51
|
Shen X, Liu Z, Wang C, Xu F, Zhang J, Li M, Lei Y, Wang A, Bi C, Zhu G. Inhibition of Postn Rescues Myogenesis Defects in Myotonic Dystrophy Type 1 Myoblast Model. Front Cell Dev Biol 2021; 9:710112. [PMID: 34490258 PMCID: PMC8417118 DOI: 10.3389/fcell.2021.710112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/30/2021] [Indexed: 12/27/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an inherited neuromuscular disease caused by expanded CTG repeats in the 3' untranslated region (3'UTR) of the DMPK gene. The myogenesis process is defective in DM1, which is closely associated with progressive muscle weakness and wasting. Despite many proposed explanations for the myogenesis defects in DM1, the underlying mechanism and the involvement of the extracellular microenvironment remained unknown. Here, we constructed a DM1 myoblast cell model and reproduced the myogenesis defects. By RNA sequencing (RNA-seq), we discovered that periostin (Postn) was the most significantly upregulated gene in DM1 myogenesis compared with normal controls. This difference in Postn was confirmed by real-time quantitative PCR (RT-qPCR) and western blotting. Moreover, Postn was found to be significantly upregulated in skeletal muscle and myoblasts of DM1 patients. Next, we knocked down Postn using a short hairpin RNA (shRNA) in DM1 myoblast cells and found that the myogenesis defects in the DM1 group were successfully rescued, as evidenced by increases in the myotube area, the fusion index, and the expression of myogenesis regulatory genes. Similarly, Postn knockdown in normal myoblast cells enhanced myogenesis. As POSTN is a secreted protein, we treated the DM1 myoblast cells with a POSTN-neutralizing antibody and found that DM1 myogenesis defects were successfully rescued by POSTN neutralization. We also tested the myogenic ability of myoblasts in the skeletal muscle injury mouse model and found that Postn knockdown improved the myogenic ability of DM1 myoblasts. The activity of the TGF-β/Smad3 pathway was upregulated during DM1 myogenesis but repressed when inhibiting Postn with a Postn shRNA or a POSTN-neutralizing antibody, which suggested that the TGF-β/Smad3 pathway might mediate the function of Postn in DM1 myogenesis. These results suggest that Postn is a potential therapeutical target for the treatment of myogenesis defects in DM1.
Collapse
Affiliation(s)
- Xiaopeng Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zhongxian Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Chunguang Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Feng Xu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jingyi Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Meng Li
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yang Lei
- Wuhu Center for Disease Control and Prevention, Wuhu, China
| | - Ao Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Chao Bi
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
52
|
Todorow V, Hintze S, Kerr ARW, Hehr A, Schoser B, Meinke P. Transcriptome Analysis in a Primary Human Muscle Cell Differentiation Model for Myotonic Dystrophy Type 1. Int J Mol Sci 2021; 22:8607. [PMID: 34445314 PMCID: PMC8395314 DOI: 10.3390/ijms22168607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by CTG-repeat expansions leading to a complex pathology with a multisystemic phenotype that primarily affects the muscles and brain. Despite a multitude of information, especially on the alternative splicing of several genes involved in the pathology, information about additional factors contributing to the disease development is still lacking. We performed RNAseq and gene expression analyses on proliferating primary human myoblasts and differentiated myotubes. GO-term analysis indicates that in myoblasts and myotubes, different molecular pathologies are involved in the development of the muscular phenotype. Gene set enrichment for splicing reveals the likelihood of whole, differentiation stage specific, splicing complexes that are misregulated in DM1. These data add complexity to the alternative splicing phenotype and we predict that it will be of high importance for therapeutic interventions to target not only mature muscle, but also satellite cells.
Collapse
Affiliation(s)
- Vanessa Todorow
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Stefan Hintze
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Alastair R W Kerr
- Cancer Biomarker Centre, CRUK Manchester Institute, University of Manchester, Manchester SK10 4TG, UK
| | - Andreas Hehr
- Centre for Human Genetics, 93047 Regensburg, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Peter Meinke
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| |
Collapse
|
53
|
Tylock KM, Auerbach DS, Tang ZZ, Thornton CA, Dirksen RT. Biophysical mechanisms for QRS- and QTc-interval prolongation in mice with cardiac expression of expanded CUG-repeat RNA. J Gen Physiol 2021; 152:133632. [PMID: 31968060 PMCID: PMC7062505 DOI: 10.1085/jgp.201912450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/28/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults, results from the expression of toxic gain-of-function transcripts containing expanded CUG-repeats. DM1 patients experience cardiac electrophysiological defects, including prolonged PR-, QRS-, and QT-intervals, that increase susceptibility to sudden cardiac death (SCD). However, the specific biophysical and molecular mechanisms that underlie the electrocardiograph (ECG) abnormalities and SCD in DM1 are unclear. Here, we addressed this issue using a novel transgenic mouse model that exhibits robust cardiac expression of expanded CUG-repeat RNA (LC15 mice). ECG measurements in conscious LC15 mice revealed significantly prolonged QRS- and corrected QT-intervals, but a normal PR-interval. Although spontaneous arrhythmias were not observed in conscious LC15 mice under nonchallenged conditions, acute administration of the sodium channel blocker flecainide prolonged the QRS-interval and unveiled an increased susceptibility to lethal ventricular arrhythmias. Current clamp measurements in ventricular myocytes from LC15 mice revealed significantly reduced action potential upstroke velocity at physiological pacing (9 Hz) and prolonged action potential duration at all stimulation rates (1–9 Hz). Voltage clamp experiments revealed significant rightward shifts in the voltage dependence of sodium channel activation and steady-state inactivation, as well as a marked reduction in outward potassium current density. Together, these findings indicate that expression of expanded CUG-repeat RNA in the murine heart results in reduced sodium and potassium channel activity that results in QRS- and QT-interval prolongation, respectively.
Collapse
Affiliation(s)
- Kevin M Tylock
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - David S Auerbach
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY.,Department of Pharmacology, Upstate Medical University, Syracuse, NY
| | - Zhen Zhi Tang
- Department of Neurology, University of Rochester Medical Center, Rochester, NY
| | - Charles A Thornton
- Department of Neurology, University of Rochester Medical Center, Rochester, NY
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
54
|
Li K, Krueger SB, Zimmerman SC. A Novel Minor Groove Binder as a Potential Therapeutic Agent for Myotonic Dystrophy Type 1. ChemMedChem 2021; 16:2638-2644. [PMID: 34114350 DOI: 10.1002/cmdc.202100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 11/10/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic neuromuscular disorder that is inherited in an autosomal dominant manner. DM1 originates in a (CTG⋅CAG) repeat expansion in the 3'-UTR of the dystrophia myotonic protein kinase (DMPK) gene on chromosome 19. One of the transcripts, r(CUG)exp , is toxic in various ways. Herein we report a rationally designed small molecule with a thiazole peptidomimetic unit that can serve as a minor groove binder for the nucleic acid targets. This peptide unit linked to two triaminotriazine recognition units selectively binds to d(CTG)exp to inhibit the transcription process, and also targets r(CUG)exp selectively to improve representative DM1 pathological molecular features, including foci formation and pre-mRNA splicing defects in DM1 model cells. As such, it represents a new structure type that might serve as a lead compound for future structure-activity optimization.
Collapse
Affiliation(s)
- Ke Li
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, 61801, Urbana, IL, USA
| | - Sarah B Krueger
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, 61801, Urbana, IL, USA
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, 61801, Urbana, IL, USA
| |
Collapse
|
55
|
Nishimura AL, Arias N. Synaptopathy Mechanisms in ALS Caused by C9orf72 Repeat Expansion. Front Cell Neurosci 2021; 15:660693. [PMID: 34140881 PMCID: PMC8203826 DOI: 10.3389/fncel.2021.660693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disease caused by degeneration of motor neurons (MNs). ALS pathogenic features include accumulation of misfolded proteins, glutamate excitotoxicity, mitochondrial dysfunction at distal axon terminals, and neuronal cytoskeleton changes. Synergies between loss of C9orf72 functions and gain of function by toxic effects of repeat expansions also contribute to C9orf72-mediated pathogenesis. However, the impact of haploinsufficiency of C9orf72 on neurons and in synaptic functions requires further examination. As the motor neurons degenerate, the disease symptoms will lead to neurotransmission deficiencies in the brain, spinal cord, and neuromuscular junction. Altered neuronal excitability, synaptic morphological changes, and C9orf72 protein and DPR localization at the synapses, suggest a potential involvement of C9orf72 at synapses. In this review article, we provide a conceptual framework for assessing the putative involvement of C9orf72 as a synaptopathy, and we explore the underlying and common disease mechanisms with other neurodegenerative diseases. Finally, we reflect on the major challenges of understanding C9orf72-ALS as a synaptopathy focusing on integrating mitochondrial and neuronal cytoskeleton degeneration as biomarkers and potential targets to treat ALS neurodegeneration.
Collapse
Affiliation(s)
- Agnes L Nishimura
- Department of Basic and Clinical Neuroscience, UK Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Natalia Arias
- Department of Basic and Clinical Neuroscience, UK Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
56
|
Cerebellar ataxia, neuropathy, vestibular areflexia syndrome: genetic and clinical insights. Curr Opin Neurol 2021; 34:556-564. [PMID: 34227574 DOI: 10.1097/wco.0000000000000961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW This review aims to summarise the present cerebellar ataxia, neuropathy, vestibular ataxia syndrome (CANVAS) literature, providing both clinical and genetic insights that might facilitate the timely clinical and genetic diagnosis of this disease. RECENT FINDINGS Recent advancements in the range of the clinical features of CANVAS have aided the development of a broader, more well-defined clinical diagnostic criteria. Additionally, the identification of a biallelic repeat expansion in RFC1 as the cause of CANVAS and a common cause of late-onset ataxia has opened the door to the potential discovery of a pathogenic mechanism, which in turn, may lead to therapeutic advancements and improved patient care. SUMMARY The developments in the clinical and genetic understanding of CANVAS will aid the correct and timely diagnosis of CANVAS, which continues to prove challenging within the clinic. The insights detailed within this review will raise the awareness of the phenotypic spectrum and currently known genetics. We also speculate on the future directions of research into CANVAS.
Collapse
|
57
|
Molecular conformations and dynamics of nucleotide repeats associated with neurodegenerative diseases: double helices and CAG hairpin loops. Comput Struct Biotechnol J 2021; 19:2819-2832. [PMID: 34093995 PMCID: PMC8138726 DOI: 10.1016/j.csbj.2021.04.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 01/05/2023] Open
Abstract
Pathogenic DNA secondary structures have been identified as a common and causative factor for expansion in trinucleotide, hexanucleotide, and other simple sequence repeats. These expansions underlie about fifty neurological and neuromuscular disorders known as “anticipation diseases”. Cell toxicity and death have been linked to the pathogenic conformations and functional changes of the RNA transcripts, of DNA itself and, when trinucleotides are present in exons, of the translated proteins. We review some of our results for the conformations and dynamics of pathogenic structures for both RNA and DNA, which include mismatched homoduplexes formed by trinucleotide repeats CAG and GAC; CCG and CGG; CTG(CUG) and GTC(GUC); the dynamics of DNA CAG hairpins; mismatched homoduplexes formed by hexanucleotide repeats (GGGGCC) and (GGCCCC); and G-quadruplexes formed by (GGGGCC) and (GGGCCT). We also discuss the dynamics of strand slippage in DNA hairpins formed by CAG repeats as observed with single-molecule Fluorescence Resonance Energy Transfer. This review focuses on the rich behavior exhibited by the mismatches associated with these simple sequence repeat noncanonical structures.
Collapse
|
58
|
Ondono R, Lirio Á, Elvira C, Álvarez-Marimon E, Provenzano C, Cardinali B, Pérez-Alonso M, Perálvarez-Marín A, Borrell JI, Falcone G, Estrada-Tejedor R. Design of novel small molecule base-pair recognizers of toxic CUG RNA transcripts characteristics of DM1. Comput Struct Biotechnol J 2020; 19:51-61. [PMID: 33363709 PMCID: PMC7753043 DOI: 10.1016/j.csbj.2020.11.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 01/11/2023] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is an incurable neuromuscular disorder caused by toxic DMPK transcripts that carry CUG repeat expansions in the 3' untranslated region (3'UTR). The intrinsic complexity and lack of crystallographic data makes noncoding RNA regions challenging targets to study in the field of drug discovery. In DM1, toxic transcripts tend to stall in the nuclei forming complex inclusion bodies called foci and sequester many essential alternative splicing factors such as Muscleblind-like 1 (MBNL1). Most DM1 phenotypic features stem from the reduced availability of free MBNL1 and therefore many therapeutic efforts are focused on recovering its normal activity. For that purpose, herein we present pyrido[2,3-d]pyrimidin-7-(8H)-ones, a privileged scaffold showing remarkable biological activity against many targets involved in human disorders including cancer and viral diseases. Their combination with a flexible linker meets the requirements to stabilise DM1 toxic transcripts, and therefore, enabling the release of MBNL1. Therefore, a set of novel pyrido[2,3-d]pyrimidin-7-(8H)-ones derivatives (1a-e) were obtained using click chemistry. 1a exerted over 20% MBNL1 recovery on DM1 toxic RNA activity in primary cell biology studies using patient-derived myoblasts. 1a promising anti DM1 activity may lead to subsequent generations of ligands, highlighting a new affordable treatment against DM1.
Collapse
Affiliation(s)
- Raul Ondono
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Ángel Lirio
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Carlos Elvira
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Elena Álvarez-Marimon
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Claudia Provenzano
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, Rome, Italy
| | - Beatrice Cardinali
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, Rome, Italy
| | - Manuel Pérez-Alonso
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain
- Department of Genetics and Interdisciplinary Research Structure for Biotechnology and Biomedicine, University of Valencia, Valencia, Spain
| | - Alex Perálvarez-Marín
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - José I. Borrell
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Germana Falcone
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, Rome, Italy
| | - Roger Estrada-Tejedor
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
- Corresponding author.
| |
Collapse
|
59
|
Marsh S, Hanson B, Wood MJA, Varela MA, Roberts TC. Application of CRISPR-Cas9-Mediated Genome Editing for the Treatment of Myotonic Dystrophy Type 1. Mol Ther 2020; 28:2527-2539. [PMID: 33171139 PMCID: PMC7704741 DOI: 10.1016/j.ymthe.2020.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/03/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a debilitating multisystemic disorder, caused by expansion of a CTG microsatellite repeat in the 3' untranslated region of the DMPK (dystrophia myotonica protein kinase) gene. To date, novel therapeutic approaches have focused on transient suppression of the mutant, repeat-expanded RNA. However, recent developments in the field of genome editing have raised the exciting possibility of inducing permanent correction of the DM1 genetic defect. Specifically, repurposing of the prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) system has enabled programmable, site-specific, and multiplex genome editing. CRISPR-based strategies for the treatment of DM1 can be applied either directly to patients, or indirectly through the ex vivo modification of patient-derived cells, and they include excision of the repeat expansion, insertion of synthetic polyadenylation signals upstream of the repeat, steric interference with RNA polymerase II procession through the repeat leading to transcriptional downregulation of DMPK, and direct RNA targeting of the mutant RNA species. Potential obstacles to such therapies are discussed, including the major challenge of Cas9 and guide RNA transgene/ribonuclear protein delivery, off-target gene editing, vector genome insertion at cut sites, on-target unintended mutagenesis (e.g., repeat inversion), pre-existing immunity to Cas9 or AAV antigens, immunogenicity, and Cas9 persistence.
Collapse
Affiliation(s)
- Seren Marsh
- University of Oxford Medical School, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK
| | - Britt Hanson
- Department of Physiology, Anatomy and Genetics, Oxford OX1 3QX, UK; Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK; MDUK Oxford Neuromuscular Centre, UK
| | - Miguel A Varela
- Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK
| | - Thomas C Roberts
- Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK; MDUK Oxford Neuromuscular Centre, UK.
| |
Collapse
|
60
|
Sztretye M, Szabó L, Dobrosi N, Fodor J, Szentesi P, Almássy J, Magyar ZÉ, Dienes B, Csernoch L. From Mice to Humans: An Overview of the Potentials and Limitations of Current Transgenic Mouse Models of Major Muscular Dystrophies and Congenital Myopathies. Int J Mol Sci 2020; 21:ijms21238935. [PMID: 33255644 PMCID: PMC7728138 DOI: 10.3390/ijms21238935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Muscular dystrophies are a group of more than 160 different human neuromuscular disorders characterized by a progressive deterioration of muscle mass and strength. The causes, symptoms, age of onset, severity, and progression vary depending on the exact time point of diagnosis and the entity. Congenital myopathies are rare muscle diseases mostly present at birth that result from genetic defects. There are no known cures for congenital myopathies; however, recent advances in gene therapy are promising tools in providing treatment. This review gives an overview of the mouse models used to investigate the most common muscular dystrophies and congenital myopathies with emphasis on their potentials and limitations in respect to human applications.
Collapse
|
61
|
Shen X, Xu F, Li M, Wu S, Zhang J, Wang A, Xu L, Liu Y, Zhu G. miR-322/-503 rescues myoblast defects in myotonic dystrophy type 1 cell model by targeting CUG repeats. Cell Death Dis 2020; 11:891. [PMID: 33093470 PMCID: PMC7582138 DOI: 10.1038/s41419-020-03112-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is the most common type of adult muscular dystrophy caused by the expanded triple-nucleotides (CUG) repeats. Myoblast in DM1 displayed many defects, including defective myoblast differentiation, ribonuclear foci, and aberrant alternative splicing. Despite many were revealed to function in DM1, microRNAs that regulated DM1 via directly targeting the expanded CUG repeats were rarely reported. Here we discovered that miR-322/-503 rescued myoblast defects in DM1 cell model by targeting the expanded CUG repeats. First, we studied the function of miR-322/-503 in normal C2C12 myoblast cells. Downregulation of miR-322/-503 significantly hindered the myoblast differentiation, while miR-322/-503 overexpression promoted the process. Next, we examined the role of miR-322/-503 in the DM1 C2C12 cell model. miR-322/-503 was downregulated in the differentiation of DM1 C2C12 cells. When we introduced ectopic miR-322/-503 expression into DM1 C2C12 cells, myoblast defects were almost fully rescued, marked by significant improvements of myoblast differentiation and repressions of ribonuclear foci formation and aberrant alternative splicing. Then we investigated the downstream mechanism of miR-322/-503 in DM1. Agreeing with our previous work, Celf1 was proven to be miR-322/-503′s target. Celf1 knockdown partially reproduced miR-322/-503′s function in rescuing DM1 C2C12 differentiation but was unable to repress ribonuclear foci, suggesting other targets of miR-322/-503 existed in the DM1 C2C12 cells. As the seed regions of miR-322 and miR-503 were complementary to the CUG repeats, we hypothesized that the CUG repeats were the target of miR-322/-503. Through expression tests, reporter assays, and colocalization staining, miR-322/-503 was proved to directly and specifically target the expanded CUG repeats in the DM1 cell model rather than the shorter ones in normal cells. Those results implied a potential therapeutic function of miR-322/-503 on DM1, which needed further investigations in the future.
Collapse
Affiliation(s)
- Xiaopeng Shen
- School of Life Sciences, Anhui Normal University, Wuhu, China. .,The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China.
| | - Feng Xu
- School of Life Sciences, Anhui Normal University, Wuhu, China.,The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Meng Li
- School of Life Sciences, Anhui Normal University, Wuhu, China.,The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Shen Wu
- School of Life Sciences, Anhui Normal University, Wuhu, China.,The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Jingyi Zhang
- School of Life Sciences, Anhui Normal University, Wuhu, China.,The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Ao Wang
- School of Life Sciences, Anhui Normal University, Wuhu, China.,The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Lei Xu
- Anhui Province Key Laboratory of Active Biological Macromolecules, Wannan Medical College, Wuhu, China
| | - Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Guoping Zhu
- School of Life Sciences, Anhui Normal University, Wuhu, China. .,The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China.
| |
Collapse
|
62
|
CELF2 regulates the species-specific alternative splicing of TREM2. Sci Rep 2020; 10:17995. [PMID: 33093587 PMCID: PMC7582162 DOI: 10.1038/s41598-020-75057-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022] Open
Abstract
Genetic variations of TREM2 have been implicated as a risk factor of Alzheimer’s disease (AD). Recent studies suggest that the loss of TREM2 function compromises microglial responses to the accumulation of amyloid beta. Previously, we found that exon 3 of TREM2 is an alternative exon whose skipping leads to a reduction in full-length TREM2 protein by inducing nonsense-mediated mRNA decay. Here, we aimed to identify factors regulating TREM2 splicing. Using a panel of RNA-binding proteins, we found that exon 3 skipping of TREM2 was promoted by two paralogous proteins, CELF1 and CELF2, which were both linked previously with risk loci of AD. Although the overexpression of both CELF1 and CELF2 enhanced exon 3 skipping, only CELF2 reduced the expression of full-length TREM2 protein. Notably, the TREM2 ortholog in the green monkey, but not in the mouse, showed alternative splicing of exon 3 like human TREM2. Similarly, splicing regulation of exon 3 by CELF1/2 was found to be common to humans and monkeys. Using chimeric minigenes of human and mouse TREM2, we mapped a CELF-responsive sequence within intron 3 of human TREM2. Collectively, our results revealed a novel regulatory factor of TREM2 expression and highlighted a species-dependent difference of its regulation.
Collapse
|
63
|
An Overview of Alternative Splicing Defects Implicated in Myotonic Dystrophy Type I. Genes (Basel) 2020; 11:genes11091109. [PMID: 32971903 PMCID: PMC7564762 DOI: 10.3390/genes11091109] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type I (DM1) is the most common form of adult muscular dystrophy, caused by expansion of a CTG triplet repeat in the 3′ untranslated region (3′UTR) of the myotonic dystrophy protein kinase (DMPK) gene. The pathological CTG repeats result in protein trapping by expanded transcripts, a decreased DMPK translation and the disruption of the chromatin structure, affecting neighboring genes expression. The muscleblind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) are two families of tissue-specific regulators of developmentally programmed alternative splicing that act as antagonist regulators of several pre-mRNA targets, including troponin 2 (TNNT2), insulin receptor (INSR), chloride channel 1 (CLCN1) and MBNL2. Sequestration of MBNL proteins and up-regulation of CELF1 are key to DM1 pathology, inducing a spliceopathy that leads to a developmental remodelling of the transcriptome due to an adult-to-foetal splicing switch, which results in the loss of cell function and viability. Moreover, recent studies indicate that additional pathogenic mechanisms may also contribute to disease pathology, including a misregulation of cellular mRNA translation, localization and stability. This review focuses on the cause and effects of MBNL and CELF1 deregulation in DM1, describing the molecular mechanisms underlying alternative splicing misregulation for a deeper understanding of DM1 complexity. To contribute to this analysis, we have prepared a comprehensive list of transcript alterations involved in DM1 pathogenesis, as well as other deregulated mRNA processing pathways implications.
Collapse
|
64
|
Tauber D, Tauber G, Parker R. Mechanisms and Regulation of RNA Condensation in RNP Granule Formation. Trends Biochem Sci 2020; 45:764-778. [PMID: 32475683 PMCID: PMC7211619 DOI: 10.1016/j.tibs.2020.05.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 01/01/2023]
Abstract
Ribonucleoprotein (RNP) granules are RNA-protein assemblies that are involved in multiple aspects of RNA metabolism and are linked to memory, development, and disease. Some RNP granules form, in part, through the formation of intermolecular RNA-RNA interactions. In vitro, such trans RNA condensation occurs readily, suggesting that cells require mechanisms to modulate RNA-based condensation. We assess the mechanisms of RNA condensation and how cells modulate this phenomenon. We propose that cells control RNA condensation through ATP-dependent processes, static RNA buffering, and dynamic post-translational mechanisms. Moreover, perturbations in these mechanisms can be involved in disease. This reveals multiple cellular mechanisms of kinetic and thermodynamic control that maintain the proper distribution of RNA molecules between dispersed and condensed forms.
Collapse
Affiliation(s)
- Devin Tauber
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80308, USA
| | - Gabriel Tauber
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80308, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80308, USA.
| |
Collapse
|
65
|
Jiang C, Trudeau SJ, Cheong TC, Guo R, Teng M, Wang LW, Wang Z, Pighi C, Gautier-Courteille C, Ma Y, Jiang S, Wang C, Zhao B, Paillard L, Doench JG, Chiarle R, Gewurz BE. CRISPR/Cas9 Screens Reveal Multiple Layers of B cell CD40 Regulation. Cell Rep 2020; 28:1307-1322.e8. [PMID: 31365872 PMCID: PMC6684324 DOI: 10.1016/j.celrep.2019.06.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/06/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023] Open
Abstract
CD40 has major roles in B cell development, activation, and germinal center responses. CD40 hypoactivity causes immunodeficiency whereas its overexpression causes autoimmunity and lymphomagenesis. To systematically identify B cell autonomous CD40 regulators, we use CRISPR/Cas9 genome-scale screens in Daudi B cells stimulated by multimeric CD40 ligand. These highlight known CD40 pathway components and reveal multiple additional mechanisms regulating CD40. The nuclear ubiquitin ligase FBXO11 supports CD40 expression by targeting repressors CTBP1 and BCL6. FBXO11 knockout decreases primary B cell CD40 abundance and impairs class-switch recombination, suggesting that frequent lymphoma monoallelic FBXO11 mutations may balance BCL6 increase with CD40 loss. At the mRNA level, CELF1 controls exon splicing critical for CD40 activity, while the N6-adenosine methyltransferase WTAP negatively regulates CD40 mRNA abundance. At the protein level, ESCRT negatively regulates activated CD40 levels while the negative feedback phosphatase DUSP10 limits downstream MAPK responses. These results serve as a resource for future studies and highlight potential therapeutic targets. CD40 is critical for B cell development, germinal center formation, somatic hypermutation, and class-switch recombination. Increased CD40 abundance is associated with autoimmunity and cancer, whereas CD40 hypoactivity causes immunodeficiency. Jiang et al. performed a genome-wide CRISPR/Cas9 screen to reveal key B cell factors that control CD40 abundance and that regulate CD40 responses.
Collapse
Affiliation(s)
- Chang Jiang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen J Trudeau
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Taek-Chin Cheong
- Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Liang Wei Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Zhonghao Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chiara Pighi
- Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Carole Gautier-Courteille
- Biosit, Université de Rennes 1, 35043 Rennes, France; Centre National de la Recherche Scientifique UMR 6290, Institut de Génétique et Développement de Rennes, 35043 Rennes, France
| | - Yijie Ma
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sizun Jiang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Chong Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Bo Zhao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Luc Paillard
- Biosit, Université de Rennes 1, 35043 Rennes, France; Centre National de la Recherche Scientifique UMR 6290, Institut de Génétique et Développement de Rennes, 35043 Rennes, France
| | - John G Doench
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Roberto Chiarle
- Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
66
|
|
67
|
Crawford Parks TE, Marcellus KA, Péladeau C, Jasmin BJ, Ravel-Chapuis A. Overexpression of Staufen1 in DM1 mouse skeletal muscle exacerbates dystrophic and atrophic features. Hum Mol Genet 2020; 29:2185-2199. [PMID: 32504084 DOI: 10.1093/hmg/ddaa111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
In myotonic dystrophy type 1 (DM1), the CUG expansion (CUGexp) in the 3' untranslated region of the dystrophia myotonica protein kinase messenger ribonucleic acid affects the homeostasis of ribonucleic acid-binding proteins, causing the multiple symptoms of DM1. We have previously reported that Staufen1 is increased in skeletal muscles from DM1 mice and patients and that sustained Staufen1 expression in mature mouse muscle causes a progressive myopathy. Here, we hypothesized that the elevated levels of Staufen1 contributes to the myopathic features of the disease. Interestingly, the classic DM1 mouse model human skeletal actin long repeat (HSALR) lacks overt atrophy while expressing CUGexp transcripts and elevated levels of endogenous Staufen1, suggesting a lower sensitivity to atrophic signaling in this model. We report that further overexpression of Staufen1 in the DM1 mouse model HSALR causes a myopathy via inhibition of protein kinase B signaling through an increase in phosphatase tensin homolog, leading to the expression of atrogenes. Interestingly, we also show that Staufen1 regulates the expression of muscleblind-like splicing regulator 1 and CUG-binding protein elav-like family member 1 in wild-type and DM1 skeletal muscle. Together, data obtained from these new DM1 mouse models provide evidence for the role of Staufen1 as an atrophy-associated gene that impacts progressive muscle wasting in DM1. Accordingly, our findings highlight the potential of Staufen1 as a therapeutic target and biomarker.
Collapse
Affiliation(s)
- Tara E Crawford Parks
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Kristen A Marcellus
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Christine Péladeau
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
68
|
Cerro-Herreros E, González-Martínez I, Moreno-Cervera N, Overby S, Pérez-Alonso M, Llamusí B, Artero R. Therapeutic Potential of AntagomiR-23b for Treating Myotonic Dystrophy. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:837-849. [PMID: 32805487 PMCID: PMC7452101 DOI: 10.1016/j.omtn.2020.07.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a chronically debilitating, rare genetic disease that originates from an expansion of a noncoding CTG repeat in the dystrophia myotonica protein kinase (DMPK) gene. The expansion becomes pathogenic when DMPK transcripts contain 50 or more repetitions due to the sequestration of the muscleblind-like (MBNL) family of proteins. Depletion of MBNLs causes alterations in splicing patterns in transcripts that contribute to clinical symptoms such as myotonia and muscle weakness and wasting. We previously found that microRNA (miR)-23b directly regulates MBNL1 in DM1 myoblasts and mice and that antisense technology (“antagomiRs”) blocking this microRNA (miRNA) boosts MBNL1 protein levels. Here, we show the therapeutic effect over time in response to administration of antagomiR-23b as a treatment in human skeletal actin long repeat (HSALR) mice. Subcutaneous administration of antagomiR-23b upregulated the expression of MBNL1 protein and rescued splicing alterations, grip strength, and myotonia in a dose-dependent manner with long-lasting effects. Additionally, the effects of the treatment on grip strength and myotonia were still slightly notable after 45 days. The pharmacokinetic data obtained provide further evidence that miR-23b could be a valid therapeutic target for DM1.
Collapse
Affiliation(s)
- Estefanía Cerro-Herreros
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Irene González-Martínez
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Nerea Moreno-Cervera
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Sarah Overby
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Manuel Pérez-Alonso
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Beatriz Llamusí
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Rubén Artero
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain.
| |
Collapse
|
69
|
Bagchi D, Mason BD, Baldino K, Li B, Lee EJ, Zhang Y, Chu LK, El Raheb S, Sinha I, Neppl RL. Adult-Onset Myopathy with Constitutive Activation of Akt following the Loss of hnRNP-U. iScience 2020; 23:101319. [PMID: 32659719 PMCID: PMC7358745 DOI: 10.1016/j.isci.2020.101319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/30/2020] [Accepted: 06/24/2020] [Indexed: 01/03/2023] Open
Abstract
Skeletal muscle has the remarkable ability to modulate its mass in response to changes in nutritional input, functional utilization, systemic disease, and age. This is achieved by the coordination of transcriptional and post-transcriptional networks and the signaling cascades balancing anabolic and catabolic processes with energy and nutrient availability. The extent to which alternative splicing regulates these signaling networks is uncertain. Here we investigate the role of the RNA-binding protein hnRNP-U on the expression and splicing of genes and the signaling processes regulating skeletal muscle hypertrophic growth. Muscle-specific Hnrnpu knockout (mKO) mice develop an adult-onset myopathy characterized by the selective atrophy of glycolytic muscle, the constitutive activation of Akt, increases in cellular and metabolic stress gene expression, and changes in the expression and splicing of metabolic and signal transduction genes. These findings link Hnrnpu with the balance between anabolic signaling, cellular and metabolic stress, and physiological growth. Hnrnpu mKO mice develop adult-onset myopathy with selective glycolytic muscle atrophy Akt is constitutively active in the atrophied muscles of Hnrnpu mKO mice Hnrnpu mutants show altered gene expression and alternative splicing patterns Induction of genes associated with cellular and metabolic stress
Collapse
Affiliation(s)
- Debalina Bagchi
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Benjamin D Mason
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Kodilichi Baldino
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Bin Li
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Eun-Joo Lee
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Yuteng Zhang
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Linh Khanh Chu
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Sherif El Raheb
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Indranil Sinha
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Ronald L Neppl
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
70
|
Cox DC, Guan X, Xia Z, Cooper TA. Increased nuclear but not cytoplasmic activities of CELF1 protein leads to muscle wasting. Hum Mol Genet 2020; 29:1729-1744. [PMID: 32412585 PMCID: PMC7322576 DOI: 10.1093/hmg/ddaa095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/16/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
mRNA processing is highly regulated during development through changes in RNA-binding protein (RBP) activities. CUG-BP, Elav-like family member 1 (CELF1, also called CUGBP1) is an RBP, the expression of which decreases in skeletal muscle soon after birth. CELF1 regulates multiple nuclear and cytoplasmic RNA processing events. In the nucleus, CELF1 regulates networks of postnatal alternative splicing (AS) transitions, while in the cytoplasm, CELF1 regulates mRNA stability and translation. Stabilization and misregulation of CELF1 has been implicated in human diseases including myotonic dystrophy type 1, Alzheimer's disease and multiple cancers. To understand the contribution of nuclear and cytoplasmic CELF1 activity to normal and pathogenic skeletal muscle biology, we generated transgenic mice for doxycycline-inducible and skeletal muscle-specific expression of active CELF1 mutants engineered to be localized predominantly to either the nucleus or the cytoplasm. Adult mice expressing nuclear, but not cytoplasmic, CELF1 are characterized by strong histopathological defects, muscle loss within 10 days and changes in AS. In contrast, mice expressing cytoplasmic CELF1 display changes in protein levels of targets known to be regulated at the level of translation by CELF1, with minimal changes in AS. These changes are in the absence of overt histopathological changes or muscle loss. RNA-sequencing revealed extensive gene expression and AS changes in mice overexpressing nuclear and naturally localized CELF1 protein, with affected genes involved in cytoskeleton dynamics, membrane dynamics, RNA processing and zinc ion binding. These results support a stronger role for nuclear CELF1 functions as compared to cytoplasmic CELF1 functions in skeletal muscle wasting.
Collapse
Affiliation(s)
- Diana C Cox
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiangnan Guan
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97239 USA
| | - Zheng Xia
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97239 USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239 USA
| | - Thomas A Cooper
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston TX, 77030 USA
| |
Collapse
|
71
|
Stepniak-Konieczna E, Konieczny P, Cywoniuk P, Dluzewska J, Sobczak K. AON-induced splice-switching and DMPK pre-mRNA degradation as potential therapeutic approaches for Myotonic Dystrophy type 1. Nucleic Acids Res 2020; 48:2531-2543. [PMID: 31965181 PMCID: PMC7049696 DOI: 10.1093/nar/gkaa007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 01/04/2023] Open
Abstract
Expansion of an unstable CTG repeat in the 3′UTR of the DMPK gene causes Myotonic Dystrophy type 1 (DM1). CUG-expanded DMPK transcripts (CUGexp) sequester Muscleblind-like (MBNL) alternative splicing regulators in ribonuclear inclusions (foci), leading to abnormalities in RNA processing and splicing. To alleviate the burden of CUGexp, we tested therapeutic approach utilizing antisense oligonucleotides (AONs)-mediated DMPK splice-switching and degradation of mutated pre-mRNA. Experimental design involved: (i) skipping of selected constitutive exons to induce frameshifting and decay of toxic mRNAs by an RNA surveillance mechanism, and (ii) exclusion of the alternative exon 15 (e15) carrying CUGexp from DMPK mRNA. While first strategy failed to stimulate DMPK mRNA decay, exclusion of e15 enhanced DMPK nuclear export but triggered accumulation of potentially harmful spliced out pre-mRNA fragment containing CUGexp. Neutralization of this fragment with antisense gapmers complementary to intronic sequences preceding e15 failed to diminish DM1-specific spliceopathy due to AONs’ chemistry-related toxicity. However, intronic gapmers alone reduced the level of DMPK mRNA and mitigated DM1-related cellular phenotypes including spliceopathy and nuclear foci. Thus, a combination of the correct chemistry and experimental approach should be carefully considered to design a safe AON-based therapeutic strategy for DM1.
Collapse
Affiliation(s)
- Ewa Stepniak-Konieczna
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Piotr Cywoniuk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Julia Dluzewska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| |
Collapse
|
72
|
Swinnen B, Robberecht W, Van Den Bosch L. RNA toxicity in non-coding repeat expansion disorders. EMBO J 2020; 39:e101112. [PMID: 31721251 PMCID: PMC6939197 DOI: 10.15252/embj.2018101112] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Several neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia (SCA) are caused by non-coding nucleotide repeat expansions. Different pathogenic mechanisms may underlie these non-coding repeat expansion disorders. While gain-of-function mechanisms, such as toxicity associated with expression of repeat RNA or toxicity associated with repeat-associated non-ATG (RAN) products, are most frequently connected with these disorders, loss-of-function mechanisms have also been implicated. We review the different pathways that have been linked to non-coding repeat expansion disorders such as C9ORF72-linked ALS/frontotemporal dementia (FTD), myotonic dystrophy, fragile X tremor/ataxia syndrome (FXTAS), SCA, and Huntington's disease-like 2. We discuss modes of RNA toxicity focusing on the identity and the interacting partners of the toxic RNA species. Using the C9ORF72 ALS/FTD paradigm, we further explore the efforts and different methods used to disentangle RNA vs. RAN toxicity. Overall, we conclude that there is ample evidence for a role of RNA toxicity in non-coding repeat expansion diseases.
Collapse
Affiliation(s)
- Bart Swinnen
- Department of NeurosciencesExperimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Wim Robberecht
- Department of NeurosciencesExperimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Ludo Van Den Bosch
- Department of NeurosciencesExperimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
| |
Collapse
|
73
|
Christou M, Wengel J, Sokratous K, Kyriacou K, Nikolaou G, Phylactou LA, Mastroyiannopoulos NP. Systemic Evaluation of Chimeric LNA/2'-O-Methyl Steric Blockers for Myotonic Dystrophy Type 1 Therapy. Nucleic Acid Ther 2019; 30:80-93. [PMID: 31873063 PMCID: PMC7133450 DOI: 10.1089/nat.2019.0811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a dominantly inherited, multisystemic disorder characterized clinically by delayed muscle relaxation and weakness. The disease is caused by a CTG repeat expansion in the 3′ untranslated region (3′ UTR) of the DMPK gene, which leads to the expression of a toxic gain-of-function mRNA. The expanded CUG repeat mRNA sequesters the MBNL1 splicing regulator in nuclear-retained foci structures, resulting in loss of protein function and disruption of alternative splicing homeostasis. In this study, we used CAG repeat antisense oligonucleotides (ASOs), composed of locked nucleic acid (LNA)- and 2′-O-methyl (2′OMe)-modified bases in a chimeric design, to alleviate CUGexpanded-mediated toxicity. Chimeric 14–18mer LNA/2′OMe oligonucleotides, exhibiting an LNA incorporation of ∼33%, significantly ameliorated the misregulated alternative splicing of Mbnl1-dependent exons in primary DM1 mouse myoblasts and tibialis anterior muscles of DM1 mice. Subcutaneous delivery of 14mer and 18mer LNA/2′OMe chimeras in DM1 mice resulted in high levels of accumulation in all tested skeletal muscles, as well as in the diaphragm and heart tissue. Despite the efficient delivery, chimeric LNA/2′OMe oligonucleotides were not able, even at a high-dosage regimen (400 mg/kg/week), to correct the misregulated splicing of Serca1 exon 22 in skeletal muscles. Nevertheless, oligonucleotide doses were well-tolerated as determined by histological and plasma biochemistry analyses. Our results provide proof of concept that inhibition of MBNL1 sequestration by systemic delivery of a steric-blocking ASO is extremely challenging, considering the large number of target sites that need to be occupied per RNA molecule. Although not suitable for DM1 therapy, chimeric LNA/2′OMe oligonucleotides could prove to be highly beneficial for other diseases, such as Duchenne muscular dystrophy, that require inhibition of a single target site per RNA molecule.
Collapse
Affiliation(s)
- Melina Christou
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Jesper Wengel
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Odense M, Denmark
| | - Kleitos Sokratous
- Department of Electron Microscopy and Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Bioinformatics Group, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriacos Kyriacou
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Department of Electron Microscopy and Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Georgios Nikolaou
- Veterinary Diagnostic Laboratory, Vet Ex Machina Ltd, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nikolaos P Mastroyiannopoulos
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
74
|
Timchenko L. Correction of RNA-Binding Protein CUGBP1 and GSK3β Signaling as Therapeutic Approach for Congenital and Adult Myotonic Dystrophy Type 1. Int J Mol Sci 2019; 21:ijms21010094. [PMID: 31877772 PMCID: PMC6982105 DOI: 10.3390/ijms21010094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a complex genetic disease affecting many tissues. DM1 is caused by an expansion of CTG repeats in the 3′-UTR of the DMPK gene. The mechanistic studies of DM1 suggested that DMPK mRNA, containing expanded CUG repeats, is a major therapeutic target in DM1. Therefore, the removal of the toxic RNA became a primary focus of the therapeutic development in DM1 during the last decade. However, a cure for this devastating disease has not been found. Whereas the degradation of toxic RNA remains a preferential approach for the reduction of DM1 pathology, other approaches targeting early toxic events downstream of the mutant RNA could be also considered. In this review, we discuss the beneficial role of the restoring of the RNA-binding protein, CUGBP1/CELF1, in the correction of DM1 pathology. It has been recently found that the normalization of CUGBP1 activity with the inhibitors of GSK3 has a positive effect on the reduction of skeletal muscle and CNS pathologies in DM1 mouse models. Surprisingly, the inhibitor of GSK3, tideglusib also reduced the toxic CUG-containing RNA. Thus, the development of the therapeutics, based on the correction of the GSK3β-CUGBP1 pathway, is a promising option for this complex disease.
Collapse
Affiliation(s)
- Lubov Timchenko
- Departments of Neurology and Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
75
|
Dosage effect of multiple genes accounts for multisystem disorder of myotonic dystrophy type 1. Cell Res 2019; 30:133-145. [PMID: 31853004 PMCID: PMC7015062 DOI: 10.1038/s41422-019-0264-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/09/2019] [Indexed: 12/19/2022] Open
Abstract
Multisystem manifestations in myotonic dystrophy type 1 (DM1) may be due to dosage reduction in multiple genes induced by aberrant expansion of CTG repeats in DMPK, including DMPK, its neighboring genes (SIX5 or DMWD) and downstream MBNL1. However, direct evidence is lacking. Here, we develop a new strategy to generate mice carrying multigene heterozygous mutations to mimic dosage reduction in one step by injection of haploid embryonic stem cells with mutant Dmpk, Six5 and Mbnl1 into oocytes. The triple heterozygous mutant mice exhibit adult-onset DM1 phenotypes. With the additional mutation in Dmwd, the quadruple heterozygous mutant mice recapitulate many major manifestations in congenital DM1. Moreover, muscle stem cells in both models display reduced stemness, providing a unique model for screening small molecules for treatment of DM1. Our results suggest that the complex symptoms of DM1 result from the reduced dosage of multiple genes.
Collapse
|
76
|
Sabater-Arcis M, Bargiela A, Furling D, Artero R. miR-7 Restores Phenotypes in Myotonic Dystrophy Muscle Cells by Repressing Hyperactivated Autophagy. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:278-292. [PMID: 31855836 PMCID: PMC6926285 DOI: 10.1016/j.omtn.2019.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Abstract
Unstable CTG expansions in the 3’ UTR of the DMPK gene are responsible for myotonic dystrophy type 1 (DM1) condition. Muscle dysfunction is one of the main contributors to DM1 mortality and morbidity. Pathways by which mutant DMPK trigger muscle defects, however, are not fully understood. We previously reported that miR-7 was downregulated in a DM1 Drosophila model and in biopsies from patients. Here, using DM1 and normal muscle cells, we investigated whether miR-7 contributes to the muscle phenotype by studying the consequences of replenishing or blocking miR-7, respectively. Restoration of miR-7 with agomiR-7 was sufficient to rescue DM1 myoblast fusion defects and myotube growth. Conversely, oligonucleotide-mediated blocking of miR-7 in normal myoblasts led to fusion and myotube growth defects. miR-7 was found to regulate autophagy and the ubiquitin-proteasome system in human muscle cells. Thus, low levels of miR-7 promoted both processes, and high levels of miR-7 repressed them. Furthermore, we uncovered that the mechanism by which miR-7 improves atrophy-related phenotypes is independent of MBNL1, thus suggesting that miR-7 acts downstream or in parallel to MBNL1. Collectively, these results highlight an unknown function for miR-7 in muscle dysfunction through autophagy- and atrophy-related pathways and support that restoration of miR-7 levels is a candidate therapeutic target for counteracting muscle dysfunction in DM1.
Collapse
Affiliation(s)
- Maria Sabater-Arcis
- Translational Genomics Group, Incliva Health Research Institute, Valencia 46100, Spain; Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia 46100, Spain; CIPF-INCLIVA Joint Unit, Valencia 46012, Spain
| | - Ariadna Bargiela
- Translational Genomics Group, Incliva Health Research Institute, Valencia 46100, Spain; Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia 46100, Spain; CIPF-INCLIVA Joint Unit, Valencia 46012, Spain.
| | - Denis Furling
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Ruben Artero
- Translational Genomics Group, Incliva Health Research Institute, Valencia 46100, Spain; Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia 46100, Spain; CIPF-INCLIVA Joint Unit, Valencia 46012, Spain
| |
Collapse
|
77
|
López Castel A, Overby SJ, Artero R. MicroRNA-Based Therapeutic Perspectives in Myotonic Dystrophy. Int J Mol Sci 2019; 20:ijms20225600. [PMID: 31717488 PMCID: PMC6888406 DOI: 10.3390/ijms20225600] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Myotonic dystrophy involves two types of chronically debilitating rare neuromuscular diseases: type 1 (DM1) and type 2 (DM2). Both share similarities in molecular cause, clinical signs, and symptoms with DM2 patients usually displaying milder phenotypes. It is well documented that key clinical symptoms in DM are associated with a strong mis-regulation of RNA metabolism observed in patient’s cells. This mis-regulation is triggered by two leading DM-linked events: the sequestration of Muscleblind-like proteins (MBNL) and the mis-regulation of the CUGBP RNA-Binding Protein Elav-Like Family Member 1 (CELF1) that cause significant alterations to their important functions in RNA processing. It has been suggested that DM1 may be treatable through endogenous modulation of the expression of MBNL and CELF1 proteins. In this study, we analyzed the recent identification of the involvement of microRNA (miRNA) molecules in DM and focus on the modulation of these miRNAs to therapeutically restore normal MBNL or CELF1 function. We also discuss additional prospective miRNA targets, the use of miRNAs as disease biomarkers, and additional promising miRNA-based and miRNA-targeting drug development strategies. This review provides a unifying overview of the dispersed data on miRNA available in the context of DM.
Collapse
Affiliation(s)
- Arturo López Castel
- Translational Genomics Group, Incliva Health Research Institute, Burjassot, 46100 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (Eri Biotecmed), University of Valencia, Burjassot, 46100 Valencia, Spain
- Correspondence: (A.L.C.); (R.A.)
| | - Sarah Joann Overby
- Translational Genomics Group, Incliva Health Research Institute, Burjassot, 46100 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (Eri Biotecmed), University of Valencia, Burjassot, 46100 Valencia, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, Burjassot, 46100 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (Eri Biotecmed), University of Valencia, Burjassot, 46100 Valencia, Spain
- Correspondence: (A.L.C.); (R.A.)
| |
Collapse
|
78
|
A CTG repeat-selective chemical screen identifies microtubule inhibitors as selective modulators of toxic CUG RNA levels. Proc Natl Acad Sci U S A 2019; 116:20991-21000. [PMID: 31570586 DOI: 10.1073/pnas.1901893116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A CTG repeat expansion in the DMPK gene is the causative mutation of myotonic dystrophy type 1 (DM1). Transcription of the expanded CTG repeat produces toxic gain-of-function CUG RNA, leading to disease symptoms. A screening platform that targets production or stability of the toxic CUG RNA in a selective manner has the potential to provide new biological and therapeutic insights. A DM1 HeLa cell model was generated that stably expresses a toxic r(CUG)480 and an analogous r(CUG)0 control from DMPK and was used to measure the ratio-metric level of r(CUG)480 versus r(CUG)0. This DM1 HeLa model recapitulates pathogenic hallmarks of DM1, including CUG ribonuclear foci and missplicing of pre-mRNA targets of the muscleblind (MBNL) alternative splicing factors. Repeat-selective screening using this cell line led to the unexpected identification of multiple microtubule inhibitors as hits that selectively reduce r(CUG)480 levels and partially rescue MBNL-dependent missplicing. These results were validated by using the Food and Drug Administration-approved clinical microtubule inhibitor colchicine in DM1 mouse and primary patient cell models. The mechanism of action was found to involve selective reduced transcription of the CTG expansion that we hypothesize to involve the LINC (linker of nucleoskeleton and cytoskeleton) complex. The unanticipated identification of microtubule inhibitors as selective modulators of toxic CUG RNA opens research directions for this form of muscular dystrophy and may shed light on the biology of CTG repeat expansion and inform therapeutic avenues. This approach has the potential to identify modulators of expanded repeat-containing gene expression for over 30 microsatellite expansion disorders.
Collapse
|
79
|
Bosè F, Renna LV, Fossati B, Arpa G, Labate V, Milani V, Botta A, Micaglio E, Meola G, Cardani R. TNNT2 Missplicing in Skeletal Muscle as a Cardiac Biomarker in Myotonic Dystrophy Type 1 but Not in Myotonic Dystrophy Type 2. Front Neurol 2019; 10:992. [PMID: 31611837 PMCID: PMC6776629 DOI: 10.3389/fneur.2019.00992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/02/2019] [Indexed: 12/31/2022] Open
Abstract
Cardiac involvement is one of the most important manifestations of the multisystemic phenotype of patients affected by myotonic dystrophy (DM) and represents the second cause of premature death. Molecular mechanisms responsible for DM cardiac defects are still unclear; however, missplicing of the cardiac isoform of troponin T (TNNT2) and of the cardiac sodium channel (SCN5A) genes might contribute to the reduced myocardial function and conduction abnormalities seen in DM patients. Since, in DM skeletal muscle, the TNNT2 gene shows the same aberrant splicing pattern observed in cardiac muscle, the principal aim of this work was to verify if the TNNT2 aberrant fetal isoform expression could be secondary to myopathic changes or could reflect the DM cardiac phenotype. Analysis of alternative splicing of TNNT2 and of several genes involved in DM pathology has been performed on muscle biopsies from patients affected by DM type 1 (DM1) or type 2 (DM2) with or without cardiac involvement. Our analysis shows that missplicing of muscle-specific genes is higher in DM1 and DM2 than in regenerating control muscles, indicating that these missplicing could be effectively important in DM skeletal muscle pathology. When considering the TNNT2 gene, missplicing appears to be more evident in DM1 than in DM2 muscles since, in DM2, the TNNT2 fetal isoform appears to be less expressed than the adult isoform. This evidence does not seem to be related to less severe muscle histopathological alterations that appear to be similar in DM1 and DM2 muscles. These results seem to indicate that the more severe TNNT2 missplicing observed in DM1 could not be related only to myopathic changes but could reflect the more severe general phenotype compared to DM2, including cardiac problems that appear to be more severe and frequent in DM1 than in DM2 patients. Moreover, TNNT2 missplicing significantly correlates with the QRS cardiac parameter in DM1 but not in DM2 patients, indicating that this splicing event has good potential to function as a biomarker of DM1 severity and it should be considered in pharmacological clinical trials to monitor the possible effects of different therapeutic approaches on skeletal muscle tissues.
Collapse
Affiliation(s)
- Francesca Bosè
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, Milan, Italy
| | - Laura Valentina Renna
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, Milan, Italy
| | - Barbara Fossati
- Department of Neurology, IRCCS-Policlinico San Donato, Milan, Italy.,Department of Neurorehabilitation Sciences, Casa Cura Policlinico (CCP), Milan, Italy
| | - Giovanni Arpa
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Valentina Labate
- University Cardiology Unit, IRCCS-Policlinico San Donato, Milan, Italy
| | - Valentina Milani
- Scientific Directorate, IRCCS Policlinico San Donato, Milan, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Emanuele Micaglio
- Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy
| | - Giovanni Meola
- Department of Neurology, IRCCS-Policlinico San Donato, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, Milan, Italy
| |
Collapse
|
80
|
Sharp L, Cox DC, Cooper TA. Endurance exercise leads to beneficial molecular and physiological effects in a mouse model of myotonic dystrophy type 1. Muscle Nerve 2019; 60:779-789. [PMID: 31509256 DOI: 10.1002/mus.26709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Myotonic dystrophy type 1 (DM1) is a multisystemic disease caused by expansion of a CTG repeat in the 3' UTR of the Dystrophia Myotonica-Protein Kinase (DMPK) gene. While multiple organs are affected, more than half of mortality is due to muscle wasting. METHODS It is unclear whether endurance exercise provides beneficial effects in DM1. Here, we show that a 10-week treadmill endurance exercise program leads to beneficial effects in the HSALR mouse model of DM1. RESULTS Animals that performed treadmill training displayed reduced CUGexp RNA levels, improved splicing abnormalities, an increase in skeletal muscle weight and improved endurance capacity. DISCUSSION These results indicate that endurance exercise does not have adverse effects in HSALR animals and contributes to beneficial molecular and physiological outcomes.
Collapse
Affiliation(s)
- Lydia Sharp
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas.,Department of Neurology, Baylor College of Medicine, Houston, Texas
| | - Diana C Cox
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas.,Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Thomas A Cooper
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
81
|
Murata A, Nakamori M, Nakatani K. Modulating RNA secondary and tertiary structures by mismatch binding ligands. Methods 2019; 167:78-91. [DOI: 10.1016/j.ymeth.2019.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022] Open
|
82
|
Reddy K, Jenquin JR, Cleary JD, Berglund JA. Mitigating RNA Toxicity in Myotonic Dystrophy using Small Molecules. Int J Mol Sci 2019; 20:E4017. [PMID: 31426500 PMCID: PMC6720693 DOI: 10.3390/ijms20164017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/26/2022] Open
Abstract
This review, one in a series on myotonic dystrophy (DM), is focused on the development and potential use of small molecules as therapeutics for DM. The complex mechanisms and pathogenesis of DM are covered in the associated reviews. Here, we examine the various small molecule approaches taken to target the DNA, RNA, and proteins that contribute to disease onset and progression in myotonic dystrophy type 1 (DM1) and 2 (DM2).
Collapse
Affiliation(s)
- Kaalak Reddy
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA.
| | - Jana R Jenquin
- Center for NeuroGenetics and Biochemistry & Molecular Biology, University of Florida, Gainesville, FL 32608, USA
| | - John D Cleary
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - J Andrew Berglund
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA.
- Center for NeuroGenetics and Biochemistry & Molecular Biology, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
83
|
Lo Scrudato M, Poulard K, Sourd C, Tomé S, Klein AF, Corre G, Huguet A, Furling D, Gourdon G, Buj-Bello A. Genome Editing of Expanded CTG Repeats within the Human DMPK Gene Reduces Nuclear RNA Foci in the Muscle of DM1 Mice. Mol Ther 2019; 27:1372-1388. [PMID: 31253581 PMCID: PMC6697452 DOI: 10.1016/j.ymthe.2019.05.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by a CTG repeat expansion located in the 3' UTR of the DMPK gene. Expanded DMPK transcripts aggregate into nuclear foci and alter the function of RNA-binding proteins, leading to defects in the alternative splicing of numerous pre-mRNAs. To date, there is no curative treatment for DM1. Here we investigated a gene-editing strategy using the CRISPR-Cas9 system from Staphylococcus aureus (Sa) to delete the CTG repeats in the human DMPK locus. Co-expression of SaCas9 and selected pairs of single-guide RNAs (sgRNAs) in cultured DM1 patient-derived muscle line cells carrying 2,600 CTG repeats resulted in targeted DNA deletion, ribonucleoprotein foci disappearance, and correction of splicing abnormalities in various transcripts. Furthermore, a single intramuscular injection of recombinant AAV vectors expressing CRISPR-SaCas9 components in the tibialis anterior muscle of DMSXL (myotonic dystrophy mouse line carrying the human DMPK gene with >1,000 CTG repeats) mice decreased the number of pathological RNA foci in myonuclei. These results establish the proof of concept that genome editing of a large trinucleotide expansion is feasible in muscle and may represent a useful strategy to be further developed for the treatment of myotonic dystrophy.
Collapse
Affiliation(s)
- Mirella Lo Scrudato
- Genethon, INSERM UMR_S951, Univ Evry, Université Paris Saclay, 91000 Evry, France
| | - Karine Poulard
- Genethon, INSERM UMR_S951, Univ Evry, Université Paris Saclay, 91000 Evry, France
| | - Célia Sourd
- Genethon, INSERM UMR_S951, Univ Evry, Université Paris Saclay, 91000 Evry, France
| | - Stéphanie Tomé
- INSERM UMR 1163, Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 75015 Paris, France
| | - Arnaud F Klein
- INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, 75013 Paris, France
| | - Guillaume Corre
- Genethon, INSERM UMR_S951, Univ Evry, Université Paris Saclay, 91000 Evry, France
| | - Aline Huguet
- INSERM UMR 1163, Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 75015 Paris, France
| | - Denis Furling
- INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, 75013 Paris, France
| | - Geneviève Gourdon
- INSERM UMR 1163, Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 75015 Paris, France
| | - Ana Buj-Bello
- Genethon, INSERM UMR_S951, Univ Evry, Université Paris Saclay, 91000 Evry, France.
| |
Collapse
|
84
|
Hale MA, Richardson JI, Day RC, McConnell OL, Arboleda J, Wang ET, Berglund JA. An engineered RNA binding protein with improved splicing regulation. Nucleic Acids Res 2019; 46:3152-3168. [PMID: 29309648 PMCID: PMC5888374 DOI: 10.1093/nar/gkx1304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023] Open
Abstract
The muscleblind-like (MBNL) family of proteins are key developmental regulators of alternative splicing. Sequestration of MBNL proteins by expanded CUG/CCUG repeat RNA transcripts is a major pathogenic mechanism in the neuromuscular disorder myotonic dystrophy (DM). MBNL1 contains four zinc finger (ZF) motifs that form two tandem RNA binding domains (ZF1-2 and ZF3-4) which each bind YGCY RNA motifs. In an effort to determine the differences in function between these domains, we designed and characterized synthetic MBNL proteins with duplicate ZF1-2 or ZF3-4 domains, referred to as MBNL-AA and MBNL-BB, respectively. Analysis of splicing regulation revealed that MBNL-AA had up to 5-fold increased splicing activity while MBNL-BB had 4-fold decreased activity compared to a MBNL protein with the canonical arrangement of zinc finger domains. RNA binding analysis revealed that the variations in splicing activity are due to differences in RNA binding specificities between the two ZF domains rather than binding affinity. Our findings indicate that ZF1-2 drives splicing regulation via recognition of YGCY RNA motifs while ZF3-4 acts as a general RNA binding domain. Our studies suggest that synthetic MBNL proteins with improved or altered splicing activity have the potential to be used as both tools for investigating splicing regulation and protein therapeutics for DM and other microsatellite diseases.
Collapse
Affiliation(s)
- Melissa A Hale
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Jared I Richardson
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Ryan C Day
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Ona L McConnell
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Juan Arboleda
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Eric T Wang
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - J Andrew Berglund
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
85
|
Czubak K, Taylor K, Piasecka A, Sobczak K, Kozlowska K, Philips A, Sedehizadeh S, Brook JD, Wojciechowska M, Kozlowski P. Global Increase in Circular RNA Levels in Myotonic Dystrophy. Front Genet 2019; 10:649. [PMID: 31428124 PMCID: PMC6689976 DOI: 10.3389/fgene.2019.00649] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/19/2019] [Indexed: 12/24/2022] Open
Abstract
Splicing aberrations induced as a consequence of the sequestration of muscleblind-like splicing factors on the dystrophia myotonica protein kinase transcript, which contains expanded CUG repeats, present a major pathomechanism of myotonic dystrophy type 1 (DM1). As muscleblind-like factors may also be important factors involved in the biogenesis of circular RNAs (circRNAs), we hypothesized that the level of circRNAs would be decreased in DM1. To test this hypothesis, we selected 20 well-validated circRNAs and analyzed their levels in several experimental systems (e.g., cell lines, DM muscle tissues, and a mouse model of DM1) using droplet digital PCR assays. We also explored the global level of circRNAs using two RNA-Seq datasets of DM1 muscle samples. Contrary to our original hypothesis, our results consistently showed a global increase in circRNA levels in DM1, and we identified numerous circRNAs that were increased in DM1. We also identified many genes (including muscle-specific genes) giving rise to numerous (>10) circRNAs. Thus, this study is the first to show an increase in global circRNA levels in DM1. We also provided preliminary results showing the association of circRNA level with muscle weakness and alternative splicing changes that are biomarkers of DM1 severity.
Collapse
Affiliation(s)
- Karol Czubak
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Taylor
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Agnieszka Piasecka
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Krzysztof Sobczak
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Katarzyna Kozlowska
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Philips
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Saam Sedehizadeh
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - J. David Brook
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Marzena Wojciechowska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
86
|
Jenquin JR, Yang H, Huigens RW, Nakamori M, Berglund JA. Combination Treatment of Erythromycin and Furamidine Provides Additive and Synergistic Rescue of Mis-Splicing in Myotonic Dystrophy Type 1 Models. ACS Pharmacol Transl Sci 2019; 2:247-263. [PMID: 31485578 DOI: 10.1021/acsptsci.9b00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a multi-systemic disease that presents with clinical symptoms including myotonia, cardiac dysfunction and cognitive impairment. DM1 is caused by a CTG expansion in the 3' UTR of the DMPK gene. The transcribed expanded CUG repeat RNA sequester the muscleblind-like (MBNL) and up-regulate the CUG-BP Elav-like (CELF) families of RNA-binding proteins leading to global mis-regulation of RNA processing and altered gene expression. Currently, there are no disease-targeting treatments for DM1. Given the multi-step pathogenic mechanism, combination therapies targeting different aspects of the disease mechanism may be a viable therapeutic approach. Here, as proof-of-concept, we studied a combination of two previously characterized small molecules, erythromycin and furamidine, in two DM1 models. In DM1 patient-derived myotubes, rescue of mis-splicing was observed with little to no cell toxicity. In a DM1 mouse model, a combination of erythromycin and the prodrug of furamidine (pafuramidine), administered orally, displayed both additive and synergistic mis-splicing rescue. Gene expression was only modestly affected and over 40 % of the genes showing significant expression changes were rescued back toward WT expression levels. Further, the combination treatment partially rescued the myotonia phenotype in the DM1 mouse. This combination treatment showed a high degree of mis-splicing rescue coupled with low off-target gene expression changes. These results indicate that combination therapies are a promising therapeutic approach for DM1.
Collapse
Affiliation(s)
- Jana R Jenquin
- Department of Biochemistry & Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Hongfen Yang
- Department of Medicinal Chemistry, Center for Natural Products Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Robert W Huigens
- Department of Medicinal Chemistry, Center for Natural Products Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - J Andrew Berglund
- Department of Biochemistry & Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA.,Department of Biological Sciences, RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, 12222, USA
| |
Collapse
|
87
|
Sznajder ŁJ, Swanson MS. Short Tandem Repeat Expansions and RNA-Mediated Pathogenesis in Myotonic Dystrophy. Int J Mol Sci 2019; 20:ijms20133365. [PMID: 31323950 PMCID: PMC6651174 DOI: 10.3390/ijms20133365] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 12/23/2022] Open
Abstract
Short tandem repeat (STR) or microsatellite, expansions underlie more than 50 hereditary neurological, neuromuscular and other diseases, including myotonic dystrophy types 1 (DM1) and 2 (DM2). Current disease models for DM1 and DM2 propose a common pathomechanism, whereby the transcription of mutant DMPK (DM1) and CNBP (DM2) genes results in the synthesis of CUG and CCUG repeat expansion (CUGexp, CCUGexp) RNAs, respectively. These CUGexp and CCUGexp RNAs are toxic since they promote the assembly of ribonucleoprotein (RNP) complexes or RNA foci, leading to sequestration of Muscleblind-like (MBNL) proteins in the nucleus and global dysregulation of the processing, localization and stability of MBNL target RNAs. STR expansion RNAs also form phase-separated gel-like droplets both in vitro and in transiently transfected cells, implicating RNA-RNA multivalent interactions as drivers of RNA foci formation. Importantly, the nucleation and growth of these nuclear foci and transcript misprocessing are reversible processes and thus amenable to therapeutic intervention. In this review, we provide an overview of potential DM1 and DM2 pathomechanisms, followed by a discussion of MBNL functions in RNA processing and how multivalent interactions between expanded STR RNAs and RNA-binding proteins (RBPs) promote RNA foci assembly.
Collapse
Affiliation(s)
- Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA.
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
88
|
Wang ET, Treacy D, Eichinger K, Struck A, Estabrook J, Olafson H, Wang TT, Bhatt K, Westbrook T, Sedehizadeh S, Ward A, Day J, Brook D, Berglund JA, Cooper T, Housman D, Thornton C, Burge C. Transcriptome alterations in myotonic dystrophy skeletal muscle and heart. Hum Mol Genet 2019; 28:1312-1321. [PMID: 30561649 DOI: 10.1093/hmg/ddy432] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 11/12/2022] Open
Abstract
Myotonic dystrophy (dystrophia myotonica, DM) is a multi-systemic disease caused by expanded CTG or CCTG microsatellite repeats. Characterized by symptoms in muscle, heart and central nervous system, among others, it is one of the most variable diseases known. A major pathogenic event in DM is the sequestration of muscleblind-like proteins by CUG or CCUG repeat-containing RNAs transcribed from expanded repeats, and differences in the extent of MBNL sequestration dependent on repeat length and expression level may account for some portion of the variability. However, many other cellular pathways are reported to be perturbed in DM, and the severity of specific disease symptoms varies among individuals. To help understand this variability and facilitate research into DM, we generated 120 RNASeq transcriptomes from skeletal and heart muscle derived from healthy and DM1 biopsies and autopsies. A limited number of DM2 and Duchenne muscular dystrophy samples were also sequenced. We analyzed splicing and gene expression, identified tissue-specific changes in RNA processing and uncovered transcriptome changes strongly correlating with muscle strength. We created a web resource at http://DMseq.org that hosts raw and processed transcriptome data and provides a lightweight, responsive interface that enables browsing of processed data across the genome.
Collapse
Affiliation(s)
- Eric T Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Daniel Treacy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katy Eichinger
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Adam Struck
- Department of Biochemistry, University of Oregon, Eugene, OR, USA
| | - Joseph Estabrook
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Hailey Olafson
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Thomas T Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kirti Bhatt
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Tony Westbrook
- School of Life Sciences, Queen's Medical Center, University of Nottingham, Nottingham, UK
| | - Sam Sedehizadeh
- School of Life Sciences, Queen's Medical Center, University of Nottingham, Nottingham, UK
| | - Amanda Ward
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - John Day
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - David Brook
- School of Life Sciences, Queen's Medical Center, University of Nottingham, Nottingham, UK
| | - J Andrew Berglund
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA.,Department of Biochemistry, University of Oregon, Eugene, OR, USA
| | - Thomas Cooper
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - David Housman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles Thornton
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Christopher Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
89
|
Voellenkle C, Perfetti A, Carrara M, Fuschi P, Renna LV, Longo M, Sain SB, Cardani R, Valaperta R, Silvestri G, Legnini I, Bozzoni I, Furling D, Gaetano C, Falcone G, Meola G, Martelli F. Dysregulation of Circular RNAs in Myotonic Dystrophy Type 1. Int J Mol Sci 2019; 20:ijms20081938. [PMID: 31010208 PMCID: PMC6515344 DOI: 10.3390/ijms20081938] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 01/03/2023] Open
Abstract
Circular RNAs (circRNAs) constitute a recently re-discovered class of non-coding RNAs functioning as sponges for miRNAs and proteins, affecting RNA splicing and regulating transcription. CircRNAs are generated by “back-splicing”, which is the linking covalently of 3′- and 5′-ends of exons. Thus, circRNA levels might be deregulated in conditions associated with altered RNA-splicing. Significantly, growing evidence indicates their role in human diseases. Specifically, myotonic dystrophy type 1 (DM1) is a multisystemic disorder caused by expanded CTG repeats in the DMPK gene which results in abnormal mRNA-splicing. In this investigation, circRNAs expressed in DM1 skeletal muscles were identified by analyzing RNA-sequencing data-sets followed by qPCR validation. In muscle biopsies, out of nine tested, four transcripts showed an increased circular fraction: CDYL, HIPK3, RTN4_03, and ZNF609. Their circular fraction values correlated with skeletal muscle strength and with splicing biomarkers of disease severity, and displayed higher values in more severely affected patients. Moreover, Receiver-Operating-Characteristics curves of these four circRNAs discriminated DM1 patients from controls. The identified circRNAs were also detectable in peripheral-blood-mononuclear-cells (PBMCs) and the plasma of DM1 patients, but they were not regulated significantly. Finally, increased circular fractions of RTN4_03 and ZNF609 were also observed in differentiated myogenic cell lines derived from DM1 patients. In conclusion, this pilot study identified circRNA dysregulation in DM1 patients.
Collapse
Affiliation(s)
- Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Alessandra Perfetti
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Matteo Carrara
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Paola Fuschi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Laura Valentina Renna
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Marialucia Longo
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Simona Baghai Sain
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Rea Valaperta
- Research Laboratories, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Gabriella Silvestri
- Department of Geriatrics, Orthopaedic and Neuroscience, Institute of Neurology, Catholic University of Sacred Heart, Fondazione Policlinico Gemelli, 00168 Rome, Italy.
| | - Ivano Legnini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy.
| | - Irene Bozzoni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy.
| | - Denis Furling
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France.
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri, 27100 Pavia, Italy.
| | - Germana Falcone
- Institute of Cell Biology and Neurobiology, National Research Council, Monterotondo, 00015 Rome, Italy.
| | - Giovanni Meola
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
- Department of Neurology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy.
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| |
Collapse
|
90
|
Intrinsically cell-penetrating multivalent and multitargeting ligands for myotonic dystrophy type 1. Proc Natl Acad Sci U S A 2019; 116:8709-8714. [PMID: 30975744 DOI: 10.1073/pnas.1820827116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Developing highly active, multivalent ligands as therapeutic agents is challenging because of delivery issues, limited cell permeability, and toxicity. Here, we report intrinsically cell-penetrating multivalent ligands that target the trinucleotide repeat DNA and RNA in myotonic dystrophy type 1 (DM1), interrupting the disease progression in two ways. The oligomeric ligands are designed based on the repetitive structure of the target with recognition moieties alternating with bisamidinium groove binders to provide an amphiphilic and polycationic structure, mimicking cell-penetrating peptides. Multiple biological studies suggested the success of our multivalency strategy. The designed oligomers maintained cell permeability and exhibited no apparent toxicity both in cells and in mice at working concentrations. Furthermore, the oligomers showed important activities in DM1 cells and in a DM1 liver mouse model, reducing or eliminating prominent DM1 features. Phenotypic recovery of the climbing defect in adult DM1 Drosophila was also observed. This design strategy should be applicable to other repeat expansion diseases and more generally to DNA/RNA-targeted therapeutics.
Collapse
|
91
|
Herpin A, Schmidt C, Kneitz S, Gobé C, Regensburger M, Le Cam A, Montfort J, Adolfi MC, Lillesaar C, Wilhelm D, Kraeussling M, Mourot B, Porcon B, Pannetier M, Pailhoux E, Ettwiller L, Dolle D, Guiguen Y, Schartl M. A novel evolutionary conserved mechanism of RNA stability regulates synexpression of primordial germ cell-specific genes prior to the sex-determination stage in medaka. PLoS Biol 2019; 17:e3000185. [PMID: 30947255 PMCID: PMC6448818 DOI: 10.1371/journal.pbio.3000185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
Dmrt1 is a highly conserved transcription factor, which is critically involved in regulation of gonad development of vertebrates. In medaka, a duplicate of dmrt1-acting as master sex-determining gene-has a tightly timely and spatially controlled gonadal expression pattern. In addition to transcriptional regulation, a sequence motif in the 3' UTR (D3U-box) mediates transcript stability of dmrt1 mRNAs from medaka and other vertebrates. We show here that in medaka, two RNA-binding proteins with antagonizing properties target this D3U-box, promoting either RNA stabilization in germ cells or degradation in the soma. The D3U-box is also conserved in other germ-cell transcripts, making them responsive to the same RNA binding proteins. The evolutionary conservation of the D3U-box motif within dmrt1 genes of metazoans-together with preserved expression patterns of the targeting RNA binding proteins in subsets of germ cells-suggest that this new mechanism for controlling RNA stability is not restricted to fishes but might also apply to other vertebrates.
Collapse
Affiliation(s)
- Amaury Herpin
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
- University of Wuerzburg, Physiological Chemistry, Biocenter, Wuerzburg, Germany
- * E-mail:
| | - Cornelia Schmidt
- University of Wuerzburg, Physiological Chemistry, Biocenter, Wuerzburg, Germany
| | - Susanne Kneitz
- University of Wuerzburg, Physiological Chemistry, Biocenter, Wuerzburg, Germany
| | - Clara Gobé
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | | | - Aurélie Le Cam
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | | | - Mateus C. Adolfi
- University of Wuerzburg, Physiological Chemistry, Biocenter, Wuerzburg, Germany
| | - Christina Lillesaar
- University of Wuerzburg, Physiological Chemistry, Biocenter, Wuerzburg, Germany
| | - Dagmar Wilhelm
- University of Melbourne, Department of Anatomy & Neuroscience, Parkville, Victoria, Australia
| | - Michael Kraeussling
- University of Wuerzburg, Physiological Chemistry, Biocenter, Wuerzburg, Germany
| | | | | | - Maëlle Pannetier
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Eric Pailhoux
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Laurence Ettwiller
- University of Heidelberg, Centre for Organismal Studies (COS), Department of Developmental Biology, Heidelberg, Germany
| | - Dirk Dolle
- University of Heidelberg, Centre for Organismal Studies (COS), Department of Developmental Biology, Heidelberg, Germany
| | - Yann Guiguen
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | - Manfred Schartl
- University of Wuerzburg, Physiological Chemistry, Biocenter, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital, Wuerzburg, Germany
- Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
92
|
Macroscopic and microscopic diversity of missplicing in the central nervous system of patients with myotonic dystrophy type 1. Neuroreport 2019; 29:235-240. [PMID: 29381654 DOI: 10.1097/wnr.0000000000000968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Myotonic dystrophy type I (DM1) is a multiorgan disease caused by CTG-repeat expansion in the DMPK gene. Sequestration of the splicing factor MBNL1 results in aberrant splicing in many genes in DM1 skeletal muscle, whereas MBNL2 plays a leading role in missplicing in the central nervous system (CNS) of patients with DM1. Splicing misregulation of most MBNL2-regulated genes occurs in the temporal cortex but not in the cerebellum of autopsied patients with DM1. To understand the diversity at macroscopic and microscopic levels in CNS of patients with DM1. Using autopsied brain tissues, we examined alternative splicing ratios of MBNL2-regulated genes and expression levels of potential splicing factors. We found differences in splicing abnormalities among tested regions of the CNS from patients with DM1. In the frontal and temporal cortices and the hippocampus, many genes were aberrantly spliced, but severity differed among the brain regions. By contrast, there were no significant differences in the ratio of splicing variants for most of the genes in the cerebellar cortex and spinal cord between DM1 and control samples. We failed to find any change in the amount of potential factors (MBNL and CUGBP proteins and DMPK mRNA) which explain the modest missplicing in the cerebellum. LASER capture microdissection demonstrated splicing misregulation in the molecular layer of the cerebellum but not in the granular layer. This is the first study to reveal missplicing in a functional cell layer of DM1 and to compare splicing misregulation in a wide region of the CNS using statistical analysis.
Collapse
|
93
|
Kim EY, Barefield DY, Vo AH, Gacita AM, Schuster EJ, Wyatt EJ, Davis JL, Dong B, Sun C, Page P, Dellefave-Castillo L, Demonbreun A, Zhang HF, McNally EM. Distinct pathological signatures in human cellular models of myotonic dystrophy subtypes. JCI Insight 2019; 4:122686. [PMID: 30730308 DOI: 10.1172/jci.insight.122686] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/31/2019] [Indexed: 01/06/2023] Open
Abstract
Myotonic dystrophy (DM) is the most common autosomal dominant muscular dystrophy and encompasses both skeletal muscle and cardiac complications. DM is nucleotide repeat expansion disorder in which type 1 (DM1) is due to a trinucleotide repeat expansion on chromosome 19 and type 2 (DM2) arises from a tetranucleotide repeat expansion on chromosome 3. Developing representative models of DM in animals has been challenging due to instability of nucleotide repeat expansions, especially for DM2, which is characterized by nucleotide repeat expansions often greater than 5,000 copies. To investigate mechanisms of human DM, we generated cellular models of DM1 and DM2. We used regulated MyoD expression to reprogram urine-derived cells into myotubes. In this myogenic cell model, we found impaired dystrophin expression, in the presence of muscleblind-like 1 (MBNL1) foci, and aberrant splicing in DM1 but not in DM2 cells. We generated induced pluripotent stem cells (iPSC) from healthy controls and DM1 and DM2 subjects, and we differentiated these into cardiomyocytes. DM1 and DM2 cells displayed an increase in RNA foci concomitant with cellular differentiation. iPSC-derived cardiomyocytes from DM1 but not DM2 had aberrant splicing of known target genes and MBNL sequestration. High-resolution imaging revealed tight association between MBNL clusters and RNA foci in DM1. Ca2+ transients differed between DM1- and DM2 iPSC-derived cardiomyocytes, and each differed from healthy control cells. RNA-sequencing from DM1- and DM2 iPSC-derived cardiomyocytes revealed distinct misregulation of gene expression, as well as differential aberrant splicing patterns. Together, these data support that DM1 and DM2, despite some shared clinical and molecular features, have distinct pathological signatures.
Collapse
Affiliation(s)
- Ellis Y Kim
- Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, Illinois, USA
| | - David Y Barefield
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andy H Vo
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, Illinois, USA
| | - Anthony M Gacita
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Emma J Schuster
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Eugene J Wyatt
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Biqin Dong
- Department of Biomedical Engineering and.,Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Patrick Page
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lisa Dellefave-Castillo
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexis Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
94
|
Morriss GR, Rajapakshe K, Huang S, Coarfa C, Cooper TA. Mechanisms of skeletal muscle wasting in a mouse model for myotonic dystrophy type 1. Hum Mol Genet 2019; 27:2789-2804. [PMID: 29771332 DOI: 10.1093/hmg/ddy192] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multi-systemic disease resulting in severe muscle weakening and wasting. DM1 is caused by expansion of CTG repeats in the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. We have developed an inducible, skeletal muscle-specific mouse model of DM1 (CUG960) that expresses 960 CUG repeat-expressing animals (CUG960) in the context of human DMPK exons 11-15. CUG960 RNA-expressing mice induced at postnatal day 1, as well as adult-onset animals, show clear, measurable muscle wasting accompanied by severe histological defects including central myonuclei, reduced fiber cross-sectional area, increased percentage of oxidative myofibers, the presence of nuclear RNA foci that colocalize with Mbnl1 protein, and increased Celf1 protein in severely affected muscles. Importantly, muscle loss, histological abnormalities and RNA foci are reversible, demonstrating recovery upon removal of toxic RNA. RNA-seq and protein array analysis indicate that the balance between anabolic and catabolic pathways that normally regulate muscle mass may be disrupted by deregulation of platelet derived growth factor receptor β signaling and the PI3K/AKT pathways, along with prolonged activation of AMP-activated protein kinase α signaling. Similar changes were detected in DM1 skeletal muscle compared with unaffected controls. The mouse model presented in this paper shows progressive skeletal muscle wasting and has been used to identify potential molecular mechanisms underlying skeletal muscle loss. The reversibility of the phenotype establishes a baseline response for testing therapeutic approaches.
Collapse
Affiliation(s)
- Ginny R Morriss
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Thomas A Cooper
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
95
|
Moussa RS, Park KC, Kovacevic Z, Richardson DR. Ironing out the role of the cyclin-dependent kinase inhibitor, p21 in cancer: Novel iron chelating agents to target p21 expression and activity. Free Radic Biol Med 2019; 133:276-294. [PMID: 29572098 DOI: 10.1016/j.freeradbiomed.2018.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
Abstract
Iron (Fe) has become an important target for the development of anti-cancer therapeutics with a number of Fe chelators entering human clinical trials for advanced and resistant cancer. An important aspect of the activity of these compounds is their multiple molecular targets, including those that play roles in arresting the cell cycle, such as the cyclin-dependent kinase inhibitor, p21. At present, the exact mechanism by which Fe chelators regulate p21 expression remains unclear. However, recent studies indicate the ability of chelators to up-regulate p21 at the mRNA level was dependent on the chelator and cell-type investigated. Analysis of the p21 promoter identified that the Sp1-3-binding site played a significant role in the activation of p21 transcription by Fe chelators. Furthermore, there was increased Sp1/ER-α and Sp1/c-Jun complex formation in melanoma cells, suggesting these complexes were involved in p21 promoter activation. Elucidating the mechanisms involved in the regulation of p21 expression in response to Fe chelator treatment in neoplastic cells will further clarify how these agents achieve their anti-tumor activity. It will also enhance our understanding of the complex roles p21 may play in neoplastic cells and lead to the development of more effective and specific anti-cancer therapies.
Collapse
Affiliation(s)
- Rayan S Moussa
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
96
|
Nikonova E, Kao SY, Ravichandran K, Wittner A, Spletter ML. Conserved functions of RNA-binding proteins in muscle. Int J Biochem Cell Biol 2019; 110:29-49. [PMID: 30818081 DOI: 10.1016/j.biocel.2019.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022]
Abstract
Animals require different types of muscle for survival, for example for circulation, motility, reproduction and digestion. Much emphasis in the muscle field has been placed on understanding how transcriptional regulation generates diverse types of muscle during development. Recent work indicates that alternative splicing and RNA regulation are as critical to muscle development, and altered function of RNA-binding proteins causes muscle disease. Although hundreds of genes predicted to bind RNA are expressed in muscles, many fewer have been functionally characterized. We present a cross-species view summarizing what is known about RNA-binding protein function in muscle, from worms and flies to zebrafish, mice and humans. In particular, we focus on alternative splicing regulated by the CELF, MBNL and RBFOX families of proteins. We discuss the systemic nature of diseases associated with loss of RNA-binding proteins in muscle, focusing on mis-regulation of CELF and MBNL in myotonic dystrophy. These examples illustrate the conservation of RNA-binding protein function and the marked utility of genetic model systems in understanding mechanisms of RNA regulation.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Keshika Ravichandran
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
97
|
Souidi A, Zmojdzian M, Jagla K. Dissecting Pathogenetic Mechanisms and Therapeutic Strategies in Drosophila Models of Myotonic Dystrophy Type 1. Int J Mol Sci 2018; 19:E4104. [PMID: 30567354 PMCID: PMC6321436 DOI: 10.3390/ijms19124104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/08/2018] [Accepted: 12/13/2018] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common cause of adult-onset muscular dystrophy, is autosomal dominant, multisystemic disease with characteristic symptoms including myotonia, heart defects, cataracts and testicular atrophy. DM1 disease is being successfully modelled in Drosophila allowing to identify and validate new pathogenic mechanisms and potential therapeutic strategies. Here we provide an overview of insights gained from fruit fly DM1 models, either: (i) fundamental with particular focus on newly identified gene deregulations and their link with DM1 symptoms; or (ii) applied via genetic modifiers and drug screens to identify promising therapeutic targets.
Collapse
Affiliation(s)
- Anissa Souidi
- GReD, INSERM U1103, CNRS, UMR6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Monika Zmojdzian
- GReD, INSERM U1103, CNRS, UMR6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Krzysztof Jagla
- GReD, INSERM U1103, CNRS, UMR6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| |
Collapse
|
98
|
Vella V, Milluzzo A, Scalisi NM, Vigneri P, Sciacca L. Insulin Receptor Isoforms in Cancer. Int J Mol Sci 2018; 19:ijms19113615. [PMID: 30453495 PMCID: PMC6274710 DOI: 10.3390/ijms19113615] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022] Open
Abstract
The insulin receptor (IR) mediates both metabolic and mitogenic effects especially when overexpressed or in clinical conditions with compensatory hyperinsulinemia, due to the metabolic pathway resistance, as obesity diabetes. In many cancers, IR is overexpressed preferentially as IR-A isoform, derived by alternative splicing of exon 11. The IR-A overexpression, and the increased IR-A:IR-B ratio, are mechanisms that promote the mitogenic response of cancer cells to insulin and IGF-2, which is produced locally by both epithelial and stromal cancer cells. In cancer IR-A, isoform predominance may occur for dysregulation at both mRNA transcription and post-transcription levels, including splicing factors, non-coding RNAs and protein degradation. The mechanisms that regulate IR isoform expression are complex and not fully understood. The IR isoform overexpression may play a role in cancer cell stemness, in tumor progression and in resistance to target therapies. From a clinical point of view, the IR-A overexpression in cancer may be a determinant factor for the resistance to IGF-1R target therapies for this issue. IR isoform expression in cancers may have the meaning of a predictive biomarker and co-targeting IGF-1R and IR-A may represent a new more efficacious treatment strategy.
Collapse
Affiliation(s)
- Veronica Vella
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania Medical School, Garibaldi-Nesima Hospital, via Palermo 636, 95122 Catania, Italy.
- School of Human and Social Science, University "Kore" of Enna, 94100 Enna, Italy.
| | - Agostino Milluzzo
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania Medical School, Garibaldi-Nesima Hospital, via Palermo 636, 95122 Catania, Italy.
| | - Nunzio Massimo Scalisi
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania Medical School, Garibaldi-Nesima Hospital, via Palermo 636, 95122 Catania, Italy.
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania Medical School, Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, via Santa Sofia, 78, 95123 Catania, Italy.
| | - Laura Sciacca
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania Medical School, Garibaldi-Nesima Hospital, via Palermo 636, 95122 Catania, Italy.
| |
Collapse
|
99
|
Li J, Nakamori M, Matsumoto J, Murata A, Dohno C, Kiliszek A, Taylor K, Sobczak K, Nakatani K. A Dimeric 2,9‐Diamino‐1,10‐phenanthroline Derivative Improves Alternative Splicing in Myotonic Dystrophy Type 1 Cell and Mouse Models. Chemistry 2018; 24:18115-18122. [DOI: 10.1002/chem.201804368] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/05/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Jinxing Li
- Department of Regulatory Bioorganic ChemistryThe Institute of Scientific and Industrial ResearchOsaka University 8-1 Mihogaoka Ibaraki 567-0047 Japan
| | - Masayuki Nakamori
- Department of NeurologyGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita 565-0871 Japan
| | - Jun Matsumoto
- Department of Regulatory Bioorganic ChemistryThe Institute of Scientific and Industrial ResearchOsaka University 8-1 Mihogaoka Ibaraki 567-0047 Japan
| | - Asako Murata
- Department of Regulatory Bioorganic ChemistryThe Institute of Scientific and Industrial ResearchOsaka University 8-1 Mihogaoka Ibaraki 567-0047 Japan
| | - Chikara Dohno
- Department of Regulatory Bioorganic ChemistryThe Institute of Scientific and Industrial ResearchOsaka University 8-1 Mihogaoka Ibaraki 567-0047 Japan
| | - Agnieszka Kiliszek
- Department of Structure and Function of BiomoleculesThe Institute of Bioorganic ChemistryPolish Academy of Sciences Z. Noskowskiego 12/14 61-704 Poznan Poland
| | - Katarzyna Taylor
- Department of Gene ExpressionLaboratory of Gene TherapyInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz University Umultowska 89 61-614 Poznań Poland
| | - Krzysztof Sobczak
- Department of Gene ExpressionLaboratory of Gene TherapyInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz University Umultowska 89 61-614 Poznań Poland
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic ChemistryThe Institute of Scientific and Industrial ResearchOsaka University 8-1 Mihogaoka Ibaraki 567-0047 Japan
| |
Collapse
|
100
|
Abstract
Myotonic dystrophy is an autosomal dominant muscular dystrophy not only associated with muscle weakness, atrophy, and myotonia but also prominent multisystem involvement. There are 2 similar, but distinct, forms of myotonic dystrophy; type 1 is caused by a CTG repeat expansion in the DMPK gene, and type 2 is caused by a CCTG repeat expansion in the CNBP gene. Type 1 is associated with distal limb, neck flexor, and bulbar weakness and results in different phenotypic subtypes with variable onset from congenital to very late-onset as well as variable signs and symptoms. The classically described adult-onset form is the most common. In contrast, myotonic dystrophy type 2 is adult-onset or late-onset, has proximal predominant muscle weakness, and generally has less severe multisystem involvement. In both forms of myotonic dystrophy, the best characterized disease mechanism is a RNA toxic gain-of-function during which RNA repeats form nuclear foci resulting in sequestration of RNA-binding proteins and, therefore, dysregulated splicing of premessenger RNA. There are currently no disease-modifying therapies, but clinical surveillance, preventative measures, and supportive treatments are used to reduce the impact of muscular impairment and other systemic involvement including cataracts, cardiac conduction abnormalities, fatigue, central nervous system dysfunction, respiratory weakness, dysphagia, and endocrine dysfunction. Exciting preclinical progress has been made in identifying a number of potential strategies including genome editing, small molecule therapeutics, and antisense oligonucleotide-based therapies to target the pathogenesis of type 1 and type 2 myotonic dystrophies at the DNA, RNA, or downstream target level.
Collapse
Affiliation(s)
- Samantha LoRusso
- Department of Neurology, The Ohio State University, 395 West 12th Avenue, Columbus, OH, 43210, USA
| | - Benjamin Weiner
- The Ohio State University College of Medicine, The Ohio State University, 370 West 9th Avenue, Columbus, OH, 43210, USA
| | - W David Arnold
- Department of Neurology, The Ohio State University, 395 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|