51
|
Stewart PE, Chaconas G, Rosa P. Conservation of plasmid maintenance functions between linear and circular plasmids in Borrelia burgdorferi. J Bacteriol 2003; 185:3202-9. [PMID: 12730180 PMCID: PMC154063 DOI: 10.1128/jb.185.10.3202-3209.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Lyme disease agent Borrelia burgdorferi maintains both linear and circular plasmids that appear to be essential for mammalian infection. Recent studies have characterized the circular plasmid regions that confer autonomous replication, but the genetic elements necessary for linear plasmid maintenance have not been experimentally identified. Two vectors derived from linear plasmids lp25 and lp28-1 were constructed and shown to replicate autonomously in B. burgdorferi. These vectors identify internal regions of linear plasmids necessary for autonomous replication in B. burgdorferi. Although derived from linear plasmids, the vectors are maintained in circular form in B. burgdorferi, indicating that plasmid maintenance functions are conserved, regardless of DNA form. Finally, derivatives of these vectors indicate that paralogous gene family 49 is apparently not required for either circular or linear plasmid replication.
Collapse
Affiliation(s)
- Philip E Stewart
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA.
| | | | | |
Collapse
|
52
|
Bao K, Cohen SN. Recruitment of terminal protein to the ends of Streptomyces linear plasmids and chromosomes by a novel telomere-binding protein essential for linear DNA replication. Genes Dev 2003; 17:774-85. [PMID: 12651895 PMCID: PMC196017 DOI: 10.1101/gad.1060303] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bidirectional replication of Streptomyces linear plasmids and chromosomes from a central origin produces unpaired 3'-leading-strand overhangs at the telomeres of replication intermediates. Filling in of these overhangs leaves a terminal protein attached covalently to the 5' DNA ends of mature replicons. We report here the essential role of a novel 80-kD DNA-binding protein (telomere-associated protein, Tap) in this process. Biochemical studies, yeast two-hybrid analysis, and immunoprecipitation/immunodepletion experiments indicate that Tap binds tightly to specific sequences in 3' overhangs and also interacts with Tpg, bringing Tpg to telomere termini. Using DNA microarrays to analyze the chromosomes of tap mutant bacteria, we demonstrate that survivors of Tap ablation undergo telomere deletion, chromosome circularization, and amplification of subtelomeric DNA. Microarray-based chromosome mapping at single-ORF resolution revealed common endpoints for independent deletions, identified amplified chromosomal ORFs adjacent to these endpoints, and quantified the copy number of these ORFs. Sequence analysis confirmed chromosome circularization and revealed the insertion of adventitious DNA between joined chromosome ends. Our results show that Tap is required for linear DNA replication in Streptomyces and suggest that it functions to recruit and position Tpg at the telomeres of replication intermediates. They also identify hotspots for the telomeric deletions and subtelomeric DNA amplifications that accompany chromosome circularization.
Collapse
Affiliation(s)
- Kai Bao
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | | |
Collapse
|
53
|
Huang CH, Chen CY, Tsai HH, Chen C, Lin YS, Chen CW. Linear plasmid SLP2 of Streptomyces lividans is a composite replicon. Mol Microbiol 2003; 47:1563-76. [PMID: 12622812 DOI: 10.1046/j.1365-2958.2003.03403.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SLP2 is a 50 kb linear plasmid in Streptomyces lividans that contains short (44 bp) terminal inverted repeats and covalently bound terminal proteins. The nucleotide sequence of SLP2 was determined. The rightmost 15.4 kb sequence is identical to that of the host chromosome, including the Tn4811 sequence at the border, which is interrupted by an insertion sequence (IS) element in SLP2. Examination of the flanking target sequences of Tn4811 suggests a previous recombinational event there. The 43 putative protein coding sequences contained many involved in replication (including two terminal protein homologues), partitioning, conjugal transfer and intramycelial spread. The terminally located helicase-like gene ttrA was necessary for conjugal transfer. The two telomeres diverge significantly in primary sequence, while preserving similar secondary structures. Mini-linear plasmids containing these telomeres replicated in S. lividans using the chromosomally encoded terminal protein. In addition, two pseudotelomere sequences are present near the left telomere. The G+C content and GC or AT skew profiles exhibit complex distributions. These, plus the inferred recombination at the right arm, indicate that SLP2 has evolved through rounds of exchanges involving at least three replicons.
Collapse
Affiliation(s)
- Chih-Hung Huang
- Institute of Genetics, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan
| | | | | | | | | | | |
Collapse
|
54
|
Chen CW, Huang CH, Lee HH, Tsai HH, Kirby R. Once the circle has been broken: dynamics and evolution of Streptomyces chromosomes. Trends Genet 2002; 18:522-9. [PMID: 12350342 DOI: 10.1016/s0168-9525(02)02752-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chromosomal instability has been a hallmark of Streptomyces genetics. Deletions and circularization often occur in the less-conserved terminal sequences of the linear chromosomes, which contain swarms of transposable elements and other horizontally transferred elements. Intermolecular recombination involving these regions also generates gross exchanges, resulting in terminal inverted repeats of heterogeneous size and context. The structural instability is evidently related to evolution of the Streptomyces chromosomes, which is postulated to involve linearization of hypothetical circular progenitors via integration of a linear plasmid. This scenario is supported by several bioinformatic analyses.
Collapse
Affiliation(s)
- Carton W Chen
- Institute of Genetics, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan.
| | | | | | | | | |
Collapse
|
55
|
Abstract
The ability of linear replicons to propagate their DNA after telomere damage is essential for perpetuation of the genetic information they carry. We introduced deletions at specific locations within telomeres of streptomycete linear plasmids and investigated mechanisms that enable survival. Here, we report that rescue of such plasmids in Streptomyces lividans occurs by three distinct types of events: (i) repair of the damaged telomere by homologous recombination; (ii) circularization of the plasmid by non-homologous end-to-end joining; and (iii) formation of long palindromic linear plasmids that duplicate the intact telomere by a non-recombinational process. The relative frequency of use of these survival mechanisms depended on the location and length of the telomeric DNA deletion. Repair by intermolecular recombination between the telomeres of chromosomes and plasmids, deletion of additional DNA during plasmid circularization, and insertion of chromosomal DNA fragments into plasmids during end-to-end joining were observed. Our results show that damage to telomeres of Streptomyces linear replicons can promote major structural transformations in these replicons as well as genetic exchange between chromosomes and extrachromosomal DNA. Our findings also suggest that spontaneous circularization of linear Streptomyces chromosomes may be a biological response to instances of telomere damage that cannot be repaired by homologous recombination.
Collapse
Affiliation(s)
- Zhongjun Qin
- Department of Genetics, Stanford University School of Medicine, CA 94305-5120, USA
| | | |
Collapse
|
56
|
Goshi K, Uchida T, Lezhava A, Yamasaki M, Hiratsu K, Shinkawa H, Kinashi H. Cloning and analysis of the telomere and terminal inverted repeat of the linear chromosome of Streptomyces griseus. J Bacteriol 2002; 184:3411-5. [PMID: 12029061 PMCID: PMC135112 DOI: 10.1128/jb.184.12.3411-3415.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cloning and sequencing of the telomere of Streptomyces griseus revealed five palindromic sequences in the terminal 116 nucleotides, all of which can make a hairpin loop structure. However, the end sequence cannot form the foldback secondary structure that is common in Streptomyces telomeres and is suggested to be necessary for terminal replication. Both inside ends of the terminal inverted repeat (TIR) were also cloned and sequenced. The results confirmed the size of the TIR to be 24 kb and identified two almost identical open reading frames that might have been involved in the formation of the TIR.
Collapse
Affiliation(s)
- Kohei Goshi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
57
|
Yang CC, Huang CH, Li CY, Tsay YG, Lee SC, Chen CW. The terminal proteins of linear Streptomyces chromosomes and plasmids: a novel class of replication priming proteins. Mol Microbiol 2002. [DOI: 10.1046/j.1365-2958.2002.02760.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
58
|
Bao K, Cohen SN. Terminal proteins essential for the replication of linear plasmids and chromosomes in Streptomyces. Genes Dev 2001; 15:1518-27. [PMID: 11410532 PMCID: PMC312717 DOI: 10.1101/gad.896201] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Linear plasmids and chromosomes of the bacterial genus Streptomyces have proteins of unknown characteristics and function linked covalently to their 5' DNA termini. We purified protein attached to the end of the pSLA2 linear plasmid of Streptomyces rochei, determined the N-terminal amino acid sequence, and used this information to clone corresponding genes from a S. rochei cosmid library. Three separate terminal protein genes (here designated as tpgR1, tpgR2, and tpgR3), which map to the S. rochei chromosome and to 100-kb and 206-kb linear plasmids contained in S. rochei, were isolated and found to encode a family of similar but distinct 21-kD proteins. Using tpgR1 to probe a genomic DNA library of Streptomyces lividans ZX7, whose linear chromosome can undergo transition to a circular form, we isolated a S. lividans chromosomal gene (tpgL) that we found specifies a protein closely related to, and functionally interchangeable with, TpgR proteins for pSLA2 maintenance in S. lividans. Mutation of tpgL precluded propagation of the pSLA2 plasmid in a linear form and also prevented propagation of S. lividans cells that contain linear, but not circular, chromosomes, indicating a specific and essential role for tpg genes in linear DNA replication. Surprisingly, Tpg proteins were observed to contain a reverse transcriptase-like domain rather than sequences in common with proteins that attach covalently to the termini of linear DNA replicons.
Collapse
Affiliation(s)
- K Bao
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | |
Collapse
|
59
|
Picardeau M, Lobry JR, Hinnebusch BJ. Analyzing DNA strand compositional asymmetry to identify candidate replication origins of Borrelia burgdorferi linear and circular plasmids. Genome Res 2000; 10:1594-604. [PMID: 11042157 PMCID: PMC310945 DOI: 10.1101/gr.124000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Lyme disease agent Borrelia burgdorferi has a genome composed of a linear chromosome and a series of linear and circular plasmids. We previously mapped the oriC of the linear chromosome to the center of the molecule, where a pronounced switch in CG skew occurs. In this study, we analyzed B. burgdorferi plasmid sequences for AT and CG skew in an effort to similarly identify plasmid replication origins. Cumulative skew diagrams of the plasmids suggested that they, like the linear chromosome, replicate bidirectionally from an internal origin. The B. burgdorferi linear chromosome contains homologs to partitioning protein genes soj and spoOJ, which are closely linked to oriC at the minimum cumulative skew point of the 1-Mb molecule. A soj/parA homolog also maps to cumulative skew minima of the B. burgdorferi linear and circular plasmids, further suggesting that these regions contain the replication origin. The heterogeneity in these genes and in the nucleotide sequences of the putative origin regions could account for the mutual compatibility of the multiple DNA elements in B. burgdorferi.
Collapse
Affiliation(s)
- M Picardeau
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Laboratory of Human Bacterial Pathogenesis, Hamilton, Montana 59840, USA
| | | | | |
Collapse
|
60
|
Szurek PF, Brooks BR. Synthesis of virus-specific high-mobility DNA after temperature upshift of SC-1 cells chronically infected with moloney murine leukemia virus mutant ts1. J Virol 2000; 74:7055-63. [PMID: 10888645 PMCID: PMC112223 DOI: 10.1128/jvi.74.15.7055-7063.2000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Premature termination products of reverse transcription that consist physically of viral minus-sense single-stranded DNA that is shorter than one long terminal repeat and partial DNA duplexes are dramatically increased in the central nervous system (CNS) of FVB/N mice that are infected by ts1, a temperature-sensitive mutant of Moloney murine leukemia virus. Due to their migration in agarose gels, these incomplete physical forms of DNA have been designated high-mobility (HM) DNA. In non-CNS tissues, the level of HM DNA is either low or not detectable. In order to determine the conditions that are necessary for the synthesis of HM DNA in vivo, we have characterized the physical forms of HM DNA that were synthesized in vitro in chronically infected SC-1 cells after temperature upshift. At the permissive temperature of 34 degrees C, the chronically infected SC-1 cells did not synthesize HM DNA. After temperature upshift of the cultured cells from 34 to 37 degrees C, the chronically infected SC-1 cells developed extremely high levels of HM DNA. Following temperature downshift of the cultured cells from 37 to 34 degrees C, a decrease in the level of HM DNA and an increase in the level of unintegrated linear proviral DNA occurred simultaneously. These results suggested that the accumulation of HM DNA both in vitro and in vivo may be the result of superinfection.
Collapse
Affiliation(s)
- P F Szurek
- Neurology and Research Services, William S. Middleton Memorial Veterans Affairs Medical Center, and Neurology and Medical Microbiology Departments, University of Wisconsin-Madison Medical School, Madison, Wisconsin 53705-2286, USA
| | | |
Collapse
|
61
|
Qin Z, Cohen SN. Long palindromes formed in Streptomyces by nonrecombinational intra-strand annealing. Genes Dev 2000. [DOI: 10.1101/gad.14.14.1789] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Long inverted repeats (palindromes) are ubiquitous among prokaryotic and eukaryotic genomes. Earlier work has implicated both DNA breaks and short inverted repeats (IRs) in the formation of long palindromes in yeast and Tetrahymena by a proposed mechanism of intramolecular recombination. Here we report that long-palindromic linear plasmids are formed in Streptomyces following double strand DNA breakage by a nonrecombinational intra-strand annealing process that also involves IRs. By modification of palindrome-generating linear plasmids and development of a novel procedure that enables the sequencing of palindrome junctions, we show that long-palindrome formation occurs by unimolecular intra-strand annealing of IRs followed by 3′ extension of the resulting DNA fold-back. The consequent hairpin structures serve as templates for synthesis of duplex linear plasmids containing long palindromes. We suggest that this model for long-palindrome formation in Streptomyces may represent a generally applicable mechanism for generating DNA palindromes.
Collapse
|
62
|
Salas M. Mechanisms of initiation of linear DNA replication in prokaryotes. GENETIC ENGINEERING 2000; 21:159-71. [PMID: 10822496 DOI: 10.1007/978-1-4615-4707-5_8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- M Salas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| |
Collapse
|
63
|
Bey SJ, Tsou MF, Huang CH, Yang CC, Chen CW. The homologous terminal sequence of the Streptomyces lividans chromosome and SLP2 plasmid. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 4):911-922. [PMID: 10784050 DOI: 10.1099/00221287-146-4-911] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The chromosome of Streptomyces lividans shares 15.4 kb homology with one end of the linear plasmid SLP2, consisting of a 10.1 kb terminal sequence followed by the 5.3 kb transposable element Tn4811. The 10.1 kb terminal sequence was determined. The mean G+C content of this sequence is 67.9 mol% with a striking G vs C bias in the last kb. The terminal 232 nt contained 10 palindromic sequences with potential to form complex secondary structures. One typical Streptomyces coding sequence (designated ORF1) of 2643 bp was predicted in the determined sequence. The amino acid sequence of the ORF1 product contained a DEAH helicase motif, and exhibited similarity to type I restriction enzyme HsdR subunits in the database, suggesting a possible role in replication of the telomeres. However, all the ORF1 sequences on the chromosome and SLP2 could be simultaneously knocked out by targeted recombination without affecting the viability of the cells and the linearity of the chromosome and SLP2. This ruled out ORF1 as an essential component in the maintenance of the linear chromosome and plasmids.
Collapse
Affiliation(s)
- Shian-Jy Bey
- Institute of Genetics, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan1
| | - Meng-Fu Tsou
- Institute of Genetics, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan1
| | - Chih-Hung Huang
- Institute of Genetics, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan1
| | - Chien-Chin Yang
- Department of Chemistry, Chung-Yuan Christian University, Chung-Li, Taiwan2
| | - Carton W Chen
- Institute of Genetics, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan1
| |
Collapse
|
64
|
Picardeau M, Le Dantec C, Vincent V. Analysis of the internal replication region of a mycobacterial linear plasmid. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 2):305-313. [PMID: 10708369 DOI: 10.1099/00221287-146-2-305] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Linear plasmids have previously been identified by the authors in mycobacteria, the telomeres of which have terminal inverted repeats and covalently attached proteins. In this study, the replication of these unusual molecules was investigated by studying a 25 kb linear plasmid from the slow-growing species Mycobacterium celatum called pCLP. An internal region of pCLP responsible for replication in Mycobacterium smegmatis was identified. The nucleotide sequence of the minimum replication region of pCLP, which was 2.8 kb long, contained a putative replication gene, rep, and a putative origin of replication consisting of an 18 bp direct repeat and an AT-rich region. A short section of the pCLP replication region was also found to have sequence identity with the replication regions of mycobacterial circular plasmids, suggesting that these linear and circular plasmids are related. It was found that pCLP replicated in Mycobacterium bovis BCG and was compatible in M. smegmatis with pAL5000- and pJAZ38-derived plasmids from Mycobacterium fortuitum, which belong to two different compatibility groups. Thus, this new Escherichia coli-mycobacteria shuttle vector may be used in both slow- and fast-growing mycobacteria and in co-transformation experiments with other mycobacterial vectors.
Collapse
Affiliation(s)
- Mathieu Picardeau
- Laboratoire de Référence des Mycobactéries, Institut Pasteur, 75724 Paris Cedex 15, France1
| | - Corinne Le Dantec
- Laboratoire de Référence des Mycobactéries, Institut Pasteur, 75724 Paris Cedex 15, France1
| | - Véronique Vincent
- Laboratoire de Référence des Mycobactéries, Institut Pasteur, 75724 Paris Cedex 15, France1
| |
Collapse
|
65
|
Matsushima AY, Strauchen JA, Lee G, Scigliano E, Hale EE, Weisse MT, Burstein D, Kamel O, Moore PS, Chang Y. Posttransplantation plasmacytic proliferations related to Kaposi's sarcoma-associated herpesvirus. Am J Surg Pathol 1999; 23:1393-400. [PMID: 10555008 DOI: 10.1097/00000478-199911000-00010] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), which was originally detected in Kaposi's sarcoma, also has been found in primary effusion lymphomas (PELs) and some cases of multicentric Castleman's disease. We describe two transplant recipients who developed Kaposi's sarcoma and a spectrum of non-neoplastic lymphoproliferative disorders that show pronounced plasmacytic and plasmacytoid features. The first patient had recurrent pleural effusions and Castleman's disease-like changes in lymph nodes. The second patient had systemic lymphadenopathy and hepatosplenomegaly secondary to diffuse infiltration by polyclonal plasma cells and plasmacytoid B lymphocytes that clinically mimicked Epstein-Barr virus (EBV)-associated posttransplant lymphoproliferative disease. In both cases, KSHV DNA was detected by polymerase chain reaction and Southern blotting, and KSHV vIL-6 protein expression was identified in affected tissues by immunohistochemical localization. In contrast, no evidence of KSHV coinfection was detected in any of 31 EBV-related posttransplant lymphoproliferative disorders or 112 non-PEL lymphomas tested. The pathologic findings in these two patients were not representative of malignancy by morphologic, immunophenotypic, or molecular criteria. This study underscores the marked propensity for hematolymphoid proliferations associated with KSHV infections to show plasmacytic features. Additionally, this study describes use of an antibody reactive against KSHV vIL-6 that can readily detect a subpopulation of KSHV-infected hematopoietic cells.
Collapse
Affiliation(s)
- A Y Matsushima
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Redenbach M, Bibb M, Gust B, Seitz B, Spychaj A. The linear plasmid SCP1 of Streptomyces coelicolor A3(2) possesses a centrally located replication origin and shows significant homology to the transposon Tn4811. Plasmid 1999; 42:174-85. [PMID: 10545260 DOI: 10.1006/plas.1999.1419] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The linear plasmid SCP1 of Streptomyces coelicolor A3(2) is one of the genetically more studied linear streptomycete replicons. Although the genetics of SCP1 and its interaction with the host chromosome have been analyzed for nearly three decades no information exists on its replication. With the help of an ordered cosmid contig for the complete 360-kb element, we have localized a 5439-bp fragment from the central region that confers autonomous replication in Streptomyces lividans. The minimal origin contains two overlapping ORFs which are separated from an AT-rich region which might correspond to the replication start point. ORF1 revealed intensive similarity to a class of DNA-primase/helicases of actinophages and archael plasmids. In addition, we have identified a region in both terminal inverted repeats of SCP1 that shows significant homology to the transposable element Tn4811 located near the ends of the S. lividans 66 chromosome.
Collapse
Affiliation(s)
- M Redenbach
- Genome Research Unit, Kaiserslautern University, Kaiserslautern, 67663, Germany.
| | | | | | | | | |
Collapse
|
67
|
Hopwood DA. Forty years of genetics with Streptomyces: from in vivo through in vitro to in silico. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 9):2183-2202. [PMID: 10517572 DOI: 10.1099/00221287-145-9-2183] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- David A Hopwood
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK1
| |
Collapse
|
68
|
Nikkari S, Relman DA. Molecular approaches for identification of infectious agents in Wegener's granulomatosis and other vasculitides. Curr Opin Rheumatol 1999; 11:11-6. [PMID: 9894625 DOI: 10.1097/00002281-199901000-00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The primary symptoms of many vasculitides resemble those of infectious diseases. Patients with Wegener's granulomatosis usually seek medical care for respiratory tract symptoms resembling those caused by infection or allergy. In addition, vasculitis is a well-documented manifestation of infection by some known microbial agents. There have been relatively few controlled studies, however, seeking to identify infectious agents as the triggering factors in systemic vasculitides. Molecular methods offer powerful approaches for the identification of infectious agents in diseases of previously unknown origin. These methods include broad-range amplification of microbial nucleic acid sequences and comparative or subtractive methods, such as differential display and representational difference analysis. Host gene expression profiles (using DNA-chip technology) may also provide clues as to the possible infectious cause of an idiopathic disease. Furthermore, the application of molecular methods may reveal pathologic mechanisms and novel therapeutic strategies for the vasculitides.
Collapse
Affiliation(s)
- S Nikkari
- VA Palo Alto Health Care System, CA 94304, USA
| | | |
Collapse
|
69
|
2 The Development of Plasmid Vectors. METHODS IN MICROBIOLOGY 1999. [DOI: 10.1016/s0580-9517(08)70113-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
70
|
Fischer G, Wenner T, Decaris B, Leblond P. Chromosomal arm replacement generates a high level of intraspecific polymorphism in the terminal inverted repeats of the linear chromosomal DNA of Streptomyces ambofaciens. Proc Natl Acad Sci U S A 1998; 95:14296-301. [PMID: 9826694 PMCID: PMC24367 DOI: 10.1073/pnas.95.24.14296] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chromosomal DNA of the bacteria Streptomyces ambofaciens DSM40697 is an 8-Mb linear molecule that ends in terminal inverted repeats (TIRs) of 210 kb. The sequences of the TIRs are highly variable between the different linear replicons of Streptomyces (plasmids or chromosomes). Two spontaneous mutant strains harboring TIRs of 480 and 850 kb were isolated. The TIR polymorphism seen is a result of the deletion of one chromosomal end and its replacement by 480 or 850 kb of sequence identical to the end of the undeleted chromosomal arm. Analysis of the wild-type sequences involved in these rearrangements revealed that a recombination event took place between the two copies of a duplicated DNA sequence. Each copy was mapped to one chromosomal arm, outside of the TIR, and encoded a putative alternative sigma factor. The two ORFs, designated hasR and hasL, were found to be 99% similar at the nucleotide level. The sequence of the chimeric regions generated by the recombination showed that the chromosomal structure of the mutant strains resulted from homologous recombination events between the two copies. We suggest that this mechanism of chromosomal arm replacement contributes to the rapid evolutionary diversification of the sequences of the TIR in Streptomyces.
Collapse
Affiliation(s)
- G Fischer
- Laboratoire de Génétique et Microbiologie, Unité associée INRA 952, Université Henri Poincaré-Nancy 1, Faculté des Sciences, Boulevard des Aiguillettes, F-54506 Vandoeuvre-lès-Nancy, France
| | | | | | | |
Collapse
|
71
|
Polo S, Guerini O, Sosio M, Dehb G. Identification of two linear plasmids in the actinomycete Planobispora rosea. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 10):2819-2825. [PMID: 9802023 DOI: 10.1099/00221287-144-10-2819] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two linear plasmids (pPR1, 27.5 kb, and pPR2, 16 kb) were identified in Planobispora rosea, an actinomycete that produces the antibiotic GE2270, an inhibitor of the elongation factor Tu. Strains lacking both plasmids still produce and are resistant to GE2270. The two plasmids share an internal region of high similarity, but no cross-hybridization was detected between their telomeric regions or between plasmid and chromosomal DNA. The 5' ends of the plasmids appear to be linked to terminal proteins. The telomeric regions of pPR2 were cloned after 3'-end homopolymer tailing and PCR amplification. The approximately 650 nt telomeric DNA sequences of pPR2 are repeated in inverted orientation and are rich in direct and inverted repeats; the 350 bp terminal region is less G + C-rich than the rest of the plasmid. The structural organization of these plasmids appears to be similar to Streptomyces linear replicons.
Collapse
Affiliation(s)
- Simona Polo
- Dipartimento di Geneticae di Biologia dei Microrganismi, Universita degli Studi di MilanoVia Celoria 26, 20133 MilanoItaly
| | - Oscar Guerini
- Dipartimento di Geneticae di Biologia dei Microrganismi, Universita degli Studi di MilanoVia Celoria 26, 20133 MilanoItaly
| | | | - Gianni Dehb
- Dipartimento di Geneticae di Biologia dei Microrganismi, Universita degli Studi di MilanoVia Celoria 26, 20133 MilanoItaly
| |
Collapse
|
72
|
Huang CH, Lin YS, Yang YL, Huang SW, Chen CW. The telomeres of Streptomyces chromosomes contain conserved palindromic sequences with potential to form complex secondary structures. Mol Microbiol 1998; 28:905-16. [PMID: 9663678 DOI: 10.1046/j.1365-2958.1998.00856.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chromosomes of the gram-positive soil bacteria Streptomyces are linear DNA molecules, usually of about 8Mb, containing a centrally located origin of replication and covalently bound terminal proteins (which are presumably involved in the completion of replication of the telomeres). The ends of the chromosomes contain inverted repeats of variable lengths. The terminal segments of five Streptomyces chromosomes and plasmids were cloned and sequenced. The sequences showed a high degree of conservation in the first 166-168bp. Beyond the terminal homology, the sequences diverged and did not generally cross-hybridize. The homologous regions contained seven palindromes with a few nucleotide differences. Many of these differences occur in complementary pairs, such that the palindromicity is preserved. Energy-optimized modelling predicted that the 3' strand of the terminal palindromes can form extensive hairpin structures that are similar to the 3' ends of autonomous parvovirus genomes. Most of the putative hairpins have a GCGCAGC sequence at the loop, with the potential to form a stable single C-residue loop closed by a sheared G:A pairing. The similarity between the terminal structures of the Streptomyces replicons and the autonomous parvoviral genomes suggests that they may share some structural and/or replication features.
Collapse
Affiliation(s)
- C H Huang
- Institute of Genetics, National Yang-Ming University, Shih-Pai, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
73
|
Abstract
The Streptomyces linear plasmid pSLA2 initiates DNA replication bidirectionally towards its telomeres from a site located near the centre of the molecule; at the telomeres, the recessed ends of lagging strands are filled in by non-displacing DNA synthesis. Here, we report experiments that test three proposed mechanisms for lagging-strand fill-in. We present data inconsistent with recombinational or terminal hairpin models for the formation of full-length duplex pSLA2 DNA. Instead, we find that deletions in short, distantly separated homologous palindromes in the leading-strand 3' overhang prevent propagation of linear pSLA2 DNA, implicating a mechanism of palindrome-mediated leading-strand fold-back in telomere replication. We further show that circularized pSLA2 DNA molecules are opened in vivo precisely at the terminal nucleotides of telomeres, generating functional linear replicons containing native telomeres covalently bound to a protein at their 5' DNA termini. Together, our results support a model in which pairing of multiple widely separated pSLA2 palindromes anchors the 3' end of the leading-strand overhang to a site near the overhang's base -- providing a recognition site for terminal-protein-primed DNA synthesis and subsequent endonucleolytic processing. Thus, the replication of Streptomyces plasmid telomeres may have features in common with the mechanism proposed for telomere replication in autonomous parvoviruses.
Collapse
Affiliation(s)
- Z Qin
- Department of Genetics, Stanford University School of Medicine, CA 94305-5120, USA
| | | |
Collapse
|
74
|
del Solar G, Giraldo R, Ruiz-Echevarría MJ, Espinosa M, Díaz-Orejas R. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 1998; 62:434-64. [PMID: 9618448 PMCID: PMC98921 DOI: 10.1128/mmbr.62.2.434-464.1998] [Citation(s) in RCA: 704] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An essential feature of bacterial plasmids is their ability to replicate as autonomous genetic elements in a controlled way within the host. Therefore, they can be used to explore the mechanisms involved in DNA replication and to analyze the different strategies that couple DNA replication to other critical events in the cell cycle. In this review, we focus on replication and its control in circular plasmids. Plasmid replication can be conveniently divided into three stages: initiation, elongation, and termination. The inability of DNA polymerases to initiate de novo replication makes necessary the independent generation of a primer. This is solved, in circular plasmids, by two main strategies: (i) opening of the strands followed by RNA priming (theta and strand displacement replication) or (ii) cleavage of one of the DNA strands to generate a 3'-OH end (rolling-circle replication). Initiation is catalyzed most frequently by one or a few plasmid-encoded initiation proteins that recognize plasmid-specific DNA sequences and determine the point from which replication starts (the origin of replication). In some cases, these proteins also participate directly in the generation of the primer. These initiators can also play the role of pilot proteins that guide the assembly of the host replisome at the plasmid origin. Elongation of plasmid replication is carried out basically by DNA polymerase III holoenzyme (and, in some cases, by DNA polymerase I at an early stage), with the participation of other host proteins that form the replisome. Termination of replication has specific requirements and implications for reinitiation, studies of which have started. The initiation stage plays an additional role: it is the stage at which mechanisms controlling replication operate. The objective of this control is to maintain a fixed concentration of plasmid molecules in a growing bacterial population (duplication of the plasmid pool paced with duplication of the bacterial population). The molecules involved directly in this control can be (i) RNA (antisense RNA), (ii) DNA sequences (iterons), or (iii) antisense RNA and proteins acting in concert. The control elements maintain an average frequency of one plasmid replication per plasmid copy per cell cycle and can "sense" and correct deviations from this average. Most of the current knowledge on plasmid replication and its control is based on the results of analyses performed with pure cultures under steady-state growth conditions. This knowledge sets important parameters needed to understand the maintenance of these genetic elements in mixed populations and under environmental conditions.
Collapse
Affiliation(s)
- G del Solar
- Centro de Investigaciones Biológicas, CSIC, E-28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
75
|
Kalkus J, Menne R, Reh M, Schlegel HG. The terminal structures of linear plasmids from Rhodococcus opacus. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 5):1271-1279. [PMID: 9611802 DOI: 10.1099/00221287-144-5-1271] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The telomers of several linear plasmids of Rhodococcus opacus (formerly Nocardia opaca) were studied. The plasmids pHG201, pHG204 and pHG205 carry proteins bound to their ends, as shown by gel retardation experiments. A sequence hybridizing with the terminal sequence of pHG207, a recombinant linear plasmid consisting of the left part of pHG204 and the right part of pHG205, which was analysed in a previous study by the authors, could be detected in all linear plasmids of the wild-type R. opacus strains MR11 and MR22. However, only pHG204 and pHG206 carry terminal inverted repeats (TIRs) like pHG207. Cloning and sequencing of the terminal fragment of pHG204 revealed a nearly perfect TIR of 1016 bp. In contrast, the termini of pHG201 and pHG205 share little homology. Sequence analysis of the two end fragments of pHG201 revealed a similarity of only 65% within the terminal 34/32 bp and a perfect TIR of only 3 bp. The results support the assumption that long TIRs are not absolutely necessary for replication and maintenance of linear plasmids.
Collapse
Affiliation(s)
- Jutta Kalkus
- Institut für Mikrobiologie der Georg-August-Universität, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | - Renate Menne
- Institut für Mikrobiologie der Georg-August-Universität, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | - Michael Reh
- Institut für Mikrobiologie der Georg-August-Universität, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | - Hans G Schlegel
- Institut für Mikrobiologie der Georg-August-Universität, Grisebachstrasse 8, D-37077 Göttingen, Germany
| |
Collapse
|
76
|
Fischer G, Holl AC, Volff JN, Vandewiele D, Decaris B, Leblond P. Replication of the linear chromosomal DNA from the centrally located oriC of Streptomyces ambofaciens revealed by PFGE gene dosage analysis. Res Microbiol 1998; 149:203-10. [PMID: 9766222 DOI: 10.1016/s0923-2508(98)80080-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
From a cosmid clone of Streptomyces ambofaciens containing the dnaA and gyrAB genes, a 2.7-kb self-replicating DNA fragment containing the chromosome replication origin oriC was isolated. This cosmid was previously maped physically to a region near the middle of the 8-Mb linear chromosomal DNA. A pulsed-field gel electrophoresis time-course analysis revealed that sequences flanking oriC were overrepresented relative to the rest of the chromosomal DNA during rapid growth, indicating that this origin is active. In addition, the terminal regions of the chromosomal DNA showed a slight overrepresentation at the onset of stationary phase.
Collapse
Affiliation(s)
- G Fischer
- Laboratoire de Génétique et Microbiologie, Unité associée INRA 952, Faculté des Sciences, Université Henri Poincaré, Nancy 1, France
| | | | | | | | | | | |
Collapse
|
77
|
Abstract
The emergence of linear bacterial chromosomes has overthrown the dogma of universal circularity of the bacterial chromosomes, and posed mechanistic and evolutionary implications not previously anticipated.
Collapse
Affiliation(s)
- C W Chen
- Institute of Genetics, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
78
|
Khan SA. Mechanism of replication and copy number control of plasmids in gram-positive bacteria. GENETIC ENGINEERING 1996; 18:183-201. [PMID: 8785121 DOI: 10.1007/978-1-4899-1766-9_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S A Khan
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, PA 15261, USA
| |
Collapse
|