51
|
Dover KR, Valley AW. Review : Angiogenesis: A new target for antineoplastic therapy. J Oncol Pharm Pract 2016. [DOI: 10.1177/107815529600200106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective. To review the pathophysiologic rationale and therapeutic applications of inhibiting angiogenesis in solid tumor growth. Data Sources. A MEDLINE search of articles published from 1985 to 1995 and a CancerLit search of articles published from 1988 to 1995, using the MESH heading "neovascularization" and text words "angiogenesis" and "antiangiogenesis." References listed in identified publications were reviewed for additional pertinent literature. Study Selection. All human trials evaluating angiogenesis inhibitors in malignant disease and pre- clinical trials that illustrate potential mechanisms of action of such agents were included. Data Synthesis. Angiogenesis, the formation of new blood vessels, is necessary for the development of significant solid tumor growth. Inhibition of angio genesis is a unique mechanism of antineoplastic ther apy that does not use traditional cytotoxic actions. Four investigational antiangiogenic agents are cur rently being evaluated in phase I and II trials. Poten tially beneficial applications of angiogenesis inhibitors include suppression of occult and premalignant le sions, symptomatic control of angiogenesis-depen dent malignancies, and combination therapy with traditional antineoplastic agents. Conclusion. Inhibition of angiogenesis is a new pharmacologic strategy that may prove useful in controlling malignant growth. A number of agents with antiangiogenic activity have been developed, and further study of these drugs will define their role in antineoplastic therapy.
Collapse
Affiliation(s)
| | - Amy W. Valley
- Audie L. Murphy Memorial Veterans Affairs Hospital, University of Texas at Austin, and University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
52
|
Cai Z, Zhu Z, Greene MI, Cines DB. Atomic features of an autoantigen in heparin-induced thrombocytopenia (HIT). Autoimmun Rev 2016; 15:752-5. [PMID: 26970483 DOI: 10.1016/j.autrev.2016.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/04/2016] [Indexed: 01/19/2023]
Abstract
Autoantigen development is poorly understood at the atomic level. Heparin-induced thrombocytopenia (HIT) is an autoimmune thrombotic disorder caused by antibodies to an antigen composed of platelet factor 4 (PF4) and heparin or cellular glycosaminoglycans (GAGs). In solution, PF4 exists as an equilibrium among monomers, dimers and tetramers. Structural studies of these interacting components helped delineate a multi-step process involved in the pathogenesis of HIT. First, heparin binds to the 'closed' end of the PF4 tetramer and stabilizes its conformation; exposing the 'open' end. Second, PF4 arrays along heparin/GAG chains, which approximate tetramers, form large antigenic complexes that enhance antibody avidity. Third, pathogenic HIT antibodies bind to the 'open' end of stabilized PF4 tetramers to form an IgG/PF4/heparin ternary immune complex and also to propagate the formation of 'ultralarge immune complexes' (ULCs) that contain multiple IgG antibodies. Fourth, ULCs signal through FcγRIIA receptors, activating platelets and monocytes directly and generating thrombin, which transactivates hematopoietic and endothelial cells. A non-pathogenic anti-PF4 antibody prevents tetramer formation, binding of pathogenic antibody, platelet activation and thrombosis, providing a new approach to manage HIT. An improved understanding of the pathogenesis of HIT may lead to novel diagnostics and therapeutics for this autoimmune disease.
Collapse
Affiliation(s)
- Zheng Cai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Zhiqiang Zhu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas B Cines
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
53
|
Gao J, Wu M, Gao J, Wang X, Zhang Y, Zhu S, Yu Y, Han W. Generation and Characterization of a New Monoclonal Antibody Against CXCL4. Monoclon Antib Immunodiagn Immunother 2016; 34:110-5. [PMID: 25897609 DOI: 10.1089/mab.2014.0050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
CXCL4 plays important roles in numerous disease processes, which makes the CXCL4 signaling pathway a potential therapeutic target. In this study, we aimed to develop a neutralizing antibody against both human and mouse CXCL4. Rats were immunized with recombinant human CXCL4 (rhCXCL4). Hybridoma clones were created by fusion of the immunized rat spleen cells with mouse myeloma SP2/0 cells and screened using recombinant mouse CXCL4 (rmCXCL4) and rhCXCL4. The CXCL4 monoclonal antibody (CXCL4 MAb) produced by the 16D6-3 hybridoma clone was sequenced and characterized by Western blot and Biacore assays. It recognized both human and mouse CXCL4 with high affinity and neutralized the effect of rhCXCL4 in vitro. Thus, the antibody may be used in the studies of CXCL4 in murine disease models and as a template in the antibody humanization for clinical developments.
Collapse
Affiliation(s)
- Jing Gao
- 1 Laboratory of Regeneromics, School of Pharmacy, School of Agriculture and Biology, Shanghai Jiao Tong University , Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Ding J, Tredget EE. The Role of Chemokines in Fibrotic Wound Healing. Adv Wound Care (New Rochelle) 2015; 4:673-686. [PMID: 26543681 DOI: 10.1089/wound.2014.0550] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Significance: Main dermal forms of fibroproliferative disorders are hypertrophic scars (HTS) and keloids. They often occur after cutaneous wound healing after skin injury, or keloids even form spontaneously in the absence of any known injury. HTS and keloids are different in clinical performance, morphology, and histology, but they all lead to physical and psychological problems for survivors. Recent Advances: Although the mechanism of wound healing at cellular and tissue levels has been well described, the molecular pathways involved in wound healing, especially fibrotic healing, is incompletely understood. Critical Issues: Abnormal scars not only lead to increased health-care costs but also cause significant psychological problems for survivors. A plethora of therapeutic strategies have been used to prevent or attenuate excessive scar formation; however, most therapeutic approaches remain clinically unsatisfactory. Future Directions: Effective care depends on an improved understanding of the mechanisms that cause abnormal scars in patients. A thorough understanding of the roles of chemokines in cutaneous wound healing and abnormal scar formation will help provide more effective preventive and therapeutic strategies for dermal fibrosis as well as for other proliferative disorders.
Collapse
Affiliation(s)
- Jie Ding
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Edward E. Tredget
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Division of Critical Care Medicine, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
55
|
Furuse M, Nonoguchi N, Kawabata S, Miyatake SI, Kuroiwa T. Delayed brain radiation necrosis: pathological review and new molecular targets for treatment. Med Mol Morphol 2015; 48:183-90. [DOI: 10.1007/s00795-015-0123-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/01/2015] [Indexed: 12/20/2022]
|
56
|
Li N. Platelets in cancer metastasis: To help the "villain" to do evil. Int J Cancer 2015; 138:2078-87. [PMID: 26356352 DOI: 10.1002/ijc.29847] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/27/2015] [Accepted: 08/24/2015] [Indexed: 12/16/2022]
Abstract
Cancer progress is accompanied by platelet activation and thrombotic complications. Platelets are a dangerous alliance of cancer cells, and are a close engager in multiple processes of cancer metastasis. Platelet adhesion to cancer cells forms a protective cloak that helps cancer cells to escape immune surveillance and natural killer cell-mediated cytolysis. Platelets facilitate tethering and arrest of disseminated cancer cells in the vasculature, enhance invasive potentials and thus extravasation of cancer cells. Moreover, platelets recruit monocytes and granulocytes to the sites of cancer cell arrest, and collaborate with them to establish a pro-metastatic microenvironment and metastatic niches. Platelets also secret a number of growth factors to stimulate cancer cell proliferation, release various angiogenic regulators to regulate tumor angiogenesis and subsequently promote cancer growth and progress. Albeit platelets are helping the "villain" cancer to do evil, the close engagements of platelets in cancer metastasis and progress can be used as the intervention targets for new anti-cancer therapeutic developments. Platelet-targeted anti-cancer strategy may bring in novel anti-cancer treatments that can synergize the therapeutic effects of chemotherapies and surgical treatments of cancer.
Collapse
Affiliation(s)
- Nailin Li
- Karolinska Institutet Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska University Hospital-Solna, 171 76, Stockholm, Sweden
| |
Collapse
|
57
|
Van Raemdonck K, Berghmans N, Vanheule V, Bugatti A, Proost P, Opdenakker G, Presta M, Van Damme J, Struyf S. Angiostatic, tumor inflammatory and anti-tumor effects of CXCL4(47-70) and CXCL4L1(47-70) in an EGF-dependent breast cancer model. Oncotarget 2015; 5:10916-33. [PMID: 25373734 PMCID: PMC4279419 DOI: 10.18632/oncotarget.2538] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/29/2014] [Indexed: 01/12/2023] Open
Abstract
CXCL4 and CXCL4L1, platelet-derived CXC chemokines, and their carboxy-terminal peptides CXCL447–70 and CXCL4L147–70 previously displayed angiostatic and anti-tumoral activity in a melanoma model. Here, we found CXCL447–70 and CXCL4L147–70 to inhibit lymphatic endothelial cell proliferation in vitro. Furthermore, the angiostatic potential of CXCL447–70 and CXCL4L147–70 was tested against different angiogenic stimuli (FGF1, FGF2, FGF8, EGF and VEGF). Besides reducing FGF2-induced vascular endothelial cell growth, CXCL447–70 and CXCL4L147–70 efficiently counteracted EGF. Consequently, we considered their anti-tumoral potential in EGF-dependent MDA-MB-231 breast tumors. In tumor-bearing mice, CXCL447–70 reduced tumor growth better than CXCL4L147–70. In CXCL447–70-treated tumors significantly more intratumoral monocytes/macrophages and dendritic cells were present and higher expression levels of CCL5 and IFN-γ were detected by qPCR on tumor lysates. Because neither peptide was able to specifically bind CXCR3A or CXCR3B, differential glycosaminoglycan binding and direct interaction with cytokines (EGF and CCL5) might explain any differences in anti-tumoral effects. Notably, CCL5-induced monocyte chemotaxis in vitro was increased by addition of CXCL447–70 or CXCL4L147–70. Finally, CXCL447–70 and CXCL4L147–70 inhibited proliferation of MDA-MB-231 cells. Our results suggest a tumor type-dependent responsiveness to either CXCL447–70 or CXCL4L147–70 treatment, defined by anti-proliferative, angiostatic and inflammatory actions, and substantiate their therapeutic potential.
Collapse
Affiliation(s)
- Katrien Van Raemdonck
- Laboratory of Molecular Immunology, KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology, KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Antonella Bugatti
- Laboratory of Experimental Oncology and Immunology, University of Brescia, Department of Molecular and Translational Medicine Brescia, Italy
| | - Paul Proost
- Laboratory of Molecular Immunology, KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Marco Presta
- Laboratory of Experimental Oncology and Immunology, University of Brescia, Department of Molecular and Translational Medicine Brescia, Italy
| | - Jo Van Damme
- Laboratory of Molecular Immunology, KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| |
Collapse
|
58
|
Hadjipanayi E, Kuhn PH, Moog P, Bauer AT, Kuekrek H, Mirzoyan L, Hummel A, Kirchhoff K, Salgin B, Isenburg S, Dornseifer U, Ninkovic M, Machens HG, Schilling AF. The Fibrin Matrix Regulates Angiogenic Responses within the Hemostatic Microenvironment through Biochemical Control. PLoS One 2015; 10:e0135618. [PMID: 26317771 PMCID: PMC4552838 DOI: 10.1371/journal.pone.0135618] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/24/2015] [Indexed: 12/16/2022] Open
Abstract
Conceptually, premature initiation of post-wound angiogenesis could interfere with hemostasis, as it relies on fibrinolysis. The mechanisms facilitating orchestration of these events remain poorly understood, however, likely due to limitations in discerning the individual contribution of cells and extracellular matrix. Here, we designed an in vitro Hemostatic-Components-Model (HCM) to investigate the role of the fibrin matrix as protein factor-carrier, independent of its cell-scaffold function. After characterizing the proteomic profile of HCM-harvested matrix releasates, we demonstrate that the key pro-/anti-angiogenic factors, VEGF and PF4, are differentially bound by the matrix. Changing matrix fibrin mass consequently alters the balance of releasate factor concentrations, with differential effects on basic endothelial cell (EC) behaviors. While increasing mass, and releasate VEGF levels, promoted EC chemotactic migration, it progressively inhibited tube formation, a response that was dependent on PF4. These results indicate that the clot’s matrix component initially serves as biochemical anti-angiogenic barrier, suggesting that post-hemostatic angiogenesis follows fibrinolysis-mediated angiogenic disinhibition. Beyond their significance towards understanding the spatiotemporal regulation of wound healing, our findings could inform the study of other pathophysiological processes in which coagulation and angiogenesis are prominent features, such as cardiovascular and malignant disease.
Collapse
Affiliation(s)
- Ektoras Hadjipanayi
- Department of Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, D-81675, Munich, Germany
- Department of Plastic, Reconstructive, Hand and Burn Surgery, Bogenhausen Hospital, 81925, Munich, Germany
| | - Peer-Hendrik Kuhn
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Philipp Moog
- Department of Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, D-81675, Munich, Germany
| | - Anna-Theresa Bauer
- Department of Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, D-81675, Munich, Germany
| | - Haydar Kuekrek
- Department of Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, D-81675, Munich, Germany
| | - Lilit Mirzoyan
- Department of Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, D-81675, Munich, Germany
| | - Anja Hummel
- Department of Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, D-81675, Munich, Germany
| | - Katharina Kirchhoff
- Department of Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, D-81675, Munich, Germany
| | - Burak Salgin
- Department of General Paediatrics, Neonatology and Paediatric Cardiology, University Children‘s Hospital Düsseldorf, 40225, Düsseldorf, Germany
- Cambridge University Department of Paediatrics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Sarah Isenburg
- Department of Plastic, Reconstructive, Hand and Burn Surgery, Bogenhausen Hospital, 81925, Munich, Germany
| | - Ulf Dornseifer
- Department of Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, D-81675, Munich, Germany
- Department of Plastic, Reconstructive, Hand and Burn Surgery, Bogenhausen Hospital, 81925, Munich, Germany
| | - Milomir Ninkovic
- Department of Plastic, Reconstructive, Hand and Burn Surgery, Bogenhausen Hospital, 81925, Munich, Germany
| | - Hans-Günther Machens
- Department of Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, D-81675, Munich, Germany
| | - Arndt F. Schilling
- Department of Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, D-81675, Munich, Germany
- Center for Applied New Technologies in Engineering for Regenerative Medicine (Canter), Munich, Germany
- * E-mail:
| |
Collapse
|
59
|
Rivera LB, Meyronet D, Hervieu V, Frederick MJ, Bergsland E, Bergers G. Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy. Cell Rep 2015; 11:577-91. [PMID: 25892230 DOI: 10.1016/j.celrep.2015.03.055] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/02/2015] [Accepted: 03/25/2015] [Indexed: 12/21/2022] Open
Abstract
Antiangiogenic therapy is commonly used in the clinic, but its beneficial effects are short-lived, leading to tumor relapse within months. Here, we found that the efficacy of angiogenic inhibitors targeting the VEGF/VEGFR pathway was dependent on induction of the angiostatic and immune-stimulatory chemokine CXCL14 in mouse models of pancreatic neuroendocrine and mammary tumors. In response, tumors reinitiated angiogenesis and immune suppression by activating PI3K signaling in all CD11b+ cells, rendering tumors nonresponsive to VEGF/VEGFR inhibition. Adaptive resistance was also associated with an increase in Gr1+CD11b+ cells, but targeting Gr1+ cells was not sufficient to further sensitize angiogenic blockade because tumor-associated macrophages (TAMs) would compensate for the lack of such cells and vice versa, leading to an oscillating pattern of distinct immune-cell populations. However, PI3K inhibition in CD11b+ myeloid cells generated an enduring angiostatic and immune-stimulatory environment in which antiangiogenic therapy remained efficient.
Collapse
Affiliation(s)
- Lee B Rivera
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David Meyronet
- Université Lyon 1, Centre de Pathologie et Neuropathologie Est, Hospices Civils de Lyon, Bron Cedex 69677, France
| | - Valérie Hervieu
- Université Lyon 1, Service d'Anatomie Pathologique, Hôpital Édouard Herriot, Hospices Civils de Lyon, Lyon Cedex 69003, France
| | - Mitchell J Frederick
- Department of Head and Neck Surgery, Research Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emily Bergsland
- Department of Medicine, UCSF Mount Zion Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gabriele Bergers
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
60
|
Heparin/Heparan sulfate proteoglycans glycomic interactome in angiogenesis: biological implications and therapeutical use. Molecules 2015; 20:6342-88. [PMID: 25867824 PMCID: PMC6272510 DOI: 10.3390/molecules20046342] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis, the process of formation of new blood vessel from pre-existing ones, is involved in various intertwined pathological processes including virus infection, inflammation and oncogenesis, making it a promising target for the development of novel strategies for various interventions. To induce angiogenesis, angiogenic growth factors (AGFs) must interact with pro-angiogenic receptors to induce proliferation, protease production and migration of endothelial cells (ECs). The action of AGFs is counteracted by antiangiogenic modulators whose main mechanism of action is to bind (thus sequestering or masking) AGFs or their receptors. Many sugars, either free or associated to proteins, are involved in these interactions, thus exerting a tight regulation of the neovascularization process. Heparin and heparan sulfate proteoglycans undoubtedly play a pivotal role in this context since they bind to almost all the known AGFs, to several pro-angiogenic receptors and even to angiogenic inhibitors, originating an intricate network of interaction, the so called "angiogenesis glycomic interactome". The decoding of the angiogenesis glycomic interactome, achievable by a systematic study of the interactions occurring among angiogenic modulators and sugars, may help to design novel antiangiogenic therapies with implications in the cure of angiogenesis-dependent diseases.
Collapse
|
61
|
Liu X, Dai LI, Zhou R. Association between preeclampsia and the CXC chemokine family (Review). Exp Ther Med 2015; 9:1572-1576. [PMID: 26136860 DOI: 10.3892/etm.2015.2337] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 02/18/2015] [Indexed: 12/30/2022] Open
Abstract
Preeclampsia is a major cause of maternal and perinatal mortality and morbidity, characterized by gestational hypertension, proteinuria, systemic endothelial cell activation and an exaggerated inflammatory response. The precise cause of preeclampsia is not currently known; however, it is widely accepted that the pathogenesis of preeclampsia involves inadequate trophoblast invasion, leading to generalized endothelial dysfunction and an exaggerated inflammatory response. Chemokines are a superfamily of structurally similar proteins that mediate cell recruitment, angiogenesis, immunity and stem cell trafficking. CXC chemokines are a family of cytokines, unique in their ability to behave in a disparate manner in the regulation of angiogenesis. The CXC chemokine family further divides into two subfamilies; CXC ELR+, which promotes angiogenesis, and CXC ELR-, which inhibits angiogenesis. Furthermore, CXC chemokines are involved in the pathogenesis of various conditions, including malignant tumors, wound repair, chronic inflammation, atherosclerosis and potentially preeclampsia.
Collapse
Affiliation(s)
- Xijing Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - L I Dai
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
62
|
Zhang H, Ren Y, Tang X, Wang K, Liu Y, Zhang L, Li X, Liu P, Zhao C, He J. Vascular normalization induced by sinomenine hydrochloride results in suppressed mammary tumor growth and metastasis. Sci Rep 2015; 5:8888. [PMID: 25749075 PMCID: PMC4352869 DOI: 10.1038/srep08888] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/09/2015] [Indexed: 01/08/2023] Open
Abstract
Solid tumor vasculature is characterized by structural and functional abnormality and results in a hostile tumor microenvironment that mediates several deleterious aspects of tumor behavior. Sinomenine is an alkaloid extracted from the Chinese medicinal plant, Sinomenium acutum, which has been utilized to treat rheumatism in China for over 2000 years. Though sinomenine has been demonstrated to mediate a wide range of pharmacological actions, few studies have focused on its effect on tumor vasculature. We showed here that intraperitoneally administration of 100 mg/kg sinomenine hydrochloride (SH, the hydrochloride chemical form of sinomenine) in two orthotopic mouse breast cancer models for 14 days, delayed mammary tumor growth and decreased metastasis by inducing vascular maturity and enhancing tumor perfusion, while improving chemotherapy and tumor immunity. The effects of SH on tumor vessels were caused in part by its capability to restore the balance between pro-angiogenic factor (bFGF) and anti-angiogenic factor (PF4). However 200 mg/kg SH didn't exhibit the similar inhibitory effect on tumor progression due to the immunosuppressive microenvironment caused by excessive vessel pruning, G-CSF upregulation, and GM-CSF downregulation. Altogether, our findings suggest that SH induced vasculature normalization contributes to its anti-tumor and anti-metastasis effect on breast cancer at certain dosage.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
| | - Yu Ren
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
| | - Xiaojiang Tang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
| | - Ke Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
| | - Yang Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
| | - Li Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
| | - Xiao Li
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
| | - Peijun Liu
- Translational Medical center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
| | - Changqi Zhao
- Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Science, Beijing Normal University, Beijing 100875, P.R. China
| | - Jianjun He
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
| |
Collapse
|
63
|
Abu El-Asrar AM, Mohammad G, Nawaz MI, Abdelsaid M, Siddiquei MM, Alam K, Van den Eynde K, De Hertogh G, Opdenakker G, Al-Shabrawey M, Van Damme J, Struyf S. The Chemokine Platelet Factor-4 Variant (PF-4var)/CXCL4L1 Inhibits Diabetes-Induced Blood-Retinal Barrier Breakdown. Invest Ophthalmol Vis Sci 2015; 56:1956-64. [PMID: 25711636 DOI: 10.1167/iovs.14-16144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the expression of platelet factor-4 variant (PF-4var/CXCL4L1) in epiretinal membranes from patients with proliferative diabetic retinopathy (PDR) and the role of PF-4var/CXCL4L1 in the regulation of blood-retinal barrier (BRB) breakdown in diabetic rat retinas and human retinal microvascular endothelial cells (HRMEC). METHODS Rats were treated intravitreally with PF-4var/CXCL4L1 or the anti-vascular endothelial growth factor (VEGF) agent bevacizumab on the first day after diabetes induction. Blood-retinal barrier breakdown was assessed in vivo with fluorescein isothiocyanate (FITC)-conjugated dextran and in vitro in HRMEC by transendothelial electrical resistance and FITC-conjugated dextran cell permeability assay. Occludin, vascular endothelial (VE)-cadherin, hypoxia-inducible factor (HIF)-1α, VEGF, tumor necrosis factor (TNF)-α, receptor for advanced glycation end products (RAGE), caspase-3 levels, and generation of reactive oxygen species (ROS) were assessed by Western blot, enzyme-linked immunosorbent assays, or spectrophotometry. RESULTS In epiretinal membranes, vascular endothelial cells and stromal cells expressed PF-4var/CXCL4L1. In vitro, HRMEC produced PF-4var/CXCL4L1 after stimulation with a combination of interleukin (IL)-1β and TNF-α, and PF-4var/CXCL4L1 inhibited VEGF-mediated hyperpermeability in HRMEC. In rats, PF-4var/CXCL4L1 was as potent as bevacizumab in attenuating diabetes-induced BRB breakdown. This effect was associated with upregulation of occludin and VE-cadherin and downregulation of HIF-1α, VEGF, TNF-α, RAGE, and caspase-3, whereas ROS generation was not altered. CONCLUSIONS Our findings suggest that increasing the intraocular PF-4var/CXCL4L1 levels early after the onset of diabetes protects against diabetes-induced BRB breakdown.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia Dr Nasser Al-Rashid Research Chair in Ophthalmology, King Saud University, Riyadh, Saudi Arabia
| | - Ghulam Mohammad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Imtiaz Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Abdelsaid
- Department of Oral Biology, Cellular Biology and Anatomy, Culver Vision Discovery Institute and Department of Ophthalmology, Georgia Regents University, Augusta, Georgia, United States
| | | | - Kaiser Alam
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Kathleen Van den Eynde
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, KU Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, KU Leuven, Leuven, Belgium
| | - Mohamed Al-Shabrawey
- Department of Oral Biology, Cellular Biology and Anatomy, Culver Vision Discovery Institute and Department of Ophthalmology, Georgia Regents University, Augusta, Georgia, United States
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
64
|
Li J, Liu B, Yan LN, Lau WY. The roles and potential therapeutic implications of CXCL4 and its variant CXCL4L1 in the pathogenesis of chronic liver allograft dysfunction. Cytokine Growth Factor Rev 2015; 26:67-74. [DOI: 10.1016/j.cytogfr.2014.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 11/05/2014] [Indexed: 12/20/2022]
|
65
|
Marie I. [CXCL4: a new biomarker of diagnosis and severity in systemic sclerosis?]. Rev Med Interne 2014; 36:69-72. [PMID: 25458865 DOI: 10.1016/j.revmed.2014.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/10/2014] [Indexed: 11/17/2022]
Affiliation(s)
- I Marie
- Département de médecine interne, CHU de Rouen, 1, rue de Germont, 76031 Rouen cedex, France.
| |
Collapse
|
66
|
Sarvaiya PJ, Guo D, Ulasov I, Gabikian P, Lesniak MS. Chemokines in tumor progression and metastasis. Oncotarget 2014; 4:2171-85. [PMID: 24259307 PMCID: PMC3926818 DOI: 10.18632/oncotarget.1426] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemokines play a vital role in tumor progression and metastasis. Chemokines are involved in the growth of many cancers including breast cancer, ovarian cancer, pancreatic cancer, melanoma, lung cancer, gastric cancer, acute lymphoblastic leukemia, colon cancer, non-small lung cancer, non-hodgkin's lymphoma, etc. The expression of chemokines and their receptors is altered in many malignancies and leads to aberrant chemokine receptor signaling. This review focuses on the role of chemokines in key processes that facilitate tumor progression including proliferation, senescence, angiogenesis, epithelial mesenchymal transition, immune evasion and metastasis.
Collapse
Affiliation(s)
- Purvaba J Sarvaiya
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
67
|
Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, Scheiermann C, Schiff L, Poncz M, Bergman A, Frenette PS. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med 2014; 20:1315-20. [PMID: 25326802 PMCID: PMC4258871 DOI: 10.1038/nm.3707] [Citation(s) in RCA: 468] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/28/2014] [Indexed: 12/14/2022]
Abstract
In the bone marrow (BM), hematopoietic stem cells (HSCs) lodge in specialized microenvironments that tightly control their proliferative state to adapt to the varying needs for replenishment of blood cells while also preventing exhaustion1. All putative niche cells suggested thus far have a non-hematopoietic origin2-8. Thus, it remains unclear how feedback from mature cells is conveyed to HSCs to adjust proliferation. Here we show that megakaryocytes (Mk) can directly regulate HSC pool size. Three-dimensional whole-mount imaging revealed that endogenous HSCs are frequently located adjacent to Mk in a non-random fashion. Selective in vivo depletion of Mk resulted in specific loss of HSC quiescence and led to a marked expansion of functional HSCs. Gene expression analyses revealed that Mk were the source of chemokine C-X-C motif ligand 4 (Cxcl4, also named platelet factor 4, Pf4) in the BM and Cxcl4 injection reduced HSC numbers via increased quiescence. By contrast, Cxcl4−/− mice exhibited increased HSC numbers and proliferation. Combined use of whole-mount imaging and computational modelling was highly suggestive of a megakaryocytic niche capable of influencing independently HSC maintenance by regulating quiescence. Thus, these results indicate that a terminally differentiated HSC progeny contributes to niche activity by directly regulating HSC behavior.
Collapse
Affiliation(s)
- Ingmar Bruns
- 1] Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, USA. [2] Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany. [3] Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Daniel Lucas
- 1] Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, USA. [2] Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sandra Pinho
- 1] Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, USA. [2] Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jalal Ahmed
- 1] Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, USA. [2] Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA. [3] Mount Sinai School of Medicine, New York, New York, USA
| | - Michele P Lambert
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuya Kunisaki
- 1] Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, USA. [2] Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Christoph Scheiermann
- 1] Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, USA. [2] Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Lauren Schiff
- 1] Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, USA. [2] Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mortimer Poncz
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Aviv Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Paul S Frenette
- 1] Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, USA. [2] Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA. [3] Mount Sinai School of Medicine, New York, New York, USA. [4] Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
68
|
Etulain J, Schattner M. Glycobiology of platelet-endothelial cell interactions. Glycobiology 2014; 24:1252-9. [DOI: 10.1093/glycob/cwu056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
69
|
Mukaida N, Sasaki SI, Baba T. Chemokines in cancer development and progression and their potential as targeting molecules for cancer treatment. Mediators Inflamm 2014; 2014:170381. [PMID: 24966464 PMCID: PMC4055660 DOI: 10.1155/2014/170381] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/02/2014] [Indexed: 12/15/2022] Open
Abstract
Chemokines were initially identified as bioactive substances, which control the trafficking of inflammatory cells including granulocytes and monocytes/macrophages. Moreover, chemokines have profound impacts on other types of cells associated with inflammatory responses, such as endothelial cells and fibroblasts. These observations would implicate chemokines as master regulators in various inflammatory responses. Subsequent studies have further revealed that chemokines can regulate the movement of a wide variety of immune cells including lymphocytes, natural killer cells, and dendritic cells in both physiological and pathological conditions. These features endow chemokines with crucial roles in immune responses. Furthermore, increasing evidence points to the vital effects of several chemokines on the proliferative and invasive properties of cancer cells. It is widely acknowledged that cancer develops and progresses to invade and metastasize in continuous interaction with noncancerous cells present in cancer tissues, such as macrophages, lymphocytes, fibroblasts, and endothelial cells. The capacity of chemokines to regulate both cancerous and noncancerous cells highlights their crucial roles in cancer development and progression. Here, we will discuss the roles of chemokines in carcinogenesis and the possibility of chemokine targeting therapy for the treatment of cancer.
Collapse
Affiliation(s)
- Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo 102-0075, Japan
| | - So-ichiro Sasaki
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Tomohisa Baba
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
70
|
Abstract
Functionally, platelets are primarily recognized as key regulators of thrombosis and hemostasis. Upon vessel injury, the typically quiescent platelet interacts with subendothelial matrix to regulate platelet adhesion, activation and aggregation, with subsequent induction of the coagulation cascade forming a thrombus. Recently, however, newly described roles for platelets in the regulation of angiogenesis have emerged. Platelets possess an armory of pro- and anti-angiogenic proteins, which are actively sequestered and highly organized in α-granule populations. Platelet activation facilitates their release, eliciting potent angiogenic responses through mechanisms that appear to be tightly regulated. In conjunction, the release of platelet-derived phospholipids and microparticles has also earned merit as synergistic regulators of angiogenesis. Consequently, platelets have been functionally implicated in a range of angiogenesis-dependent processes, including physiological roles in wound healing, vascular development and blood/lymphatic vessel separation, whilst facilitating aberrant angiogenesis in a range of diseases including cancer, atherosclerosis and diabetic retinopathy. Whilst the underlying mechanisms are only starting to be elucidated, significant insights have been established, suggesting that platelets represent a promising therapeutic strategy in diseases requiring angiogenic modulation. Moreover, anti-platelet therapies targeting thrombotic complications also exert protective effects in disorders characterized by persistent angiogenesis.
Collapse
Affiliation(s)
- Tony G Walsh
- School of Physiology and Pharmacology, University of Bristol , Bristol , UK and
| | | | | |
Collapse
|
71
|
Han B, Yang Z, Fang JY, Kuwahara K, Nimni M, Thanasukarn J, Tayag C. The Effects of Heparin Binding Proteins in Platelet Releasate on Bone Formation. Tissue Eng Part A 2014; 20:1263-70. [DOI: 10.1089/ten.tea.2013.0310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Bo Han
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Southern California, Los Angeles, California
| | - Zhi Yang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Southern California, Los Angeles, California
| | - Josephine Y. Fang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Southern California, Los Angeles, California
| | - Kenric Kuwahara
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Southern California, Los Angeles, California
| | - Marcel Nimni
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Southern California, Los Angeles, California
| | - John Thanasukarn
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Southern California, Los Angeles, California
| | - Charisse Tayag
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Southern California, Los Angeles, California
| |
Collapse
|
72
|
Qi X, Liu Y, Wei W, Huang X, Zuo Y. Effects of the C-terminal of endostatin on the tumorigenic potential of H22 cells. Biomed Rep 2014; 1:761-765. [PMID: 24649025 DOI: 10.3892/br.2013.147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/04/2013] [Indexed: 11/05/2022] Open
Abstract
Endostatin is an endogenous angiogenesis inhibitor whose specific functional site has not yet been determined. In the present experiment, 13 amino acids (LCIENSFMTSFSK) were selectively deleted from the C-terminal of endostatin and the resulting mutant endostatin was named EM13. To determine the effect of the C-terminal deletion on the biological activity of endostatin, EM13, wild-type endostatin and empty plasmid were transfected into H22 cells. After 48 h, the three types of transfected cells were harvested and injected into nude mice. The results demonstrated that there was no significant difference in tumor size, as determined by hematoxylin and eosin staining, between the EM13-transfected group and the endostatin and empty plasmid groups, although the nude mice that were injected with EM13-transfected H22 cells exhibited smaller tumors and lower density of blood vessels compared to those injected with endostatin- and empty plasmid-transfected H22 cells. The results suggested that the 13 amino acids of the C-terminal of endostatin do not play an important role in the tumorigenic potential of H22 cells. This experiment was unsuccessful in reproducing the results of several investigators. Therefore, the mechanism underlying the tumorigenesis of H22 cells remains to be elucidated.
Collapse
Affiliation(s)
- Xia Qi
- Department of Clinical Biochemistry, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yuejian Liu
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Wei Wei
- Department of Clinical Biochemistry, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiaohua Huang
- Department of Clinical Biochemistry, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yunfei Zuo
- Department of Clinical Biochemistry, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
73
|
Van Raemdonck K, Gouwy M, Lepers SA, Van Damme J, Struyf S. CXCL4L1 and CXCL4 signaling in human lymphatic and microvascular endothelial cells and activated lymphocytes: involvement of mitogen-activated protein (MAP) kinases, Src and p70S6 kinase. Angiogenesis 2014; 17:631-40. [DOI: 10.1007/s10456-014-9417-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/13/2014] [Indexed: 01/13/2023]
|
74
|
Tysome JR, Lemoine NR, Wang Y. Update on oncolytic viral therapy - targeting angiogenesis. Onco Targets Ther 2013; 6:1031-40. [PMID: 23940420 PMCID: PMC3737009 DOI: 10.2147/ott.s46974] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses (OVs) have the ability to selectively replicate in and lyse cancer cells. Angiogenesis is an essential requirement for tumor growth. Like OVs, the therapeutic effect of many angiogenesis inhibitors has been limited, leading to the development of more effective approaches to combine antiangiogenic therapy with OVs. Angiogenesis can be targeted either directly by OV infection of vascular endothelial cells, or by arming OVs with antiangiogenic transgenes, which are subsequently expressed locally in the tumor microenvironment. In this review, we describe the development and targeting of OVs, the role of angiogenesis in cancer, and the progress made in arming viruses with antiangiogenic transgenes. Future developments required to optimize this approach are addressed.
Collapse
Affiliation(s)
- James R Tysome
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom ; Department of Otolaryngology, Cambridge University Hospitals, Cambridge, United Kingdom ; Sino-British Research Center for Molecular Oncology, Zhengzhou University, Zhengzhou, People's Republic of China
| | | | | |
Collapse
|
75
|
Abstract
Immune complexes (ICs) are produced during an immune response and may reflect some aspects of an ongoing immune response. Therefore, the identity of antigens incorporated into ICs provides the information that in the future may aid in the development of diagnosis and treatment strategies for autoimmune diseases, infection, cancer, and transplantation therapy, and this information might be more relevant than the information on free antigens. Because ICs may contain many antigens, comprehensive identification and profiling of such antigens are more effective than immunoblotting detection. Here, we introduced mass spectrometry (MS)-based two approaches (immunoproteomics and immune complexome analysis) to comprehensively identify the antigens. Immunoproteomics is a concept to identify disease-associated antigens that elicit immune responses by combining protein separation (two-dimensional electrophoresis, gel-free separation), immunological detection (Western blotting), and MS or by combining immunocapture and MS. Immune complexome analysis is designed for identifying antigens in circulating ICs and consists of ICs separation from serum and direct tryptic digestion followed by nano-liquid chromatography-tandem MS.
Collapse
Affiliation(s)
- Kaname Ohyama
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | |
Collapse
|
76
|
Owen JL, Mohamadzadeh M. Macrophages and chemokines as mediators of angiogenesis. Front Physiol 2013; 4:159. [PMID: 23847541 PMCID: PMC3701799 DOI: 10.3389/fphys.2013.00159] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/11/2013] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence attests to the important roles of both macrophages and chemokines in angiogenesis. Tumor-associated macrophages or TAMS constitute the major fraction of tumor-infiltrating leukocytes and are recruited by a number of chemoattractants that are produced by the tumor and tumor-associated stroma. This heterogeneous cell population is activated by a variety of stimuli and becomes polarized to result in functionally different phenotypes regarding tumor progression. As opposed to classically activated or M1 macrophages that exhibit anti-tumor functions, most TAMS are considered to be of the alternatively activated or M2 phenotype, and express multiple cytokines, proteases, and chemokines that promote tumor angiogenesis. Chemokines also have disparate effects on angiogenesis regulation, as several members of the CXC and CC chemokine families are potent inducers of angiogenesis, while a subset of CXC chemokines are angiostatic. This review summarizes the current literature regarding the roles and modes of action of macrophage-derived chemokines as mediators of angiogenesis.
Collapse
Affiliation(s)
- Jennifer L Owen
- Department of Infectious Diseases and Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida Gainesville, FL, USA
| | | |
Collapse
|
77
|
Role of platelet chemokines, PF-4 and CTAP-III, in cancer biology. J Hematol Oncol 2013; 6:42. [PMID: 23800319 PMCID: PMC3694472 DOI: 10.1186/1756-8722-6-42] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/13/2013] [Indexed: 12/31/2022] Open
Abstract
With the recent addition of anti-angiogenic agents to cancer treatment, the angiogenesis regulators in platelets are gaining importance. Platelet factor 4 (PF-4/CXCL4) and Connective tissue activating peptide III (CTAP-III) are two platelet-associated chemokines that modulate tumor angiogenesis, inflammation within the tumor microenvironment, and in turn tumor growth. Here, we review the role of PF-4 and CTAP-III in the regulation of tumor angiogenesis; the results of clinical trial using recombinant PF-4 (rPF-4); and the use of PF-4 and CTAP-III as cancer biomarkers.
Collapse
|
78
|
Platelet factor-4 (CXCL4/PF-4): An angiostatic chemokine for cancer therapy. Cancer Lett 2013; 331:147-53. [DOI: 10.1016/j.canlet.2013.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 12/23/2012] [Accepted: 01/03/2013] [Indexed: 11/18/2022]
|
79
|
Moncada de la Rosa C, Radziwon-Balicka A, El-Sikhry H, Seubert J, Ruvolo PP, Radomski MW, Jurasz P. Pharmacologic protein kinase Cα inhibition uncouples human platelet-stimulated angiogenesis from collagen-induced aggregation. J Pharmacol Exp Ther 2013; 345:15-24. [PMID: 23386249 DOI: 10.1124/jpet.112.200881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Platelets promote angiogenesis by releasing angiogenesis-regulating factors from their α-granules upon aggregation. This effect has both physiologic and pathologic significance as it may contribute to carcinogenesis. Platelet α-granule release and aggregation are regulated, in part, via protein kinase C (PKC) α and β signaling. Our study investigated the effects of PKC inhibition on aggregation, angiogenesis-regulator secretion from α-granules, and platelet-stimulated angiogenesis. We hypothesized that selective PKCα inhibition may preferentially suppress angiogenesis-regulator secretion from α-granules but not aggregation, limiting platelet-stimulated angiogenesis. Human platelets were aggregated in the presence of conventional PKC inhibitors myr-FARKGALRQ and Ro 32-0432 (2-{8-[(dimethylamino)methyl]-6,7,8,9-tetrahydropyridol[1,2-α]indol-3-yl}-3-(1-methyl-1H-indol-3-yl)maleimide). Immunofluorescence microscopy of PKC translocation was used to determine the specificity of PKC-inhibitor targeting. Enzyme-linked immunosorbent assay was used to measure vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1) release from platelets. Platelet effects on angiogenesis were tested using a capillary-formation assay. Ro 32-0432, but not the peptide inhibitor myr-FARKGALRQ (myristoylated-pseudosubstrate peptide inhibitor), inhibited aggregation in a concentration-dependent manner, while both Ro 32-0432 and myr-FARKGALRQ preferentially suppressed VEGF over TSP-1 secretion. Suppression of angiogenesis-regulator release occurred at inhibitor concentrations that did not significantly affect aggregation. Immunofluorescence microscopy revealed that PKCα targeting to α-granules is inhibited when angiogenesis-regulator secretion is uncoupled from aggregation. At concentrations that uncoupled α-granule release from aggregation, Ro 32-0432 and myr-FARKGALRQ inhibited platelet-stimulated angiogenesis. Hence, selective PKCα inhibition suppresses angiogenesis-regulator release from platelet α-granules with minimal effects on aggregation. Thus, selective PKCα inhibitors may have pharmacologic significance to regulate platelet-promoted angiogenesis.
Collapse
|
80
|
Tilan JU, Everhart LM, Abe K, Kuo-Bonde L, Chalothorn D, Kitlinska J, Burnett MS, Epstein SE, Faber JE, Zukowska Z. Platelet neuropeptide Y is critical for ischemic revascularization in mice. FASEB J 2013; 27:2244-55. [PMID: 23457218 DOI: 10.1096/fj.12-213546] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We previously reported that the sympathetic neurotransmitter neuropeptide Y (NPY) is potently angiogenic, primarily through its Y2 receptor, and that endogenous NPY is crucial for capillary angiogenesis in rodent hindlimb ischemia. Here we sought to identify the source of NPY responsible for revascularization and its mechanisms of action. At d 3, NPY(-/-) mice demonstrated delayed recovery of blood flow and limb function, consistent with impaired collateral conductance, while ischemic capillary angiogenesis was reduced (~70%) at d 14. This biphasic temporal response was confirmed by 2 peaks of NPY activation in rats: a transient early increase in neuronally derived plasma NPY and increase in platelet NPY during late-phase recovery. Compared to NPY-null platelets, collagen-activated NPY-rich platelets were more mitogenic (~2-fold vs. ~1.6-fold increase) for human microvascular endothelial cells, and Y2/Y5 receptor antagonists ablated this difference in proliferation. In NPY(+/+) mice, ischemic angiogenesis was prevented by platelet depletion and then restored by transfusion of platelets from NPY(+/+) mice, but not NPY(-/-) mice. In thrombocytopenic NPY(-/-) mice, transfusion of wild-type platelets fully restored ischemia-induced angiogenesis. These findings suggest that neuronally derived NPY accelerates the early response to femoral artery ligation by promoting collateral conductance, while platelet-derived NPY is critical for sustained capillary angiogenesis.
Collapse
Affiliation(s)
- Jason U Tilan
- Department of Physiology and Biophysics, Georgetown University, Washington, DC 20057, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Autocrine CCL2, CXCL4, CXCL9 and CXCL10 signal in retinal endothelial cells and are enhanced in diabetic retinopathy. Exp Eye Res 2013; 109:67-76. [PMID: 23352833 DOI: 10.1016/j.exer.2013.01.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/09/2013] [Accepted: 01/14/2013] [Indexed: 11/21/2022]
Abstract
This study aimed at examining the presence and role of chemokines (angiogenic CCL2/MCP-1 and angiostatic CXCL4/PF-4, CXCL9/Mig, CXCL10/IP-10) in proliferative diabetic retinopathy (PDR). Regulated chemokine production in human retinal microvascular cells (HRMEC) and chemokine levels in vitreous samples from 40 PDR and 29 non-diabetic patients were analyzed. MCP-1, PF-4, Mig, IP-10 and VEGF levels in vitreous fluid from PDR patients were significantly higher than in controls. Except for IP-10, cytokine levels were significantly higher in PDR with active neovascularization and PDR without traction retinal detachment (TRD) than those in inactive PDR, PDR with TRD and control subjects. Exploratory regression analysis identified associations between higher levels of IP-10 and inactive PDR and PDR with TRD. VEGF levels correlated positively with MCP-1 and IP-10. Significant positive correlations were observed between MCP-1 and IP-10 levels. In line with these clinical findings Western blot analysis revealed increased PF-4 expression in diabetic rat retinas. HRMEC produced MCP-1, Mig and IP-10 after stimulation with IFN-γ, IL-1β or lipopolysaccharide. IFN-γ synergistically enhanced Mig and IP-10 production in response to IL-1β or lipopolysaccharide. MCP-1 was produced by HRMEC in response to VEGF treatment and activated HRMEC via the ERK and Akt/PKB pathway. On the other hand, phosphorylation of ERK induced by VEGF and MCP-1 was inhibited by PF-4, Mig and IP-10. In accordance with inhibition of angiogenic signal transduction pathways, PF-4 inhibited in vitro migration of HRMEC. Thus, regulatory roles for chemokines in PDR were demonstrated. In particular, IP-10 might be associated with the resolution of active PDR and the development of TRD.
Collapse
|
82
|
Yang X, Hou J, Han Z, Wang Y, Hao C, Wei L, Shi Y. One cell, multiple roles: contribution of mesenchymal stem cells to tumor development in tumor microenvironment. Cell Biosci 2013; 3:5. [PMID: 23336752 PMCID: PMC3693909 DOI: 10.1186/2045-3701-3-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/20/2012] [Indexed: 12/13/2022] Open
Abstract
The discovery of tissue reparative and immunosuppressive abilities of mesenchymal stem cells (MSCs) has drawn more attention to tumor microenvironment and its role in providing the soil for the tumor cell growth. MSCs are recruited to tumor which is referred as the never healing wound and altered by the inflammation environment, thereby helping to construct the tumor microenvironment. The environment orchestrated by MSCs and other factors can be associated with angiogenesis, immunosuppression, inhibition of apoptosis, epithelial-mesenchymal transition (EMT), survival of cancer stem cells, which all contribute to tumor growth and progression. In this review, we will discuss how MSCs are recruited to the tumor microenvironment and what effects they have on tumor progression.
Collapse
Affiliation(s)
- Xue Yang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medicial University, 225 Changhai Road, Shanghai 200438, China.
| | | | | | | | | | | | | |
Collapse
|
83
|
Ohyama K, Kawakami A, Tamai M, Baba M, Kishikawa N, Kuroda N. Serum immune complex containing thrombospondin-1: a novel biomarker for early rheumatoid arthritis. Ann Rheum Dis 2012; 71:1916-7. [PMID: 22679304 DOI: 10.1136/annrheumdis-2012-201305] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
84
|
Polycistronic expression of human platelet factor 4 with heparin-neutralizing activity in Escherichia coli. Biosci Biotechnol Biochem 2012; 76:1855-60. [PMID: 23047095 DOI: 10.1271/bbb.120267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human platelet factor 4 (hPF4) was evaluated as a clinical alternative to protamine for heparin neutralization, a protector against radiation injury and an anti-neoplastic. To achieve high-level expression of hPF4, expression vectors pET-28a(+)-nf PF4 (n=4, 5, 6) containing n tandem repeats of PF4 were constructed and transformed into the Escherichia coli BL21(DE3) strain. A higher expression level, about 45% of the total proteins (TP), was obtained for E. coli BL21(DE3)/pET28a(+)-nf PF4 (n=4, 5, 6). The purified His-PF4 protein was further identified by cleavage with enterokinase and MS, and its heparin-neutralizing activity was determined by colony formation assay. This study represents a novel approach to large-scale production of PF4 in E. coli, one that might be applied to large-scale production of PF4 protein for possible clinical application. It also provides theoretical points for the expression and purification of other small-molecule peptides.
Collapse
|
85
|
Liang P, Cheng SH, Cheng CK, Lau KM, Lin SY, Chow EYD, Chan NPH, Ip RKL, Wong RSM, Ng MHL. Platelet factor 4 induces cell apoptosis by inhibition of STAT3 via up-regulation of SOCS3 expression in multiple myeloma. Haematologica 2012; 98:288-95. [PMID: 22929979 DOI: 10.3324/haematol.2012.065607] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Platelet factor 4 (PF4) is an angiostatic chemokine that suppresses tumor growth and metastasis. We previously revealed frequent transcriptional silencing of PF4 in multiple myeloma, but the functional roles of this chemokine are still unknown. We studied the apoptotic effects of PF4 on myeloma cell lines and primary myeloma in vitro, and investigated the involved signaling pathway. The in vivo effects were also studied using a mouse model. PF4 not only suppressed myeloma-associated angiogenesis, but also inhibited growth and induced apoptosis in myeloma cells. We found that PF4 negatively regulated STAT3 and concordantly inhibited constitutive and interleukin-6-induced phosphorylation of STAT3, and down-regulated the expression of STAT3 target genes (Mcl-1, survivin and VEGF). Overexpression of constitutively activated STAT3 could rescue PF4-induced apoptotic effects. Furthermore, we found that PF4 induced the expression of SOCS3, a STAT3 inhibitor, and gene silencing of SOCS3 abolished its ability to inhibit STAT3 activation, suggesting a critical role of SOCS3 in PF4-induced STAT3 inhibition. Knockdown of LRP1, a putative PF4 receptor, could also abolish PF4-induced apoptosis and STAT3 inhibition. Finally, the tumor growth inhibitory effect of PF4 was confirmed by in vivo mouse models. Immunostaining of rabbit bone xenografts from PF4-treated mice showed induction of apoptosis of myeloma cells and inhibition of angiogenesis, which was associated with suppression of STAT3 activity. Together, our preclinical data indicate that PF4 may be a potential new targeting agent for the treatment of myeloma.
Collapse
Affiliation(s)
- Pei Liang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, the Chinese University of Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Gatson NN, Chiocca EA, Kaur B. Anti-angiogenic gene therapy in the treatment of malignant gliomas. Neurosci Lett 2012; 527:62-70. [PMID: 22906922 DOI: 10.1016/j.neulet.2012.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/03/2012] [Indexed: 11/15/2022]
Abstract
More than four decades ago, Dr. Judah Folkman hypothesized that angiogenesis was a critical process in tumor growth. Since that time, there have been significant advances in understanding tumor biology and groundbreaking research in cancer therapy that have validated his hypothesis. However, in spite of extensive research, glioblastoma multiforme (GBM), the most common and malignant primary brain tumor, has gained little in the way of improved median survival. There have been several angiogenesis targets that have resulted in drugs that are in clinical trials or FDA approved for clinical use in several cancers. GBM is a highly angiogenic tumor and several drugs are showing promise in clinical trials with one (bevacizumab), clinically approved for use. We will review several possible angiogenic targets in GBM as well as the vector methodologies used for delivery. In addition, GBMs present several therapeutic challenges related to structure, tumor immune microenvironment and resistance to angiogenesis. To overcome these challenges will require novel approaches to improve therapeutic gene expression and vector biodistribution in the glioma.
Collapse
Affiliation(s)
- NaTosha N Gatson
- Dardinger Center for Neuro-oncology and Neurosciences, N-1017 Doan Hall, 410 W. 10th Avenue, James Cancer Hospital/Solove Research Institute and The Ohio State University Wexner Medical Center, Columbus, OH 43210-1240, USA
| | | | | |
Collapse
|
87
|
Lapchak PH, Ioannou A, Rani P, Lieberman LA, Yoshiya K, Kannan L, Lucca JJD, Kowalska MA, Tsokos GC. The role of platelet factor 4 in local and remote tissue damage in a mouse model of mesenteric ischemia/reperfusion injury. PLoS One 2012; 7:e39934. [PMID: 22792197 PMCID: PMC3391230 DOI: 10.1371/journal.pone.0039934] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/29/2012] [Indexed: 11/23/2022] Open
Abstract
The robust inflammatory response that occurs during ischemia reperfusion (IR) injury recruits factors from both the innate and adaptive immune systems. However the contribution of platelets and their products such as Platelet Factor 4 (PF4; CXCL4), during the pathogenesis of IR injury has not been thoroughly investigated. We show that a deficiency in PF4 protects mice from local and remote tissue damage after 30 minutes of mesenteric ischemia and 3 hours of reperfusion in PF4-/- mice compared to control B6 mice. This protection was independent from Ig or complement deposition in the tissues. However, neutrophil and monocyte infiltration were decreased in the lungs of PF4-/- mice compared with B6 control mice. Platelet-depleted B6 mice transfused with platelets from PF4-/- mice displayed reduced tissue damage compared with controls. In contrast, transfusion of B6 platelets into platelet depleted PF4-/- mice reconstituted damage in both intestine and lung tissues. We also show that PF4 may modulate the release of IgA. Interestingly, we show that PF4 expression on intestinal epithelial cells is increased after IR at both the mRNA and protein levels. In conclusion, these findings demonstrate that may PF4 represent an important mediator of local and remote tissue damage.
Collapse
Affiliation(s)
- Peter H. Lapchak
- Rheumatology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Antonis Ioannou
- Rheumatology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (GCT); (AI)
| | - Poonam Rani
- Rheumatology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Linda A. Lieberman
- Rheumatology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kazuhisa Yoshiya
- Rheumatology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lakshmi Kannan
- Rheumatology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jurandir J. Dalle Lucca
- The United States Army Institute of Surgical Research, San Antonio, Texas, United States of America
| | - M. Anna Kowalska
- Department of Pediatrics, University of Pennsylvania School of Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - George C. Tsokos
- Rheumatology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (GCT); (AI)
| |
Collapse
|
88
|
Zhu Q, Han X, Peng J, Qin H, Wang Y. The role of CXC chemokines and their receptors in the progression and treatment of tumors. J Mol Histol 2012; 43:699-713. [PMID: 22752457 DOI: 10.1007/s10735-012-9435-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 06/21/2012] [Indexed: 12/25/2022]
Abstract
Chemokines are a class of functional chemotactic peptides that contribute to a number of tumor-related processes. They are functionally defined as soluble factors that are able to control the directional migration of leukocytes, in particular, during infection and inflammation. It appears, however, that the biological effects mediated by chemokines are far more complex, and virtually all cells, including many tumor cell types, can express chemokines and chemokine receptors. A growing body of evidence indicates that they also contribute to a number of tumor-related processes, such as tumor cell growth, angiogenesis/angiostasis, local invasion, and mediate organ-specific metastases of cancer. The CXC chemokine class is a subfamily of a large family of chemokines. During the occurrence and development of tumor cells, this chemokine class is often accompanied by a series of molecular and biological changes. The CXC chemokine subfamily is closely related to the body's immune response to tumors and biological behaviors of tumors. In this paper, CXC chemokines and their role in the progression and treatment of tumors will be reviewed.
Collapse
Affiliation(s)
- Qingchao Zhu
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, 600 Yishan Road, Shanghai, 200233, People's Republic of China.
| | | | | | | | | |
Collapse
|
89
|
Application of proteomics to soft tissue sarcomas. INTERNATIONAL JOURNAL OF PROTEOMICS 2012; 2012:876401. [PMID: 22778956 PMCID: PMC3388341 DOI: 10.1155/2012/876401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/21/2012] [Indexed: 01/27/2023]
Abstract
Soft tissue sarcomas are rare and account for less than 1% of all malignant cancers. Other than development of intensive therapies, the clinical outcome of patients with soft tissue sarcoma remains very poor, particularly when diagnosed at a late stage. Unique mutations have been associated with certain soft tissue sarcomas, but their etiologies remain unknown. The proteome is a functional translation of a genome, which directly regulates the malignant features of tumors. Thus, proteomics is a promising approach for investigating soft tissue sarcomas. Various proteomic approaches and clinical materials have been used to address clinical and biological issues, including biomarker development, molecular target identification, and study of disease mechanisms. Several cancer-associated proteins have been identified using conventional technologies such as 2D-PAGE, mass spectrometry, and array technology. The functional backgrounds of proteins identified were assessed extensively using in vitro experiments, thus supporting expression analysis. These observations demonstrate the applicability of proteomics to soft tissue sarcoma studies. However, the sample size in each study was insufficient to allow conclusive results. Given the low frequency of soft tissue sarcomas, multi-institutional collaborations are required to validate the results of proteomic approaches.
Collapse
|
90
|
Radziwon-Balicka A, Moncada de la Rosa C, Jurasz P. Platelet-associated angiogenesis regulating factors: a pharmacological perspective. Can J Physiol Pharmacol 2012; 90:679-88. [DOI: 10.1139/y2012-036] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Platelets, in addition to maintaining hemostasis, also stimulate angiogenesis by generating and releasing, upon activation, factors that promote the growth of new blood vessels. To date, at least 20 angiogenesis-regulating factors have been identified in platelets, including both promoters and inhibitors. Platelet-derived angiogenesis regulators promote angiogenesis during wound healing, tumor growth, and in response to ischemia. Within platelets, angiogenesis regulators are primarily stored in α-granules, but are also found in the cytosol or derived from membrane lipids. Their release can be inhibited pharmacologically by anti-platelet agents, which consequently suppress platelet-stimulated angiogenesis. Several years ago, our research group discovered that platelets generate the angiogenesis inhibitor angiostatin independent of the activation state of platelets, and that platelet-derived angiostatin serves to limit the angiogenesis-stimulating effects of platelets. In this review, we summarize the current knowledge of platelet-associated angiogenesis regulators, how they impact angiogenesis, and how they are controlled pharmacologically.
Collapse
Affiliation(s)
- Aneta Radziwon-Balicka
- Faculty of Pharmacy and Pharmaceutical Sciences, 3-142E Katz Group-Rexall Centre for Pharmacy & Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Cesar Moncada de la Rosa
- Faculty of Pharmacy and Pharmaceutical Sciences, 3-142E Katz Group-Rexall Centre for Pharmacy & Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, 3-142E Katz Group-Rexall Centre for Pharmacy & Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
91
|
Cao Y, Arbiser J, D'Amato RJ, D'Amore PA, Ingber DE, Kerbel R, Klagsbrun M, Lim S, Moses MA, Zetter B, Dvorak H, Langer R. Forty-year journey of angiogenesis translational research. Sci Transl Med 2012; 3:114rv3. [PMID: 22190240 DOI: 10.1126/scitranslmed.3003149] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Forty years ago, Judah Folkman predicted that tumor growth is dependent on angiogenesis and that inhibiting this process might be a new strategy for cancer therapy. This hypothesis formed the foundation of a new field of research that represents an excellent example of how a groundbreaking scientific discovery can be translated to yield benefits for patients. Today, antiangiogenic drugs are used to treat human cancers and retinal vascular diseases. Here, we guide readers through 40 years of angiogenesis research and discuss challenges of antiangiogenic therapy.
Collapse
Affiliation(s)
- Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Mukaida N, Baba T. Chemokines in tumor development and progression. Exp Cell Res 2012; 318:95-102. [PMID: 22036649 DOI: 10.1016/j.yexcr.2011.10.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/14/2011] [Accepted: 10/14/2011] [Indexed: 12/17/2022]
Abstract
Chemokines were originally identified as mediators of the inflammatory process and regulators of leukocyte trafficking. Subsequent studies revealed their essential roles in leukocyte physiology and pathology. Moreover, chemokines have profound effects on other types of cells associated with the inflammatory response, such as endothelial cells and fibroblasts. Thus, chemokines are crucial for cancer-related inflammation, which can promote tumor development and progression. Increasing evidence points to the vital effects of several chemokines on the proliferative and invasive properties of tumor cells. The wide range of activities of chemokines in tumorigenesis highlights their roles in tumor development and progression.
Collapse
Affiliation(s)
- Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | | |
Collapse
|
93
|
Pyatibratov MG, Kostyukova AS. New insights into the role of angiogenin in actin polymerization. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:175-98. [PMID: 22449490 DOI: 10.1016/b978-0-12-394306-4.00011-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Angiogenin is a potent stimulator of angiogenesis. It interacts with endothelial cells and induces a wide range of cellular responses initiating a process of blood vessel formation. One important target of angiogenin is endothelial cell-surface actin, and their interaction might be one of crucial steps in angiogenin-induced neovascularization. Recently, it was shown that angiogenin inhibits polymerization of G-actin and changes the physical properties of F-actin. These observations suggest that angiogenin may cause changes in the cell cytoskeleton. This chapter reviews the current state of the literature regarding angiogenin structure and function and discusses the relationship between the angiogenin and actin and possible functional roles of their interaction.
Collapse
Affiliation(s)
- Mikhail G Pyatibratov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | |
Collapse
|
94
|
Vakil NH, Kanaan AO, Donovan JL. Heparin-induced thrombocytopenia in the pediatric population: a review of current literature. J Pediatr Pharmacol Ther 2012; 17:12-30. [PMID: 23118656 PMCID: PMC3428184 DOI: 10.5863/1551-6776-17.1.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Heparin-induced thrombocytopenia is a rare and serious reaction to unfractionated heparin and low-molecular-weight heparins in children. Quick recognition, discontinuation of heparin, and subsequent treatment with an alternative anticoagulant are essential steps to prevent serious complications such as thrombus and limb amputation. The purpose of this review is to describe the clinical features of heparin-induced thrombocytopenia in children and to summarize the data available for its management. This paper summarizes data and relates the use of direct thrombin inhibitors with clinical outcomes. A literature search was conducted with Ovid, using the key terms argatroban, bivalirudin, hirulog, danaparoid, lepirudin, direct thrombin inhibitor, heparin-induced thrombocytopenia, thrombosis, warfarin, and fondaparinux. Articles were excluded if they were classified as editorials, review articles, or conference abstracts or if they involved patients 18 years of age or older or described disease states not related to thrombosis. Nineteen articles containing 33 case reports were identified and evaluated for this review. Of the 33 cases, 14, 10, 4, and 2 cases described the use of lepirudin, danaparoid, argatroban, and bivalirudin, respectively. Two cases did not report the type of anticoagulant used, and 1 case used aspirin. The most commonly reported complication was bleeding.
Collapse
Affiliation(s)
- Niyati H. Vakil
- Massachusetts College of Pharmacy and Health Sciences, Worcester, Massachusetts
| | - Abir O. Kanaan
- Massachusetts College of Pharmacy and Health Sciences, Worcester, Massachusetts
| | - Jennifer L. Donovan
- Massachusetts College of Pharmacy and Health Sciences, Worcester, Massachusetts
| |
Collapse
|
95
|
Abstract
Angiogenesis is regulated by the highly coordinated function of various proteins with pro- and antiangiogenic functions. Proangiogenic factors include vascular endothelial growth factor (VEGF), fibroblast growth factor, platelet-derived growth factor, insulin-like growth factor, transforming growth factor, angiopoietins, and several chemokines; antiangiogenic factors include thrombospondin-1, angiostatin, and endostatin. Matrix metalloproteinases display a dual role in vascular development. Notch signaling affects remodeling of the primary vascular network of uniformly sized vessels into functionally and morphologically distinct arteries, veins, and capillaries. Tumors, described as 'wounds that never heal', lose the appropriate balance among these factors. Although VEGF-targeted therapies are showing promise, new angiogenesis targets are needed to make additional gains. Here, we highlight recent advances in our understanding of the regulation of tumor angiogenesis and discuss the potential of molecular targeting as a new therapeutic approach.
Collapse
Affiliation(s)
- Toshiharu Sakurai
- Department of Gastroenterology and Hepatology, Kinki University, Ohno-Higashi, Osakasayama, Japan
| | | |
Collapse
|
96
|
Abstract
Angiogenesis, the formation of new blood vessels from preexisting vasculature, is essential for many physiological processes, and aberrant angiogenesis contributes to some of the most prevalent human diseases, including cancer. Angiogenesis is controlled by delicate balance between pro- and anti-angiogenic signals. While pro-angiogenic signaling has been extensively investigated, how developmentally regulated, naturally occurring anti-angiogenic molecules prevent the excessive growth of vascular and lymphatic vessels is still poorly understood. In this review, we summarize the current knowledge on how semaphorins and their receptors, plexins and neuropilins, control normal and pathological angiogenesis, with an emphasis on semaphorin-regulated anti-angiogenic signaling circuitries in vascular and lymphatic endothelial cells. This emerging body of information may afford the opportunity to develop novel anti-angiogenic therapeutic strategies.
Collapse
|
97
|
Kiefer F, Siekmann AF. The role of chemokines and their receptors in angiogenesis. Cell Mol Life Sci 2011; 68:2811-30. [PMID: 21479594 PMCID: PMC11115067 DOI: 10.1007/s00018-011-0677-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/09/2011] [Accepted: 03/22/2011] [Indexed: 12/21/2022]
Abstract
Chemokines are a vertebrate-specific group of small molecules that regulate cell migration and behaviour in diverse contexts. So far, around 50 chemokines have been identified in humans, which bind to 18 different chemokine receptors. These are members of the seven-transmembrane receptor family. Initially, chemokines were identified as modulators of the immune response. Subsequently, they were also shown to regulate cell migration during embryonic development. Here, we discuss the influence of chemokines and their receptors on angiogenesis, or the formation of new blood vessels. We highlight recent advances in our understanding of how chemokine signalling might directly influence endothelial cell migration. We furthermore examine the contributions of chemokine signalling in immune cells during this process. Finally, we explore possible implications for disease settings, such as chronic inflammation and tumour progression.
Collapse
Affiliation(s)
- Friedemann Kiefer
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Muenster, Germany
| | - Arndt F. Siekmann
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Muenster, Germany
| |
Collapse
|
98
|
Zhang L, Shen X, Lu Q, Zhou Q, Gu J, Gan R, Zhang H, Sun X, Xie B. A potential therapeutic strategy for inhibition of ocular neovascularization with a new endogenous protein: rhEDI-8t. Graefes Arch Clin Exp Ophthalmol 2011; 250:731-9. [PMID: 21881847 DOI: 10.1007/s00417-011-1765-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 06/15/2011] [Accepted: 07/28/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Endogenous angiogenesis inhibitors act as natural negative feedback in the focal area during the neovascularization process, and have less interference on physiological angiogenesis, and thus fewer negative side-effects. These inhibitors are potential candidates to combine with or substitutes for current popular anti-angiogenesis treatments to have synergistic effect. In this study, the effects of recombinant endothelial growth inhibitor protein (rhEDI-8t), a novel endogenous protein originated from collagen VIII, was investigated on ocular neovascularization (NV). Endostatin, a well-identified endogenous angiogenesis inhibitor, was compared in parallel and served as a positive control. METHODS The inhibitory effect of rhEDI-8t on vascular endothelial cells was evaluated by a human umbilical vascular endothelial cells (HUVEC) proliferation test and a bovine aortic endothelial cells (BAEC) migration experiment. The effect of rhEDI-8t on ocular NV was further investigated in mice with choroidal neovascularization (choroidal NV) induced by laser, ischemic retinopathy and transgenic mice with expression of VEGF in photoreceptors (rho/VEGF) respectively. RESULTS RhEDI-8t inhibited the growth of HUVECs and migration of BAECs stimulated by basic fibroblast growth factor (bFGF). Mice intravitreally treated with rhEDI-8t showed a significant reduction of choroidal NV, retinal NV and subretinal NV. CONCLUSION Endogenous angiogenesis inhibitor rhEDI-8t showed a potent anti-angiogenesis effect in both in vitro and in vivo experiments. It contributed to the suppression of ocular NV. The study suggested that rhEDI-8t could be a subsidiary potent therapeutic medicine in addition to anti-VEGF therapy in future clinical anti-angiogenesis treatment.
Collapse
Affiliation(s)
- Ling Zhang
- The Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Ruijin Er Road, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Airoldi I, Ribatti D. Regulation of angiostatic chemokines driven by IL-12 and IL-27 in human tumors. J Leukoc Biol 2011; 90:875-82. [PMID: 21750124 DOI: 10.1189/jlb.0511237] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chemokines have pleiotropic effects in regulating immunity, angiogenesis, and tumor growth. CXC and CC chemokine families members and their receptors are able to exert a proangiogenic or an antiangiogenic effect in experimental models and in human tumors. In this review article, we have summarized literature data and our studies concerning the angiostatic activity of chemokines. Their angiostatic activity may be a result of a direct effect on the biological functions of endothelial cells and/or an effect on tumor cells inhibiting their capability to stimulate new blood vessel formation. Moreover, chemokines have a pro- and antitumor effect within the tumor microenvironment by regulating immune cell infiltration and its antitumor activities. We have focused our interest on the role of IL-12 and IL-27 in solid and hematological tumors, and we have suggested and discussed their potential use as antiangiogenic agents in the treatment of such tumors.
Collapse
Affiliation(s)
- Irma Airoldi
- Department of Experimental and Laboratory Medicine, G. Gaslini Institute, Genova, Italy
| | | |
Collapse
|
100
|
Mukaida N, Sasakki SI, Popivanova BK. Tumor Necrosis Factor (TNF) and Chemokines in Colitis-Associated Cancer. Cancers (Basel) 2011; 3:2811-2826. [PMID: 24212934 PMCID: PMC3759172 DOI: 10.3390/cancers3032811] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/17/2011] [Accepted: 06/21/2011] [Indexed: 12/13/2022] Open
Abstract
The connection between inflammation and tumorigenesis has been well established, based on a great deal of supporting evidence obtained from epidemiological, pharmacological, and genetic studies. One representative example is inflammatory bowel disease, because it is an important risk factor for the development of colon cancer. Moreover, intratumoral infiltration of inflammatory cells suggests the involvement of inflammatory responses also in other forms of sporadic as well as heritable colon cancer. Inflammatory responses and tumorigenesis activate similar sets of transcription factors such as NF-kB, Stat3, and hypoxia inducible factor and eventually enhances the expression of inflammatory cytokines including tumor necrosis factor (TNF) and chemokines. The expression of TNF and chemokines is aberrantly expressed in a mouse model of colitis-associated carcinogenesis as well as in inflammatory bowel disease and colon cancer in humans. Here, after summarizing the presumed actions of TNF and chemokines in tumor biology, we will discuss the potential roles of TNF and chemokines in chronic inflammation-associated colon cancer in mice.
Collapse
Affiliation(s)
- Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; E-Mail: (S.S.)
| | - So-ichiro Sasakki
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; E-Mail: (S.S.)
| | - Boryana K. Popivanova
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; E-Mail: (S.S.)
- Present Address, Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; E-Mail:
| |
Collapse
|