51
|
Liu C, Mo T, Zhong J, Chen H, Xu H, Yang X, Li Y. Synergistic benefits of lime and 3,4-dimethylpyrazole phosphate application to mitigate the nitrous oxide emissions from acidic soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115387. [PMID: 37598547 DOI: 10.1016/j.ecoenv.2023.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Acidic soils cover approximately 50 % of the arable land with high N2O emission potential. 3,4-dimethylpyrazole phosphate (DMPP) inhibits N2O emission from soils; however, its efficiency is affected by acidity. Liming is used for soil conditioning to ameliorate the effects of acidity. In the present study, we investigated the effects of liming on the efficiency of DMPP in inhibiting N2O emission in acidic soils and the mechanisms involved. We evaluated the impact of liming, DMPP, and combined application and its microbial responses in two acidic soils from Zengcheng (ZC) and Shaoguan (SG) City, Guangdong Province, China. Soils were subjected to four treatments: un-limed soil (low soil pH) + urea (LU), un-limed soil + urea + DMPP (LD), limed soil (high soil pH) + urea (HU), and limed soil + urea + DMPP (HD) for analyses of the mineral N, N2O emissions, and full-length 16S and metagenome sequencing. The results revealed that, HU significantly decreased and increased the N2O emission by 17.8 % and 235.0 % in ZC and SG, respectively, compared with LU. This was caused by a trade-off between N2O production and consumption after liming, where microbial communities and N-cycling functional genes show various compositions in different acidic soils. LD reduced N2O emission by 23.5 % in ZC, whereas decreased 1.5 % was observed in SG. Interestingly, DMPP efficiency considerably improved after liming in two acidic soils. Compared with LU, HD significantly reduced N2O emissions by 61.2 % and 48.5 % in ZC and SG, respectively. Synergy of mitigation efficiency was observed by lime and DMPP application, which was attributed to the changes in the dominant nitrifiers and the increase in N2O consumption by denitrifiers. The combined application of lime and DMPP is a high-efficiency strategy for N2O mitigation can ensure agricultural sustainability in acidic arable soils with minimal environmental damage.
Collapse
Affiliation(s)
- Churong Liu
- College of Natural Resources and Environment, Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China
| | - Tianjin Mo
- College of Natural Resources and Environment, Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China
| | - Jiawen Zhong
- College of Natural Resources and Environment, Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China
| | - Huayi Chen
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Huijuan Xu
- College of Natural Resources and Environment, Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China.
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China.
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
52
|
Yuan H, Cai Y, Wang H, Liu E, Zeng Q. Impact of seasonal change on dissimilatory nitrate reduction to ammonium (DNRA) triggering the retention of nitrogen in lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118050. [PMID: 37141713 DOI: 10.1016/j.jenvman.2023.118050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Nitrogen (N) reduction processes including denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are critical for the eutrophication in the lake water. However, the understanding about the dominant pathways of N cycling keep limited due to the high complexity of N cycle processes in lacustrine environment. The N fractions in sediments collected from Shijiuhu Lake were measured using high-resolution (HR)-Peeper technique and chemical extraction method in varied seasons. The abundance and microbial community compositions of functional genes involved in various N-cycling processes were also obtained using high-throughput sequencing. The results showed that NH4+ concentrations in the pore water remarkably increased from the upper layer toward the deeper layer and from winter to spring. This trend suggested that higher temperature facilitated the accumulation of NH4+ in the water. Decreased NO3- concentrations were also detected at deeper sediment layers and higher temperature, indicating the intensification of N reduction on anaerobic conditions. The NH4+-N concentrations reduced in spring along with the slight change of NO3--N in solid sediment, indicating the desorption and release of mobile NH4+ from solid phase to the solution. Remarkably decreased absolute abundances of functional genes were found in spring with DNRA bacteria nrfA gene as dominant genus and Anaeromyxobacter as the most dominant bacterium (21.67 ± 1.03%). Higher absolute abundance (146.2-788.1 × 105 Copies/g) of nrfA gene relative to other genes was mainly responsible for the increase of bio-available NH4+ in the sediments. Generally, microbial DNRA pathway predominated the N reduction and retention processes in the lake sediment at higher temperature and water depth even experiencing the suppression of DNRA bacteria abundance. These results suggested the existence of ecological risk via N retention by the action of the DNRA bacteria in the sediment on the condition of higher temperature, further provided valuable information for N management of eutrophic lakes.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250359, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
53
|
Guo DJ, Li DP, Yang B, Verma KK, Singh RK, Singh P, Khan Q, Sharma A, Qin Y, Zhang BQ, Song XP, Li YR. Effect of endophytic diazotroph Enterobacter roggenkampii ED5 on nitrogen-metabolism-related microecology in the sugarcane rhizosphere at different nitrogen levels. Front Microbiol 2023; 14:1132016. [PMID: 37649627 PMCID: PMC10464614 DOI: 10.3389/fmicb.2023.1132016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/26/2023] [Indexed: 09/01/2023] Open
Abstract
Sugarcane is an important sugar and energy crop worldwide, requiring a large amount of nitrogen (N). However, excessive application of synthetic N fertilizer causes environmental pollution in farmland. Endophytic nitrogen-fixing bacteria (ENFB) provide N nutrition for plants through biological N fixation, thus reducing the need for chemical fertilizers. The present study investigated the effect of the N-fixing endophytic strain Enterobacter roggenkampii ED5 on phytohormone indole-3-acetic acid (IAA), N-metabolism enzyme activities, microbial community compositions, and N cycle genes in sugarcane rhizosphere soil at different N levels. Three levels of 15N-urea, such as low N (0 kg/ha), medium N (150 kg/ha), and high N (300 kg/ha), were applied. The results showed that, after inoculating strain ED5, the IAA content in sugarcane leaves was significantly increased by 68.82% under low N condition at the seedling stage (60 days). The nitrate reductase (NR) activity showed a downward trend. However, the glutamine synthase (GS) and NADH-glutamate dehydrogenase (NADH-GDH) activities were significantly enhanced compared to the control under the high N condition, and the GS and NR genes had the highest expression at 180 and 120 days, respectively, at the low N level. The total N content in the roots, stems, and leaves of sugarcane was higher than the control. The 15N atom % excess of sugarcane decreased significantly under medium N condition, indicating that the medium N level was conducive to N fixation in strain ED5. Metagenome analysis of sugarcane rhizosphere soil exhibited that the abundance of N-metabolizing microbial richness was increased under low and high N conditions after inoculation of strain ED5 at the genus level, while it was increased at the phylum level only under the low N condition. The LefSe (LDA > 2, p < 0.05) found that the N-metabolism-related differential microorganisms under the high N condition were higher than those under medium and low N conditions. It was also shown that the abundance of nifDHK genes was significantly increased after inoculation of ED5 at the medium N level, and other N cycle genes had high abundance at the high N level after inoculation of strain ED5. The results of this study provided a scientific reference for N fertilization in actual sugarcane production.
Collapse
Affiliation(s)
- Dao-Jun Guo
- College of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Dong-Ping Li
- Microbiology Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Bin Yang
- College of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, China
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Qaisar Khan
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Ying Qin
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Bao-Qing Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| |
Collapse
|
54
|
Zhang W, Guan A, Peng Q, Qi W, Qu J. Microbe-mediated simultaneous nitrogen reduction and sulfamethoxazole/N-acetylsulfamethoxazole removal in lab-scale constructed wetlands. WATER RESEARCH 2023; 242:120233. [PMID: 37352676 DOI: 10.1016/j.watres.2023.120233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Constructed wetlands (CWs) are increasingly used to treat complex pollution such as nitrogen and emerging organic micropollutants from anthropogenic sources. In this study, the denitrification, anaerobic ammonium oxidation, dissimilatory nitrate reduction to ammonium, and nitrous oxide release rates following exposure to the frequently detected sulfonamides sulfamethoxazole (SMX) and its human metabolite, N-acetylsulfamethoxazole (N-SMX), were investigated in lab-scale CWs. Over a period of 190 d, the denitrification rates were noticeably inhibited in the SMX and N-SMX groups at week 5. Subsequently, the denitrification rates recovered, accompanied by an increase in the relevant nitrogen reduction and antibiotic resistance genes (ARGs). The composition of the microbial community also changed during this process. After the denitrification rates recovered, Burkholderia_Paraburkholderia and Gordonia exhibited a significant positive correlation with SMX exposure, which simultaneously reduced nitrate concentrations and degraded antibiotics. Burkholderia_Paraburkholderia is a key carrier of ARGs. Finally, nitrogen reduction (> 90%) and antibiotic removal (> 80%) also recovered in both SMX- and N-SMX-exposed lab-scale CWs during the operation, which revealed the interaction of SMX or N-SMX removal and nitrogen reduction.
Collapse
Affiliation(s)
- Weihang Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aomei Guan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Peng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
55
|
White C, Antell E, Schwartz SL, Lawrence JE, Keren R, Zhou L, Yu K, Zhuang W, Alvarez-Cohen L. Synergistic interactions between anammox and dissimilatory nitrate reducing bacteria sustains reactor performance across variable nitrogen loading ratios. Front Microbiol 2023; 14:1243410. [PMID: 37637134 PMCID: PMC10450351 DOI: 10.3389/fmicb.2023.1243410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023] Open
Abstract
Anaerobic ammonium oxidizing (anammox) bacteria are utilized for high efficiency nitrogen removal from nitrogen-laden sidestreams in wastewater treatment plants. The anammox bacteria form a variety of competitive and mutualistic interactions with heterotrophic bacteria that often employ denitrification or dissimilatory nitrate reduction to ammonium (DNRA) for energy generation. These interactions can be heavily influenced by the influent ratio of ammonium to nitrite, NH4+:NO2-, where deviations from the widely acknowledged stoichiometric ratio (1:1.32) have been demonstrated to have deleterious effects on anammox efficiency. Thus, it is important to understand how variable NH4+:NO2- ratios impact the microbial ecology of anammox reactors. We observed the response of the microbial community in a lab scale anammox membrane bioreactor (MBR) to changes in the influent NH4+:NO2- ratio using both 16S rRNA gene and shotgun metagenomic sequencing. Ammonium removal efficiency decreased from 99.77 ± 0.04% when the ratio was 1:1.32 (prior to day 89) to 90.85 ± 0.29% when the ratio was decreased to 1:1.1 (day 89-202) and 90.14 ± 0.09% when the ratio was changed to 1:1.13 (day 169-200). Over this same timespan, the overall nitrogen removal efficiency (NRE) remained relatively unchanged (85.26 ± 0.01% from day 0-89, compared to 85.49 ± 0.01% from day 89-169, and 83.04 ± 0.01% from day 169-200). When the ratio was slightly increased to 1:1.17-1:1.2 (day 202-253), the ammonium removal efficiency increased to 97.28 ± 0.45% and the NRE increased to 88.21 ± 0.01%. Analysis of 16 S rRNA gene sequences demonstrated increased relative abundance of taxa belonging to Bacteroidetes, Chloroflexi, and Ignavibacteriae over the course of the experiment. The relative abundance of Planctomycetes, the phylum to which anammox bacteria belong, decreased from 77.19% at the beginning of the experiment to 12.24% by the end of the experiment. Analysis of metagenome assembled genomes (MAGs) indicated increased abundance of bacteria with nrfAH genes used for DNRA after the introduction of lower influent NH4+:NO2- ratios. The high relative abundance of DNRA bacteria coinciding with sustained bioreactor performance indicates a mutualistic relationship between the anammox and DNRA bacteria. Understanding these interactions could support more robust bioreactor operation at variable nitrogen loading ratios.
Collapse
Affiliation(s)
- Christian White
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Edmund Antell
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Sarah L. Schwartz
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
| | | | - Ray Keren
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Weiqin Zhuang
- Department of Civil & Environmental Engineering, University of Auckland, Auckland, New Zealand
| | - Lisa Alvarez-Cohen
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
- Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
56
|
Shi Z, Yang Y, Fan Y, He Y, Li T. Dynamic Responses of Rhizosphere Microorganisms to Biogas Slurry Combined with Chemical Fertilizer Application during the Whole Life Cycle of Rice Growth. Microorganisms 2023; 11:1755. [PMID: 37512927 PMCID: PMC10386682 DOI: 10.3390/microorganisms11071755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/14/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Biogas slurry combined with chemical fertilizer (BCF) is widely used as a fertilizer in paddy fields and rhizosphere microorganisms are key players in plant growth and reproduction. However, the dynamic responses of rhizosphere microorganisms of field-grown rice to BCF application still remain largely unknown. In this study, a field experiment was conducted in two proximate paddy fields in Chongming Island to study the impacts of BCF on the changes in rhizosphere microorganisms during the whole rice growth, including seedling, tillering, booting, and grain-filling stages, with solely chemical fertilizer (CF) treatment as control. The results showed BCF could increase the N-, P-, and C- levels in paddy water as well as the rhizosphere microbial abundance and diversity compared with control. In particular, the phosphate-solubilizing- and cellulose-decomposing-bacteria (e.g., Bacillus) and fungi (e.g., Mortierella) were more abundant in the rhizosphere of BCF than those of CF. Moreover, these microbes increased markedly at the booting and grain-filling stages in BCF, which could promote rice to obtain available nutrients (P and C). It was noted that denitrifying-like bacteria (e.g., Steroidobacteraceae) decreased and dissimilatory nitrate reduction to ammonia-related bacteria (e.g., Geobacter, Anaeromyxobacter, and Ignavibacterium) increased at the booting and filling stages, which could promote N-availability. TP in paddy water of BCF was most correlated to the bacteria, while COD was the most critical regulator for the fungi. Furthermore, correlation network analysis showed nutrient-cycling-related microorganisms were more closely interconnected in BCF than those in CF. These findings showed the application of biogas slurry plus chemical fertilizer could regulate rhizosphere microorganisms towards a beneficial fertilizer use for rice growth.
Collapse
Affiliation(s)
- Zhenbao Shi
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Yanmei Yang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China
| | - Yehong Fan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China
| | - Yan He
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China
| | - Tian Li
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
57
|
Wang Y, Li Q. Competition and interaction between DNRA and denitrification in composting ecosystems: insights from metagenomic analysis. BIORESOURCE TECHNOLOGY 2023; 381:129140. [PMID: 37169197 DOI: 10.1016/j.biortech.2023.129140] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
This study investigated denitrification and dissimilatory nitrate reduction to ammonium (DNRA) competition for nitrite in composting of sugarcane pith and cow manure. Metagenomic analysis showed that Actinobacteria was the main DNRA microorganism. During heating phase and thermophilic phase, the abundances of denitrification functional genes (nirK and nirS decreased by 40.22% and 98.60%, respectively) and DNRA functional genes (nirB, nirD increased by 195.24% and 176.61%, and nrfA decreased by 45%, respectively) showed different trends. Interestingly, the abundance of nrfA increased by 250% during cooling and maturity phases. Mantel test revealed that competition between denitrification and DNRA microorganisms for NO2--N limited the succession of their respective communities (P < 0.01). Network analysis showed that unclassified Solirubrobacterales, Altererythrobacter and Microbacterium were the key microorganisms in DNRA microbial communities. The results provided new insights into the key microorganisms and their driving factors affecting DNRA and nitrogen management in the composting ecosystems.
Collapse
Affiliation(s)
- Yiwu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China.
| |
Collapse
|
58
|
Yang J, Yu Q, Su W, Wang S, Wang X, Han Q, Qu J, Li H. Metagenomics reveals elevated temperature causes nitrogen accumulation mainly by inhibiting nitrate reduction process in polluted water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163631. [PMID: 37086993 DOI: 10.1016/j.scitotenv.2023.163631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Determining the response of functional genes and microbiota involved in the nitrogen (N) cycle to warming in the face of global climate change is a hotpot topic. However, whether and how elevated temperature affects the N-cycle genes in polluted water remains unclear. Based on metagenomics, we investigated the responses of the whole N-cycling genes and their microbial communities to the temperature gradients (23, 26, 29, 32, and 35 °C) using animal cadavers as an N-pollution model. We found that the abundance of gene families involved in glutamate metabolism, assimilatory nitrate reduction to nitrite (ANRN), and denitrification pathways decreased with temperature. Moreover, warming reduced the diversity of N-cycling microbial communities. Ecological network analysis indicated that elevated temperature intensified the mutual competition of N-cycle genes. The partial least squares path model (PLS-PM) showed that warming directly suppressed most N-cycle pathways, especially glutamate metabolism, denitrification, and ANRN pathways. Corpse decay also indirectly inhibited N-cycling via regulating N content and microbial communities. Our results highlight warming leads to N accumulation by inhibiting the ANRN and denitrification pathways, which may jeopardize ecological environment security. Our study is expected to provide valuable insights into the complex N-cycle process and N-pollution in warmer aquatic ecosystems.
Collapse
Affiliation(s)
- Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of pastoral agriculture science and technology, Lanzhou University, Lanzhou 730000, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sijie Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaochen Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jiapeng Qu
- Key laboratory of adaptation and evolution of plateau biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of pastoral agriculture science and technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
59
|
Zhang H, Sun M, Tian J, Zhu X, Cheng Y. Synergetic effects of pyrrhotite and biochar on simultaneous removal of nitrate and phosphate in autotrophic denitrification system. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10855. [PMID: 36949606 DOI: 10.1002/wer.10855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/28/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
In the trend of upgrading wastewater treatment plants, developing advanced treatment technologies for more efficient nutrient removal is crucial. This study prepared a pyrrhotite-biochar composite (Fex Sy @BC) to investigate its potential for simultaneous removal of nitrate and phosphate under autotrophic denitrification conditions. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) were used to characterize the novel composite of Fex Sy @BC, which exhibited 9.2 mg N/(L·d) NO3 - -N reduction rate, 97.3% N2 production, and 81.8 mmol N/(kg·d) NO3 - -N material load with small solid/liquid ratio (0.008). The NO3 - -N removal with Fex Sy @BC was 1.2-2.2 times higher than that with pure iron sulfides or biochar or their mixtures, whereas the Δn(S)/Δn(N) of Fex Sy @BC was the lowest (1.80). Moreover, the PO4 3- -P reduction rate of Fex Sy @BC reached 3.23 mg P/(L·d), as high as that of pure pyrite or pyrrhotite. Thiobacillus was the most dominant denitrifying bacterium. Fex Sy @BC exhibited great promise for enhancing nutrient removal from secondary effluent without additional carbon source. PRACTITIONER POINTS: FexSy@BC enhanced nitrate and phosphate removal simultaneously. First-order kinetics and Monod model were fitted for denitrification with FexSy@BC. FexSy@BC had smaller molar ratio of sulfate release to nitrate removal. Thiobacillus was the dominant bacterium in FexSy@BC autotrophic denitrification. Synergistic effects on nutrients removal existed between biochar and pyrrhotite.
Collapse
Affiliation(s)
- Hao Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Min Sun
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Jing Tian
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
- Key Laboratory of Special Wastewater Treatment, Sichuan Province Higher Education System, Chengdu, China
- Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Chengdu, China
| | - Xiaoqing Zhu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Yunan Cheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
60
|
Zhao L, Fu G, Pang W, Li X, Pan C, Hu Z. A novel autotrophic denitrification and nitrification integrated constructed wetland process for marine aquaculture wastewater treatment. CHEMOSPHERE 2023; 321:138157. [PMID: 36796520 DOI: 10.1016/j.chemosphere.2023.138157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/29/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
We undertook a lab-scale evaluation of a novel autotrophic denitrification and nitrification integrated constructed wetland (ADNI-CW) for improved carbon (C), nitrogen (N), and sulfur (S) cycling to treat mariculture wastewater. The process involved an up-flow autotrophic denitrification constructed wetland unit (AD-CW) for sulfate reduction and autotrophic denitrification, and an autotrophic nitrification constructed wetland unit (AN-CW) for nitrification. The 400-day experiment investigated the performance of the AD-CW, AN-CW, and entire ADNI-CW processes under various hydraulic retention times (HRTs), nitrate concentrations, dissolved oxygen levels, and recirculation ratios. Under various HRTs, the AN-CW achieved a nitrification performance exceeding 92%. Correlation analysis of the chemical oxygen demand (COD) revealed that, on average, approximately 96% of COD was removed by sulfate reduction. Under different HRTs, increases in influent NO3--N concentrations caused the amount of sulfide to gradually decrease from sufficient to deficient, and the autotrophic denitrification rate also decreased from 62.18 to 40.93%. In addition, when the NO3--N load rate was above 21.53 g N/m2·d, the transformation of organic N by mangrove roots may have increased NO3--N in the top effluent of the AD-CW. The coupling of N and S metabolic processes mediated by various functional microorganisms (Proteobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, and unclassified_d__Bacteria) enhanced N removal. We intensively explored the effects of changing inputs as culture species developed on the physical, chemical, and microbial changes of CW to ensure a consistent and effective management of C, N, and S. This study lays the foundation for green and sustainable mariculture development.
Collapse
Affiliation(s)
- Lin Zhao
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen, 518055, China
| | - Guiping Fu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Weicheng Pang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xiaxin Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Chao Pan
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen, 518055, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
61
|
Gong X, Liu X, Li Y, Ma K, Song W, Zhou J, Tu Q. Distinct Ecological Processes Mediate Domain-Level Differentiation in Microbial Spatial Scaling. Appl Environ Microbiol 2023; 89:e0209622. [PMID: 36815790 PMCID: PMC10056974 DOI: 10.1128/aem.02096-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
The spatial scaling of biodiversity, such as the taxa-area relationship (TAR) and distance-decay relationship (DDR), is a typical ecological pattern that is followed by both microbes and macrobes in natural ecosystems. Previous studies focusing on microbes mainly aimed to address whether and how different types of microbial taxa differ in spatial scaling patterns, leaving the underlying mechanisms largely untouched. In this study, the spatial scaling of different microbial domains and their associated ecological processes in an intertidal zone were comparatively investigated. The significant spatial scaling of biodiversity could be observed across all microbial domains, including archaea, bacteria, fungi, and protists. Among them, archaea and fungi were found with much stronger DDR slopes than those observed in bacteria and protists. For both TAR and DDR, rare subcommunities were mainly responsible for the observed spatial scaling patterns, except for the DDR of protists and bacteria. This was also evidenced by extending the TAR and DDR diversity metrics to Hill numbers. Further statistical analyses demonstrated that different microbial domains were influenced by different environmental factors and harbored distinct local community assembly processes. Of these, drift was mainly responsible for the compositional variations of bacteria and protists. Archaea were shaped by strong homogeneous selection, whereas fungi were more affected by dispersal limitation. Such differing ecological processes resulted in the domain-level differentiation of microbial spatial scaling. This study links ecological processes with microbial spatial scaling and provides novel mechanistic insights into the diversity patterns of microbes that belong to different trophic levels. IMPORTANCE As the most diverse and numerous life form on Earth, microorganisms play indispensable roles in natural ecological processes. Revealing their diversity patterns across space and through time is of essential importance to better understand the underlying ecological mechanisms controlling the distribution and assembly of microbial communities. However, the diversity patterns and their underlying ecological mechanisms for different microbial domains and/or trophic levels require further exploration. In this study, the spatial scaling of different microbial domains and their associated ecological processes in a mudflat intertidal zone were investigated. The results showed different spatial scaling patterns for different microbial domains. Different ecological processes underlie the domain-level differentiation of microbial spatial scaling. This study links ecological processes with microbial spatial scaling to provide novel mechanistic insights into the diversity patterns of microorganisms that belong to different trophic levels.
Collapse
Affiliation(s)
- Xiaofan Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xia Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Yueyue Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Kai Ma
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Wen Song
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Jiayin Zhou
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China
| |
Collapse
|
62
|
Levintal E, Huang L, Prieto García C, Coyotl A, Fidelibus MW, Horwath WR, Mazza Rodrigues JL, Dahlke HE. Nitrogen fate during agricultural managed aquifer recharge: Linking plant response, hydrologic, and geochemical processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161206. [PMID: 36581286 DOI: 10.1016/j.scitotenv.2022.161206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Agricultural managed aquifer recharge (Ag-MAR, on-farm recharge), where farmland is flooded with excess surface water to intentionally recharge groundwater, has received increasing attention by policy makers and researchers in recent years. However, there remain concerns about the potential for Ag-MAR to exacerbate nitrate (NO3-) contamination of groundwater, and additional risks, such as greenhouse gas emissions and crop tolerance to prolonged flooding. Here, we conducted a large-scale, replicated winter groundwater recharge experiment to quantify the effect of Ag-MAR on soil N biogeochemical transformations, potential NO3- leaching to groundwater, soil physico-chemical conditions, and crop yield. The field experiment was conducted in two grapevine vineyards in the Central Valley of California, which were each flooded for 2 weeks and 4 weeks, respectively, with 1.31 and 1.32 m3 m-2 of water. Hydrologic, geochemical, and microbial results indicate that NO3- leaching from the first 1 m of the vadose zone was the dominant N loss pathway during flooding. Based on pore water sample and N2O emission data, denitrification played a lesser role in decreasing NO3- in the root zone but prolonged anoxic conditions resulted in a significant 29 % yield decrease in the 4-week flooded vineyard. The results from this research, combined with data from previous studies, are summarized in a new conceptual model for integrated water-N dynamics under Ag-MAR. The proposed model can be used to determine best Ag-MAR management practices.
Collapse
Affiliation(s)
- Elad Levintal
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Laibin Huang
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Cristina Prieto García
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Adolfo Coyotl
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Matthew W Fidelibus
- Department of Viticulture and Enology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - William R Horwath
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Jorge L Mazza Rodrigues
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Helen E Dahlke
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA.
| |
Collapse
|
63
|
Reutov VP, Sorokina EG. Causal Relationship between Physiological and Pathological Processes in the Brain and in the Gastrointestinal Tract: The Brain-Intestine Axis. Biophysics (Nagoya-shi) 2023; 67:972-986. [PMID: 36883179 PMCID: PMC9984134 DOI: 10.1134/s0006350922060197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/02/2022] [Accepted: 09/23/2022] [Indexed: 03/06/2023] Open
Abstract
The brain and gastrointestinal tract are the most important organs responsible for detecting, transmitting, integrating, and responding to signals coming from the internal and external environment. A bidirectional system of neurohumoral communication (the "intestine-brain" axis) combines the activity of the intestine and brain (or brain and intestine) of a person. It affects human development and behavior. This paper analyzes the literature data on the existence of a relationship between the central and enteral nervous systems. Based on data on the number of neurons in the enteral nervous system (approximately 250 million nerve cells), the concept of a "second brain" in the intestine has been proposed in foreign literature, which, by its influence on the brain, can have a more powerful influence than the spinal cord (approximately 10 million neurons) with its autonomic nervous system. However, it turned out that Russian scientists, academicians of the Academy of Sciences of the Soviet Union I.P. Pavlov, K.M. Bykov, and A.M. Ugolev, analyzed cortical-visceral relationships in the 20th century and wrote about the existence of a connection between the central and enteral nervous systems. One of the urgent problems of modern physiology, pathophysiology, biophysics, biochemistry, and medicine is to clarify the causal relationship between the central and enteral nervous systems, as well as between neurological, mental, and gastrointestinal diseases in order to combine the efforts of specialists of various medical and biological profiles to solve urgent medical problems.
Collapse
Affiliation(s)
- V. P. Reutov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - E. G. Sorokina
- National Medical Research Center for Children’s Health, Ministry of Health of the Russian Federation, 119991 Moscow, Russia
| |
Collapse
|
64
|
Yu C, Qiao S, Zhou J. Sulfide-driven nitrous oxide recovery during the mixotrophic denitrification process. J Environ Sci (China) 2023; 125:443-452. [PMID: 36375927 DOI: 10.1016/j.jes.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/16/2023]
Abstract
We propose a novel sulfide-driven process to recover N2O during the traditional denitrification process. The optimum initial sulfide concentration was 120 mg/L, and the N2O percentage in the gaseous products (N2O+N2) was up to 82.9%. Moreover, sulfide involved in denitrification processes could substitute for organic carbon as an electron donor, e.g., 1 g sulfide was equivalent to 0.5-2 g COD when sulfide was oxidized to sulfur and sulfate. The accumulation of N2O was mainly due to the inhibiting effect of sulfide on nitrous oxide reductase (N2OR), which was induced by the supply insufficiency of electrons from cytochrome c (cyt c) to N2OR. When the initial sulfide concentration was 120 mg/L, the N2OR activity was only 36.8% of its original level. According to the results of cyclic voltammetry, circular dichroism spectra and fluorescence spectra, significant changes in the conformations and protein structures of cyt c were caused by sulfide, and cyt c completely lost its electron transport capacity. This study provides a new concept for N2O recovery driven by sulfide in the denitrification process. In addition, the findings regarding the mechanism of the inhibition of N2OR activity have important implications both for reducing emissions of N2O and recovering N2O in the sulfide-driven denitrification process.
Collapse
Affiliation(s)
- Cong Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
65
|
Oladeji O, Tian G, Cooke R, El-Naggar E, Cox A, Zhang H, Podczerwinski E. Effectiveness of denitrification bioreactors with woodchips, corn stover, and phosphate-sorbing media for simultaneous removal of drainage water N and P in a corn-soybean system. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:341-354. [PMID: 36655351 DOI: 10.1002/jeq2.20449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Millions of acres of farmland in the midwestern United States (US) are artificially drained, and this contributes to the export of nitrogen (N) and phosphorus (P) from agricultural land to surface water. Using a 36-acre tile-drained farm field, effects of P-sorbing media in combination with a denitrifying bioreactor system constructed with woodchips (WC) and corn stover (CS) on reducing nutrient export in drainage water were tested for 3 cropping years (2018-2020). The field was divided into three subfields as replicates. In each subfield, the drainage water was divided and separately channeled into three bioreactors, each of which contains one of the three different substrates: WC, CS, and CS-WC (1:1 v/v mixture of CS and WC), randomly assigned. The outlet of each compartment contained a 2.25 L flow-through chamber filled with activated iron (Fe) filings as P-sorbing material. Both WC and CS bioreactors were effective in removing drainage NO3 - with a 77% (WC), 86% (CS), and 89% (CS-WC) reduction in mean NO3 - -N concentration. For the three cropping years, the WC bioreactor reduced the total drainage inorganic N (NO3 - -N + NH4 + -N) load by 72%, but the CS bioreactor increased the total inorganic N load in the drainage water due to the substantial release of NH4 + with the decomposition of CS. The breakdown of CS also increased drainage P. The NH4 + and P release decreased with the decrease in the proportion of CS; thus, not more than 10% of CS is recommended for blending with WC to enhance the performance of a bioreactor. The P-sorbing Fe filing media reduced the P loads in drainage by an average of 19% during the 2-year study.
Collapse
Affiliation(s)
- Olawale Oladeji
- Monitoring and Research Department, Metropolitan Water Reclamation District of Greater Chicago, Cicero, IL, USA
| | - Guanglong Tian
- Monitoring and Research Department, Metropolitan Water Reclamation District of Greater Chicago, Cicero, IL, USA
| | - Richard Cooke
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Essam El-Naggar
- Monitoring and Research Department, Metropolitan Water Reclamation District of Greater Chicago, Cicero, IL, USA
| | - Albert Cox
- Monitoring and Research Department, Metropolitan Water Reclamation District of Greater Chicago, Cicero, IL, USA
| | - Heng Zhang
- Monitoring and Research Department, Metropolitan Water Reclamation District of Greater Chicago, Cicero, IL, USA
| | - Edward Podczerwinski
- Monitoring and Research Department, Metropolitan Water Reclamation District of Greater Chicago, Cicero, IL, USA
| |
Collapse
|
66
|
Wang Z, Li K, Shen X, Yan F, Zhao X, Xin Y, Ji L, Xiang Q, Xu X, Li D, Ran J, Xu X, Chen Q. Soil nitrogen substances and denitrifying communities regulate the anaerobic oxidation of methane in wetlands of Yellow River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159439. [PMID: 36252671 DOI: 10.1016/j.scitotenv.2022.159439] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic oxidation of methane (AOM) in wetland soils is widely recognized as a key sink for the greenhouse gas methane (CH4). The occurrence of this reaction is influenced by several factors, but the exact process and related mechanism of this reaction remain unclear, due to the complex interactions between multiple influencing factors in nature. Therefore, we investigated how environmental and microbial factors affect AOM in wetlands using laboratory incubation methods combined with molecular biology techniques. The results showed that wetland AOM was associated with a variety of environmental factors and microbial factors. The environmental factors include such as vegetation, depth, hydrogen ion concentration (pH), oxidation-reduction potential (ORP), electrical conductivity (EC), total nitrogen (TN), nitrate (NO3-), sulfate (SO42-), and nitrous oxide (N2O) flux, among them, soil N substances (TN, NO3-, N2O) have essential regulatory roles in the AOM process, while NO3- and N2O may be the key electron acceptors driving the AOM process under the coexistence of multiple electron acceptors. Moreover, denitrification communities (narG, nirS, nirK, nosZI, nosZII) and anaerobic methanotrophic (ANME-2d) were identified as important functional microorganisms affecting the AOM process, which is largely regulated by the former. In the environmental context of growing global anthropogenic N inputs to wetlands, these findings imply that N cycle-mediated AOM processes are a more important CH4 sink for controlling global climate change. This studying contributes to the knowledge and prediction of wetland CH4 biogeochemical cycling and provides a microbial ecology viewpoint on the AOM response to global environmental change.
Collapse
Affiliation(s)
- Zihao Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Kun Li
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Xiaoyan Shen
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Feifei Yan
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Xinkun Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Yu Xin
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Linhui Ji
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Qingyue Xiang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Xinyi Xu
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Daijia Li
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Junhao Ran
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Xiaoya Xu
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China.
| | - Qingfeng Chen
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
67
|
Rempfert KR, Nothaft DB, Kraus EA, Asamoto CK, Evans RD, Spear JR, Matter JM, Kopf SH, Templeton AS. Subsurface biogeochemical cycling of nitrogen in the actively serpentinizing Samail Ophiolite, Oman. Front Microbiol 2023; 14:1139633. [PMID: 37152731 PMCID: PMC10160414 DOI: 10.3389/fmicb.2023.1139633] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/15/2023] [Indexed: 05/09/2023] Open
Abstract
Nitrogen (N) is an essential element for life. N compounds such as ammonium ( NH 4 + ) may act as electron donors, while nitrate ( NO 3 - ) and nitrite ( NO 2 - ) may serve as electron acceptors to support energy metabolism. However, little is known regarding the availability and forms of N in subsurface ecosystems, particularly in serpentinite-hosted settings where hydrogen (H2) generated through water-rock reactions promotes habitable conditions for microbial life. Here, we analyzed N and oxygen (O) isotope composition to investigate the source, abundance, and cycling of N species within the Samail Ophiolite of Oman. The dominant dissolved N species was dependent on the fluid type, with Mg2+- HCO 3 - type fluids comprised mostly of NO 3 - , and Ca2+-OH- fluids comprised primarily of ammonia (NH3). We infer that fixed N is introduced to the serpentinite aquifer as NO 3 - . High concentrations of NO 3 - (>100 μM) with a relict meteoric oxygen isotopic composition (δ18O ~ 22‰, Δ17O ~ 6‰) were observed in shallow aquifer fluids, indicative of NO 3 - sourced from atmospheric deposition (rainwater NO 3 - : δ18O of 53.7‰, Δ17O of 16.8‰) mixed with NO 3 - produced in situ through nitrification (estimated endmember δ18O and Δ17O of ~0‰). Conversely, highly reacted hyperalkaline fluids had high concentrations of NH3 (>100 μM) with little NO 3 - detectable. We interpret that NH3 in hyperalkaline fluids is a product of NO 3 - reduction. The proportionality of the O and N isotope fractionation (18ε / 15ε) measured in Samail Ophiolite NO 3 - was close to unity (18ε / 15ε ~ 1), which is consistent with dissimilatory NO 3 - reduction with a membrane-bound reductase (NarG); however, abiotic reduction processes may also be occurring. The presence of genes commonly involved in N reduction processes (narG, napA, nrfA) in the metagenomes of biomass sourced from aquifer fluids supports potential biological involvement in the consumption of NO 3 - . Production of NH 4 + as the end-product of NO 3 - reduction via dissimilatory nitrate reduction to ammonium (DNRA) could retain N in the subsurface and fuel nitrification in the oxygenated near surface. Elevated bioavailable N in all sampled fluids indicates that N is not likely limiting as a nutrient in serpentinites of the Samail Ophiolite.
Collapse
Affiliation(s)
- Kaitlin R. Rempfert
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
- *Correspondence: Kaitlin R. Rempfert
| | - Daniel B. Nothaft
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Emily A. Kraus
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Ciara K. Asamoto
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - R. Dave Evans
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, United States
| | - Juerg M. Matter
- National Oceanography Centre, University of Southampton, Southampton, United Kingdom
| | - Sebastian H. Kopf
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Alexis S. Templeton
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
- Alexis S. Templeton
| |
Collapse
|
68
|
Zheng L, Xing Y, Ding A, Sun S, Cheng H, Bian Z, Yang K, Wang S, Zhu G. Brownification of freshwater promotes nitrogen-cycling microorganism growth following terrestrial material increase and ultraviolet radiation reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158556. [PMID: 36075427 DOI: 10.1016/j.scitotenv.2022.158556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Brownification is an increasingly concerning phenomenon faced by aquatic ecosystems in the changing environments, and the microbiome plays an irreplaceable role in material circulation and food web construction. Insight into the influence of brownification on microbial communities is crucial from an ecological standpoint. In this study, we simulated brownification using a the mesocosm system and explored the relationship between the characteristics of microbial communities and brownification using excitation-emission matrix (EEM) fluorescence spectroscopy and ultraviolet (UV) spectroscopy combined with high-throughput amplicon sequencing techniques. The results showed that brownification reduced the richness of the microbial community and selectively promoted the growth of nitrogen-cycling microorganisms, including hgcI_clade, Microbacteriaceae, and Limnohabitans. Brownification affected microbial communities by altering the carbon source composition and underwater spectrum intensity; UV, blue, violet, and cyan light were significantly (p < 0.05) correlated with microbial community richness, and random forest analysis revealed that UV, C1 (microbial humic-like), and C3 (terrestrial humic-like) were the major factors significantly influencing microbiome variation. We found that brownification affected microorganisms in shallow lakes, especially nitrogen cycling microorganisms, and propose that controlling terrestrial material export is an effective strategy for managing freshwater brownification.
Collapse
Affiliation(s)
- Lei Zheng
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Yuzi Xing
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Aizhong Ding
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Shiquan Sun
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Hongguang Cheng
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Zhaoyong Bian
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Kai Yang
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Shengrui Wang
- College of Water Science, Beijing Normal University, Beijing 100875, China.
| | - Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
69
|
Su Z, Zhang Y, Zhao R, Zhou J. Enhancement of dissimilatory nitrate/nitrite reduction to ammonium of Escherichia coli sp. SZQ1 by ascorbic acid: Mechanism and performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158423. [PMID: 36055483 DOI: 10.1016/j.scitotenv.2022.158423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) can be used for nitrogen recovery. However, due to the low conversion efficiency of the DNRA process of microorganisms, the process cannot be industrially applied. Ascorbic acid (ASA) can improve DNRA efficiency of Escherichia coli sp. SZQ1 (E. coli). Experimental studies suggest that 10 g L-1 ASA promoted DNRA process of E. coli at high concentrations of nitrite (10-20 mM). In the 5 g L-1 ASA system, 9.2 mM nitrite was reduced to 8.21 mM ammonium by E. coli in 120 h. Mechanistic studies reveal that ASA reduced the oxidation-reduction potential (ORP) of the system and scavenged reactive oxygen species (ROS) in the cell of E. coli. Meanwhile, ASA was utilized by E. coli as the sole carbon source and provided electrons to DNRA process through ASA metabolic pathways. This study proposes a new strategy for increasing the efficiency of DNRA.
Collapse
Affiliation(s)
- Zhiqiang Su
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Yu Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China.
| | - Ruizhi Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China.
| |
Collapse
|
70
|
Li X, Deng Q, Zhang Z, Bai D, Liu Z, Cao X, Zhou Y, Song C. The role of sulfur cycle and enzyme activity in dissimilatory nitrate reduction processes in heterotrophic sediments. CHEMOSPHERE 2022; 308:136385. [PMID: 36096301 DOI: 10.1016/j.chemosphere.2022.136385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The dissimilatory nitrate (NO3-) reduction processes (DNRPs) play an important role in regulating the nitrogen (N) balance of aquatic ecosystem. Organic carbon (OC) and sulfur are important factors that influence the DNRPs. In this study, we investigated the effects of sulfur cycle and enzyme activity on DNRPs in the natural and human-modified heterotrophic sediments. Quarterly monitoring of anaerobic ammonium oxidation, denitrification (DNF), and dissimilatory NO3- reduction to ammonium (DNRA) in sediments was conducted using 15N isotope tracing method. qPCR and high-throughput sequencing were applied to characterize the DNF and DNRA microbial abundances and communities. Results showed that instead of the OC, the glucosidase activity (GLU) was the key driver of the DNRPs. Furthermore, instead of the ratio of OC to NO3-, the GLU and the ratio of OC to sulfide (C/S) correctly indicated the partitioning of DNRPs in this study. We deduced that the sulfur reduction processes competed with the DNRPs for the available OC. In addition, the inhibitory effect of sulfide (final product of the sulfur reduction processes) on the DNRPs bacterial community were observed, which suggested a general restrictive role of the sulfur cycle in the regulation and partitioning of the DNRPs in heterotrophic sediments.
Collapse
Affiliation(s)
- Xiaowen Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Qinghui Deng
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China; Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518071, PR China.
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Dong Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China.
| | - Zhenghan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China.
| | - Xiuyun Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Yiyong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Chunlei Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|
71
|
Zhao Y, Chen Z, Wang Q, Zhang C, Ji M. A new insight to explore toxic Cd(II) affecting denitrification: Reaction kinetic, electron behavior and microbial community. CHEMOSPHERE 2022; 305:135419. [PMID: 35752314 DOI: 10.1016/j.chemosphere.2022.135419] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/24/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Denitrification process is a crucial step in nitrogen removal and is more vulnerable to external shocks due to the fact that anoxic process is always located before aerobic process in conventional sewage treatment. This study aims to elaborate the nitrogen conversion characteristics by investigating denitrification kinetics, electron behavior and microbial community under Cd(II) shock. Reaction kinetics showed that 10 mg/L of Cd(II) accelerated nitrate reduction rate by 52.29% but 80 mg/L of Cd(II) severely decelerated it by 95.41% with the accumulation of nitrite. High concentration of COD (C/N = 10.4) in the system caused by Cd(II) disrupting the integrity of cell membrane (lactate dehydrogenase increased by 328.7%) was proved to induce occurrence of Dissimilatory Nitrate Reduction to Ammonia (DNRA). The electron transport system activity (ETSA), electron consumption and electron distribution were combined to reveal the electron behavior regulated by Cd(II). The electron ratio of nitrate reductase to nitrite reductase increased from 1.48 (control) to 3.91 and 3.52 (40 and 80 mg/L of Cd(II)) indicated the electrons allocating tendency and further explained the nitrite accumulation. High concentration of Cd(II) also decreased ETSA by weakening the physiological activities of flavin adenine dinucleotide, flavin mononucleotide and cytochrome c or hindered the microbes to secrete these electron carriers. Furthermore, Cd(II) inhibited dominant bacteria genera containing napA gene (Azospirillum and Thauera) and nirS gene (unclassified_c_Betaproteobacteria). Enterobacteriaceae family was found to dominate the DNRA process.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
| | - Zhihui Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| |
Collapse
|
72
|
Li S, Diao M, Wang S, Zhu X, Dong X, Strous M, Ji G. Distinct oxygen isotope fractionations driven by different electron donors during microbial nitrate reduction in lake sediments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:812-821. [PMID: 35691702 DOI: 10.1111/1758-2229.13101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Microbial nitrate reduction can be driven by organic carbon oxidation, as well as by inorganic electron donors, such as reduced forms of sulfur and iron. An apparent inverse oxygen isotope fractionation effect was observed during nitrate reduction in sediment incubations from five sampling sites of a freshwater lake, Hongze Lake, China. Incubations with organic and inorganic electron donor additions were performed. Especially, the inverse oxygen isotope effect was intensified after glucose addition, whereas the incubations with sulfide and Fe2+ showed normal fractionation factors. Nitrate reductase encoding genes, napA and narG, were analysed with metagenomics. Higher napA/narG ratios were associated with higher oxygen fractionation factors. The most abundant clade (59%) of NapA in the incubation with glucose was affiliated with Rhodocyclales. In contrast, it only accounted for 8%-9% of NapA in the incubations with sulfide and Fe2+ . Differences in nitrate reductases might explain different oxygen isotope effects. Our findings also suggested that large variance of O-nitrate isotope fractionations might have to be considered in the interpretation of natural isotope records.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Muhe Diao
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
| | - Xianfang Zhu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
| |
Collapse
|
73
|
Xie D, Yang M, Xu M, Meng J, Wu C, Wang Q, Liu S. In-situ untilization of nitrogen-rich wastewater discharged from a biotrickling filter as a moisture conditioning agent for composting: Effect of nitrogen composition. BIORESOURCE TECHNOLOGY 2022; 362:127828. [PMID: 36029980 DOI: 10.1016/j.biortech.2022.127828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Although the composting-biotrickling filter coupled system removed ammonia-based odor pollution, other pollutants (nitrogen-rich wastewater) arose. This study intended to determine the effect of in-situ disposal of different kinds of nitrogen-rich wastewater [i.e., multi-nitrogen (NH4+, NO2-, and NO3-)-rich (STL1), NO2--rich (STL2), and NO3--rich (STL3)] as a moisture adjustment agent during the composting thermophilic period on nitrogen transformation. Results indicated that nitrogen-rich wastewater addition did not impair the compost maturation, whereas raised the total nitrogen content of fertilizer by 15.8%-46.7% compared to the control group (i.e., tap water group). Moreover, adding STL1 has the potential to reduce CO2 and NH3 emissions and avoid incomplete organic nitrogen decomposition. Furthermore, nitrogen flow analysis unveiled that STL1 addition increased nitrogen content by strengthening ammonification, dissimilatory nitrite reduction to ammonium, and high-temperature nitrification pathways. Thus, in-situ disposal of STL1 from biotrickling filters via composting is a suitable technique for coupled systems to achieve zero discharge.
Collapse
Affiliation(s)
- Dong Xie
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Min Yang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Mingyue Xu
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jie Meng
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chuanfu Wu
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 10083, China.
| | - Qunhui Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 10083, China
| | - Shu Liu
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 10191, China
| |
Collapse
|
74
|
Yuan H, Jia B, Zeng Q, Zhou Y, Wu J, Wang H, Fang H, Cai Y, Li Q. Dissimilatory nitrate reduction to ammonium (DNRA) potentially facilitates the accumulation of phosphorus in lake water from sediment. CHEMOSPHERE 2022; 303:134664. [PMID: 35460675 DOI: 10.1016/j.chemosphere.2022.134664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/20/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) and phosphorus (P) are crucial nutrients for eutrophication in the lacustrine ecosystem and attract the attention worldwide. However, the interaction between them need further clarification. This study aimed to assess the influence of dissimilatory nitrate reduction to ammonia (DNRA) on the cycle of P in lacustrine sediment. Different fractions of N and P in the pore water were measured using high-resolution in-situ measurement techniques, HR-Peeper and DGT, coupling with sequential extraction for solid sediment from a shallow freshwater lake. The results showed that elevated nitrate (NO3-) reduction via DNRA rather than denitrification was verified at deeper sediment layer, suggesting the generation of inorganic ammonia (NH4+) as electron donor under anaerobic episodes. High abundance of DNRA bacteria (nrfA gene) obtained using high-throughput sequencing analysis were detected at upper layer and responsible for the accumulation of NH4+ in the sediment coupling with chemolithoautotrophic metabolism. Additionally, significant desorption of ionic ferrous iron (Fe2+) and dissolved reactive phosphate (DRP) from solid phase and the enrichment in the solution was simultaneously detected. Higher concentration of solid Fe bound P (Fe-P) at deeper layer indicated the potential re-oxidation of Fe2+ as electron donor during DNRA process and sorption of DRP toward the Fe-containing minerals. However, obvious evidence of desorption proved by DGT indicated that higher NH4+ concentrations favored the reduction of Fe(III) oxy(hydr)oxides and the desorption of DRP into the pore water and diffusion toward the overlying water. Finally, noteworthy S2- release from solid sediment was speculated to stimulate the DNRA and facilitated the accumulation of NH4+ in the solution, which further induced the enrichment of DRP in water from the solid phase. Overall, DNRA potentially facilitates the accumulation of P in lake water, and the synchronous control of N and P is important for the eutrophication management and restoration of lake eutrophication.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Bingchan Jia
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yanwen Zhou
- Nanjing Research Institute of Ecological and Environmental Sciences, Nanjing, 210013, China
| | - Juan Wu
- Gaochun District Water Authority Bureau, Nanjing, 211300, China
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hao Fang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Qiang Li
- Department of Soil Science, University of Wisconsin-Madison, 53706, Madison, WI, USA
| |
Collapse
|
75
|
Li S, Jiang Z, Ji G. Effect of sulfur sources on the competition between denitrification and DNRA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119322. [PMID: 35447253 DOI: 10.1016/j.envpol.2022.119322] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The fate of nitrogen is controlled by the competition between nitrate reduction pathways. Denitrification removes nitrogen in the system to the atmosphere, whereas dissimilatory nitrate reduction to ammonia (DNRA) retains nitrate in the form of ammonia. Different microbes specialize in the oxidation of different electron donors, thus electron donors might influence the outcomes of the competition. Here, we investigated the fate of nitrate with five forms of sulfur as electron donors. Chemoautotrophic nitrate reduction did not continue after the passages of the enrichments with sulfide, sulfite and pyrite. Nitrate reduction rate was the highest in the enrichment with thiosulfate. Denitrification was stimulated and no DNRA was observed with thiosulfate, while both denitrification and DNRA were stimulated with elemental sulfur. Metagenomes of the enrichments were assembled and binned into ten genomes. The enriched populations with thiosulfate included Thiobacillus, Lentimicrobium, Sulfurovum and Hydrogenophaga, all of which contained genes involved in sulfur oxidation. Elemental sulfur-based DNRA was performed by Thiobacillus (with NrfA and NirB) and Nocardioides (with only NirB). Our study established a link between sulfur sources, nitrate reduction pathways and microbial populations.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Zhuo Jiang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
76
|
Qi P, Sun D, Zhang G, Li D, Wu T, Li Y. Bio-augmentation with dissimilatory nitrate reduction to ammonium (DNRA) driven sulfide-oxidizing bacteria enhances the durability of nitrate-mediated souring control. WATER RESEARCH 2022; 219:118556. [PMID: 35550970 DOI: 10.1016/j.watres.2022.118556] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Biological souring (producing sulfide) is a global challenge facing anaerobic water bodies, especially the oil reservoir fluids. Nitrate injection has demonstrated great potential in souring control, and dissimilatory nitrate reduction to ammonium (DNRA) bacteria was proposed to play crucial roles in the process. How to durably control souring with nitrate amendment, however, remains undiscovered. Herein, Gordonia sp. TD-4, a DNRA-driven sulfide-oxidizing bacterium, was used to elucidate the effects of bio-augmentation with DNRA bacteria on the durability of nitrate-mediated souring control. The results revealed that nitrate amendment combined with bio-augmentation with TD-4 after souring could effectively control souring and enhance the durability of nitrate-mediated souring control, while nitrate amendment before souring failed to persistently control souring. Nitrate amendment before and after souring resulted in different evolution dynamics of nitrate-reducing bacteria. Denitrifying bacteria were enriched in reactors amended with nitrate before souring or in dissolved sulfide exhausted reactors amended with nitrate after souring. The heterotrophic denitrifying activity of denitrifying bacteria, however, decreased the durability of nitrate-mediated souring control. Comparative and functional genomics analysis identified potential niche adaptation mechanisms (autotrophic and heterotrophic nitrate/nitrite reduction, including DNRA and denitrification) of predominant SRB in nitrate-amended environments, which were responsible for the rapid resumption of sulfide accumulation after the depletion of nitrate and nitrite. Pulsed injection of nitrate combined with bio-augmentation with DNRA-driven sulfide-oxidizing bacteria was proposed as a potential method to enhance the durability of nitrate-mediated souring control. The findings were innovatively applied to simultaneous bio-demulsification and souring control of emulsified and sour produced water from the petroleum industry.
Collapse
Affiliation(s)
- Panqing Qi
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Dejun Sun
- Key Laboratory of Colloid and Interface Science of Education Ministry, Shandong University, Jinan 250100, PR China
| | - Gaixin Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Dongxia Li
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Tao Wu
- Key Laboratory of Colloid and Interface Science of Education Ministry, Shandong University, Jinan 250100, PR China.
| | - Yujiang Li
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
77
|
Chakrawal A, Calabrese S, Herrmann AM, Manzoni S. Interacting Bioenergetic and Stoichiometric Controls on Microbial Growth. Front Microbiol 2022; 13:859063. [PMID: 35656001 PMCID: PMC9152356 DOI: 10.3389/fmicb.2022.859063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Microorganisms function as open systems that exchange matter and energy with their surrounding environment. Even though mass (carbon and nutrients) and energy exchanges are tightly linked, there is a lack of integrated approaches that combine these fluxes and explore how they jointly impact microbial growth. Such links are essential to predicting how the growth rate of microorganisms varies, especially when the stoichiometry of carbon- (C) and nitrogen (N)-uptake is not balanced. Here, we present a theoretical framework to quantify the microbial growth rate for conditions of C-, N-, and energy-(co-) limitations. We use this framework to show how the C:N ratio and the degree of reduction of the organic matter (OM), which is also the electron donor, availability of electron acceptors (EAs), and the different sources of N together control the microbial growth rate under C, nutrient, and energy-limited conditions. We show that the growth rate peaks at intermediate values of the degree of reduction of OM under oxic and C-limited conditions, but not under N-limited conditions. Under oxic conditions and with N-poor OM, the growth rate is higher when the inorganic N (NInorg)-source is ammonium compared to nitrate due to the additional energetic cost involved in nitrate reduction. Under anoxic conditions, when nitrate is both EA and NInorg-source, the growth rates of denitrifiers and microbes performing the dissimilatory nitrate reduction to ammonia (DNRA) are determined by both OM degree of reduction and nitrate-availability. Consistent with the data, DNRA is predicted to foster growth under extreme nitrate-limitation and with a reduced OM, whereas denitrifiers are favored as nitrate becomes more available and in the presence of oxidized OM. Furthermore, the growth rate is reduced when catabolism is coupled to low energy yielding EAs (e.g., sulfate) because of the low carbon use efficiency (CUE). However, the low CUE also decreases the nutrient demand for growth, thereby reducing N-limitation. We conclude that bioenergetics provides a useful conceptual framework for explaining growth rates under different metabolisms and multiple resource-limitations.
Collapse
Affiliation(s)
- Arjun Chakrawal
- Department of Physical Geography, Stockholm University, Stockholm, Sweden.,Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Salvatore Calabrese
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, United States
| | - Anke M Herrmann
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stefano Manzoni
- Department of Physical Geography, Stockholm University, Stockholm, Sweden.,Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| |
Collapse
|
78
|
Goh CE, Bohn B, Marotz C, Molinsky R, Roy S, Paster BJ, Chen C, Rosenbaum M, Yuzefpolskaya M, Colombo PC, Desvarieux M, Papapanou PN, Jacobs DR, Knight R, Demmer RT. Nitrite Generating and Depleting Capacity of the Oral Microbiome and Cardiometabolic Risk: Results from ORIGINS. J Am Heart Assoc 2022; 11:e023038. [PMID: 35574962 PMCID: PMC9238569 DOI: 10.1161/jaha.121.023038] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background
The enterosalivary nitrate–nitrite–nitric oxide (NO
3
–NO
2
–NO) pathway generates NO following oral microbiota‐mediated production of salivary nitrite, potentially linking the oral microbiota to reduced cardiometabolic risk. Nitrite depletion by oral bacteria may also be important for determining the net nitrite available systemically. We examine if higher abundance of oral microbial genes favoring increased oral nitrite generation and decreased nitrite depletion is associated with a better cardiometabolic profile cross‐sectionally.
Methods and Results
This study includes 764 adults (mean [SD] age 32 [9] years, 71% women) enrolled in ORIGINS (Oral Infections, Glucose Intolerance, and Insulin Resistance Study). Microbial DNA from subgingival dental plaques underwent 16S rRNA gene sequencing; PICRUSt2 was used to estimate functional gene profiles. To represent the different components and pathways of nitrogen metabolism in bacteria, predicted gene abundances were operationalized to create summary scores by (1) bacterial nitrogen metabolic pathway or (2) biochemical product (NO
2
, NO, or ammonia [NH
3
]) formed by the action of the bacterial reductases encoded. Finally, nitrite generation‐to‐depletion ratios of gene abundances were created from the above summary scores. A composite cardiometabolic
Z
score was created from cardiometabolic risk variables, with higher scores associated with worse cardiometabolic health. We performed multivariable linear regression analysis with cardiometabolic
Z
score as the outcome and the gene abundance summary scores and ratios as predictor variables, adjusting for sex, age, race, and ethnicity in the simple adjusted model. A 1 SD higher NO versus NH
3
summary ratio was inversely associated with a −0.10 (false discovery rate
q
=0.003) lower composite cardiometabolic
Z
score in simple adjusted models. Higher NH
3
summary score (suggestive of nitrite depletion) was associated with higher cardiometabolic risk, with a 0.06 (false discovery rate
q
=0.04) higher composite cardiometabolic
Z
score.
Conclusions
Increased net capacity for nitrite generation versus depletion by oral bacteria, assessed through a metagenome estimation approach, is associated with lower levels of cardiometabolic risk.
Collapse
Affiliation(s)
- Charlene E. Goh
- Faculty of DentistryNational University of SingaporeSingapore
| | - Bruno Bohn
- Division of Epidemiology and Community HealthSchool of Public HealthUniversity of MinnesotaMinneapolisMN
| | - Clarisse Marotz
- Department of PediatricsUniversity of California San DiegoLa JollaCA
| | - Rebecca Molinsky
- Division of Epidemiology and Community HealthSchool of Public HealthUniversity of MinnesotaMinneapolisMN
| | - Sumith Roy
- Department of EpidemiologyMailman School of Public HealthColumbia UniversityNew YorkNY
| | - Bruce J. Paster
- The Forsyth InstituteCambridgeMA
- Department of Oral Medicine, Infection, and ImmunityHarvard School of Dental MedicineBostonMA
| | - Ching‐Yuan Chen
- Division of PeriodonticsSection of Oral, Diagnostic and Rehabilitation SciencesCollege of Dental MedicineColumbia UniversityNew YorkNY
| | - Michael Rosenbaum
- Division of Molecular GeneticsDepartments of Pediatrics and MedicineColumbia UniversityNew YorkNY
| | - Melana Yuzefpolskaya
- Division of CardiologyDepartment of MedicineNew York Presbyterian HospitalColumbia UniversityNew YorkNY
| | - Paolo C. Colombo
- Division of CardiologyDepartment of MedicineNew York Presbyterian HospitalColumbia UniversityNew YorkNY
| | - Moïse Desvarieux
- Department of EpidemiologyMailman School of Public HealthColumbia UniversityNew YorkNY
- INSERM UMR 1153Centre de Recherche Epidemiologie et Statistique Paris Sorbonne Cité (CRESS)METHODS CoreParisFrance
| | - Panos N. Papapanou
- Division of PeriodonticsSection of Oral, Diagnostic and Rehabilitation SciencesCollege of Dental MedicineColumbia UniversityNew YorkNY
| | - David R. Jacobs
- Division of Epidemiology and Community HealthSchool of Public HealthUniversity of MinnesotaMinneapolisMN
| | - Rob Knight
- Department of Computer Science & EngineeringJacobs School of EngineeringUniversity of California San DiegoLa JollaCA
- Department of BioengineeringUniversity of California San DiegoLa JollaCA
- Center for Microbiome InnovationUniversity of California San DiegoLa JollaCA
| | - Ryan T. Demmer
- Division of Epidemiology and Community HealthSchool of Public HealthUniversity of MinnesotaMinneapolisMN
- Department of EpidemiologyMailman School of Public HealthColumbia UniversityNew YorkNY
| |
Collapse
|
79
|
Bryson SJ, Hunt KA, Stahl DA, Winkler MKH. Metagenomic Insights Into Competition Between Denitrification and Dissimilatory Nitrate Reduction to Ammonia Within One-Stage and Two-Stage Partial-Nitritation Anammox Bioreactor Configurations. Front Microbiol 2022; 13:825104. [PMID: 35547121 PMCID: PMC9083452 DOI: 10.3389/fmicb.2022.825104] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Anaerobic ammonia oxidizing bacteria (Anammox) are implemented in high-efficiency wastewater treatment systems operated in two general configurations; one-stage systems combine aerobic ammonia oxidizing bacteria (AOB) and Anammox within a single aerated reactor, whereas two-stage configurations separate these processes into discrete tanks. Within both configurations heterotrophic populations that perform denitrification or dissimilatory nitrate reduction to ammonia (DNRA) compete for carbon and nitrate or nitrite and can impact reactor performance because DNRA retains nitrogen in the system. Therefore, it is important to understand how selective pressures imposed by one-stage and two-stage reactor configurations impact the microbial community structure and associated nitrogen transforming functions. We performed 16S rRNA gene and metagenomic sequencing on different biomass fractions (granules, flocs, and suspended biomass) sampled from two facilities treating sludge dewatering centrate: a one-stage treatment facility (Chambers Creek, Tacoma, WA) and a two-stage system (Rotterdam, Netherlands). Similar microbial populations were identified across the different samples, but relative abundances differed between reactor configurations and biomass sources. Analysis of metagenome assembled genomes (MAGs) indicated different lifestyles for abundant heterotrophic populations. Acidobacteria, Bacteroidetes, and Chloroflexi MAGs had varying capacity for DNRA and denitrification. Acidobacteria MAGs possessed high numbers of glycosyl hydrolases and glycosyl transferases indicating a role in biomass degradation. Ignavibacteria and Phycosphaerae MAGs contributed to the greater relative abundance of DNRA associated nrf genes in the two-stage granules and contained genomic features suggesting a preference for an anoxic or microoxic niche. In the one-stage granules a MAG assigned to Burkholderiales accounted for much of the abundant denitrification genes and had genomic features, including the potential for autotrophic denitrification using reduced sulfur, that indicate an ability to adapt its physiology to varying redox conditions. Overall, the competition for carbon substrates between denitrifying and DNRA performing heterotrophs may be impacted by configuration specific selective pressures. In one-stage systems oxygen availability in the bulk liquid and the oxygen gradient within granules would provide a greater niche space for heterotrophic populations capable of utilizing both oxygen and nitrate or nitrite as terminal electron acceptors, compared to two-stage systems where a homogeneous anoxic environment would favor heterotrophic populations primarily adapted to anaerobic metabolism.
Collapse
Affiliation(s)
- Samuel J Bryson
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Kristopher A Hunt
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Mari-Karoliina H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
80
|
Upreti K, Rivera-Monroy VH, Maiti K, Giblin AE, Castañeda-Moya E. Dissimilatory nitrate reduction to ammonium (DNRA) is marginal relative to denitrification in emerging-eroding wetlands in a subtropical oligohaline and eutrophic coastal delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152942. [PMID: 35007602 DOI: 10.1016/j.scitotenv.2022.152942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/18/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Nitrate (NO3-) and ammonium (NH4+) are reactive nitrogen (Nr) forms that can exacerbate eutrophication in coastal regions. NO3- can be lost to the atmosphere as N2 gas driven by direct denitrification, coupled nitrification-denitrification and annamox or retained within the ecosystems through conversion of NO3- to NH4+ via dissimilatory nitrate reduction to ammonium (DNRA). Denitrification and DNRA are competitive pathways and hence it is critical to evaluate their functional biogeochemical role. However, there is limited information about the environmental factors driving DNRA in oligohaline habitats, especially within deltaic regions where steep salinity gradients define wetland spatiotemporal distribution. Here we use the Isotope Pairing Technique to evaluate the effect of temperature (10, 20, 30 °C) and in situ soil/sediment organic matter (OM%) on total denitrification (Dtotal = direct + coupled nitrification) and DNRA rates in oligohaline forested/marsh wetlands soils and benthic sediment habitats at two sites representing prograding (Wax Lake Delta, WLD) and eroding (Barataria- Lake Cataouatche, BLC) deltaic stages in the Mississippi River Delta Plain (MRDP). Both sites receive MR water with high NO3- (>40 μM) concentrations during the year via river diversions. Denitrification rates were significantly higher (range: 18.0 ± 0.4-113.0 ± 10.6 μmol m-2 h-1) than DNRA rates (range: 0.7 ± 0.2-9.2 ± 0.3 μmol m-2 h-1). Therefore, DNRA represented on average < 10% of the total NO3- reduction (DNRA + Dtotal). Unlike denitrification, DNRA showed no consistent response to temperature. These results indicate that DNRA in wetland soils and benthic sediment is not a major nitrogen transformation in oligohaline regions across the MRDP regardless of wide range of OM% content in these eroding and prograding delta lobes.
Collapse
Affiliation(s)
- Kiran Upreti
- Department of Oceanography and Coastal Sciences, College of the Coast and Enviroment, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Victor H Rivera-Monroy
- Department of Oceanography and Coastal Sciences, College of the Coast and Enviroment, Louisiana State University, Baton Rouge, LA 70808, USA.
| | - Kanchan Maiti
- Department of Oceanography and Coastal Sciences, College of the Coast and Enviroment, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Anne E Giblin
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | |
Collapse
|
81
|
Shi S, He L, Zhou Y, Fan X, Lin Z, He X, Zhou J. Response of nitrogen removal performance and microbial community to a wide range of pH in thermophilic denitrification system. BIORESOURCE TECHNOLOGY 2022; 352:127061. [PMID: 35351554 DOI: 10.1016/j.biortech.2022.127061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Thermophilic biological nitrogen removal would be a promising alternative to conventional approaches for the treatment of high-temperature wastewater. In this study, the response of thermophilic denitrification system (50 °C) to a wide range of pH (3-11) was investigated. The results showed that thermophilic denitrification could adapt to pH 5-11, but suffered from obvious nitrite and ammonia accumulation at pH 3. Microbial insights indicated that the enrichment of specific functional thermophiles has contributed to the tolerance towards unfavorable pH. Besides, the potential selecting advantage of nitrate reducing bacteria over nitrite reducing bacteria and the enrichment of dissimilatory nitrate reduction to ammonium (DNRA) bacteria could be responsible for the nitrite and ammonia accumulation at pH 3. Moreover, the functional gene prediction denoted higher narG/(nirK + nirS) and nrfA at pH 3, which could facilitate partial denitrification and DNRA. These findings could provide new insight into the application of thermophilic biological nitrogen removal.
Collapse
Affiliation(s)
- Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ying Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
82
|
Spring S, Rohde M, Bunk B, Spröer C, Will SE, Neumann-Schaal M. New insights into the energy metabolism and taxonomy of Deferribacteres revealed by the characterization of a new isolate from a hypersaline microbial mat. Environ Microbiol 2022; 24:2543-2575. [PMID: 35415868 DOI: 10.1111/1462-2920.15999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/04/2022] [Indexed: 12/13/2022]
Abstract
Strain L21-Ace-BEST , isolated from a lithifying cyanobacterial mat, could be assigned to a novel species and genus within the Deferribacteres. It is an important model organism for the study of anaerobic acetate degradation under hypersaline conditions. The metabolism of strain L21-Ace-BEST was characterized by biochemical studies, comparative genome analyses, and the evaluation of gene expression patterns. The central metabolic pathway is the citric acid cycle, which is mainly controlled by the enzyme succinyl-CoA:acetate-CoA transferase. The potential use of a reversed oxidative citric acid cycle to fix CO2 has been revealed through genome analysis. However, no autotrophic growth was detected in this strain, whereas sulfide and H2 can be used mixotrophically. Preferred electron acceptors for the anaerobic oxidation of acetate are nitrate, fumarate and DMSO, while oxygen can be utilized only under microoxic conditions. Aerotolerant growth by fermentation was observed at higher oxygen concentrations. The redox cycling of sulfur/sulfide enables the generation of reducing power for the assimilation of acetate during growth and could prevent the over-reduction of cells in stationary phase. Extracellular electron transfer appears to be an essential component of the respiratory metabolism in this clade of Deferribacteres and may be involved in the reduction of nitrite to ammonium. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Stefan Spring
- Department Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Braunschweig, Germany
| | - Boyke Bunk
- Department Bioinformatics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Department Bioinformatics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabine Eva Will
- Research Group Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Research Group Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
83
|
Ahmed R, Mao L, Li Y, Ding J, Lin W, Ahmed S, Abbas A, Ahmed W. Effect of Different Fertilizations on the Plant-Available Nitrogen in Soil Profile (0-100 cm): A Study on Chinese Cabbage. FRONTIERS IN PLANT SCIENCE 2022; 13:863760. [PMID: 35481137 PMCID: PMC9036359 DOI: 10.3389/fpls.2022.863760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study is to analyze the variations in the plant-available nitrogen (PAN) concentrations in the soil profile. Different fertilizers were applied for Chinese cabbage plantation (CCP) in the experimental fields of the Shunyi region. The treatments used for the comparative analysis are (i) no fertilizer and plantation (NVP), (ii) no fertilizer with CCP (CTP), (iii) fertilization as urea (URP), and (iv) potassium nitrate (KNP) and chicken manure (CMP) with CCP. It was concluded that the yield was significantly high in URP, CMP, and KNP as compared to CTP. In URP, maximum PAN in soil layers 0-60 cm was recorded during crop production and in 60-100 cm after harvesting as compared to other treatments. Significant variations in soil pH and electrical conductivity (EC) for the soil profile (0-100 cm) from the initial values with respect to time and treatments were observed. CMP showed maximum ammonium in the upper layers of 0-60 cm throughout the season, whereas minimum PAN was observed in NVP but increased in lower layers of 60-100 cm. In general, all fertilizers raised the PAN below the soil 60-100 cm which indicates their potential for nitrate leaching (NL).
Collapse
Affiliation(s)
- Rasheed Ahmed
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Mao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuzhong Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjun Ding
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Lin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shakeel Ahmed
- School of Environment, Tsinghua University, Beijing, China
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Waseem Ahmed
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
- Department of Horticulture, University of Haripur, Haripur, Pakistan
| |
Collapse
|
84
|
Zhang T, Zhuang X, Ahmad S, Lee T, Cao C, Ni SQ. Investigation of dissimilatory nitrate reduction to ammonium (DNRA) in urban river network along the Huangpu River, China: rates, abundances, and microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23823-23833. [PMID: 34820753 DOI: 10.1007/s11356-021-17475-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) is an essential intermediate step in the nitrogen cycle, and different sediment physicochemical properties can affect the DNRA process. But the detailed research on the environmental nitrogen cycling in urban river networks based on DNRA communities and the functional gene nrfA is lacking. In this study, the flow line of the Huangpu River in Shanghai was analyzed using isotope tracer, quantitative real-time PCR, and high-throughput sequencing techniques to evaluate the role of DNRA on the stability of the river network and marine. The significant positive correlation between the rate of DNRA and sediment organic carbon was identified. At the genus level, Anaeromyxobacter is the most dominant. Notably, both heterotrophic and autotrophic DNRA species were discovered. This study added diversity to the scope of urban freshwater river network ecosystem studies by investigating the distribution of DNRA bacteria along the Huangpu River. It provided new insights into the biological nitrogen cycle of typical urban inland rivers in eastern China.
Collapse
Affiliation(s)
- Tong Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China
- Suzhou Research Institute, Shandong University, Suzhou, 215123, Jiangsu, China
- Institute of Light Textile and Medicial Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250061, Shandong, China
- State Key Laboratory of Estuarine and Coastal Research, Shanghai, 200241, China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, China
| | - Shakeel Ahmad
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Pusan, 609-735, Republic of Korea
| | - Chengbo Cao
- Institute of Light Textile and Medicial Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250061, Shandong, China.
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China.
- Suzhou Research Institute, Shandong University, Suzhou, 215123, Jiangsu, China.
- State Key Laboratory of Estuarine and Coastal Research, Shanghai, 200241, China.
| |
Collapse
|
85
|
Ahsan M, Hossain MM, Almahri A, Rahman MM, Hasnat MA. Optimisation and stability of Rh particles on noble metal films immobilised on H + conducting solid polymer electrolyte in attaining efficient nitrate removal. Chem Asian J 2022; 17:e202200150. [PMID: 35316865 DOI: 10.1002/asia.202200150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/19/2022] [Indexed: 11/07/2022]
Abstract
During the electrocatalytic reduction of nitrate, nitrite is often evolved as a product along with ammonia due to the sluggish nitrite to ammonia conversion process compared to the nitrate to nitrite conversion step. Rhodium metal has been proven to enhance nitrite to ammonia conversion rates, yielding ammonia as the only final product. In the present article, we have shown how effectively Rh nanoparticles immobilized on Pt and Pd films deposited on H + conducting Nafion-117 membranes eliminate intermediate nitrite ions during the progress of the nitrate reduction reaction in a flow type reactor. In this research, we also demonstrated the optimization of Rh nanoparticles on the cathode surface to attain effective nitrate reduction along with a reproducibility check. The dissolution of loosely held Rh nanoparticles on the cathodic surface was observed, which tends to redeposit during cathodic electrolysis, causing stable performance. Finally, Tafel analysis was performed to show the relative kinetic feasibility of the Rh modified Pt and Pd electrodes in attaining nitrate reduction reactions in neutral medium.
Collapse
Affiliation(s)
- Mohebul Ahsan
- Shahjalal University of Science and Technology, Chemistry, BANGLADESH
| | | | | | - Mohammed M Rahman
- King Abdulaziz University, Chemistry, Center of Excellence for Advanced Material Researc, King Abdulaziz University, 21589, JEDDAH, SAUDI ARABIA
| | - Mohammad A Hasnat
- Shahjalal University of Science and Technology, Chemistry, Akhalia, 3114, Sylhet, BANGLADESH
| |
Collapse
|
86
|
Cheng Y, Elrys AS, Merwad ARM, Zhang H, Chen Z, Zhang J, Cai Z, Müller C. Global Patterns and Drivers of Soil Dissimilatory Nitrate Reduction to Ammonium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3791-3800. [PMID: 35226464 DOI: 10.1021/acs.est.1c07997] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA), the nearly forgotten process in the terrestrial nitrogen (N) cycle, can conserve N by converting the mobile nitrate into non-mobile ammonium avoiding nitrate losses via denitrification, leaching, and runoff. However, global patterns and controlling factors of soil DNRA are still only rudimentarily known. By a meta-analysis of 231 observations from 85 published studies across terrestrial ecosystems, we find a global mean DNRA rate of 0.31 ± 0.05 mg N kg-1 day-1, being significantly greater in paddy soils (1.30 ± 0.59) than in forests (0.24 ± 0.03), grasslands (0.52 ± 0.15), and unfertilized croplands (0.18 ± 0.04). Soil DNRA was significantly enhanced at higher altitude and lower latitude. Soil DNRA was positively correlated with precipitation, temperature, pH, soil total carbon, and soil total N. Precipitation was the main stimulator for soil DNRA. Total carbon and pH were also important factors, but their effects were ecosystem-specific as total carbon stimulates DNRA in forest soils, whereas pH stimulates DNRA in unfertilized croplands and paddy soils. Higher temperatures inhibit soil DNRA via decreasing total carbon. Moreover, nitrous oxide (N2O) emissions were negatively related to soil DNRA. Thus, future changes in climate and land-use may interact with management practices that alter soil substrate availability and/or soil pH to enhance soil DNRA with positive effects on N conservation and lower N2O emissions.
Collapse
Affiliation(s)
- Yi Cheng
- School of Geography, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing 210023, China
| | - Ahmed S Elrys
- School of Geography, Nanjing Normal University, Nanjing 210023, China
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Abdel-Rahman M Merwad
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Huimin Zhang
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Zhaoxiong Chen
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Christoph Müller
- Institute of Plant Ecology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, Giessen 35392, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
87
|
Li X, Zhao J, Zhang Y, He J, Ma K, Liu C. Role of organic/sulfide ratios on competition of DNRA and denitrification in a co-driven sequencing biofilm batch reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18793-18804. [PMID: 34699005 DOI: 10.1007/s11356-021-17058-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are two competing pathways in nitrate-reducing process. In this study, a series of C/S ratios from 8:1 to 2:4 were investigated in a sequencing biofilm batch reactor (SBBR) to determine the role of reducers (sulfide and acetate) on their competition. The results showed that the proportion of DNRA increased in high electron system, either in organic-rich system or in sulfide-rich system. The highest DNRA ratio increased to 16.4% at the C/S ratio of 2:3. Excess electron donors, particularly sulfide, were favorable for DNRA in a limited nitrate environment. Moreover, a higher reductive environment could facilitate DNRA, especially, when ORP was lower than - 400 mV in this system. 16S rRNA gene sequencing analysis demonstrated that Geobacter might be the important participant involved in DNRA process in organic-rich system, while Desulfomicrobium might be the dominant DNRA bacteria in sulfide-rich system. DNRA cultivation could enrich nitrogen conversion pathways in conventional denitrification systems and deepen the insight into nitrogen removal at low C/N.
Collapse
Affiliation(s)
- Xiaoling Li
- School of Civil Engineering, Key Laboratory of Water Supply &, Sewage Engineering Ministry of Housing and Urban-Rural Development, Chang'an University, Xi'an, 710054, China
| | - Jianqiang Zhao
- School of Water and Environment, Chang'an University, Xi'an, 710055, China.
| | - Yuhao Zhang
- School of Water and Environment, Chang'an University, Xi'an, 710055, China
| | - Jiaojie He
- School of Civil Engineering, Key Laboratory of Water Supply &, Sewage Engineering Ministry of Housing and Urban-Rural Development, Chang'an University, Xi'an, 710054, China
| | - Kaili Ma
- School of Environment, Henan Normal University, Xinxiang, 453000, China
| | - Chunshuang Liu
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| |
Collapse
|
88
|
Sun H, Jiang S. A review on nirS-type and nirK-type denitrifiers via a scientometric approach coupled with case studies. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:221-232. [PMID: 35072673 DOI: 10.1039/d1em00518a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The denitrification process plays an important role in improving water quality and is a source/sink of nitrous oxide to the atmosphere. The second important rate-limiting step of the denitrification process is catalyzed by two enzymes with different structures and unrelated evolutionary relationships, namely, the Cu-type nitrite reductase encoded by the nirK gene and the cytochrome cd1-type nitrite reductase encoded by the nirS gene. Although some relevant reviews have been published on denitrifiers, most of these reviews do not include statistical analysis, and do not compare the nirS and nirK communities in-depth. However, a systematic study of the nirS-type and nirK-type denitrifying communities and their response to environmental factors in different ecosystems is needed. In this review, a scientometric approach combined with case studies was used to study the nirS-type and nirK-type denitrifiers. The scientometric approach demonstrated that Pseudomonas, Paracoccus, and Thauera are the most frequently mentioned nirS-type denitrifiers, while Pseudomonas and Bradyrhizobium are the top two most frequently mentioned nirK-type denitrifiers. Among various environmental factors, the concentrations of nitrite, nitrate and carbon sources were widely reported factors that can influence the abundance and structure of nirS-type and nirK-type denitrifying communities. Case studies indicated that Bradyrhizobium was the major genus detected by high-throughput sequencing in both nirS and nirK-type denitrifiers in soil systems. nirS-type denitrifiers are more sensitive to the soil type, soil moisture, pH, and rhizosphere effect than nirK. To clarify the relationships between denitrifying communities and environmental factors, the DNA stable isotope probe combined with metagenomic sequencing is needed for new denitrifier detections.
Collapse
Affiliation(s)
- Haishu Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
89
|
Zhang Q, Liu Y, Zhang C, Zhou D. Easily biodegradable substrates are crucial for enhancing antibiotic risk reduction: Low-carbon discharging policies need to be more specified. WATER RESEARCH 2022; 210:117972. [PMID: 34952454 DOI: 10.1016/j.watres.2021.117972] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Governments have formulated stricter wastewater treatment plant (WWTP) discharge standards to address water pollution; however, with the cost of aggravating the refractory of the discharges. These policies are not in line with the classic co-metabolism theory; thus, we evaluated the effects of an easily biodegradable substrate on the removal efficiency of antibiotics and antibiotic resistance genes (ARGs) in the receiving water. In this study, reactor with 8 d of hydraulic retention time (HRT) was constructed to simulate a receiving river, and several antibiotics (0.30 mg/L each) were continuously discharged to the reactor (tetracycline, ciprofloxacin, amoxicillin, chloramphenicol, and sulfamethoxazole). Sodium acetate (NaAc) was used as a representative easily biodegradable substrate, and treatment protocols with and without a co-substrate were compared. The attenuation of the antibiotics in the simulated river and the production and dissemination of ARGs were analyzed. The results showed that 50 mg/L NaAc activated non-specific enzymes (a log2-fold change of 3.1-8.8 compared with 0 mg/L NaAc). The removal rate of the antibiotics was increased by 4-32%, and the toxicity of the downstream water was reduced by 35%. The upregulation of antioxidant enzymes caused the intracellular reactive oxygen species (ROSs) decreased by up to 47%, inhibiting horizontal gene transfer and reducing mobile genetic element-mediated ARGs (mARGs) by 18-56%. Furthermore, NaAc also increased the alpha diversity of the microbial community by 5-15% (Shannon-Wiener Index) and reduced the abundance of human bacterial pathogens by 22-36%. In summary, easily biodegradable substrates in the receiving water are crucial for reducing antibiotic risk.
Collapse
Affiliation(s)
- Qifeng Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yang Liu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chongjun Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
90
|
Liu X, Sun R, Hu S, Zhong Y, Wu Y. Aromatic compounds releases aroused by sediment resuspension alter nitrate transformation rates and pathways during aerobic-anoxic transition. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127365. [PMID: 34879562 DOI: 10.1016/j.jhazmat.2021.127365] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Aromatic compounds (ACs) releases aroused by sediment resuspension would certainly change the concentrations of suspended sediment (SPS) and organic carbon, which may alter nitrate-N transformation during aerobic-anoxic transition. To prove this, three typical ACs (aniline, nitrobenzene, and methylbenzene) with different octanol-water partition coefficients (Kow) were selected to investigate the effects of ACs releases aroused by sediment resuspension on nitrate-N transformation during aerobic-anoxic transition. ACs releases aroused by sediment resuspension accelerated nitrate-N transformation and enhanced the potential for dissimilatory nitrate reduction to ammonium (DNRA), compared to that without sediment resuspension. With sediment resuspension, methylbenzene releases affected nitrate-N transformation rates and pathways more significantly than aniline and nitrobenzene releases. Microbial analysis indicated that sediment resuspension created complicated microbial co-occurrence networks and changed the associations among bacteria; dominant bacteria abundance varied with different ACs releases. Further analysis revealed that ACs distributed in SPS, which increased with logKow, indirectly affected nitrate-N transformation rates and pathways via altering dominant bacteria abundance and electron transport system activity (ETSA). Especially, ETSA, which was positively associated with ACs distributed in SPS, affected nitrate-N transformation most directly. Overall, ACs release fate played important roles in nitrate-N transformation, causing ammonia-N retention and alterations in nitrogen cycle during aerobic-anoxic transition.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of chemistry and chemical engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Ran Sun
- School of chemistry and chemical engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Sihai Hu
- School of chemistry and chemical engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yangquanwei Zhong
- School of chemistry and chemical engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yaoguo Wu
- School of chemistry and chemical engineering, Northwestern Polytechnical University, Xi'an 710129, China.
| |
Collapse
|
91
|
Li S, Liao Y, Pang Y, Dong X, Strous M, Ji G. Denitrification and dissimilatory nitrate reduction to ammonia in long-term lake sediment microcosms with iron(II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150835. [PMID: 34627917 DOI: 10.1016/j.scitotenv.2021.150835] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/19/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Nitrate is an abundant pollutant in aquatic environments. Competition between the nitrate reduction processes, denitrification, which converts nitrate into nitrogen gas, and dissimilatory nitrate reduction to ammonia (DNRA), which converts nitrate into ammonia, decides whether an ecosystem removes or retains nitrogen. The presence of iron was previously reported to stimulate DNRA while sometimes inhibiting denitrification in in-situ studies, but long-term effect of iron(II) inputs on the competition is unknown. Here we inoculated long-term microcosms with sediments from two freshwater lakes. During 540 days of incubations, the microcosms with nitrate and Fe(II) additions of both lakes were able to sustain high nitrate reduction rates. Lepidocrocite was produced as a product of iron oxidation. We found both denitrification and DNRA were stimulated by nitrate and iron in the absence of external organic carbon addition. Phylogenetic analysis of denitrification genes, nirK and nirS, and DNRA genes, nirB and nrfA, was performed with metagenomic sequencing results. Enrichment was shown for reported Fe(II)-dependent nitrate reducers associated with nirS and nirB. Most of these bacteria are affiliated with Betaproteobacteria. From 16S rRNA gene analysis, Betaproteobacteria was enriched as well. In parallel, heterotrophic denitrifiers and methanotrophic DNRA archaea increased in abundance. Our results suggested heterotrophic and Fe(II)-dependent nitrate reducers both contributed to denitrification and DNRA in long-term microcosm incubations provided with iron.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China; Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Yinhao Liao
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Yunmeng Pang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, China
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
92
|
Microbial Nitrogen Transformation Potential in Sediments of Two Contrasting Lakes Is Spatially Structured but Seasonally Stable. mSphere 2022; 7:e0101321. [PMID: 35107340 PMCID: PMC8809388 DOI: 10.1128/msphere.01013-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The nitrogen (N) cycle is of global importance, as N is an essential element and a limiting nutrient in terrestrial and aquatic ecosystems. Excessive anthropogenic N fertilizer usage threatens sensitive downstream aquatic ecosystems. Although freshwater lake sediments remove N through various microbially mediated processes, few studies have investigated the microbial communities involved. In an integrated biogeochemical and microbiological study on a eutrophic and oligotrophic lake, we estimated N removal rates from pore water concentration gradients in sediments. Simultaneously, the abundance of different microbial N transformation genes was investigated using metagenomics on a seasonal and spatial scale. We observed that contrasting nutrient concentrations in sediments were associated with distinct microbial community compositions and significant differences in abundances of various N transformation genes. For both characteristics, we observed a more pronounced spatial than seasonal variability within each lake. The eutrophic Lake Baldegg showed a higher denitrification potential with higher nosZ gene (N2O reductase) abundances and higher nirS:nirK (nitrite reductase) ratios, indicating a greater capacity for complete denitrification. Correspondingly, this lake had a higher N removal efficiency. The oligotrophic Lake Sarnen, in contrast, had a higher potential for nitrification. Specifically, it harbored a high abundance of Nitrospira, including some with the potential for comammox. Our results demonstrate that knowledge of the genomic N transformation potential is important for interpreting N process rates and understanding how the lacustrine sedimentary N cycle responds to variations in trophic conditions. IMPORTANCE Anthropogenic nitrogen (N) inputs can lead to eutrophication in surface waters, especially in N-limited coastal ecosystems. Lakes effectively remove reactive N by transforming it to N2 through microbial denitrification or anammox. The rates and distributions of these microbial processes are affected by factors such as the amount and quality of settling organic material and nitrate concentrations. However, the microbial communities mediating these N transformation processes in freshwater lake sediments remain largely unknown. We provide the first seasonally and spatially resolved metagenomic analysis of the N cycle in sediments of two lakes with different trophic states. We show that lakes with different trophic states select for distinct communities of N-cycling microorganisms with contrasting functional potentials for N transformation.
Collapse
|
93
|
Wei Z, Ahmed Mohamed T, Zhao L, Zhu Z, Zhao Y, Wu J. Microhabitat drive microbial anabolism to promote carbon sequestration during composting. BIORESOURCE TECHNOLOGY 2022; 346:126577. [PMID: 34923079 DOI: 10.1016/j.biortech.2021.126577] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Transforming organic waste into stable carbon by composting is an eco-friendly way. However, the complex environment, huge microbial community and complicated metabolic of composting have limited the directional transformation of organic carbon, which is also not conducive to the fixation of organic carbon. Therefore, this review is based on the formation of humus, a stable by-product of composting, to expound how to promote carbon fixation by increasing the yield of humus. Firstly, we have clarified the transformation regularity of organic matter during composting. Meanwhile, the microhabitat factors affecting microbial catabolism and anabolism were deeply analyzed, in order to provide a theoretical basis for the micro habitat regulation of directional transformation of organic matter during composting. Given that, a method to adjust the directional humification and stabilization of organic carbon has been proposed. Hoping the rapid reduction and efficient stabilization of organic waste can be realized according to this method.
Collapse
Affiliation(s)
- Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Taha Ahmed Mohamed
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Li Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zechen Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
94
|
Morou-Bermúdez E, Torres-Colón JE, Bermúdez NS, Patel RP, Joshipura KJ. Pathways Linking Oral Bacteria, Nitric Oxide Metabolism, and Health. J Dent Res 2022; 101:623-631. [PMID: 35081826 DOI: 10.1177/00220345211064571] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nitrate-reducing oral bacteria have gained a lot of interest due to their involvement in nitric oxide (NO) synthesis and its important cardiometabolic outcomes. Consortia of nitrate-metabolizing oral bacteria associated with cardiometabolic health and cognitive function have been recently identified. Longitudinal studies and clinical trials have shown that chronic mouthwash use is associated with increased blood pressure and increased risk for prediabetes/diabetes and hypertension. Concurrently, recent studies are beginning to shed some light on the complexity of nitrate reduction pathways of oral bacteria, such as dissimilatory nitrate reduction to ammonium (DNRA), which converts nitrite into ammonium, and denitrification, which converts nitrite to NO, nitrous oxide, and dinitrogen. These pathways can affect the composition and metabolism of the oral microbiome; consequently, salivary nitrate and nitrite metabolism have been proposed as targets for probiotics and oral health. These pathways could also affect systemic NO levels because NO generated through denitrification can be oxidized back to nitrite in the saliva, thus facilitating flux along the NO3--NO2--NO pathway, while DNRA converts nitrite to ammonium, leading to reduced NO. It is, therefore, important to understand which pathway predominates under different oral environmental conditions, since the clinical consequences could be different for oral and systemic health. Recent studies show that oral hygiene measures such as tongue cleaning and dietary nitrate are likely to favor denitrifying bacteria such as Neisseria, which are linked with better cardiometabolic health. A vast body of literature demonstrates that redox potential, carbon-to-nitrate ratio, and nitrate-to-nitrite ratio are key environmental drivers of the competing denitrification and DNRA pathways in various natural and artificial ecosystems. Based on this information, a novel behavioral and microbial model for nitric oxide metabolism and health is proposed, which links lifestyle factors with oral and systemic health through NO metabolism.
Collapse
Affiliation(s)
- E Morou-Bermúdez
- University of Puerto Rico Medical Sciences Campus, School of Dental Medicine, San Juan, Puerto Rico
| | - J E Torres-Colón
- University of Puerto Rico Medical Sciences Campus, School of Dental Medicine, San Juan, Puerto Rico
| | - N S Bermúdez
- Department of Linguistics, Harvard University, Cambridge, MA, USA
| | - R P Patel
- Department of Pathology, University of Alabama at Birmingham and Center for Free Radical Biology, AL, USA
| | - K J Joshipura
- University of Puerto Rico Medical Sciences Campus, School of Dental Medicine, San Juan, Puerto Rico.,T. H. Chan School of Public Health, Harvard University, Cambridge, MA, USA
| |
Collapse
|
95
|
Pang Q, Xu W, He F, Peng F, Zhu X, Xu B, Yu J, Jiang Z, Wang L. Functional genera for efficient nitrogen removal under low C/N ratio influent at low temperatures in a two-stage tidal flow constructed wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150142. [PMID: 34509836 DOI: 10.1016/j.scitotenv.2021.150142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
A two-stage tidal flow constructed wetland (referred to as TFCW-A and TFCW-B) was used to treat low chemical oxygen demand/total nitrogen (COD/TN or simply C/N) ratio influent at low temperatures (<15 °C). The influence of the flooding-resting time (A: 8 h-4 h, B: 4 h-8 h) and effluent recirculation on nitrogen removal and microbial community characteristics were explored. TFCW-B achieved optimal average nitrogen removal efficiency with effluent recirculation (96.05% ammonium nitrogen (NH4+-N); 78.43% TN) and led to nitrate nitrogen (NO3--N) accumulation due to the lack of a carbon source and longer resting time. Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were inhibited at low temperatures. Except for nrfA, AOA, AOB, narG and nirS were separated by the flooding-resting time rather than by spatial position. Furthermore, the dominant genera in TFCW-A were Arthrobacter, Rhodobacter, Pseudomonas, and Solitalea, whereas prolonging resting time promoted the growth of Thauera and Zoogloea in TFCW-B. Spearman correlation analysis showed that Zoogloea and Rhodobacter had the strongest correlations with other genera. Moreover, the NH4+-N concentration was significantly positively influenced by Arthrobacter, Rhodobacter, Pseudomonas, and Solitalea but negatively influenced by Thauera and Zoogloea. There was no significant correlation between TN and the dominant genera. This study not only provides a practicable system for wastewater treatment with a low C/N ratio but also presents a theoretical basis for the regulation of microbial communities in nitrogen removal systems at low temperatures.
Collapse
Affiliation(s)
- Qingqing Pang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Wenwen Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Fuquan Peng
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Xiang Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Jianghua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zewei Jiang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Longmian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.
| |
Collapse
|
96
|
Guan A, Qi W, Peng Q, Zhou J, Bai Y, Qu J. Environmental heterogeneity determines the response patterns of microbially mediated N-reduction processes to sulfamethoxazole in river sediments. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126730. [PMID: 34388921 DOI: 10.1016/j.jhazmat.2021.126730] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 05/28/2023]
Abstract
The widespread occurrence of antibiotics in aquatic ecosystems leads to potential ecological risks to organisms, in turn affecting microbially mediated processes. Here, we investigated the response of dominant N-reduction processes to the frequently detected antibiotic sulfamethoxazole (SMX) along the Chaobai River with regional environmental heterogeneity, including denitrification, anaerobic ammonium oxidation (anammox), dissimilatory nitrate reduction to ammonium (DNRA), and nitrous oxide (N2O) release. We found two divergent SMX response patterns for denitrification in contrasting scenarios of geochemical properties. In the context of low nitrate and carbon, SMX weakened denitrification with a slightly stimulation first. Whereas SMX directly inhibited denitrification when nitrate and carbon were sufficient. High SMX concentration suppressed anammox (26-72%) and DNRA activities (48-84%) via restraining the activities of anammox and DNRA bacteria. Notably, SMX increased the contribution of denitrification to N-reduction at the expense of DNRA to N-reduction, leading to a shift in nitrogen conversion towards denitrification. Additionally, SMX stimulated N2O emission (up to 91%) due to superior restraint on process of N2O reduction to N2 and an incline for N-reduction towards denitrification, thereby exacerbating greenhouse effect. Our results advance the understanding of how nitrogen cycling is affected by SMX in aquatic ecosystems with environmental heterogeneity.
Collapse
Affiliation(s)
- Aomei Guan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Qiang Peng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiemin Zhou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
97
|
Cao Y, Wang X, Zhang X, Misselbrook TH, Bai Z, Wang H, Ma L. The effects of electric field assisted composting on ammonia and nitrous oxide emissions varied with different electrolytes. BIORESOURCE TECHNOLOGY 2022; 344:126194. [PMID: 34710594 DOI: 10.1016/j.biortech.2021.126194] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Enhancing electron transfer through directly elevating electric potential has been verified to reduce gaseous emissions from composting. Reducing electric resistance of composting biomass might be a choice to further strengthening electron transfer. Here, the effects of chemical electrolytes addition on gaseous Nitrogen emission in electric field assistant composting were investigated. Results suggest that adding acidic electrolyte (ferric chloride) significantly reduced ammonia (NH3) emission by 72.1% but increased nitrous oxide (N2O) emission (by 24-fold) (P < 0.05), because of a dual effect on nitrifier activity: i) an elevated abundance and proportion of ammonia oxidizing bacteria Nitrosomonadaceae, and ii) delayed growth of nitrite oxidizing bacteria. Neutral and alkaline electrolytes had no negative or positive effect on N2O or NH3 emission. Hence, there is a potential trade-off between NH3 and N2O mitigation if using ferric chloride as acidic electrolyte, and electrolyte addition should aim to enhance electron production promote N2O mitigation.
Collapse
Affiliation(s)
- Yubo Cao
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, PR China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Xuan Wang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, PR China
| | - Xinyuan Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, PR China
| | - Tom H Misselbrook
- Sustainable Agricultural Sciences, Rothamsted Research, North Wyke, Okehampton EX20 2SB, UK
| | - Zhaohai Bai
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, PR China
| | - Hongge Wang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, PR China
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, PR China.
| |
Collapse
|
98
|
Response to substrate limitation by a marine sulfate-reducing bacterium. THE ISME JOURNAL 2022; 16:200-210. [PMID: 34285365 PMCID: PMC8692349 DOI: 10.1038/s41396-021-01061-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Sulfate-reducing microorganisms (SRM) in subsurface sediments live under constant substrate and energy limitation, yet little is known about how they adapt to this mode of life. We combined controlled chemostat cultivation and transcriptomics to examine how the marine sulfate reducer, Desulfobacterium autotrophicum, copes with substrate (sulfate or lactate) limitation. The half-saturation uptake constant (Km) for lactate was 1.2 µM, which is the first value reported for a marine SRM, while the Km for sulfate was 3 µM. The measured residual lactate concentration in our experiments matched values observed in situ in marine sediments, supporting a key role of SRM in the control of lactate concentrations. Lactate limitation resulted in complete lactate oxidation via the Wood-Ljungdahl pathway and differential overexpression of genes involved in uptake and metabolism of amino acids as an alternative carbon source. D. autotrophicum switched to incomplete lactate oxidation, rerouting carbon metabolism in response to sulfate limitation. The estimated free energy was significantly lower during sulfate limitation (-28 to -33 kJ mol-1 sulfate), suggesting that the observed metabolic switch is under thermodynamic control. Furthermore, we detected the upregulation of putative sulfate transporters involved in either high or low affinity uptake in response to low or high sulfate concentration.
Collapse
|
99
|
Huang X, Tie W, Xie D, Jiang D, Li Z. Certain Environmental Conditions Maximize Ammonium Accumulation and Minimize Nitrogen Loss During Nitrate Reduction Process by Pseudomonas putida Y-9. Front Microbiol 2021; 12:764241. [PMID: 34966364 PMCID: PMC8710668 DOI: 10.3389/fmicb.2021.764241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Realizing the smallest nitrogen loss is a challenge in the nitrate reduction process. Dissimilatory nitrate reduction to ammonium (DNRA) and nitrate assimilation play crucial roles in nitrogen retention. In this study, the effects of the carbon source, C/N ratio, pH, and dissolved oxygen on the multiple nitrate reduction pathways conducted by Pseudomonas putida Y-9 are explored. Strain Y-9 efficiently removed nitrate (up to 89.79%) with glucose as the sole carbon source, and the nitrogen loss in this system was 15.43%. The total nitrogen decrease and ammonium accumulation at a C/N ratio of 9 were lower than that at 12 and higher than that at 15, respectively (P < 0.05). Besides, neutral and alkaline conditions (pH 7–9) favored nitrate reduction. Largest nitrate removal (81.78%) and minimum nitrogen loss (10.63%) were observed at pH 7. The nitrate removal and ammonium production efficiencies of strain Y-9 increased due to an increased shaking speed. The expression patterns of nirBD (the gene that controls nitrate assimilation and DNRA) in strain Y-9 were similar to ammonium patterns of the tested incubation conditions. In summary, the following conditions facilitated nitrate assimilation and DNRA by strain Y-9, while reducing the denitrification: glucose as the carbon source, a C/N ratio of 9, a pH of 7, and a shaking speed of 150 rpm. Under these conditions, nitrate removal was substantial, and nitrogen loss from the system was minimal.
Collapse
Affiliation(s)
- Xuejiao Huang
- Key Laboratory of (Guang Xi) Agricultural Environment and Products Safety, College of Agronomy, Guangxi University, Nanning, China.,Chongqing Key Laboratory of Soil Multiscale Interfacial Process, Southwest University, Chongqing, China
| | - Wenzhou Tie
- Key Laboratory of (Guang Xi) Agricultural Environment and Products Safety, College of Agronomy, Guangxi University, Nanning, China
| | - Deti Xie
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, Southwest University, Chongqing, China
| | - Daihua Jiang
- Key Laboratory of (Guang Xi) Agricultural Environment and Products Safety, College of Agronomy, Guangxi University, Nanning, China
| | - Zhenlun Li
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, Southwest University, Chongqing, China
| |
Collapse
|
100
|
Li S, Pang Y, Ji G. Increase of N 2O production during nitrate reduction after long-term sulfide addition in lake sediment microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118231. [PMID: 34571071 DOI: 10.1016/j.envpol.2021.118231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Microbial denitrification is a main source of nitrous oxide (N2O) emissions which have strong greenhouse effect and destroy stratospheric ozone. Though the importance of sulfide driven chemoautotrophic denitrification has been recognized, its contribution to N2O emissions in nature remains elusive. We built up long-term sulfide-added microcosms with sediments from two freshwater lakes. Chemistry analysis confirmed sulfide could drive nitrate respiration in long term. N2O accumulated to over 1.5% of nitrate load in both microcosms after long-term sulfide addition, which was up to 12.9 times higher than N2O accumulation without sulfide addition. Metagenomes were extracted and sequenced during microcosm incubations. 16 S rRNA genes of Thiobacillus and Defluviimonas were gradually enriched. The nitric oxide reductase with c-type cytochromes as electron donors (cNorB) increased in abundance, while the nitric oxide reductase receiving electrons from quinols (qNorB) decreased in abundance. cnorB genes similar to Thiobacillus were enriched in both microcosms. In parallel, enrichment was observed for enzymes involved in sulfur oxidation, which supplied electrons to nitrate respiration, and enzymes involved in Calvin Cycle, which sustained autotrophic cell growth, implying the coupling relationship between carbon, nitrogen and sulfur cycling processes. Our results suggested sulfur pollution considerably increased N2O emissions in natural environments.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Yunmeng Pang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|