang X, Childs-Disney JL, Disney MD. A meditation on accelerating the development of small molecule medicines targeting RNA. Expert Opin Drug Discov 2023; 18:115-117. [PMID: 35658797 PMCID: PMC9878438 DOI: 10.1080/17460441.2022.2084528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Xueyi Yang
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458
| | | | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458
| |
Collapse
|
71
|
Lightfoot HL, Smith GF. Targeting RNA with small molecules-A safety perspective. Br J Pharmacol 2023. [PMID: 36631428 DOI: 10.1111/bph.16027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/30/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
RNA is a major player in cellular function, and consequently can drive a number of disease pathologies. Over the past several years, small molecule-RNA targeting (smRNA targeting) has developed into a promising drug discovery approach. Numerous techniques, tools, and assays have been developed to support this field, and significant investments have been made by pharmaceutical and biotechnology companies. To date, the focus has been on identifying disease validated primary targets for smRNA drug development, yet RNA as a secondary (off) target for all small molecule drug programs largely has been unexplored. In this perspective, we discuss structure, target, and mechanism-driven safety aspects of smRNAs and highlight how these parameters can be evaluated in drug discovery programs to produce potentially safer drugs.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Safety and Mechanistic Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Graham F Smith
- Data Science and AI, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
72
|
Abstract
Precursor mRNA (pre-mRNA) splicing is an essential step in human gene expression and is carried out by a large macromolecular machine called the spliceosome. Given the spliceosome's role in shaping the cellular transcriptome, it is not surprising that mutations in the splicing machinery can result in a range of human diseases and disorders (spliceosomopathies). This review serves as an introduction into the main features of the pre-mRNA splicing machinery in humans and how changes in the function of its components can lead to diseases ranging from blindness to cancers. Recently, several drugs have been developed that interact directly with this machinery to change splicing outcomes at either the single gene or transcriptome-scale. We discuss the mechanism of action of several drugs that perturb splicing in unique ways. Finally, we speculate on what the future may hold in the emerging area of spliceosomopathies and spliceosome-targeted treatments.
Collapse
Affiliation(s)
- Sierra L. Love
- Genetics Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph D. Emerson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron A. Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
73
|
Ilg MM, Lapthorn AR, Ralph DJ, Cellek S. Phenotypic screening of 1,953 FDA-approved drugs reveals 26 hits with potential for repurposing for Peyronie's disease. PLoS One 2022; 17:e0277646. [PMID: 36508413 PMCID: PMC9744312 DOI: 10.1371/journal.pone.0277646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 11/01/2022] [Indexed: 12/14/2022] Open
Abstract
Drug repurposing has been shown to bring safe medications to new patient populations, as recently evidenced by the COVID-19 pandemic. We investigated whether we could use phenotypic screening to repurpose drugs for the treatment of Peyronie's disease (PD). PD is a fibrotic disease characterised by continued myofibroblast presence and activity leading to formation of a plaque in the penile tunica albuginea (TA) that can cause pain during erection, erectile dysfunction, and penile deformity. PD affects 3-9% of men with treatment options limited to surgery or injection of collagenase which can only be utilised at late stages after the plaque is formed. Currently there are no approved medications that can be offered to patients presenting with early disease before the formation of the plaque. Drug repurposing may therefore be the ideal strategy to identify medical treatments to address this unmet medical need in early PD. We used primary human fibroblasts from PD patients in a phenotypic screening assay that measures TGF-β1-induced myofibroblast transformation which is the main cellular phenotype that drives the pathology in early PD. A library of FDA-approved 1,953 drugs was screened in duplicate wells at a single concentration (10 μM) in presence of TGF-β1. The myofibroblast marker α-SMA was quantified after 72h incubation. A positive control of SB-505124 (TGF-β1 receptor antagonist) was included on each plate. Hits were defined as showing >80% inhibition, whilst retaining >80% cell viability. 26 hits (1.3%) were identified which were divided into the following main groups: anti-cancer drugs, anti-inflammation, neurology, endocrinology, and imaging agents. Five of the top-ten drugs that increase myofibroblast-transformation appear to act on VEGFR. This is the first phenotypic screening of FDA-approved drugs for PD and our results suggest that it is a viable method to predict drugs with potential for repurposing to treat early PD.
Collapse
Affiliation(s)
- Marcus M. Ilg
- Medical Technology Research Centre, School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Alice R. Lapthorn
- Medical Technology Research Centre, School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Chelmsford, United Kingdom
| | - David J. Ralph
- Medical Technology Research Centre, School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Chelmsford, United Kingdom
- Department of Urology, University College London Hospital, London, United Kingdom
| | - Selim Cellek
- Medical Technology Research Centre, School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Chelmsford, United Kingdom
- * E-mail:
| |
Collapse
|
74
|
Chiriboga CA. Pharmacotherapy for Spinal Muscular Atrophy in Babies and Children: A Review of Approved and Experimental Therapies. Paediatr Drugs 2022; 24:585-602. [PMID: 36028610 DOI: 10.1007/s40272-022-00529-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/25/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive degenerative neuromuscular disorder characterized by loss of spinal motor neurons leading to muscle weakness and atrophy that is caused by survival motor neuron (SMN) protein deficiency resulting from the biallelic loss of the SMN1 gene. The SMN2 gene modulates the SMA phenotype, as a small fraction of its transcripts are alternatively spliced to produce full-length SMN (fSMN) protein. SMN-targeted therapies increase SMN protein; mRNA therapies, nusinersen and risdiplam, increase the amount of fSMN transcripts alternatively spliced from the SMN2 gene, while gene transfer therapy, onasemnogene abeparvovec xioi, increases SMN protein by introducing the hSMN gene into various tissues, including spinal cord via an AAV9 vector. These SMN-targeted therapies have been found effective in improving outcomes and are approved for use in SMA in the US and elsewhere. This article discusses the clinical trial results for SMN-directed therapies with a focus on efficacy, side effects and treatment response predictors. It also discusses preliminary data from muscle-targeted trials, as single agents and in combination with SMN-targeted therapies, as well as other classes of SMA treatments.
Collapse
Affiliation(s)
- Claudia A Chiriboga
- Division of Child Neurology, Department of Neurology, Columbia University Medical Center, 180 Fort Washington Ave, New York, NY, 10032, USA.
| |
Collapse
|
75
|
Palacios DS. Drug Hunting at the Nexus of Medicinal Chemistry and Chemical Biology and the Discovery of Novel Therapeutic Modalities. J Med Chem 2022; 65:13594-13613. [PMID: 36206538 DOI: 10.1021/acs.jmedchem.2c01491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small molecules designed to modulate protein function have been remarkably successful in advancing human health. As the frontiers of medicine and understanding of disease pathogenesis continue to expand, small molecule scientists must also pursue the development of novel therapeutic modalities beyond functional protein modulation to address diseases of unmet medical need. In this vein, this Perspective will highlight two emerging modalities, selective mRNA splice modulation and targeted protein degradation, as mechanisms that affect protein abundance, rather than protein function, to broaden the scope of low-molecular-weight treatable diseases. Key to the elucidation and development of these mechanisms was the interplay and contemporaneous efforts in medicinal chemistry and chemical biology. Continued research at the intersection of these two fields will be critical for the identification of novel targets and mechanisms toward the development of the next generation of small molecule therapeutics.
Collapse
Affiliation(s)
- Daniel S Palacios
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
76
|
Childs-Disney JL, Yang X, Gibaut QMR, Tong Y, Batey RT, Disney MD. Targeting RNA structures with small molecules. Nat Rev Drug Discov 2022; 21:736-762. [PMID: 35941229 PMCID: PMC9360655 DOI: 10.1038/s41573-022-00521-4] [Citation(s) in RCA: 274] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 01/07/2023]
Abstract
RNA adopts 3D structures that confer varied functional roles in human biology and dysfunction in disease. Approaches to therapeutically target RNA structures with small molecules are being actively pursued, aided by key advances in the field including the development of computational tools that predict evolutionarily conserved RNA structures, as well as strategies that expand mode of action and facilitate interactions with cellular machinery. Existing RNA-targeted small molecules use a range of mechanisms including directing splicing - by acting as molecular glues with cellular proteins (such as branaplam and the FDA-approved risdiplam), inhibition of translation of undruggable proteins and deactivation of functional structures in noncoding RNAs. Here, we describe strategies to identify, validate and optimize small molecules that target the functional transcriptome, laying out a roadmap to advance these agents into the next decade.
Collapse
Affiliation(s)
| | - Xueyi Yang
- Department of Chemistry, Scripps Research, Jupiter, FL, USA
| | | | - Yuquan Tong
- Department of Chemistry, Scripps Research, Jupiter, FL, USA
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO, USA.
| | | |
Collapse
|
77
|
Abstract
PURPOSE OF REVIEW The development of new therapies has brought spinal muscular atrophy (SMA) into the spotlight. However, this was preceded by a long journey - from the first clinical description to the discovery of the genetic cause to molecular mechanisms of RNA and DNA technology. RECENT FINDINGS Since 2016, the antisense oligonucleotide nusinersen has been (FDA) approved for the treatment of SMA, followed by the gene replacement therapy onasemnogene abeparvovec-xioi in 2019 and the small-molecule risdiplam in 2020. These drugs, all targeting upregulation of the SMN protein not only showed remarkable effects in clinical trials but also in real-world settings. SMA has been implemented in newborn screening in many countries around the world. SMN-independent strategies targeting skeletal muscle, for example, may play another therapeutic approach in the future. SUMMARY This review aims to summarize the major clinical and basic science achievements in the field of SMA.
Collapse
Affiliation(s)
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
78
|
Rozza R, Janoš P, Spinello A, Magistrato A. Role of computational and structural biology in the development of small-molecule modulators of the spliceosome. Expert Opin Drug Discov 2022; 17:1095-1109. [PMID: 35983696 DOI: 10.1080/17460441.2022.2114452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION RNA splicing is a pivotal step of eukaryotic gene expression during which the introns are excised from the precursor (pre-)RNA and the exons are joined together to form mature RNA products (i.e a protein-coding mRNA or long non-coding (lnc)RNAs). The spliceosome, a complex ribonucleoprotein machine, performs pre-RNA splicing with extreme precision. Deregulated splicing is linked to cancer, genetic, and neurodegenerative diseases. Hence, the discovery of small-molecules targeting core spliceosome components represents an appealing therapeutic opportunity. AREA COVERED Several atomic-level structures of the spliceosome and distinct splicing-modulators bound to its protein/RNA components have been solved. Here, we review recent advances in the discovery of small-molecule splicing-modulators, discuss opportunities and challenges for their therapeutic applicability, and showcase how structural data and/or all-atom simulations can illuminate key facets of their mechanism, thus contributing to future drug-discovery campaigns. EXPERT OPINION This review highlights the potential of modulating pre-RNA splicing with small-molecules, and anticipates how the synergy of computer and wet-lab experiments will enrich our understanding of splicing regulation/deregulation mechanisms. This information will aid future structure-based drug-discovery efforts aimed to expand the currently limited portfolio of selective splicing-modulators.
Collapse
Affiliation(s)
- Riccardo Rozza
- National Research Council of Italy, Institute of Materials-foundry (CNR-IOM) C/o SISSA, Trieste, Italy
| | - Pavel Janoš
- National Research Council of Italy, Institute of Materials-foundry (CNR-IOM) C/o SISSA, Trieste, Italy
| | - Angelo Spinello
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo, Palermo, Italy
| | - Alessandra Magistrato
- National Research Council of Italy, Institute of Materials-foundry (CNR-IOM) C/o SISSA, Trieste, Italy
| |
Collapse
|
79
|
Huang S, Hao XY, Li YJ, Wu JY, Xiang DX, Luo S. Nonviral delivery systems for antisense oligonucleotide therapeutics. Biomater Res 2022; 26:49. [PMID: 36180936 PMCID: PMC9523189 DOI: 10.1186/s40824-022-00292-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are an important tool for the treatment of many genetic disorders. However, similar to other gene drugs, vectors are often required to protect them from degradation and clearance, and to accomplish their transport in vivo. Compared with viral vectors, artificial nonviral nanoparticles have a variety of design, synthesis, and formulation possibilities that can be selected to accomplish protection and delivery for specific applications, and they have served critical therapeutic purposes in animal model research and clinical applications, allowing safe and efficient gene delivery processes into the target cells. We believe that as new ASO drugs develop, the exploration for corresponding nonviral vectors is inevitable. Intensive development of nonviral vectors with improved delivery strategies based on specific targets can continue to expand the value of ASO therapeutic approaches. Here, we provide an overview of current nonviral delivery strategies, including ASOs modifications, action mechanisms, and multi-carrier methods, which aim to address the irreplaceable role of nonviral vectors in the progressive development of ASOs delivery.
Collapse
Affiliation(s)
- Si Huang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xin-Yan Hao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yong-Jiang Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jun-Yong Wu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Da-Xiong Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shilin Luo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China. .,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China. .,Institute of Clinical Pharmacy, Central South University, Changsha, China.
| |
Collapse
|
80
|
Qiu J, Wu L, Qu R, Jiang T, Bai J, Sheng L, Feng P, Sun J. History of development of the life-saving drug "Nusinersen" in spinal muscular atrophy. Front Cell Neurosci 2022; 16:942976. [PMID: 36035257 PMCID: PMC9414009 DOI: 10.3389/fncel.2022.942976] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disorder with an incidence of 1/6,000-1/10,000 and is the leading fatal disease among infants. Previously, there was no effective treatment for SMA. The first effective drug, nusinersen, was approved by the US FDA in December 2016, providing hope to SMA patients worldwide. The drug was introduced in the European Union in 2017 and China in 2019 and has so far saved the lives of several patients in most parts of the world. Nusinersen are fixed sequence antisense oligonucleotides with special chemical modifications. The development of nusinersen progressed through major scientific discoveries in medicine, genetics, biology, and other disciplines, wherein several scientists have made substantial contributions. In this article, we will briefly describe the pathogenesis and therapeutic strategies of SMA, summarize the timeline of important scientific findings during the development of nusinersen in a detailed, scientific, and objective manner, and finally discuss the implications of the development of nusinersen for SMA research.
Collapse
Affiliation(s)
- Jiaying Qiu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Liucheng Wu
- Laboratory Animal Center, Nantong University, Nantong, China
| | - Ruobing Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Tao Jiang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jialin Bai
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lei Sheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengchao Feng
- Nanjing Antisense Biopharmaceutical Co., Ltd, Nanjing, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| |
Collapse
|
81
|
Carlini MJ, Triplett MK, Pellizzoni L. Neuromuscular denervation and deafferentation but not motor neuron death are disease features in the Smn2B/- mouse model of SMA. PLoS One 2022; 17:e0267990. [PMID: 35913953 PMCID: PMC9342749 DOI: 10.1371/journal.pone.0267990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/13/2022] [Indexed: 12/02/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by loss of motor neurons and skeletal muscle atrophy which is caused by ubiquitous deficiency in the survival motor neuron (SMN) protein. Several cellular defects contribute to sensory-motor circuit pathology in SMA mice, but the underlying mechanisms have often been studied in one mouse model without validation in other available models. Here, we used Smn2B/- mice to investigate specific behavioral, morphological, and functional aspects of SMA pathology that we previously characterized in the SMNΔ7 model. Smn2B/- SMA mice on a pure FVB/N background display deficits in body weight gain and muscle strength with onset in the second postnatal week and median survival of 19 days. Morphological analysis revealed severe loss of proprioceptive synapses on the soma of motor neurons and prominent denervation of neuromuscular junctions (NMJs) in axial but not distal muscles. In contrast, no evidence of cell death emerged from analysis of several distinct pools of lumbar motor neurons known to be lost in the disease. Moreover, SMA motor neurons from Smn2B/- mice showed robust nuclear accumulation of p53 but lack of phosphorylation of serine 18 at its amino-terminal, which selectively marks degenerating motor neurons in the SMNΔ7 mouse model. These results indicate that NMJ denervation and deafferentation, but not motor neuron death, are conserved features of SMA pathology in Smn2B/- mice.
Collapse
Affiliation(s)
- Maria J. Carlini
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, United States of America
- Department of Neurology, Columbia University, New York, NY, United States of America
| | - Marina K. Triplett
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, United States of America
- Department of Neurology, Columbia University, New York, NY, United States of America
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, United States of America
- Department of Neurology, Columbia University, New York, NY, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States of America
| |
Collapse
|
82
|
Kanda S, Moulton E, Butchbach MER. Effects of Inhibitors of SLC9A-Type Sodium-Proton Exchangers on Survival Motor Neuron 2 ( SMN2) mRNA Splicing and Expression. Mol Pharmacol 2022; 102:92-105. [PMID: 35667685 PMCID: PMC9341265 DOI: 10.1124/molpharm.122.000529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive, pediatric-onset disorder caused by the loss of spinal motor neurons, thereby leading to muscle atrophy. SMA is caused by the loss of or mutations in the survival motor neuron 1 (SMN1) gene. SMN1 is duplicated in humans to give rise to the paralogous survival motor neuron 2 (SMN2) gene. This paralog is nearly identical except for a cytosine to thymine transition within an exonic splicing enhancer element within exon 7. As a result, the majority of SMN2 transcripts lack exon 7 (SMNΔ7), which produces a truncated and unstable SMN protein. Since SMN2 copy number is inversely related to disease severity, it is a well established target for SMA therapeutics development. 5-(N-ethyl-N-isopropyl)amiloride (EIPA), an inhibitor of sodium/proton exchangers (NHEs), has previously been shown to increase exon 7 inclusion and SMN protein levels in SMA cells. In this study, NHE inhibitors were evaluated for their ability to modulate SMN2 expression. EIPA as well as 5-(N,N-hexamethylene)amiloride (HMA) increase exon 7 inclusion in SMN2 splicing reporter lines as well as in SMA fibroblasts. The EIPA-induced exon 7 inclusion occurs via a unique mechanism that does not involve previously identified splicing factors. Transcriptome analysis identified novel targets, including TIA1 and FABP3, for further characterization. EIPA and HMA are more selective at inhibiting the NHE5 isoform, which is expressed in fibroblasts as well as in neuronal cells. These results show that NHE5 inhibition increases SMN2 expression and may be a novel target for therapeutics development. SIGNIFICANCE STATEMENT: This study demonstrates a molecular mechanism by which inhibitors of the sodium-protein exchanger increase the alternative splicing of SMN2 in spinal muscular atrophy cells. NHE5 selective inhibitors increase the inclusion of full-length SMN2 mRNAs by targeting TIA1 and FABP3 expression, which is distinct from other small molecule regulators of SMN2 alternative splicing. This study provides a novel means to increase full-length SMN2 expression and a novel target for therapeutics development.
Collapse
Affiliation(s)
- Sambee Kanda
- Division of Neurology, Nemours Children's Hospital Delaware, Wilmington, Delaware (S.K., E.M., M.E.R.B.); Department of Biological Sciences, University of Delaware, Newark, Delaware (S.K., M.E.R.B.); Center for Pediatric Research, Nemours Biomedical Research, Nemours Children's Hospital Delaware, Wilmington, Delaware (M.E.R.B.); and Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania (M.E.R.B.)
| | - Emily Moulton
- Division of Neurology, Nemours Children's Hospital Delaware, Wilmington, Delaware (S.K., E.M., M.E.R.B.); Department of Biological Sciences, University of Delaware, Newark, Delaware (S.K., M.E.R.B.); Center for Pediatric Research, Nemours Biomedical Research, Nemours Children's Hospital Delaware, Wilmington, Delaware (M.E.R.B.); and Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania (M.E.R.B.)
| | - Matthew E R Butchbach
- Division of Neurology, Nemours Children's Hospital Delaware, Wilmington, Delaware (S.K., E.M., M.E.R.B.); Department of Biological Sciences, University of Delaware, Newark, Delaware (S.K., M.E.R.B.); Center for Pediatric Research, Nemours Biomedical Research, Nemours Children's Hospital Delaware, Wilmington, Delaware (M.E.R.B.); and Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania (M.E.R.B.)
| |
Collapse
|
83
|
Romanelli MN, Manetti D, Braconi L, Dei S, Gabellini A, Teodori E. The piperazine scaffold for novel drug discovery efforts: the evidence to date. Expert Opin Drug Discov 2022; 17:969-984. [PMID: 35848922 DOI: 10.1080/17460441.2022.2103535] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION . Piperazine is a structural element present in drugs belonging to various chemical classes and used for numerous different therapeutic applications; it has been considered a privileged scaffold for drug design. AREAS COVERED The authors have searched examples of piperazine-containing compounds among drugs recently approved by the FDA, and in some research fields (nicotinic receptor modulators, compounds acting against cancer and bacterial multi-drug resistance), looking in particular to the design behind the insertion of this moiety. EXPERT OPINION Piperazine is widely used due to its peculiar characteristics, such as solubility, basicity, chemical reactivity, and conformational properties. This moiety has represented an important tool to modulate pharmacokinetic and pharmacodynamic properties of drugs.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Dina Manetti
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Alessio Gabellini
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
84
|
Sexton AN, Vandivier LE, Petter JC, Mukherjee H, Craig Blain J. Determination of RNA-ligand interactions with the photoaffinity platform PEARL-seq. Methods 2022; 205:83-88. [PMID: 35764246 DOI: 10.1016/j.ymeth.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/29/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022] Open
Abstract
In the development of therapeutics, it is important to establish engagement of a compound to its intended target and identify other targets it binds to. Methods for demonstrating target engagement in the growing field of RNA-targeted therapeutics are therefore needed. We present a detailed protocol for Photoaffinity Evaluation of RNA Ligation-Sequencing (PEARL-seq), a platform for determining interactions between small molecule ligands and their target RNA(s). PEARL-seq allows detection of binding and crosslinking events with single nucleotide resolution and allows measurement of enrichment of the target RNA relative to all other RNAs. PEARL-seq is a valuable tool in the effort to verify bona fide RNA-ligand interactions.
Collapse
Affiliation(s)
- Alec N Sexton
- Arrakis Therapeutics, 828 Winter Street, Waltham MA, USA
| | | | | | | | - J Craig Blain
- Arrakis Therapeutics, 828 Winter Street, Waltham MA, USA
| |
Collapse
|
85
|
Bajusz D, Keserű GM. Maximizing the integration of virtual and experimental screening in hit discovery. Expert Opin Drug Discov 2022; 17:629-640. [PMID: 35671403 DOI: 10.1080/17460441.2022.2085685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Experimental and virtual screening contributes to the discovery of more than 50% of clinical candidates. Considering the similar concept and goals, early-phase drug discovery would benefit from the effective integration of these approaches. AREAS COVERED After reviewing the recent trends in both experimental and virtual screening, the authors discuss different integration strategies from parallel, focused, sequential, and iterative screening. Strategic considerations are demonstrated in a number of real-life case studies. EXPERT OPINION Experimental and virtual screening are complementary approaches that should be integrated in lead discovery settings. Virtual screening can access extremely large synthetically feasible chemical space that can be effectively searched on GPU clusters or cloud architectures. Experimental screening provides reliable datasets by quantitative HTS applications, and DNA-encoded libraries (DEL) have enlarged the chemical space covered by these technologies. These developments, together with the use of artificial intelligence methods, represent new options for their efficient integration. The case studies discussed here demonstrate the benefits of complementary strategies, such as focused and iterative screening.
Collapse
Affiliation(s)
- Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
86
|
Wheeler JR, Whitney ON, Vogler TO, Nguyen ED, Pawlikowski B, Lester E, Cutler A, Elston T, Dalla Betta N, Parker KR, Yost KE, Vogel H, Rando TA, Chang HY, Johnson AM, Parker R, Olwin BB. RNA-binding proteins direct myogenic cell fate decisions. eLife 2022; 11:e75844. [PMID: 35695839 PMCID: PMC9191894 DOI: 10.7554/elife.75844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
RNA-binding proteins (RBPs), essential for skeletal muscle regeneration, cause muscle degeneration and neuromuscular disease when mutated. Why mutations in these ubiquitously expressed RBPs orchestrate complex tissue regeneration and direct cell fate decisions in skeletal muscle remains poorly understood. Single-cell RNA-sequencing of regenerating Mus musculus skeletal muscle reveals that RBP expression, including the expression of many neuromuscular disease-associated RBPs, is temporally regulated in skeletal muscle stem cells and correlates with specific stages of myogenic differentiation. By combining machine learning with RBP engagement scoring, we discovered that the neuromuscular disease-associated RBP Hnrnpa2b1 is a differentiation-specifying regulator of myogenesis that controls myogenic cell fate transitions during terminal differentiation in mice. The timing of RBP expression specifies cell fate transitions by providing post-transcriptional regulation of messenger RNAs that coordinate stem cell fate decisions during tissue regeneration.
Collapse
Affiliation(s)
- Joshua R Wheeler
- Department of Biochemistry, University of ColoradoBoulderUnited States
- Medical Scientist Training Program, University of Colorado Anschutz Medical CampusAuroraUnited States
- Howard Hughes Medical Institute, University of ColoradoBoulderUnited States
- Department of Pathology, Stanford UniversityStanfordUnited States
- Department of Neuropathology, Stanford UniversityStanfordUnited States
| | - Oscar N Whitney
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Thomas O Vogler
- Medical Scientist Training Program, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
- Department of Surgery, University of ColoradoAuroraUnited States
| | - Eric D Nguyen
- Medical Scientist Training Program, University of Colorado Anschutz Medical CampusAuroraUnited States
- Molecular Biology Program and Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Bradley Pawlikowski
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| | - Evan Lester
- Department of Biochemistry, University of ColoradoBoulderUnited States
- Medical Scientist Training Program, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Alicia Cutler
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| | - Tiffany Elston
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| | - Nicole Dalla Betta
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| | - Kevin R Parker
- Center for Personal and Dynamic Regulomes, Stanford UniversityPalo AltoUnited States
| | - Kathryn E Yost
- Center for Personal and Dynamic Regulomes, Stanford UniversityPalo AltoUnited States
| | - Hannes Vogel
- Department of Pathology, Stanford UniversityStanfordUnited States
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of MedicineStanfordUnited States
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of MedicineStanfordUnited States
- Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care SystemPalo AltoUnited States
| | - Howard Y Chang
- Center for Personal and Dynamic Regulomes, Stanford UniversityPalo AltoUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Aaron M Johnson
- Molecular Biology Program and Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
- University of Colorado School of Medicine, RNA Bioscience Initiative, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Roy Parker
- Howard Hughes Medical Institute, University of ColoradoBoulderUnited States
| | - Bradley B Olwin
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| |
Collapse
|
87
|
López-Cortés A, Echeverría-Garcés G, Ramos-Medina MJ. Molecular Pathogenesis and New Therapeutic Dimensions for Spinal Muscular Atrophy. BIOLOGY 2022; 11:biology11060894. [PMID: 35741415 PMCID: PMC9219894 DOI: 10.3390/biology11060894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
The condition known as 5q spinal muscular atrophy (SMA) is a devastating autosomal recessive neuromuscular disease caused by a deficiency of the ubiquitous protein survival of motor neuron (SMN), which is encoded by the SMN1 and SMN2 genes. It is one of the most common pediatric recessive genetic diseases, and it represents the most common cause of hereditary infant mortality. After decades of intensive basic and clinical research efforts, and improvements in the standard of care, successful therapeutic milestones have been developed, delaying the progression of 5q SMA and increasing patient survival. At the same time, promising data from early-stage clinical trials have indicated that additional therapeutic options are likely to emerge in the near future. Here, we provide updated information on the molecular underpinnings of SMA; we also provide an overview of the rapidly evolving therapeutic landscape for SMA, including SMN-targeted therapies, SMN-independent therapies, and combinational therapies that are likely to be key for the development of treatments that are effective across a patient’s lifespan.
Collapse
Affiliation(s)
- Andrés López-Cortés
- Programa de Investigación en Salud Global, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito 170302, Ecuador
- Facultad de Medicina, Universidad de Las Américas, Quito 170124, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28001 Madrid, Spain; (G.E.-G.); (M.J.R.-M.)
- Correspondence:
| | - Gabriela Echeverría-Garcés
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28001 Madrid, Spain; (G.E.-G.); (M.J.R.-M.)
| | - María José Ramos-Medina
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28001 Madrid, Spain; (G.E.-G.); (M.J.R.-M.)
| |
Collapse
|
88
|
Byun WG, Lim D, Park SB. Small-molecule modulators of protein–RNA interactions. Curr Opin Chem Biol 2022; 68:102149. [DOI: 10.1016/j.cbpa.2022.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
|
89
|
Zhang L, Abendroth F, Vázquez O. A Chemical Biology Perspective to Therapeutic Regulation of RNA Splicing in Spinal Muscular Atrophy (SMA). ACS Chem Biol 2022; 17:1293-1307. [PMID: 35639849 DOI: 10.1021/acschembio.2c00161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Manipulation of RNA splicing machinery has emerged as a drug modality. Here, we illustrate the potential of this novel paradigm to correct aberrant splicing events focused on the recent therapeutic advances in spinal muscular atrophy (SMA). SMA is an incurable neuromuscular disorder and at present the primary genetic cause of early infant death. This Review summarizes the exciting journey from the first reported SMA cases to the currently approved splicing-switching treatments, i.e., antisense oligonucleotides and small-molecule modifiers. We emphasize both chemical structures and molecular bases for recognition. We briefly discuss the advantages and disadvantages of these treatments and include the remaining challenges and future directions. Finally, we also predict that these success stories will contribute to further therapies for human diseases by RNA-splicing control.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Frank Abendroth
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Olalla Vázquez
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| |
Collapse
|
90
|
Phenotypic drug discovery: recent successes, lessons learned and new directions. Nat Rev Drug Discov 2022; 21:899-914. [DOI: 10.1038/s41573-022-00472-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 12/29/2022]
|
91
|
Möller L, Guerci L, Isert C, Atz K, Schneider G. Translating from proteins to ribonucleic acids for ligand-binding site detection. Mol Inform 2022; 41:e2200059. [PMID: 35577762 DOI: 10.1002/minf.202200059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022]
Abstract
Identifying druggable ligand-binding sites on the surface of the macromolecular targets is an important process in structure-based drug discovery. Deep-learning models have been shown to successfully predict ligand-binding sites of proteins. As a step toward predicting binding sites in RNA and RNA-protein complexes, we employ three-dimensional convolutional neural networks. We introduce a dataset splitting approach to minimize structure-related bias in training data, and investigate the influence of protein-based neural network pre-training before fine-tuning on RNA structures. Models that were pre-trained on proteins considerably outperformed the models that were trained exclusively on RNA structures. Overall, 71% of the known RNA binding sites were correctly located within 4 Å of their true centres with a structural overlap of at least 25%.
Collapse
|
92
|
Long P, Shi Y, Sun F, Wei Y, Wu B, Li Q, Jie Q, Ma Y. Establishment of a non‐integrated induced pluripotent stem cell line derived from human chorionic villi cells. J Clin Lab Anal 2022; 36:e24464. [PMID: 35527669 PMCID: PMC9169189 DOI: 10.1002/jcla.24464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background Few studies have investigated the generation of induced pluripotent stem cells (iPSCs) derived from human primary chorionic villi (CV) cells. The present study aimed to explore an optimal electroporation (EP) condition for generating non‐integrated iPSCs from CV cells (CV‐iPSCs). Methods The EGFP plasmid was transfected into CV cells under different EP conditions to evaluate cell adherence and the rate of EGFP positive cells. Subsequently, CV cells were transfected with the pEP4‐E02S‐ET2K and pCEP4‐miR‐302–367 plasmids under optimal EP conditions. Finally, CV‐iPSC pluripotency, karyotype analysis, and differentiation ability were investigated. Results Following EP for 48 h under different conditions, different confluency, and transfection efficiency were observed in CV cells. Higher cell density was observed in CV cells exposed to 200 V for 100 s, while higher transfection efficiency was obtained in cells electroporated at a pulse of 300 V for 300 s. To generate typical primitive iPSCs, CV cells were transfected with pEP4‐E02S‐ET2K and pCEP4‐miR‐302–367 plasmids using EP and were then cultured in induction medium for 20 days under selected conditions. Subsequently, monoclonal iPSCs were isolated and were evaluated pluripotency with AP positive staining, the expression of OCT4, SOX2, and NANOG in vitro and the formation of three germ layer teratomas in vivo. Conclusion CV‐iPSCs were successfully established under the conditions of 100 μl shock cup and EP pulse of 200 V for 300 s for two times. This may provide a novel strategy for investigating the pathogenesis of several diseases and gene therapy.
Collapse
Affiliation(s)
- Ping Long
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
- Guizhou Qiannan People's Hospital Guizhou China
| | - Yuechuan Shi
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
- Hainan Medical University Haikou Hainan China
| | - Fei Sun
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
- Department of Obstetrics and Gynecology of Nanfang Hospital Southern Medical University Guangzhou China
| | - Yunjian Wei
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
| | - Bangyong Wu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
| | - Qiuling Jie
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
- Hainan Medical University Haikou Hainan China
| |
Collapse
|
93
|
Brakemeier S, Stolte B, Kleinschnitz C, Hagenacker T. Treatment of Adult Spinal Muscular Atrophy: Overview and Recent Developments. Curr Pharm Des 2022; 28:892-898. [PMID: 35352647 DOI: 10.2174/1381612828666220329115433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Spinal muscular atrophy (SMA) is a rare genetic neuromuscular disease leading to progressive and in many cases severe muscle weakness and atrophy in the natural disease course. An increasing number of gene-based treatment options have become available in recent years. Growing knowledge about the underlying genetic mechanisms makes the disease well amenable to this. Over the past few years, many data on new treatments, their mechanisms of action and therapeutic outcomes have been published, reflecting the current dynamics in this field. With the approval of the antisense oligonucleotide nusinersen, the vector-based therapy with onasemnogene abeparvovec and the small molecule splicing modifier risdiplam, three gene therapeutic drugs are available for the treatment of SMA showing improvement in motor function. But in the pivotal studies several relevant parameters have not been addressed. There is a data gap for the treatment outcome of adult individuals with SMA as well as for several other relevant outcome parameters like bulbary or ventilatory function. With increasing treatment options, additional individual therapies have become necessary. Studies on combination therapies or switch of therapy, e.g. the sequential administration of onasemnogen abeparvovec and nusinersen, are necessary. An overview of current developments in the field of therapeutic options for adult SMA is presented. Important characteristics of each therapeutic option will be discussed so that the reader can comprehend underlying pathophysiological mechanisms as well as advantages and disadvantages of each therapy. The focus is on gene-based treatment options, but options beyond this are also addressed.
Collapse
Affiliation(s)
- Svenja Brakemeier
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Benjamin Stolte
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Tim Hagenacker
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
94
|
Markati T, Fisher G, Ramdas S, Servais L. Risdiplam: an investigational motor neuron-2 (SMN-2) splicing modifier for spinal muscular atrophy (SMA). Expert Opin Investig Drugs 2022; 31:451-461. [PMID: 35316106 DOI: 10.1080/13543784.2022.2056836] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is a rare autosomal recessive neuromuscular disease which is characterized by muscle atrophy and early death in most patients. Risdiplam is the third overall and first oral drug approved for SMA with disease-modifying potential. Risdiplam acts as a survival motor neuron 2 (SMN2) pre-mRNA splicing modifier with satisfactory safety and efficacy profile. This review aims to critically appraise the place of risdiplam in the map of SMA therapeutics. AREAS COVERED This review gives an overview of the current market for SMA and presents the mechanism of action and the pharmacological properties of risdiplam. It also outlines the development of risdiplam from early preclinical stages through to the most recently published results from phase 2/3 clinical trials. Risdiplam has proved its efficacy in pivotal trials for SMA Types 1, 2, and 3 with a satisfactory safety profile. EXPERT OPINION In the absence of comparative data with the other two approved drugs, the role of risdiplam in the treatment algorithm of affected individuals is examined in three different patient populations based on the age and diagnosis method (newborn screening or clinical, symptom-driven diagnosis). Long-term data and real-world data will play a fundamental role in its future.
Collapse
Affiliation(s)
- Theodora Markati
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Gemma Fisher
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sithara Ramdas
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Laurent Servais
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium
| |
Collapse
|
95
|
Reprogramming RNA processing: an emerging therapeutic landscape. Trends Pharmacol Sci 2022; 43:437-454. [PMID: 35331569 DOI: 10.1016/j.tips.2022.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022]
Abstract
The production of a mature mRNA requires coordination of multiple processing steps, which ultimately control its content, localization, and stability. These steps include some of the largest macromolecular machines in the cell, which were, until recently, considered undruggable due to their biological complexity. Building from an expanded understanding of the underlying mechanisms that drive these processes, a new wave of therapeutics is seeking to target RNA processing. With a focus on impacting gene regulation at the RNA level, such modalities offer potential for sequence-specific resolution in drug design. Here, we review our current understanding of RNA-processing events and their role in gene regulation, with a focus on the therapeutic opportunities that have emerged within this landscape.
Collapse
|
96
|
Shen G, Gao M, Cao Q, Li W. The Molecular Basis of FIX Deficiency in Hemophilia B. Int J Mol Sci 2022; 23:2762. [PMID: 35269902 PMCID: PMC8911121 DOI: 10.3390/ijms23052762] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 12/15/2022] Open
Abstract
Coagulation factor IX (FIX) is a vitamin K dependent protein and its deficiency causes hemophilia B, an X-linked recessive bleeding disorder. More than 1000 mutations in the F9 gene have been identified in hemophilia B patients. Here, we systematically summarize the structural and functional characteristics of FIX and the pathogenic mechanisms of the mutations that have been identified to date. The mechanisms of FIX deficiency are diverse in these mutations. Deletions, insertions, duplications, and indels generally lead to severe hemophilia B. Those in the exon regions generate either frame shift or inframe mutations, and those in the introns usually cause aberrant splicing. Regarding point mutations, the bleeding phenotypes vary from severe to mild in hemophilia B patients. Generally speaking, point mutations in the F9 promoter region result in hemophilia B Leyden, and those in the introns cause aberrant splicing. Point mutations in the coding sequence can be missense, nonsense, or silent mutations. Nonsense mutations generate truncated FIX that usually loses function, causing severe hemophilia B. Silent mutations may lead to aberrant splicing or affect FIX translation. The mechanisms of missense mutation, however, have not been fully understood. They lead to FIX deficiency, often by affecting FIX's translation, protein folding, protein stability, posttranslational modifications, activation to FIXa, or the ability to form functional Xase complex. Understanding the molecular mechanisms of FIX deficiency will provide significant insight for patient diagnosis and treatment.
Collapse
Affiliation(s)
- Guomin Shen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang 471023, China; (M.G.); (Q.C.)
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang 471023, China
| | - Meng Gao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang 471023, China; (M.G.); (Q.C.)
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang 471023, China
| | - Qing Cao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang 471023, China; (M.G.); (Q.C.)
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang 471023, China
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
97
|
Tang Z, Hegde S, Zhao J, Zhu S, Johnson KA, Lorson CL, Wang J. CRISPR-mediated Enzyme Fragment Complementation Assay for Quantification of the Stability of Splice Isoforms. Chembiochem 2022; 23:e202200012. [PMID: 35235240 DOI: 10.1002/cbic.202200012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/22/2022] [Indexed: 11/06/2022]
Abstract
Small-molecule splicing modulators exemplified by an FDA-approved drug, risdiplam, are a new pharmacological modality for regulating the expression and stability of splice isoforms. We report a CRISPR-mediated enzyme fragment complementation (EFC) assay to quantify the splice isoform stability. The EFC assay harnessed a 42 amino acid split of a β-galactosidase (designate α-tag), which could be fused at the termini of the target genes using CRISPR/cas9. The α-tagged splice isoform would be quantified by measuring the enzymatic activity upon complementation with the rest of β-galactosidase. This EFC assay retained all the sequences of introns and exons of the target gene in the native genomic environment that recapitulates the cell biology of the diseases of interest. For a proof-of-concept, we developed a CRISPR-mediated EFC assay targeting the exon 7 of the survival of motor neuron 2 (SMN2) gene. The EFC assay compatible with 384-well plates robustly quantified the splicing modulation activity of small molecules. In this study, we also discovered that a coumarin derivative, compound 4, potently modulate SMN2 splicing at as low as 1.1 nM.
Collapse
Affiliation(s)
- Zhichao Tang
- University of Kansas School of Pharmacy, Medicinal Chemistry, UNITED STATES
| | - Shalakha Hegde
- University of Kansas School of Pharmacy, Medicinal Chemistry, UNITED STATES
| | - Junxing Zhao
- University of Kansas School of Pharmacy, Medicinal Chemistry, UNITED STATES
| | - Shoutian Zhu
- PhenoTarget BioSciences, Inc., Biology, UNITED STATES
| | | | | | - Jingxin Wang
- University of Kansas, Medicinal Chemistry, 2034 Becker Dr, 1050, 66047, Lawrence, UNITED STATES
| |
Collapse
|
98
|
Aslesh T, Yokota T. Restoring SMN Expression: An Overview of the Therapeutic Developments for the Treatment of Spinal Muscular Atrophy. Cells 2022; 11:417. [PMID: 35159227 PMCID: PMC8834523 DOI: 10.3390/cells11030417] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder and one of the most common genetic causes of infant death. It is characterized by progressive weakness of the muscles, loss of ambulation, and death from respiratory complications. SMA is caused by the homozygous deletion or mutations in the survival of the motor neuron 1 (SMN1) gene. Humans, however, have a nearly identical copy of SMN1 known as the SMN2 gene. The severity of the disease correlates inversely with the number of SMN2 copies present. SMN2 cannot completely compensate for the loss of SMN1 in SMA patients because it can produce only a fraction of functional SMN protein. SMN protein is ubiquitously expressed in the body and has a variety of roles ranging from assembling the spliceosomal machinery, autophagy, RNA metabolism, signal transduction, cellular homeostasis, DNA repair, and recombination. Motor neurons in the anterior horn of the spinal cord are extremely susceptible to the loss of SMN protein, with the reason still being unclear. Due to the ability of the SMN2 gene to produce small amounts of functional SMN, two FDA-approved treatment strategies, including an antisense oligonucleotide (AON) nusinersen and small-molecule risdiplam, target SMN2 to produce more functional SMN. On the other hand, Onasemnogene abeparvovec (brand name Zolgensma) is an FDA-approved adeno-associated vector 9-mediated gene replacement therapy that can deliver a copy of the human SMN1. In this review, we summarize the SMA etiology, the role of SMN, and discuss the challenges of the therapies that are approved for SMA treatment.
Collapse
Affiliation(s)
- Tejal Aslesh
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton, AB T6G 2E1, Canada;
| | - Toshifumi Yokota
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton, AB T6G 2E1, Canada;
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton, AB T6G 2E1, Canada
- The Friends of Garret Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, 8812 112 St., Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
99
|
Chappie TA, Abdelmessih M, Ambroise CW, Boehm M, Cai M, Green M, Guilmette E, Steppan CM, Stevens LM, Wei L, Xi S, Hasson SA. Discovery of Small-Molecule CD33 Pre-mRNA Splicing Modulators. ACS Med Chem Lett 2022; 13:55-62. [PMID: 35059124 PMCID: PMC8762744 DOI: 10.1021/acsmedchemlett.1c00396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/29/2021] [Indexed: 01/16/2023] Open
Abstract
CD33/Siglec 3 is a myeloid lineage cell surface receptor that is known to regulate microglia activity. Multiple genome-wide association studies (GWAS) have identified genetic variants in the CD33 gene that convey protection from late-onset Alzheimer's disease. Furthermore, mechanistic studies into GWAS-linked variants suggest that disease protection is attributed to the alternative splicing of exon 2 of the CD33 pre-mRNA. Using a phenomimetic screen, a series of compounds were found to enhance the exclusion of CD33 exon 2, acting as a chemomimetic of the GWAS-linked gene variants. Additional studies confirmed that meyloid lineage cells treated with several of these compounds have a reduced full-length V-domain containing CD33 protein, while targeted RNA-seq concordantly demonstrated that compound 1 increases exon 2 skipping in cellular mRNA pools. These studies demonstrate how pharmacological interventions can be used to manipulate disease-relevant pre-mRNA splicing and provide a starting point for future efforts to identify small molecules that alter neuroimmune function that is rooted in the human biology of neurodegenerative disease.
Collapse
Affiliation(s)
- Thomas A. Chappie
- Internal
Medicine Medicinal Chemistry, Pfizer, Inc., Cambridge, Massachusetts 02139, United States,
| | - Mario Abdelmessih
- Primary
Pharmacology Group, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Claude W. Ambroise
- Internal
Medicine Research Unit, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Markus Boehm
- Internal
Medicine Medicinal Chemistry, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Mi Cai
- Internal
Medicine Research Unit, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Michael Green
- Internal
Medicine Medicinal Chemistry, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Edward Guilmette
- Internal
Medicine Research Unit, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Claire M. Steppan
- Primary
Pharmacology Group, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Lucy M. Stevens
- Primary
Pharmacology Group, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Liuqing Wei
- Internal
Medicine Medicinal Chemistry, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Simon Xi
- Internal
Medicine Research Unit, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Samuel A. Hasson
- Internal
Medicine Research Unit, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
100
|
Jablonka S, Hennlein L, Sendtner M. Therapy development for spinal muscular atrophy: perspectives for muscular dystrophies and neurodegenerative disorders. Neurol Res Pract 2022; 4:2. [PMID: 34983696 PMCID: PMC8725368 DOI: 10.1186/s42466-021-00162-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Major efforts have been made in the last decade to develop and improve therapies for proximal spinal muscular atrophy (SMA). The introduction of Nusinersen/Spinraza™ as an antisense oligonucleotide therapy, Onasemnogene abeparvovec/Zolgensma™ as an AAV9-based gene therapy and Risdiplam/Evrysdi™ as a small molecule modifier of pre-mRNA splicing have set new standards for interference with neurodegeneration. MAIN BODY Therapies for SMA are designed to interfere with the cellular basis of the disease by modifying pre-mRNA splicing and enhancing expression of the Survival Motor Neuron (SMN) protein, which is only expressed at low levels in this disorder. The corresponding strategies also can be applied to other disease mechanisms caused by loss of function or toxic gain of function mutations. The development of therapies for SMA was based on the use of cell culture systems and mouse models, as well as innovative clinical trials that included readouts that had originally been introduced and optimized in preclinical studies. This is summarized in the first part of this review. The second part discusses current developments and perspectives for amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease, as well as the obstacles that need to be overcome to introduce RNA-based therapies and gene therapies for these disorders. CONCLUSION RNA-based therapies offer chances for therapy development of complex neurodegenerative disorders such as amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease. The experiences made with these new drugs for SMA, and also the experiences in AAV gene therapies could help to broaden the spectrum of current approaches to interfere with pathophysiological mechanisms in neurodegeneration.
Collapse
Affiliation(s)
- Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| |
Collapse
|