51
|
Ke X, Miller LC, Bassler BL. Determinants governing ligand specificity of the Vibrio harveyi LuxN quorum-sensing receptor. Mol Microbiol 2014; 95:127-42. [PMID: 25367076 DOI: 10.1111/mmi.12852] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2014] [Indexed: 12/21/2022]
Abstract
Quorum sensing is a process of bacterial cell-cell communication that relies on the production, release and receptor-driven detection of extracellular signal molecules called autoinducers. The quorum-sensing bacterium Vibrio harveyi exclusively detects the autoinducer N-((R)-3-hydroxybutanoyl)-L-homoserine lactone (3OH-C4 HSL) via the two-component receptor LuxN. To discover the principles underlying the exquisite selectivity LuxN has for its ligand, we identified LuxN mutants with altered specificity. LuxN uses three mechanisms to verify that the bound molecule is the correct ligand: in the context of the overall ligand-binding site, His210 validates the C3 modification, Leu166 surveys the chain-length and a strong steady-state kinase bias imposes an energetic hurdle for inappropriate ligands to elicit signal transduction. Affinities for the LuxN kinase on and kinase off states underpin whether a ligand will act as an antagonist or an agonist. Mutations that bias LuxN to the agonized, kinase off, state are clustered in a region adjacent to the ligand-binding site, suggesting that this region acts as the switch that triggers signal transduction. Together, our analyses illuminate how a histidine sensor kinase differentiates between ligands and exploits those differences to regulate its signaling activity.
Collapse
Affiliation(s)
- Xiaobo Ke
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA
| | | | | |
Collapse
|
52
|
A phenylalanine rotameric switch for signal-state control in bacterial chemoreceptors. Nat Commun 2014; 4:2881. [PMID: 24335957 DOI: 10.1038/ncomms3881] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/07/2013] [Indexed: 11/08/2022] Open
Abstract
Bacterial chemoreceptors are widely used as a model system for elucidating the molecular mechanisms of transmembrane signalling and have provided a detailed understanding of how ligand binding by the receptor modulates the activity of its associated kinase CheA. However, the mechanisms by which conformational signals move between signalling elements within a receptor dimer and how they control kinase activity remain unknown. Here, using long molecular dynamics simulations, we show that the kinase-activating cytoplasmic tip of the chemoreceptor fluctuates between two stable conformations in a signal-dependent manner. A highly conserved residue, Phe396, appears to serve as the conformational switch, because flipping of the stacked aromatic rings of an interacting F396-F396' pair in the receptor homodimer takes place concomitantly with the signal-related conformational changes. We suggest that interacting aromatic residues, which are common stabilizers of protein tertiary structure, might serve as rotameric molecular switches in other biological processes as well.
Collapse
|
53
|
Affiliation(s)
- Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000-Rosario, Argentina;
| |
Collapse
|
54
|
Mise T, Matsunami H, Samatey FA, Maruyama IN. Crystallization and preliminary X-ray diffraction analysis of the periplasmic domain of the Escherichia coli aspartate receptor Tar and its complex with aspartate. Acta Crystallogr F Struct Biol Commun 2014; 70:1219-23. [PMID: 25195895 PMCID: PMC4157422 DOI: 10.1107/s2053230x14014733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 06/23/2014] [Indexed: 11/27/2022] Open
Abstract
The cell-surface receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni(2+). To understand the molecular mechanisms underlying the induction of Tar activity by its ligands, the Escherichia coli Tar periplasmic domain with and without bound aspartate (Asp-Tar and apo-Tar, respectively) were each crystallized in two different forms. Using ammonium sulfate as a precipitant, crystals of apo-Tar1 and Asp-Tar1 were grown and diffracted to resolutions of 2.10 and 2.40 Å, respectively. Alternatively, using sodium chloride as a precipitant, crystals of apo-Tar2 and Asp-Tar2 were grown and diffracted to resolutions of 1.95 and 1.58 Å, respectively. Crystals of apo-Tar1 and Asp-Tar1 adopted space group P41212, while those of apo-Tar2 and Asp-Tar2 adopted space groups P212121 and C2, respectively.
Collapse
Affiliation(s)
- Takeshi Mise
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan
| | - Hideyuki Matsunami
- Trans-Membrane Trafficking Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan
| | - Fadel A. Samatey
- Trans-Membrane Trafficking Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan
| | - Ichiro N. Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan
| |
Collapse
|
55
|
Zhang Z, Liu Q, Hendrickson WA. Crystal structures of apparent saccharide sensors from histidine kinase receptors prevalent in a human gut symbiont. FEBS J 2014; 281:4263-79. [PMID: 24995510 DOI: 10.1111/febs.12904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED The adult human gut is a complicated ecosystem in which host-bacterium symbiosis plays an important role. Bacteroides thetaiotaomicron is a predominant member of the gut microflora, providing the human digestive tract with a large number of glycolytic enzymes. Expression of many of these enzymes appears to be controlled by histidine kinase receptors that are fused into unusual hybrid two-component systems that share homologous periplasmic sensor domains. These sensor domains belong to the third most populated (HK3) family based on a previous unpublished bioinformatics analysis of predicted histidine kinase sensors. Here, we present the crystal structures of two sensor domains representative of the HK3 family. Each sensor is folded into three domains: two-seven-bladed β-propeller domains and one β-sandwich domain. Both sensors form dimers in crystals, and one sensor appears to be physiologically relevant. The folding characteristics in the individual domains, the domain organization, and the oligomeric architecture are all unique to HK3 sensors. Sequence analysis of the HK3 sensors indicates that these sensor domains are shared among other signaling molecules, implying combinatorial molecular evolution. DATABASE The structural data for the crystallographic results for HK3 BT4673S and HK3 BT3049S have been deposited in the Protein Data Bank under accession numbers 3OTT and 3V9F, respectively. STRUCTURED DIGITAL ABSTRACT HK3BT3049S and HK3BT3049S bind by x-ray crystallography (View interaction) HK3BT3049S and HK3BT3049S bind by molecular sieving (View interaction) HK3BT3049S and HK3BT3049S bind by cosedimentation through density gradient (View interaction) HK3BT4673s and HK3BT4673s bind by cosedimentation through density gradient (View interaction) HK3BT4673s and HK3BT4673s bind by molecular sieving (View interaction).
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
56
|
Anderson JS, Mustafi SM, Hernández G, LeMaster DM. Statistical allosteric coupling to the active site indole ring flip equilibria in the FK506-binding domain. Biophys Chem 2014; 192:41-8. [PMID: 25016286 DOI: 10.1016/j.bpc.2014.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
Abstract
In solution, the Trp 59 indole ring at the base of the active site cleft in the FKBP domain protein FKBP12 is rotated by ~90° at a population level of 20%, relative to its canonical crystallographic orientation. NMR measurements on the homologous FK1 domains of human FKBP51 and FKBP52 indicate no observable indole ring flip conformation, while the V101I variant of FKBP12 decreases the population having a perpendicular indole orientation by 10-fold. A set of three parallel 400 ns CHARMM27 molecular simulations for both wild type FKBP12 and the V101I variant examined how this ring flip might be energetically coupled to a transition of the Glu 60 sidechain which interacts with the backbone of the 50's loop located ~12 Å from the indole nitrogen. Analysis of the transition matrix for the local dynamics of the Glu 60 sidechain, the Trp 59 sidechain, and of the structurally interposed α-helix hydrogen bonding pattern yielded a statistical allosteric coupling of 10 kJ/mol with negligible concerted dynamical coupling for the transitions of the two sidechains.
Collapse
Affiliation(s)
- Janet S Anderson
- Department of Chemistry, Union College, Schenectady, NY 12308, United States
| | - Sourajit M Mustafi
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, United States
| | - Griselda Hernández
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, United States; Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, NY 12201, United States
| | - David M LeMaster
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, United States; Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, NY 12201, United States.
| |
Collapse
|
57
|
Natarajan J, Schultz A, Kurz U, Schultz JE. Biochemical characterization of the tandem HAMP domain fromNatronomonas pharaonisas an intraprotein signal transducer. FEBS J 2014; 281:3218-27. [DOI: 10.1111/febs.12855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/17/2014] [Accepted: 05/16/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Janani Natarajan
- Pharmazeutische Biochemie, Pharmazeutisches Institut, Universität Tübingen, Germany
| | | | | | | |
Collapse
|
58
|
Ortega DR, Mo G, Lee K, Zhou H, Baudry J, Dahlquist FW, Zhulin IB. Conformational coupling between receptor and kinase binding sites through a conserved salt bridge in a signaling complex scaffold protein. PLoS Comput Biol 2013; 9:e1003337. [PMID: 24244143 PMCID: PMC3828127 DOI: 10.1371/journal.pcbi.1003337] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/27/2013] [Indexed: 11/25/2022] Open
Abstract
Bacterial chemotaxis is one of the best studied signal transduction pathways. CheW is a scaffold protein that mediates the association of the chemoreceptors and the CheA kinase in a ternary signaling complex. The effects of replacing conserved Arg62 of CheW with other residues suggested that the scaffold protein plays a more complex role than simply binding its partner proteins. Although R62A CheW had essentially the same affinity for chemoreceptors and CheA, cells expressing the mutant protein are impaired in chemotaxis. Using a combination of molecular dynamics simulations (MD), NMR spectroscopy, and circular dichroism (CD), we addressed the role of Arg62. Here we show that Arg62 forms a salt bridge with another highly conserved residue, Glu38. Although this interaction is unimportant for overall protein stability, it is essential to maintain the correct alignment of the chemoreceptor and kinase binding sites of CheW. Computational and experimental data suggest that the role of the salt bridge in maintaining the alignment of the two partner binding sites is fundamental to the function of the signaling complex but not to its assembly. We conclude that a key feature of CheW is to maintain the specific geometry between the two interaction sites required for its function as a scaffold. Signal transduction is a universal biological process and a common target of drug design. The chemotaxis machinery in Escherichia coli is a model signal transduction system, and the CheW protein is one of its core components. CheW is thought to work as a scaffold protein that mediates the formation of the signaling complex with the CheA histidine kinase and the chemoreceptors. A mutation targeting a highly conserved residue, Arg62, impairs chemotaxis while maintaining normal binding affinity for both partners, suggesting that CheW might play a more complex role than previously proposed. Using a series of molecular dynamics simulations, we found that the residue Arg62 can form a stable salt bridge with another highly conserved residue, Glu38. We determined that this bridge does not contribute to the overall stability of the protein. However, the bridge stabilizes the local backbone structure of CheW and stabilizes the relative position of the binding sites for the chemoreceptor and kinase. The geometry of these interactions appears to be vital for the function of the signaling complex. We validated and complemented our computational findings using NMR spectroscopy and circular dichroism analysis.
Collapse
Affiliation(s)
- Davi R. Ortega
- Joint Institute for Computational Sciences, University of Tennessee - Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Physics, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Guoya Mo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, United States of America
| | - Kwangwoon Lee
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, United States of America
| | - Hongjun Zhou
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, United States of America
| | - Jerome Baudry
- Department of Biochemistry and Cell and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
- Center for Molecular Biophysics, University of Tennessee - Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Frederick W. Dahlquist
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, United States of America
| | - Igor B. Zhulin
- Joint Institute for Computational Sciences, University of Tennessee - Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
59
|
Discovery of novel chemoeffectors and rational design of Escherichia coli chemoreceptor specificity. Proc Natl Acad Sci U S A 2013; 110:16814-9. [PMID: 24082101 DOI: 10.1073/pnas.1306811110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial chemoreceptors mediate chemotactic responses to diverse stimuli. Here, by using an integrated in silico, in vitro, and in vivo approach, we screened a large compound library and found eight novel chemoeffectors for the Escherichia coli chemoreceptor Tar. Six of the eight new Tar binding compounds induce attractant responses, and two of them function as antagonists that can bind Tar without inducing downstream signaling. Comparison between the antagonist and attractant binding patterns suggests that the key interactions for chemotaxis signaling are mediated by the hydrogen bonds formed between a donor group in the attractant and the main-chain carbonyls (Y149 and/or Q152) on the α4 helix of Tar. This molecular insight for signaling is verified by converting an antagonist to an attractant when introducing an N-H group into the antagonist to restore the hydrogen bond. Similar signal triggering effect by an O-H group is also confirmed. Our study suggests that the Tar chemoeffector binding pocket may be separated into two functional regions: region I mainly contributes to binding and region II contributes to both binding and signaling. This scenario of binding and signaling suggests that Tar may be rationally designed to respond to a nonnative ligand by altering key residues in region I to strengthen binding with the novel ligand while maintaining the key interactions in region II for signaling. Following this strategy, we have successfully redesigned Tar to respond to l-arginine, a basic amino acid that does not have chemotactic effect for WT Tar, by two site-specific mutations (R69'E and R73'E).
Collapse
|
60
|
Tanio M, Nishimura K. Intramolecular allosteric interaction in the phospholipase C-δ1 pleckstrin homology domain. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1034-43. [DOI: 10.1016/j.bbapap.2013.01.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/21/2013] [Accepted: 01/29/2013] [Indexed: 11/30/2022]
|
61
|
Rico-Jiménez M, Muñoz-Martínez F, García-Fontana C, Fernandez M, Morel B, Ortega A, Ramos JL, Krell T. Paralogous chemoreceptors mediate chemotaxis towards protein amino acids and the non-protein amino acid gamma-aminobutyrate (GABA). Mol Microbiol 2013; 88:1230-43. [PMID: 23650915 DOI: 10.1111/mmi.12255] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2013] [Indexed: 01/31/2023]
Abstract
The paralogous receptors PctA, PctB and PctC of Pseudomonas aeruginosa were reported to mediate chemotaxis to amino acids, intermediates of amino acid metabolism and chlorinated hydrocarbons. We show that the recombinant ligand binding regions (LBRs) of PctA, PctB and PctC bind 17, 5 and 2 l-amino acids respectively. In addition, PctC-LBR recognized GABA but not any other structurally related compound. l-Gln, one of the three amino acids that is not recognized by PctA-LBR, was the most tightly binding ligand to PctB suggesting that PctB has evolved to mediate chemotaxis primarily towards l-Gln. Bacteria were efficiently attracted to l-Gln and GABA, but mutation of pctB and pctC, respectively, abolished chemoattraction. The physiological relevance of taxis towards GABA is proposed to reside in an interaction with plants. LBRs were predicted to adopt double PDC (PhoQ/DcuS/CitA) like structures and site-directed mutagenesis studies showed that ligands bind to the membrane-distal module. Analytical ultracentrifugation studies have shown that PctA-LBR and PctB-LBR are monomeric in the absence and presence of ligands, which is in contrast to the enterobacterial receptors that require sensor domain dimers for ligand recognition.
Collapse
Affiliation(s)
- Miriam Rico-Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Adase CA, Draheim RR, Rueda G, Desai R, Manson MD. Residues at the cytoplasmic end of transmembrane helix 2 determine the signal output of the TarEc chemoreceptor. Biochemistry 2013; 52:2729-38. [PMID: 23495653 DOI: 10.1021/bi4002002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Baseline signal output and communication between the periplasmic and cytoplasmic domains of the Escherichia coli aspartate chemoreceptor Tar(Ec) are both strongly influenced by residues at the C-terminus of transmembrane helix 2 (TM2). In particular, the cytoplasmic aromatic anchor, composed of residues Trp-209 and Tyr-210 in wild-type Tar(Ec), is important for determining the CheA kinase-stimulating activity of the receptor and its ability to respond to chemoeffector-induced stimuli. Here, we have studied the effect on Tar(Ec) function of the six-residue sequence at positions 207-212. Moving various combinations of aromatic residues among these positions generates substantial changes in receptor activity. Trp has the largest effect on function, both in maintaining normal activity and in altering activity when it is moved. Tyr has a weaker effect, and Phe has the weakest; however, all three aromatic residues can alter signal output when they are placed in novel positions. We also find that Gly-211 plays an important role in receptor function, perhaps because of the flexibility it introduces into the TM2-HAMP domain connector. The conservation of this Gly residue in the high-abundance chemoreceptors of E. coli and Salmonella enterica suggests that it may be important for the nuanced, bidirectional transmembrane signaling that occurs in these proteins.
Collapse
|
63
|
Lemmin T, Soto CS, Clinthorne G, DeGrado WF, Dal Peraro M. Assembly of the transmembrane domain of E. coli PhoQ histidine kinase: implications for signal transduction from molecular simulations. PLoS Comput Biol 2013; 9:e1002878. [PMID: 23359663 PMCID: PMC3554529 DOI: 10.1371/journal.pcbi.1002878] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/17/2012] [Indexed: 01/26/2023] Open
Abstract
The PhoQP two-component system is a signaling complex essential for bacterial virulence and cationic antimicrobial peptide resistance. PhoQ is the histidine kinase chemoreceptor of this tandem machine and assembles in a homodimer conformation spanning the bacterial inner membrane. Currently, a full understanding of the PhoQ signal transduction is hindered by the lack of a complete atomistic structure. In this study, an atomistic model of the key transmembrane (TM) domain is assembled by using molecular simulations, guided by experimental cross-linking data. The formation of a polar pocket involving Asn202 in the lumen of the tetrameric TM bundle is crucial for the assembly and solvation of the domain. Moreover, a concerted displacement of the TM helices at the periplasmic side is found to modulate a rotation at the cytoplasmic end, supporting the transduction of the chemical signal through a combination of scissoring and rotational movement of the TM helices. Two-component systems (TCSs) are signaling complexes essential for bacterial survival and virulence. PhoQ is the histidine kinase chemoreceptor of the PhoQ-PhoP tandem machine that detects the concentration of cationic species at the inner membrane of Gram-negative bacteria. A full understanding of the PhoQ signal transduction mechanism is currently hindered by the lack of a complete atomistic structure. Here, by using molecular simulations integrated with cross-linking disulfide scanning data, we present the first structural model of the transmembrane (TM) portion of PhoQ from E. coli. Its structural and dynamic features induce a concerted displacement of the TM helices at the periplasmic side, which modulates a rotation at the cytoplasmic end. This supports the idea that signal transduction is promoted through a combination of scissoring and rotational movements of the TM helices. This complex mechanism is the key to understanding how the chemical stimuli sensed by the periplasmic sensor domain trigger, via the relay of the HAMP domain, the histidine auto-phosphorylation and kinase/phosphatase activity at the cytoplasmic end.
Collapse
Affiliation(s)
- Thomas Lemmin
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cinque S. Soto
- Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Graham Clinthorne
- Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California – San Francisco, San Francisco, California, United States of America
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
64
|
Evidence for chemoreceptors with bimodular ligand-binding regions harboring two signal-binding sites. Proc Natl Acad Sci U S A 2012; 109:18926-31. [PMID: 23112148 DOI: 10.1073/pnas.1201400109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chemoreceptor-based signaling is a central mechanism in bacterial signal transduction. Receptors are classified according to the size of their ligand-binding region. The well-studied cluster I proteins have a 100- to 150-residue ligand-binding region that contains a single site for chemoattractant recognition. Cluster II receptors, which contain a 220- to 300-residue ligand-binding region and which are almost as abundant as cluster I receptors, remain largely uncharacterized. Here, we report high-resolution structures of the ligand-binding region of the cluster II McpS chemotaxis receptor (McpS-LBR) of Pseudomonas putida KT2440 in complex with different chemoattractants. The structure of McpS-LBR represents a small-molecule binding domain composed of two modules, each able to bind different signal molecules. Malate and succinate were found to bind to the membrane-proximal module, whereas acetate binds to the membrane-distal module. A structural alignment of the two modules revealed that the ligand-binding sites could be superimposed and that amino acids involved in ligand recognition are conserved in both binding sites. Ligand binding to both modules was shown to trigger chemotactic responses. Further analysis showed that McpS-like receptors were found in different classes of proteobacteria, indicating that this mode of response to different carbon sources may be universally distributed. The physiological relevance of the McpS architecture may lie in its capacity to respond with high sensitivity to the preferred carbon sources malate and succinate and, at the same time, mediate lower sensitivity responses to the less preferred but very abundant carbon source acetate.
Collapse
|
65
|
Affiliation(s)
- Lori L. Burrows
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada;
| |
Collapse
|
66
|
Yoshida Y, Ishikawa H, Aono S, Mizutani Y. Structural dynamics of proximal heme pocket in HemAT-Bs associated with oxygen dissociation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:866-72. [DOI: 10.1016/j.bbapap.2012.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/14/2012] [Accepted: 04/20/2012] [Indexed: 11/30/2022]
|
67
|
Kuhns MS, Davis MM. TCR Signaling Emerges from the Sum of Many Parts. Front Immunol 2012; 3:159. [PMID: 22737151 PMCID: PMC3381686 DOI: 10.3389/fimmu.2012.00159] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 05/27/2012] [Indexed: 11/30/2022] Open
Abstract
“How does T cell receptor signaling begin?” Answering this question requires an understanding of how the parts of the molecular machinery that mediates this process fit and work together. Ultimately this molecular architecture must (i) trigger the relay of information from the TCR-pMHC interface to the signaling substrates of the CD3 molecules and (ii) bring the kinases that modify these substrates in close proximity to interact, initiate, and sustain signaling. In this contribution we will discuss advances of the last decade that have increased our understanding of the complex machinery and interactions that underlie this type of signaling.
Collapse
Affiliation(s)
- Michael S Kuhns
- Department of Immunobiology, The University of Arizona College of Medicine Tucson, AZ, USA
| | | |
Collapse
|
68
|
Goers Sweeney E, Henderson JN, Goers J, Wreden C, Hicks KG, Foster JK, Parthasarathy R, Remington SJ, Guillemin K. Structure and proposed mechanism for the pH-sensing Helicobacter pylori chemoreceptor TlpB. Structure 2012; 20:1177-88. [PMID: 22705207 DOI: 10.1016/j.str.2012.04.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 04/12/2012] [Accepted: 04/19/2012] [Indexed: 01/26/2023]
Abstract
pH sensing is crucial for survival of most organisms, yet the molecular basis of such sensing is poorly understood. Here, we present an atomic resolution structure of the periplasmic portion of the acid-sensing chemoreceptor, TlpB, from the gastric pathogen Helicobacter pylori. The structure reveals a universal signaling fold, a PAS domain, with a molecule of urea bound with high affinity. Through biophysical, biochemical, and in vivo mutagenesis studies, we show that urea and the urea-binding site residues play critical roles in the ability of H. pylori to sense acid. Our signaling model predicts that protonation events at Asp114, affected by changes in pH, dictate the stability of TlpB through urea binding.
Collapse
|
69
|
A scissor blade-like closing mechanism implicated in transmembrane signaling in a Bacteroides hybrid two-component system. Proc Natl Acad Sci U S A 2012; 109:7298-303. [PMID: 22532667 DOI: 10.1073/pnas.1200479109] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Signaling across the membrane in response to extracellular stimuli is essential for survival of all cells. In bacteria, responses to environmental changes are predominantly mediated by two-component systems, which are typically composed of a membrane-spanning sensor histidine kinase and a cytoplasmic response regulator. In the human gut symbiont Bacteroides thetaiotaomicron, hybrid two-component systems are a key part of the bacterium's ability to sense and degrade complex carbohydrates in the gut. Here, we identify the activating ligand of the hybrid two-component system, BT4663, which controls heparin and heparan sulfate acquisition and degradation in this prominent gut microbe, and report the crystal structure of the extracellular sensor domain in both apo and ligand-bound forms. Current models for signal transduction across the membrane involve either a piston-like or rotational displacement of the transmembrane helices to modulate activity of the linked cytoplasmic kinases. The structures of the BT4663 sensor domain reveal a significant conformational change in the homodimer on ligand binding, which results in a scissor-like closing of the C-termini of each protomer. We propose this movement activates the attached intracellular kinase domains and represents an allosteric mechanism for bacterial transmembrane signaling distinct from previously described models, thus expanding our understanding of signal transduction across the membrane, a fundamental requirement in many important biological processes.
Collapse
|
70
|
El-Mashtoly SF, Kubo M, Gu Y, Sawai H, Nakashima S, Ogura T, Aono S, Kitagawa T. Site-specific protein dynamics in communication pathway from sensor to signaling domain of oxygen sensor protein, HemAT-Bs: Time-resolved Ultraviolet Resonance Raman Study. J Biol Chem 2012; 287:19973-84. [PMID: 22528495 DOI: 10.1074/jbc.m112.357855] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HemAT-Bs is a heme-based signal transducer protein responsible for aerotaxis. Time-resolved ultraviolet resonance Raman (UVRR) studies of wild-type and Y70F mutant of the full-length HemAT-Bs and the truncated sensor domain were performed to determine the site-specific protein dynamics following carbon monoxide (CO) photodissociation. The UVRR spectra indicated two phases of intensity changes for Trp, Tyr, and Phe bands of both full-length and sensor domain proteins. The W16 and W3 Raman bands of Trp, the F8a band of Phe, and the Y8a band of Tyr increased in intensity at hundreds of nanoseconds after CO photodissociation, and this was followed by recovery in ∼50 μs. These changes were assigned to Trp-132 (G-helix), Tyr-70 (B-helix), and Phe-69 (B-helix) and/or Phe-137 (G-helix), suggesting that the change in the heme structure drives the displacement of B- and G-helices. The UVRR difference spectra of the sensor domain displayed a positive peak for amide I in hundreds of nanoseconds after photolysis, which was followed by recovery in ∼50 μs. This difference band was absent in the spectra of the full-length protein, suggesting that the isolated sensor domain undergoes conformational changes of the protein backbone upon CO photolysis and that the changes are restrained by the signaling domain. The time-resolved difference spectrum at 200 μs exhibited a pattern similar to that of the static (reduced - CO) difference spectrum, although the peak intensities were much weaker. Thus, the rearrangements of the protein moiety toward the equilibrium ligand-free structure occur in a time range of hundreds of microseconds.
Collapse
|
71
|
Nagaraj S, Wong S, Truong K. Parts-based assembly of synthetic transmembrane proteins in mammalian cells. ACS Synth Biol 2012; 1:111-7. [PMID: 23651113 DOI: 10.1021/sb200007r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transmembrane proteins span cellular membranes such as the plasma membrane and endoplasmic reticulum (ER) membrane to mediate inter- and intracellular interactions. An N-terminal signal peptide and transmembrane helices facilitate recruitment to the ER and integration into the membrane, respectively. Using a parts-based assembly approach in this study, we confirm that the minimum requirement to create a transmembrane protein is indeed only a transmembrane helix (TM). When transfected in mammalian cells, our fusion proteins in the schematic form X-TM-Y were localized to vesicles, the golgi apparatus, the nuclear envelope, or the endoplasmic reticulum, consistent with ER targeting. Further studies to determine orientation showed that X was facing the cytoplasm, and Y the lumen. Lastly, in our fusion proteins with an N-terminal TM, the TM effectively reversed the orientation of X and Y. This knowledge can be applied to the parts-based engineering of synthetic transmembrane proteins with varied functions and biological applications.
Collapse
Affiliation(s)
- Seema Nagaraj
- Institute of Biomaterials
and
Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Stanley Wong
- Institute of Biomaterials
and
Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Kevin Truong
- Institute of Biomaterials
and
Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
- Edward S. Rogers, Sr. Department
of Electrical and Computer Engineering, University of Toronto, 10 King’s College Circle, Toronto, Ontario,
M5S 3G4, Canada
| |
Collapse
|
72
|
Promiscuity and specificity in BMP receptor activation. FEBS Lett 2012; 586:1846-59. [PMID: 22710174 DOI: 10.1016/j.febslet.2012.02.043] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 02/03/2023]
Abstract
Bone Morphogenetic Proteins (BMPs), together with Transforming Growth Factor (TGF)-β and Activins/Inhibins constitute the TGF-β superfamily of ligands. This superfamily is formed by more than 30 structurally related secreted proteins. Since TGF-β members act as morphogens, either a strict relation between a particular ligand to a distinct cellular receptor and/or temporospatial expression patterns of ligands and receptors is expected. Instead, only a limited number of receptors exist implicating promiscuous interactions of ligands and receptors. Furthermore, in complex tissues a multitude of different ligands can be found, which signal via overlapping subsets of receptors. This raises the intriguing question how concerted interactions of different ligands and receptors generate highly specific cellular signals, which are required during development and tissue homeostasis.
Collapse
|
73
|
Adase CA, Draheim RR, Manson MD. The residue composition of the aromatic anchor of the second transmembrane helix determines the signaling properties of the aspartate/maltose chemoreceptor Tar of Escherichia coli. Biochemistry 2012; 51:1925-32. [PMID: 22339259 DOI: 10.1021/bi201555x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Repositioning of the tandem aromatic residues (Trp-209 and Tyr-210) at the cytoplasmic end of the second transmembrane helix (TM2) modulates the signal output of the aspartate/maltose chemoreceptor of Escherichia coli (Tar(Ec)). Here, we directly assessed the effect of the residue composition of the aromatic anchor by studying the function of a library of Tar(Ec) variants that possess all possible combinations of Ala, Phe, Tyr, and Trp at positions 209 and 210. We identified three important properties of the aromatic anchor. First, a Trp residue at position 209 was required to maintain clockwise (CW) signal output in the absence of adaptive methylation, but adaptive methylation restored the ability of all of the mutant receptors to generate CW rotation. Second, when the aromatic anchor was replaced with tandem Ala residues, signaling was less compromised than when an Ala residue occupied position 209 and an aromatic residue occupied position 210. Finally, when Trp was present at position 209, the identity of the residue at position 210 had little effect on baseline signal output or aspartate chemotaxis, although maltose taxis was significantly affected by some substitutions at position 210. All of the mutant receptors we constructed supported some level of aspartate and maltose taxis in semisolid agar swim plates, but those without Trp at position 209 were overmethylated in their baseline signaling state. These results show the importance of the cytoplasmic aromatic anchor of TM2 in maintaining the baseline Tar(Ec) signal output and responsiveness to attractant signaling.
Collapse
Affiliation(s)
- Christopher A Adase
- Department of Biology, Texas A&M University, College Station, Texas 77843, United States
| | | | | |
Collapse
|
74
|
Livesay DR, Kreth KE, Fodor AA. A critical evaluation of correlated mutation algorithms and coevolution within allosteric mechanisms. Methods Mol Biol 2012; 796:385-398. [PMID: 22052502 DOI: 10.1007/978-1-61779-334-9_21] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The notion of using the evolutionary history encoded within multiple sequence alignments to predict allosteric mechanisms is appealing. In this approach, correlated mutations are expected to reflect coordinated changes that maintain intramolecular coupling between residue pairs. Despite much early fanfare, the general suitability of correlated mutations to predict allosteric couplings has not yet been established. Lack of progress along these lines has been hindered by several algorithmic limitations including phylogenetic artifacts within alignments masking true covariance and the computational intractability of consideration of more than two correlated residues at a time. Recent progress in algorithm development, however, has been substantial with a new generation of correlated mutation algorithms that have made fundamental progress toward solving these difficult problems. Despite these encouraging results, there remains little evidence to suggest that the evolutionary constraints acting on allosteric couplings are sufficient to be recovered from multiple sequence alignments. In this review, we argue that due to the exquisite sensitivity of protein dynamics, and hence that of allosteric mechanisms, the latter vary widely within protein families. If it turns out to be generally true that even very similar homologs display a wide divergence of allosteric mechanisms, then even a perfect correlated mutation algorithm could not be reliably used as a general mechanism for discovery of allosteric pathways.
Collapse
Affiliation(s)
- Dennis R Livesay
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | | | | |
Collapse
|
75
|
Park H, Im W, Seok C. Transmembrane signaling of chemotaxis receptor tar: insights from molecular dynamics simulation studies. Biophys J 2011; 100:2955-63. [PMID: 21689529 DOI: 10.1016/j.bpj.2011.05.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/06/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022] Open
Abstract
Transmembrane signaling of chemotaxis receptors has long been studied, but how the conformational change induced by ligand binding is transmitted across the bilayer membrane is still elusive at the molecular level. To tackle this problem, we carried out a total of 600-ns comparative molecular dynamics simulations (including model-building simulations) of the chemotaxis aspartate receptor Tar (a part of the periplasmic domain/transmembrane domain/HAMP domain) in explicit lipid bilayers. These simulations reveal valuable insights into the mechanistic picture of Tar transmembrane signaling. The piston-like movement of a transmembrane helix induced by ligand binding on the periplasmic side is transformed into a combination of both longitudinal and transversal movements of the helix on the cytoplasmic side as a result of different protein-lipid interactions in the ligand-off and ligand-on states of the receptor. This conformational change alters the dynamics and conformation of the HAMP domain, which is presumably a mechanism to deliver the signal from the transmembrane domain to the cytoplasmic domain. The current results are consistent with the previously suggested dynamic bundle model in which the HAMP dynamics change is a key to the signaling. The simulations provide further insights into the conformational changes relevant to the HAMP dynamics changes in atomic detail.
Collapse
Affiliation(s)
- Hahnbeom Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | | | | |
Collapse
|
76
|
YAN LIUMING, MA YUEFEI, SEMINARIO JORGEM. TERAHERTZ SIGNAL TRANSMISSION IN MOLECULAR SYSTEMS. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s0129156406003928] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Terahertz signal transmission in DNA is simulated and analyzed using molecular dynamics and digital signal processing techniques to demonstrate that signals encoded in vibrational movements of hydrogen bonds can travel along the backbone of DNA and eventually be recovered and analyzed using digital signal processing techniques.
Collapse
Affiliation(s)
- LIUMING YAN
- Department of Chemical Engineering and Department of Electrical Engineering, Texas A&M University, College Station, 77843, USA
| | - YUEFEI MA
- Department of Chemical Engineering and Department of Electrical Engineering, Texas A&M University, College Station, 77843, USA
| | - JORGE M. SEMINARIO
- Department of Chemical Engineering and Department of Electrical Engineering, Texas A&M University, College Station, 77843, USA
| |
Collapse
|
77
|
Hall BA, Armitage JP, Sansom MSP. Transmembrane helix dynamics of bacterial chemoreceptors supports a piston model of signalling. PLoS Comput Biol 2011; 7:e1002204. [PMID: 22028633 PMCID: PMC3197627 DOI: 10.1371/journal.pcbi.1002204] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 09/03/2011] [Indexed: 11/18/2022] Open
Abstract
Transmembrane α-helices play a key role in many receptors, transmitting a signal from one side to the other of the lipid bilayer membrane. Bacterial chemoreceptors are one of the best studied such systems, with a wealth of biophysical and mutational data indicating a key role for the TM2 helix in signalling. In particular, aromatic (Trp and Tyr) and basic (Arg) residues help to lock α-helices into a membrane. Mutants in TM2 of E. coli Tar and related chemoreceptors involving these residues implicate changes in helix location and/or orientation in signalling. We have investigated the detailed structural basis of this via high throughput coarse-grained molecular dynamics (CG-MD) of Tar TM2 and its mutants in lipid bilayers. We focus on the position (shift) and orientation (tilt, rotation) of TM2 relative to the bilayer and how these are perturbed in mutants relative to the wildtype. The simulations reveal a clear correlation between small (ca. 1.5 Å) shift in position of TM2 along the bilayer normal and downstream changes in signalling activity. Weaker correlations are seen with helix tilt, and little/none between signalling and helix twist. This analysis of relatively subtle changes was only possible because the high throughput simulation method allowed us to run large (n = 100) ensembles for substantial numbers of different helix sequences, amounting to ca. 2000 simulations in total. Overall, this analysis supports a swinging-piston model of transmembrane signalling by Tar and related chemoreceptors.
Collapse
Affiliation(s)
- Benjamin A. Hall
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Judith P. Armitage
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mark S. P. Sansom
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
78
|
DuBay KH, Bothma JP, Geissler PL. Long-range intra-protein communication can be transmitted by correlated side-chain fluctuations alone. PLoS Comput Biol 2011; 7:e1002168. [PMID: 21980271 PMCID: PMC3182858 DOI: 10.1371/journal.pcbi.1002168] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 07/05/2011] [Indexed: 11/30/2022] Open
Abstract
Allosteric regulation is a key component of cellular communication, but the way in which information is passed from one site to another within a folded protein is not often clear. While backbone motions have long been considered essential for long-range information conveyance, side-chain motions have rarely been considered. In this work, we demonstrate their potential utility using Monte Carlo sampling of side-chain torsional angles on a fixed backbone to quantify correlations amongst side-chain inter-rotameric motions. Results indicate that long-range correlations of side-chain fluctuations can arise independently from several different types of interactions: steric repulsions, implicit solvent interactions, or hydrogen bonding and salt-bridge interactions. These robust correlations persist across the entire protein (up to 60 Å in the case of calmodulin) and can propagate long-range changes in side-chain variability in response to single residue perturbations. Allosteric regulation occurs when the function of one part of a protein changes in response to a signal recognized by another part of the protein. Such intra-protein communication is essential for many biochemical processes, allowing the cell to adapt its behavior to a dynamic environment. Most studies of the information conveyance underlying allostery have to date focused on the role of backbone motions in mediating large structural changes. Here we focus instead on more subtle contributions, arising from fluctuations of side-chain torsions. Using a model for side-chain bond rotations in the tightly packed environment imposed by native backbone conformations, we observed significant sensitivity of side-chain organization to small, localized perturbations. This susceptibility arises from correlations among side-chain motions that can propagate information within a protein in complex, heterogeneous ways. Specifically, we found appreciable correlations even between side-chains distant from one another, so that the effect of a minor perturbation at one site on the protein could be observed in the altered fluctuations of side-chains throughout the protein. In conclusion, we have demonstrated that the statistical mechanics of correlated side-chain fluctuations within a model of the folded protein provides the basis for an unconventional but potentially important means of allostery.
Collapse
Affiliation(s)
- Kateri H. DuBay
- Department of Chemistry, University of California at Berkeley, Berkeley, California, United States of America
- Chemical Sciences, Physical Biosciences, and Materials Sciences Divisions, Lawrence Berkeley National Lab, Berkeley, California, United States of America
| | - Jacques P. Bothma
- Biophysical Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
| | - Phillip L. Geissler
- Department of Chemistry, University of California at Berkeley, Berkeley, California, United States of America
- Chemical Sciences, Physical Biosciences, and Materials Sciences Divisions, Lawrence Berkeley National Lab, Berkeley, California, United States of America
- Biophysical Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
79
|
|
80
|
Mutational analysis of the control cable that mediates transmembrane signaling in the Escherichia coli serine chemoreceptor. J Bacteriol 2011; 193:5062-72. [PMID: 21803986 DOI: 10.1128/jb.05683-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During transmembrane signaling by Escherichia coli Tsr, changes in ligand occupancy in the periplasmic serine-binding domain promote asymmetric motions in a four-helix transmembrane bundle. Piston displacements of the signaling TM2 helix in turn modulate the HAMP bundle on the cytoplasmic side of the membrane to control receptor output signals to the flagellar motors. A five-residue control cable joins TM2 to the HAMP AS1 helix and mediates conformational interactions between them. To explore control cable structural features important for signal transmission, we constructed and characterized all possible single amino acid replacements at the Tsr control cable residues. Only a few lesions abolished Tsr function, indicating that the chemical nature and size of the control cable side chains are not individually critical for signal control. Charged replacements at I214 mimicked the signaling consequences of attractant or repellent stimuli, most likely through aberrant structural interactions of the mutant side chains with the membrane interfacial environment. Prolines at residues 214 to 217 also caused signaling defects, suggesting that the control cable has helical character. However, proline did not disrupt function at G213, the first control cable residue, which might serve as a structural transition between the TM2 and AS1 helix registers. Hydrophobic amino acids at S217, the last control cable residue, produced attractant-mimic effects, most likely by contributing to packing interactions within the HAMP bundle. These results suggest a helix extension mechanism of Tsr transmembrane signaling in which TM2 piston motions influence HAMP stability by modulating the helicity of the control cable segment.
Collapse
|
81
|
Zhang F, Keasling J. Biosensors and their applications in microbial metabolic engineering. Trends Microbiol 2011; 19:323-9. [PMID: 21664818 DOI: 10.1016/j.tim.2011.05.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 01/30/2023]
Abstract
Many metabolic pathways in microbial hosts have been created, modified and engineered to produce useful molecules. The titer and yield of a final compound is often limited by the inefficient use of cellular resources and imbalanced metabolism. Engineering sensory-regulation devices that regulate pathway gene expression in response to the environment and metabolic status of the cell have great potential to solve these problems, and enhance product titers and yields. This review will focus on recent developments in biosensor design, and their applications for controlling microbial behavior.
Collapse
Affiliation(s)
- Fuzhong Zhang
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
| | | |
Collapse
|
82
|
Lacal J, Muñoz-Martínez F, Reyes-Darías JA, Duque E, Matilla M, Segura A, Calvo JJO, Jímenez-Sánchez C, Krell T, Ramos JL. Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ Microbiol 2011; 13:1733-44. [DOI: 10.1111/j.1462-2920.2011.02493.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
83
|
Functional impact of manipulation on the relative orientation of human prolactin receptor domains. Biochemistry 2011; 50:5333-44. [PMID: 21591677 DOI: 10.1021/bi101931u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hormone binding creates active receptor dimers for class 1 cytokine receptors; however, the detailed molecular mechanism by which these receptors are activated by their ligands is not well characterized, and it is unknown if these receptors share common mechanisms. A rotation model has been proposed for the activation of human erythropoietin receptor and human growth hormone receptor and is supported by evidence showing that additions of alanine at the junction of the transmembrane (TM) and intracellular (IC) domains and/or within the TM domain influenced receptor activities. This evidence suggests that alanine additions changed the relative orientations of the IC domains and their subsequent activation. We wished to determine if a similar mechanism was at play with human prolactin receptor (hPRLr). Up to four alanines were added between the TM and either the IC or extracellular (EC) domains to extend the TM helix and to rotate the IC or EC domains. Also, up to four glycines were placed between the TM and IC domains to provide increased flexibility between these two domains. Wild-type hPRLr or various mutant receptors were expressed in human embryonic kidney 293T cells that express endogenous Janus kinase 2. In the absence of human prolactin (hPRL), none of the alanine or glycine additions increased the level of receptor phosphorylation above that of wild-type hPRLr. In the presence of hPRL, both wild-type hPRLr and each of the mutant receptors were successfully phosphorylated. These data do not support a rotation mechanism for hPRLr activation or a requirement of a fixed spatial relationship between the TM and IC domains for hPRLr activation. In a second set of experiments, both wild-type hPRLr and either alanine- or glycine-extended receptors were coexpressed in 293T cells. In the absence of hPRL, there was no detectable phosphorylation of hPRLr. Such data do not support a piston movement between the hPRLr pair in their activation.
Collapse
|
84
|
Longhi S, Belle V, Fournel A, Guigliarelli B, Carrière F. Probing structural transitions in both structured and disordered proteins using site-directed spin-labeling EPR spectroscopy. J Pept Sci 2011; 17:315-28. [DOI: 10.1002/psc.1344] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/17/2010] [Accepted: 11/20/2010] [Indexed: 11/10/2022]
|
85
|
Krell T, Lacal J, Busch A, Silva-Jiménez H, Guazzaroni ME, Ramos JL. Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu Rev Microbiol 2010; 64:539-59. [PMID: 20825354 DOI: 10.1146/annurev.micro.112408.134054] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria sense and respond to a wide range of physical and chemical signals. Central to sensing and responding to these signals are two-component systems, which have a sensor histidine kinase (SK) and a response regulator (RR) as basic components. Here we review the different molecular mechanisms by which these signals are integrated and modulate the phosphorylation state of SKs. Apart from the basic mechanism, which consists of signal recognition by the SK that leads to an alteration of its autokinase activity and subsequently a change in the RR phosphorylation state, a variety of alternative modes have evolved. The biochemical data available on SKs, particularly their molecular interactions with signals, nucleotides, and their cognate RRs, are also reviewed.
Collapse
Affiliation(s)
- Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | | | | | | | | | | |
Collapse
|
86
|
E. coli-Based Cell-Free Expression, Purification and Characterization of the Membrane-Bound Ligand-Binding CHASE-TM Domain of the Cytokinin Receptor CRE1/AHK4 of Arabidopsis thaliana. Mol Biotechnol 2010; 47:211-9. [DOI: 10.1007/s12033-010-9331-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
87
|
Scheu PD, Kim OB, Griesinger C, Unden G. Sensing by the membrane-bound sensor kinase DcuS: exogenous versus endogenous sensing of C4-dicarboxylates in bacteria. Future Microbiol 2010; 5:1383-402. [DOI: 10.2217/fmb.10.103] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacteria are able to grow at the expense of both common (succinate, L-malate, fumarate and aspartate) and uncommon (L-tartrate and D-malate) C4-dicarboxylates, which are components of central metabolism. Two types of sensors/regulators responding to the C4-dicarboxylates function in Escherichia coli, Bacillus, Lactobacillus and related bacteria. The first type represents membrane-integral two-component systems, while the second includes cytoplasmic LysR-type transcriptional regulators. The difference in location and substrate specificity allows the exogenous induction of metabolic genes by common C4-dicarboxylates, and endogenous induction by uncommon C4-dicarboxylates. The two-component sensors, DcuS and CitA, are composed of an extracellular Per-Arnt-Sim (PAS) domain, two transmembrane helices, a cytoplasmic PAS and the kinase domain. The structures of the extracellular PAS domains of DcuS and CitA have been determined in the ligand-bound and the apo form. Binding of the ligand results in closing and compaction of the binding site, and the structural change gives rise to piston-type movement of the adjacent membrane-spanning helix-2, and signal transmission to the cytoplasmic side. For DcuS, a membrane-embedded construct has been developed that suggests (by experimentation and modeling) that plasticity of the cytoplasmic PAS domain is central to signal transduction from the membrane to the kinase. Sensor kinase DcuS of E. coli requires the C4-dicarboxylate transporters DctA or DcuB as co-sensors for function under aerobic and anaerobic conditions, respectively. DcuB contains a regulatory site that controls the function of DcuS and is independent from the transport region. Therefore, DcuS senses C4-dicarboxylates in two independent modes, responding to the effector concentration and the metabolic flux of extracellular C4-dicarboxylates.
Collapse
Affiliation(s)
- Patrick D Scheu
- Institute for Microbiology & Wine Research, University of Mainz, 55099 Mainz, Germany
| | - Ok Bin Kim
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Christian Griesinger
- Max-Planck-Institute for Biophysical Chemistry, Department of NMR-Based Structural Biology, Göttingen, Germany
| | | |
Collapse
|
88
|
Parat M, Blanchet J, De Léan A. Role of juxtamembrane and transmembrane domains in the mechanism of natriuretic peptide receptor A activation. Biochemistry 2010; 49:4601-10. [PMID: 20214400 DOI: 10.1021/bi901711w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natriuretic peptide receptor A (NPRA) is a noncovalent homodimeric receptor, composed of an extracellular domain (ECD) with a ligand-binding site, a single transmembrane domain (TM), and an intracellular domain (ICD) exhibiting guanylyl cyclase activity. NPRA activation by atrial natriuretic peptide (ANP) leads to cGMP production, which plays important roles in cardiovascular homeostasis. Initial studies have shown that activation of NPRA involves a conformational change in the juxtamembrane domain (JM). However, crystallographic study of the soluble ECD of NPRA has failed to document JM structure, and the conformational change involved in transmembrane signal transduction is still unknown. To analyze this conformational change, we first sequentially substituted nine amino acids of the JM with a cysteine residue. By studying the mutant's capacity to form ANP-induced or constitutive covalent disulfide dimers, we evaluated the relative proximity of JM residues, before and after NPRA activation. These results obtained with the full-length receptor demonstrate a high proximity of specific JM residues and are in disagreement with crystallography data. We also tested the hypothesis that signal transduction involves a TM rotation mechanism leading to ICD activation. By introducing one to five alanine residues into the TM alpha-helix, we show that a TM rotation of 40 degrees leads to constitutive NPRA activation. We finally studied the role of the TM in NPRA dimerization. By using the ToxR system, we demonstrate that the last JM residues are required to stabilize the TM dimer. Using these experimental data, we generated a new molecular model illustrating the active conformation of NPRA, where the JM and TM are depicted.
Collapse
Affiliation(s)
- Marie Parat
- Department of Pharmacology, Université de Montréal, Quebec, Canada H3T 1J4
| | | | | |
Collapse
|
89
|
Lacal J, Alfonso C, Liu X, Parales RE, Morel B, Conejero-Lara F, Rivas G, Duque E, Ramos JL, Krell T. Identification of a chemoreceptor for tricarboxylic acid cycle intermediates: differential chemotactic response towards receptor ligands. J Biol Chem 2010; 285:23126-36. [PMID: 20498372 PMCID: PMC2906306 DOI: 10.1074/jbc.m110.110403] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 05/12/2010] [Indexed: 11/06/2022] Open
Abstract
We report the identification of McpS as the specific chemoreceptor for 6 tricarboxylic acid (TCA) cycle intermediates and butyrate in Pseudomonas putida. The analysis of the bacterial mutant deficient in mcpS and complementation assays demonstrate that McpS is the only chemoreceptor of TCA cycle intermediates in the strain under study. TCA cycle intermediates are abundantly present in root exudates, and taxis toward these compounds is proposed to facilitate the access to carbon sources. McpS has an unusually large ligand-binding domain (LBD) that is un-annotated in InterPro and is predicted to contain 6 helices. The ligand profile of McpS was determined by isothermal titration calorimetry of purified recombinant LBD (McpS-LBD). McpS recognizes TCA cycle intermediates but does not bind very close structural homologues and derivatives like maleate, aspartate, or tricarballylate. This implies that functional similarity of ligands, such as being part of the same pathway, and not structural similarity is the primary element, which has driven the evolution of receptor specificity. The magnitude of chemotactic responses toward these 7 chemoattractants, as determined by qualitative and quantitative chemotaxis assays, differed largely. Ligands that cause a strong chemotactic response (malate, succinate, and fumarate) were found by differential scanning calorimetry to increase significantly the midpoint of protein unfolding (T(m)) and unfolding enthalpy (DeltaH) of McpS-LBD. Equilibrium sedimentation studies show that malate, the chemoattractant that causes the strongest chemotactic response, stabilizes the dimeric state of McpS-LBD. In this respect clear parallels exist to the Tar receptor and other eukaryotic receptors, which are discussed.
Collapse
Affiliation(s)
- Jesús Lacal
- From the
Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Carlos Alfonso
- the
Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Xianxian Liu
- the
Department of Microbiology, University of California, Davis, California 95616, and
| | - Rebecca E. Parales
- the
Department of Microbiology, University of California, Davis, California 95616, and
| | - Bertrand Morel
- the
Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Francisco Conejero-Lara
- the
Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Germán Rivas
- the
Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Estrella Duque
- From the
Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Juan L. Ramos
- From the
Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Tino Krell
- From the
Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| |
Collapse
|
90
|
Structural characterization of the predominant family of histidine kinase sensor domains. J Mol Biol 2010; 400:335-53. [PMID: 20435045 DOI: 10.1016/j.jmb.2010.04.049] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 04/22/2010] [Accepted: 04/24/2010] [Indexed: 02/01/2023]
Abstract
Histidine kinase (HK) receptors are used ubiquitously by bacteria to monitor environmental changes, and they are also prevalent in plants, fungi, and other protists. Typical HK receptors have an extracellular sensor portion that detects a signal, usually a chemical ligand, and an intracellular transmitter portion that includes both the kinase domain itself and the site for histidine phosphorylation. While kinase domains are highly conserved, sensor domains are diverse. HK receptors function as dimers, but the molecular mechanism for signal transduction across cell membranes remains obscure. In this study, eight crystal structures were determined from five sensor domains representative of the most populated family, family HK1, found in a bioinformatic analysis of predicted sensor domains from transmembrane HKs. Each structure contains an inserted repeat of PhoQ/DcuS/CitA (PDC) domains, and similarity between sequence and structure is correlated across these and other double-PDC sensor proteins. Three of the five sensors crystallize as dimers that appear to be physiologically relevant, and comparisons between ligated structures and apo-state structures provide insights into signal transmission. Some HK1 family proteins prove to be sensors for chemotaxis proteins or diguanylate cyclase receptors, implying a combinatorial molecular evolution.
Collapse
|
91
|
Suzuki D, Irieda H, Homma M, Kawagishi I, Sudo Y. Phototactic and chemotactic signal transduction by transmembrane receptors and transducers in microorganisms. SENSORS 2010; 10:4010-39. [PMID: 22319339 PMCID: PMC3274258 DOI: 10.3390/s100404010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/29/2010] [Accepted: 04/09/2010] [Indexed: 12/17/2022]
Abstract
Microorganisms show attractant and repellent responses to survive in the various environments in which they live. Those phototaxic (to light) and chemotaxic (to chemicals) responses are regulated by membrane-embedded receptors and transducers. This article reviews the following: (1) the signal relay mechanisms by two photoreceptors, Sensory Rhodopsin I (SRI) and Sensory Rhodopsin II (SRII) and their transducers (HtrI and HtrII) responsible for phototaxis in microorganisms; and (2) the signal relay mechanism of a chemoreceptor/transducer protein, Tar, responsible for chemotaxis in E. coli. Based on results mainly obtained by our group together with other findings, the possible molecular mechanisms for phototaxis and chemotaxis are discussed.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan; E-Mails: (D.S.); (H.I.); (M.H.)
| | - Hiroki Irieda
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan; E-Mails: (D.S.); (H.I.); (M.H.)
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan; E-Mails: (D.S.); (H.I.); (M.H.)
| | - Ikuro Kawagishi
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, 184-8584, Japan; E-Mail: (I.K.)
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, 184-8584, Japan
| | - Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan; E-Mails: (D.S.); (H.I.); (M.H.)
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-52-789-2993; Fax: +81-52-789-3001
| |
Collapse
|
92
|
Nan B, Liu X, Zhou Y, Liu J, Zhang L, Wen J, Zhang X, Su XD, Wang YP. From signal perception to signal transduction: ligand-induced dimeric switch of DctB sensory domain in solution. Mol Microbiol 2010; 75:1484-94. [PMID: 20149110 DOI: 10.1111/j.1365-2958.2010.07069.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sinorhizobium meliloti DctB is a typical transmembrane sensory histidine kinase, which senses C(4)-dicarboxylic acids (DCA) and regulates the expression of DctA, the DCA transporter. We previously reported the crystal structures of its periplasmic sensory domain (DctBp) in apo and succinate-bound states, and these structures showed dramatic conformational changes at dimeric level. Here we show a ligand-induced dimeric switch in solution and a strong correlation between DctBp's dimerization states and the in vivo activities of DctB. Using site-directed mutagenesis, we identify important determinants for signal perception and transduction. Specifically, we show that the ligand-binding pocket is essential for DCA-induced 'on' activity of DctB. Mutations at different sections of DctBp's dimerization interface can lock full-length DctB at either 'on' or 'off' state, independent of ligand binding. Taken together, these results suggest that DctBp's signal perception and transduction occur through a 'ligand-induced dimeric switch', in which the changes in the dimeric conformations upon ligand binding are responsible for the signal transduction in DctB.
Collapse
Affiliation(s)
- Beiyan Nan
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Challenges and Approaches for Assay Development of Membrane and Membrane-Associated Proteins in Drug Discovery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010. [DOI: 10.1016/s1877-1173(10)91007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
94
|
Wang Y, Becker D, Vass T, White J, Marrack P, Kappler JW. A conserved CXXC motif in CD3epsilon is critical for T cell development and TCR signaling. PLoS Biol 2009; 7:e1000253. [PMID: 19956738 PMCID: PMC2776832 DOI: 10.1371/journal.pbio.1000253] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 10/21/2009] [Indexed: 12/21/2022] Open
Abstract
Structural integrity of the extracellular membrane-proximal stalk region of CD3ε is required for efficient signaling by the T cell antigen receptor complex. The results in this article suggest that receptor aggregation may not be sufficient for a complete T cell receptor signal and that some type of direct allosteric signal may be involved. Virtually all T cell development and functions depend on its antigen receptor. The T cell receptor (TCR) is a multi-protein complex, comprised of a ligand binding module and a signal transmission module. The signal transmission module includes proteins from CD3 family (CD3ε, CD3δ, CD3γ) as well as the ζ chain protein. The CD3 proteins have a short extracellular stalk connecting their Ig-like domains to their transmembrane regions. These stalks contain a highly evolutionarily conserved CXXC motif, whose function is unknown. To understand the function of these two conserved cysteines, we generated mice that lacked endogenous CD3ε but expressed a transgenic CD3ε molecule in which these cysteines were mutated to serines. Our results show that the mutated CD3ε could incorporate into the TCR complex and rescue surface TCR expression in CD3ε null mice. In the CD3ε mutant mice, all stages of T cell development and activation that are TCR-dependent were impaired, but not eliminated, including activation of mature naïve T cells with the MHCII presented superantigen, staphylococcal enterotoxin B, or with a strong TCR cross-linking antibody specific for either TCR-Cβ or CD3ε. These results argue against a simple aggregation model for TCR signaling and suggest that the stalks of the CD3 proteins may be critical in transmitting part of the activation signal directly through the membrane. The T cells of the immune system have surface receptors that detect unique features (called antigens) of foreign invaders such as viruses, bacteria and toxins. An encounter between an antigen and the T cell receptor sets off a chain of events that activates the T cell to proliferate and thus call to action the various arms of the immune response that ultimately eliminate the invader. A set of proteins, called CD3, associates with the T cell receptor, spanning the cell membrane. Their function is to deliver a signal to the inside of T cell that its receptor has encountered antigen on the outside of the cell. Two general ideas have been proposed to explain how the CD3 proteins accomplish this: That the engagement of the T cell receptor outside the cell directly causes a change in conformation in the intracellular portion of the associated CD3 proteins that is recognized by the intracellular signaling machinery; and that engagement of the T cell receptor causes clustering of multiple receptor and CD3 proteins such that interactions among the cytoplasmic portions of the many CD3 proteins now attract other proteins to start the chain of intercellular signaling. These two ideas are not mutually exclusive. We show here that mutations in a highly conserved extracellular portion of one of the CD3 proteins can impair the transmission of the activation signal without preventing receptor clustering. These results suggest that direct transmission of a conformational change across the membrane may constitute part of the CD3-mediated activation signal.
Collapse
Affiliation(s)
- Yibing Wang
- Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
- Howard Hughes Medical Institute, National Jewish Health, Denver, Colorado, United States of America
| | - Dean Becker
- Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
- Howard Hughes Medical Institute, National Jewish Health, Denver, Colorado, United States of America
| | - Tibor Vass
- Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
- Howard Hughes Medical Institute, National Jewish Health, Denver, Colorado, United States of America
| | - Janice White
- Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
- Howard Hughes Medical Institute, National Jewish Health, Denver, Colorado, United States of America
| | - Philippa Marrack
- Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
- Howard Hughes Medical Institute, National Jewish Health, Denver, Colorado, United States of America
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado, United States of America
| | - John W. Kappler
- Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
- Howard Hughes Medical Institute, National Jewish Health, Denver, Colorado, United States of America
- Program in Biomolecular Structure, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
95
|
Abstract
Previous evidence has indicated that the transmembrane signal in bacterial chemoeceptors is carried by the piston displacement of a membrane-spanning signaling helix. Hendrickson and coworkers (Cheung and Hendrickson, 2009; Moore and Hendrickson, 2009) now provide structural evidence that suggests piston transmembrane signaling is widely conserved in bacterial receptors that control ubiquitous two-component signaling pathways.
Collapse
|
96
|
Moore JO, Hendrickson WA. Structural analysis of sensor domains from the TMAO-responsive histidine kinase receptor TorS. Structure 2009; 17:1195-204. [PMID: 19748340 DOI: 10.1016/j.str.2009.07.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/09/2009] [Accepted: 07/11/2009] [Indexed: 01/28/2023]
Abstract
Histidine kinase receptors respond to diverse signals and mediate signal transduction across the plasma membrane in all prokaryotes and certain eukaryotes. Each receptor is part of a two-component system that regulates a particular cellular process. Organisms that use trimethylamine-N-oxide (TMAO) as a terminal electron acceptor typically control their anaerobic respiration through the TMAO reductase (Tor) pathway, which the TorS histidine kinase activates when sensing TMAO in the environment. We have determined crystal structures for the periplasmic sensor domains of TorS receptors from Escherichia coli and Vibrio parahaemolyticus. TorS sensor domains have a novel fold consisting of a membrane-proximal right-handed four-helical bundle and a membrane-distal left-handed four-helical bundle, but conformational dispositions differ significantly in the two structures. Isolated TorS sensor domains dimerize in solution; and from comparisons with dimeric NarX and Tar sensors, we postulate that signaling through TorS dimers involves a piston-type displacement between helices.
Collapse
Affiliation(s)
- Jason O Moore
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
97
|
Glekas GD, Foster RM, Cates JR, Estrella JA, Wawrzyniak MJ, Rao CV, Ordal GW. A PAS domain binds asparagine in the chemotaxis receptor McpB in Bacillus subtilis. J Biol Chem 2009; 285:1870-8. [PMID: 19864420 DOI: 10.1074/jbc.m109.072108] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During chemotaxis toward asparagine by Bacillus subtilis, the ligand is thought to bind to the chemoreceptor McpB on the exterior of the cell and induce a conformational change. This change affects the degree of phosphorylation of the CheA kinase bound to the cytoplasmic region of the receptor. Until recently, the sensing domains of the B. subtilis receptors were thought to be structurally similar to the well studied Escherichia coli four-helical bundle. However, sequence analysis has shown the sensing domains of receptors from these two organisms to be vastly different. Homology modeling of the sensing domain of the B. subtilis asparagine receptor McpB revealed two tandem PAS domains. McpB mutants having alanine substitutions in key arginine and tyrosine residues of the upper PAS domain but not in any residues of the lower PAS domain exhibited a chemotactic defect in both swarm plates and capillary assays. Thus, binding does not appear to occur across any dimeric surface but within a monomer. A modified capillary assay designed to determine the concentration of attractant where chemotaxis is most sensitive showed that when Arg-111, Tyr-121, or Tyr-133 is mutated to an alanine, much more asparagine is required to obtain an active chemoreceptor. Isothermal titration calorimetry experiments on the purified sensing domain showed a K(D) to asparagine of 14 mum, with the three mutations leading to less efficient binding. Taken together, these results reveal not only a novel chemoreceptor sensing domain architecture but also, possibly, a different mechanism for chemoreceptor activation.
Collapse
Affiliation(s)
- George D Glekas
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Structural plasticity and catalysis regulation of a thermosensor histidine kinase. Proc Natl Acad Sci U S A 2009; 106:16185-90. [PMID: 19805278 DOI: 10.1073/pnas.0906699106] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Temperature sensing is essential for the survival of living cells. A major challenge is to understand how a biological thermometer processes thermal information to optimize cellular functions. Using structural and biochemical approaches, we show that the thermosensitive histidine kinase, DesK, from Bacillus subtilis is cold-activated through specific interhelical rearrangements in its central four-helix bundle domain. As revealed by the crystal structures of DesK in different functional states, the plasticity of this helical domain influences the catalytic activities of the protein, either by modifying the mobility of the ATP-binding domains for autokinase activity or by modulating binding of the cognate response regulator to sustain the phosphotransferase and phosphatase activities. The structural and biochemical data suggest a model in which the transmembrane sensor domain of DesK promotes these structural changes through conformational signals transmitted by the membrane-connecting two-helical coiled-coil, ultimately controlling the alternation between output autokinase and phosphatase activities. The structural comparison of the different DesK variants indicates that incoming signals can take the form of helix rotations and asymmetric helical bends similar to those reported for other sensing systems, suggesting that a similar switching mechanism could be operational in a wide range of sensor histidine kinases.
Collapse
|
99
|
Erbse AH, Falke JJ. The core signaling proteins of bacterial chemotaxis assemble to form an ultrastable complex. Biochemistry 2009; 48:6975-87. [PMID: 19456111 PMCID: PMC2766635 DOI: 10.1021/bi900641c] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chemosensory pathway of bacterial chemotaxis forms a polar signaling cluster in which the fundamental signaling units, the ternary complexes, are arrayed in a highly cooperative, repeating lattice. The repeating ternary units are composed of transmembrane receptors, histidine-kinase CheA, and coupling protein CheW, but it is unknown how these three core proteins are interwoven in the assembled ultrasensitive lattice. Here, to further probe the nature of the lattice, we investigate its stability. The findings reveal that once the signaling cluster is assembled, CheA remains associated and active for days in vitro. All three core components are required for this ultrastable CheA binding and for receptor-controlled kinase activity. The stability is disrupted by low ionic strength or high pH, providing strong evidence that electrostatic repulsion between the highly acidic core components can lead to disassembly. We propose that ultrastability arises from the assembled lattice structure that establishes multiple linkages between the core components, thereby conferring thermodynamic or kinetic ultrastability to the bound state. An important, known function of the lattice structure is to facilitate receptor cooperativity, which in turn enhances pathway sensitivity. In the cell, however, the ultrastability of the lattice could lead to uncontrolled growth of the signaling complex until it fills the inner membrane. We hypothesize that such uncontrolled growth is prevented by an unidentified intracellular disassembly system that is lost when complexes are isolated from cells, thereby unmasking the intrinsic complex ultrastability. Possible biological functions of ultrastability are discussed.
Collapse
Affiliation(s)
- Annette H Erbse
- Department of Chemistry, and Biochemistry and Molecular Biophysics Program, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | |
Collapse
|
100
|
Miller LD, Russell MH, Alexandre G. Diversity in bacterial chemotactic responses and niche adaptation. ADVANCES IN APPLIED MICROBIOLOGY 2009; 66:53-75. [PMID: 19203648 DOI: 10.1016/s0065-2164(08)00803-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability of microbes to rapidly sense and adapt to environmental changes plays a major role in structuring microbial communities, in affecting microbial activities, as well as in influencing various microbial interactions with the surroundings. The bacterial chemotaxis signal transduction system is the sensory perception system that allows motile cells to respond optimally to changes in environmental conditions by allowing cells to navigate in gradients of diverse physicochemical parameters that can affect their metabolism. The analysis of complete genome sequences from microorganisms that occupy diverse ecological niches reveal the presence of multiple chemotaxis pathways and a great diversity of chemoreceptors with novel sensory specificities. Owing to its role in mediating rapid responses of bacteria to changes in the surroundings, bacterial chemotaxis is a behavior of interest in applied microbiology as it offers a unique opportunity for understanding the environmental cues that contribute to the survival of bacteria. This chapter explores the diversity of bacterial chemotaxis and suggests how gaining further insights into such diversity may potentially impact future drug and pesticides development and could inform bioremediation strategies.
Collapse
Affiliation(s)
- Lance D Miller
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | |
Collapse
|