51
|
Park IA, Rajaei H, Kim YA, Lee H, Lee H, Seo JH, Heo SH, Song IH, Gong G, Lee HJ. T cell receptor repertoires of ex vivo-expanded tumor-infiltrating lymphocytes from breast cancer patients. Immunol Res 2020; 68:233-245. [PMID: 32886262 DOI: 10.1007/s12026-020-09150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
A higher level of tumor-infiltrating lymphocytes (TILs) is associated with better prognosis in breast cancer patients. Adoptive transfer of lymphocytes coupled with conventional therapies has appealed to many clinicians and investigators as an effective treatment strategy for cancer patients, which necessitates efficient activation and expansion of cytotoxic T lymphocytes precisely targeting cancer cells. To comprehensively understand composition of TILs and to provide a grounding in adoptive T cell therapy, we analyzed the T cell receptor (TCR) repertoires in ex vivo-expanded TILs from nine breast cancer patients via next-generation sequencing. For the three of them, TCR repertoires of TILs gathered after the initial culture during 2 weeks were additionally analyzed and compared to those of TILs that underwent ex vivo rapid expansion procedure (REP). Diversity of TCR repertoire was variable among the patients. V/J segment usage in the clonotypes was similar among patients, with variable distribution of read counts for each V/J segment. The top 50% of most frequently observed VJ combinations was present in > 80% of the total clonotypes. Compared with TCGA data, the samples contained a similar amount of recurrent CDR3 sequences, but clonotype expansion was variable among the samples. In terms of clinicopathologic factor, presence of in vitro reactivity among triple-negative breast cancer cases seemed to be related to lower Shannon's index, but p value was not statistically significant. In addition, the proportion of CD45RO+ cells out of CD8+ T cells were negatively correlated with Shannon's diversity index for both TCRα and TCRβ chains (p = 0.010) via Spearman test. In this study, we identified a heterogeneous pattern of expanded T cell clones and stable usage of V/J segments in ex vivo-expanded TILs from breast cancer patients. Further large-scale studies are requisite to elucidate the clinical significance of TCR repertoires.
Collapse
Affiliation(s)
- In Ah Park
- Department of Pathology and Tranlational Genomics, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Hajar Rajaei
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Young-Ae Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hyeonjin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Heejae Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jeong-Han Seo
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Sun-Hee Heo
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - In Hye Song
- Department of Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
52
|
Hu F, Huang D, Luo Y, Zhou P, Lv C, Wang K, Weng Q, Liu X, Guan Y, Geng Y, Du J, Chen J, Wang J, Wu H. Hematopoietic lineage-converted T cells carrying tumor-associated antigen-recognizing TCRs effectively kill tumor cells. J Immunother Cancer 2020; 8:jitc-2019-000498. [PMID: 32669292 PMCID: PMC7368548 DOI: 10.1136/jitc-2019-000498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2020] [Indexed: 11/04/2022] Open
Abstract
Tumor-associated antigen (TAA) T-cell receptor (TCR) gene-engineered T cells exhibit great potential in antitumor immunotherapy. Considering the high costs and low availability of patient-derived peripheral blood T cells, substantial efforts have been made to explore alternatives to natural T cells. We previously reported that enforced expression of Hoxb5 converted B cells into induced T (iT) cells in vivo Here, we successfully regenerated naive OT1 (major histocompatibility complex I restricted ovalbumin antigen) iT cells (OT1-iT) in vivo by expressing Hoxb5 in pro-pre-B cells in the OT1 transgenic mouse. The OT1-iT cells can be activated and expanded in vitro in the presence of tumor cells. Particularly, these regenerated OT1-iT cells effectively eradicated tumor cells expressing the TAA (ovalbumin) both in vitro and in vivo This study provides insights into the translational applications of blood lineage-transdifferentiated T cells in immunotherapy.
Collapse
Affiliation(s)
- Fangxiao Hu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Dehao Huang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuxuan Luo
- Department of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Peiqing Zhou
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cui Lv
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Kaitao Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qitong Weng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofei Liu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou, Guangdong, China
| | - Yuxian Guan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yang Geng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou, Guangdong, China
| | - Juan Du
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou, Guangdong, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou, Guangdong, China
| | - Jinyong Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China .,CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,University of Chinese Academy of Sciences, Beijing, China.,Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou, Guangdong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Hongling Wu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China .,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou, Guangdong, China
| |
Collapse
|
53
|
Souter MNT, Loh L, Li S, Meehan BS, Gherardin NA, Godfrey DI, Rossjohn J, Fairlie DP, Kedzierska K, Pellicci DG, Chen Z, Kjer-Nielsen L, Corbett AJ, McCluskey J, Eckle SBG. Characterization of Human Mucosal-associated Invariant T (MAIT) Cells. ACTA ACUST UNITED AC 2020; 127:e90. [PMID: 31763790 DOI: 10.1002/cpim.90] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells restricted by the major histocompatibility complex (MHC) class I-like molecule MHC-related protein 1 (MR1). MAIT cells are found throughout the body, especially in human blood and liver. Unlike conventional T cells, which are stimulated by peptide antigens presented by MHC molecules, MAIT cells recognize metabolite antigens derived from an intermediate in the microbial biosynthesis of riboflavin. MAIT cells mediate protective immunity to infections by riboflavin-producing microbes via the production of cytokines and cytotoxicity. The discovery of stimulating MAIT cell antigens allowed for the development of an analytical tool, the MR1 tetramer, that binds specifically to the MAIT T cell receptor (TCR) and is becoming the gold standard for identification of MAIT cells by flow cytometry. This article describes protocols to characterize the phenotype of human MAIT cells in blood and tissues by flow cytometry using fluorescently labeled human MR1 tetramers alongside antibodies specific for MAIT cell markers. © 2019 by John Wiley & Sons, Inc. The main protocols include: Basic Protocol 1: Determining the frequency and steady-state surface phenotype of human MAIT cells Basic Protocol 2: Determining the activation phenotype of human MAIT cells in blood Basic Protocol 3: Characterizing MAIT cell TCRs using TCR-positive reporter cell lines Alternate protocols are provided for determining the absolute number, transcription factor phenotype, and TCR usage of human MAIT cells; and determining activation phenotype by staining for intracellular markers, measuring secreted cytokines, and measuring fluorescent dye dilution due to proliferation. Additional methods are provided for determining the capacity of MAIT cells to produce cytokine independently of antigen using plate-bound or bead-immobilized CD3/CD28 stimulation; and determining the MR1-Ag dependence of MAIT cell activation using MR1-blocking antibody or competitive inhibition. For TCR-positive reporter cell lines, methods are also provided for evaluating the MAIT TCR-mediated MR1-Ag response, determining the capacity of the reporter lines to produce cytokine independently of antigen, determining the MR1-Ag dependence of the reporter lines, and evaluating the MR1-Ag response of the reporter lines using IL-2 secretion. Support Protocols describe the preparation of PBMCs from human blood, the preparation of single-cell suspensions from tissue, the isolation of MAIT cells by FACS and MACS, cloning MAIT TCRα and β chain genes and MR1 genes for transduction, generating stably and transiently transfected cells lines, generating a stable MR1 knockout antigen-presenting cell line, and generating monocyte-derived dendritic cells.
Collapse
Affiliation(s)
- Michael N T Souter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Bronwyn S Meehan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Wales, United Kingdom
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,Murdoch Children's Research Institute, Parkville, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
54
|
Zaman S, Chobrutskiy BI, Patel JS, Diviney A, Tu YN, Tong WL, Gill T, Blanck G. Antiviral T Cell Receptor Complementarity Determining Region-3 Sequences Are Associated with a Worse Cancer Outcome: A Pancancer Analysis. Viral Immunol 2020; 33:404-412. [PMID: 32315578 DOI: 10.1089/vim.2019.0156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human papilloma virus has a clearly demonstrated role in cervical and head and neck cancers, but viral etiology for other solid tumors is less well understood. To expand this area of research, we obtained and analyzed the immune receptor recombinations available from both blood and tumor samples, through mining of exome files produced from those sources, for 32 cancer types represented by the cancer genome atlas (TCGA). Among TCGA data sets, the recovery frequency for antiviral complementarity determining region-3 sequences (CDR3s), for T cell receptor-alpha and T cell receptor-beta, ranged from 0% to 21% of the patients, for the different cancer types, with breast, lung, pancreatic, and thymus cancers representing the highest of that range, particularly for tumor tissue resident T cells. In several cases, recovery of the antiviral CDR3s associated with distinct survival rates, and in all of these cases, the recovery of an antiviral CDR3 associated with a worse survival rate.
Collapse
Affiliation(s)
- Saif Zaman
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Boris I Chobrutskiy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jay S Patel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Andrea Diviney
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yaping N Tu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Wei Lue Tong
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Tommy Gill
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
55
|
Rowntree LC, van den Heuvel H, Sun J, D'Orsogna LJ, Nguyen THO, Claas FHJ, Rossjohn J, Kotsimbos TC, Purcell AW, Mifsud NA. Preferential HLA-B27 Allorecognition Displayed by Multiple Cross-Reactive Antiviral CD8 + T Cell Receptors. Front Immunol 2020; 11:248. [PMID: 32140156 PMCID: PMC7042382 DOI: 10.3389/fimmu.2020.00248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/30/2020] [Indexed: 11/13/2022] Open
Abstract
T cells provide essential immunosurveillance to combat and eliminate infection from pathogens, yet these cells can also induce unwanted immune responses via T cell receptor (TCR) cross-reactivity, also known as heterologous immunity. Indeed, pathogen-induced TCR cross-reactivity has shown to be a common, robust, and functionally potent mechanism that can trigger a spectrum of human immunopathologies associated with either transplant rejection, drug allergy, and autoimmunity. Here, we report that several virus-specific CD8+ T cells directed against peptides derived from chronic viruses (EBV, CMV, and HIV-1) presented by high frequency HLA-A and -B allomorphs differentially cross-react toward HLA-B27 allotypes in a highly focused and hierarchical manner. Given the commonality of cross-reactive T cells and their potential contribution to adverse outcomes in allogeneic transplants, our study demonstrates that multiple antiviral T cells recognizing the same HLA allomorph could pose an extra layer of complexity for organ matching.
Collapse
Affiliation(s)
- Louise C Rowntree
- Respiratory Medicine Laboratory, Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Allergy, Immunology, and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia.,Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Heleen van den Heuvel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Jessica Sun
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lloyd J D'Orsogna
- Department of Clinical Immunology and Pathwest, Fiona Stanley Hospital, Perth, WA, Australia.,School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Frans H J Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Tom C Kotsimbos
- Respiratory Medicine Laboratory, Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Allergy, Immunology, and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | - Anthony W Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicole A Mifsud
- Respiratory Medicine Laboratory, Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Allergy, Immunology, and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia.,Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
56
|
Holec PV, Berleant J, Bathe M, Birnbaum ME. A Bayesian framework for high-throughput T cell receptor pairing. Bioinformatics 2020; 35:1318-1325. [PMID: 30215679 DOI: 10.1093/bioinformatics/bty801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/29/2018] [Accepted: 09/11/2018] [Indexed: 01/01/2023] Open
Abstract
MOTIVATION The study of T cell receptor (TCR) repertoires has generated new insights into immune system recognition. However, the ability to robustly characterize these populations has been limited by technical barriers and an inability to reliably infer heterodimeric chain pairings for TCRs. RESULTS Here, we describe a novel analytical approach to an emerging immune repertoire sequencing method, improving the resolving power of this low-cost technology. This method relies upon the distribution of a T cell population across a 96-well plate, followed by barcoding and sequencing of the relevant transcripts from each T cell. Multicell Analytical Deconvolution for High Yield Paired-chain Evaluation (MAD-HYPE) uses Bayesian inference to more accurately extract TCR information, improving our ability to study and characterize T cell populations for immunology and immunotherapy applications. AVAILABILITY AND IMPLEMENTATION The MAD-HYPE algorithm is released as an open-source project under the Apache License and is available from https://github.com/birnbaumlab/MAD-HYPE. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Patrick V Holec
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph Berleant
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael E Birnbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
57
|
Abstract
The adaptive immune response is a 500-million-year-old (the "Big Bang" of Immunology) collective set of rearranged and/or selected receptors capable of recognizing soluble and cell surface molecules or shape (B cells, antibody), endogenous and extracellular peptides presented by Major Histocompatibility (MHC) molecules including Class I and Class II (conventional αβ T cells), lipid in the context of MHC-like molecules of the CD1 family (NKT cells), metabolites and B7 family molecules/butyrophilins with stress factors (γδT cells), and stress ligands and absence of MHC molecules (natural killer, NK cells). What makes tumor immunogenic is the recruitment of initially innate immune cells to sites of stress or tissue damage with release of Damage-Associated Molecular Pattern (DAMP) molecules. Subsequent maintenance of a chronic inflammatory state, representing a balance between mature, normalized blood vessels, innate and adaptive immune cells and the tumor provides a complex tumor microenvironment serving as the backdrop for Darwinian selection, tumor elimination, tumor equilibrium, and ultimately tumor escape. Effective immunotherapies are still limited, given the complexities of this highly evolved and selected tumor microenvironment. Cytokine therapies and Immune Checkpoint Blockade (ICB) enable immune effector function and are largely dependent on the shape and size of the B and T cell repertoires (the "adaptome"), now accessible by Next-Generation Sequencing (NGS) and dimer-avoidance multiplexed PCR. How immune effectors access the tumor (infiltrated, immune sequestered, and immune desserts), egress and are organized within the tumor are of contemporary interest and substantial investigation.
Collapse
|
58
|
Arrieta-Bolaños E, Fleischhauer K. Learning the next-generation sequencing alphabet of immune reconstitution: factors determining CD8 + T-cell receptor α-chain repertoire dynamics after hematopoietic stem cell transplantation. Haematologica 2019; 104:422-425. [PMID: 30819834 DOI: 10.3324/haematol.2018.209130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
| | - Katharina Fleischhauer
- Institute for Experimental Cellular Therapy, University Hospital Essen.,German Cancer Consortium, Heidelberg, Germany
| |
Collapse
|
59
|
Czaja AJ. Examining pathogenic concepts of autoimmune hepatitis for cues to future investigations and interventions. World J Gastroenterol 2019; 25:6579-6606. [PMID: 31832000 PMCID: PMC6906207 DOI: 10.3748/wjg.v25.i45.6579] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multiple pathogenic mechanisms have been implicated in autoimmune hepatitis, but they have not fully explained susceptibility, triggering events, and maintenance or escalation of the disease. Furthermore, they have not identified a critical defect that can be targeted. The goals of this review are to examine the diverse pathogenic mechanisms that have been considered in autoimmune hepatitis, indicate investigational opportunities to validate their contribution, and suggest interventions that might evolve to modify their impact. English abstracts were identified in PubMed by multiple search terms. Full length articles were selected for review, and secondary and tertiary bibliographies were developed. Genetic and epigenetic factors can affect susceptibility by influencing the expression of immune regulatory genes. Thymic dysfunction, possibly related to deficient production of programmed cell death protein-1, can allow autoreactive T cells to escape deletion, and alterations in the intestinal microbiome may help overcome immune tolerance and affect gender bias. Environmental factors may trigger the disease or induce epigenetic changes in gene function. Molecular mimicry, epitope spread, bystander activation, neo-antigen production, lymphocytic polyspecificity, and disturbances in immune inhibitory mechanisms may maintain or escalate the disease. Interventions that modify epigenetic effects on gene expression, alter intestinal dysbiosis, eliminate deleterious environmental factors, and target critical pathogenic mechanisms are therapeutic possibilities that might reduce risk, individualize management, and improve outcome. In conclusion, diverse pathogenic mechanisms have been implicated in autoimmune hepatitis, and they may identify a critical factor or sequence that can be validated and used to direct future management and preventive strategies.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, United States
| |
Collapse
|
60
|
Hartigan CR, Sun H, Ford ML. Memory T‐cell exhaustion and tolerance in transplantation. Immunol Rev 2019; 292:225-242. [DOI: 10.1111/imr.12824] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Affiliation(s)
| | - He Sun
- Emory Transplant Center and Department of Surgery Emory University Atlanta GA USA
- Department of Hepatobiliary Surgery and Transplantation The First Hospital of China Medical University Shenyang China
| | - Mandy L. Ford
- Emory Transplant Center and Department of Surgery Emory University Atlanta GA USA
| |
Collapse
|
61
|
Carter JA, Preall JB, Atwal GS. Bayesian Inference of Allelic Inclusion Rates in the Human T Cell Receptor Repertoire. Cell Syst 2019; 9:475-482.e4. [PMID: 31677971 DOI: 10.1016/j.cels.2019.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/04/2019] [Accepted: 09/17/2019] [Indexed: 01/09/2023]
Abstract
A small population of αβ T cells is characterized by the expression of more than one unique T cell receptor (TCR); this outcome is the result of "allelic inclusion," that is, inclusion of both α- or β-chain alleles during V(D)J recombination. Limitations in single-cell sequencing technology, however, have precluded comprehensive enumeration of these dual receptor T cells. Here, we develop and experimentally validate a fully Bayesian inference model capable of reliably estimating the true rate of α and β TCR allelic inclusion across two different emulsion-barcoding single-cell sequencing platforms. We provide a database composed of over 51,000 previously unpublished allelic inclusion TCR sequence sets drawn from eight healthy individuals and show that allelic inclusion contributes a distinct and functionally important set of sequences to the human TCR repertoire. This database and a Python implementation of our statistical inference model are freely available at our Github repository (https://github.com/JasonACarter/Allelic_inclusion).
Collapse
Affiliation(s)
- Jason A Carter
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, Stony Brook, NY 11724, USA.
| | - Jonathan B Preall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Stony Brook, NY 11724, USA
| | - Gurinder S Atwal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Stony Brook, NY 11724, USA.
| |
Collapse
|
62
|
Kamga L, Gil A, Song I, Brody R, Ghersi D, Aslan N, Stern LJ, Selin LK, Luzuriaga K. CDR3α drives selection of the immunodominant Epstein Barr virus (EBV) BRLF1-specific CD8 T cell receptor repertoire in primary infection. PLoS Pathog 2019; 15:e1008122. [PMID: 31765434 PMCID: PMC6901265 DOI: 10.1371/journal.ppat.1008122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/09/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
The T cell receptor (TCR) repertoire is an essential component of the CD8 T-cell immune response. Here, we seek to investigate factors that drive selection of TCR repertoires specific to the HLA-A2-restricted immunodominant epitope BRLF1109-117 (YVLDHLIVV) over the course of primary Epstein Barr virus (EBV) infection. Using single-cell paired TCRαβ sequencing of tetramer sorted CD8 T cells ex vivo, we show at the clonal level that recognition of the HLA-A2-restricted BRLF1 (YVL-BR, BRLF-1109) epitope is mainly driven by the TCRα chain. For the first time, we identify a CDR3α (complementarity determining region 3 α) motif, KDTDKL, resulting from an obligate AV8.1-AJ34 pairing that was shared by all four individuals studied. This observation coupled with the fact that this public AV8.1-KDTDKL-AJ34 TCR pairs with multiple different TCRβ chains within the same donor (median 4; range: 1–9), suggests that there are some unique structural features of the interaction between the YVL-BR/MHC and the AV8.1-KDTDKL-AJ34 TCR that leads to this high level of selection. Newly developed TCR motif algorithms identified a lysine at position 1 of the CDR3α motif that is highly conserved and likely important for antigen recognition. Crystal structure analysis of the YVL-BR/HLA-A2 complex revealed that the MHC-bound peptide bulges at position 4, exposing a negatively charged aspartic acid that may interact with the positively charged lysine of CDR3α. TCR cloning and site-directed mutagenesis of the CDR3α lysine ablated YVL-BR-tetramer staining and substantially reduced CD69 upregulation on TCR mutant-transduced cells following antigen-specific stimulation. Reduced activation of T cells expressing this CDR3 motif was also observed following exposure to mutated (D4A) peptide. In summary, we show that a highly public TCR repertoire to an immunodominant epitope of a common human virus is almost completely selected on the basis of CDR3α and provide a likely structural basis for the selection. These studies emphasize the importance of examining TCRα, as well as TCRβ, in understanding the CD8 T cell receptor repertoire. EBV is a ubiquitous human virus that has been linked to several diseases, including cancers and post-transplant lymphoproliferative disorders. CD8 T cells are important for controlling EBV replication. Generation and maintenance of virus-specific CD8 T cells is dependent on specific interaction between MHC-peptide complexes on the infected cell and the TCR. In this study, we performed single cell sequencing of paired TCR α and β chains from EBV-specific CD8 T cells isolated at two time points (primary infection and convalescence) from four individuals undergoing acute EBV infection. We describe a TCRα sequence that was shared by all four individuals and identify conserved residues within this sequence that likely contribute to viral recognition. Examination of the crystal structure of the peptide-MHC complex and subsequent experimental data suggest that a specific interaction between a negatively charged aspartic acid at position 4 of the peptide and a positively charged lysine in the TCR may be particularly important. These findings are highly relevant to current efforts to understand how the TCR repertoire may contribute to or protect against disease, the development of TCR diagnostics for diseases, and at improving the efficacy of T cell based therapies.
Collapse
MESH Headings
- Amino Acid Sequence
- CD8-Positive T-Lymphocytes/immunology
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/immunology
- Complementarity Determining Regions/metabolism
- Epitopes, T-Lymphocyte/immunology
- Epstein-Barr Virus Infections/immunology
- Epstein-Barr Virus Infections/virology
- HLA-A2 Antigen/immunology
- Herpesvirus 4, Human/immunology
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/immunology
- Immediate-Early Proteins/metabolism
- Immunodominant Epitopes/immunology
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- Trans-Activators/genetics
- Trans-Activators/immunology
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- Larisa Kamga
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Anna Gil
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Inyoung Song
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Robin Brody
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Nebraska, United States of America
| | - Nuray Aslan
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Lawrence J. Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Liisa K. Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (LKS); (KL)
| | - Katherine Luzuriaga
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (LKS); (KL)
| |
Collapse
|
63
|
TCR sequencing paired with massively parallel 3' RNA-seq reveals clonotypic T cell signatures. Nat Immunol 2019; 20:1692-1699. [PMID: 31745340 DOI: 10.1038/s41590-019-0544-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/21/2019] [Indexed: 01/14/2023]
Abstract
High-throughput 3' single-cell RNA-sequencing (scRNA-seq) allows cost-effective, detailed characterization of individual immune cells from tissues. Current techniques, however, are limited in their ability to elucidate essential immune cell features, including variable sequences of T cell antigen receptors (TCRs) that confer antigen specificity. Here, we present a strategy that enables simultaneous analysis of TCR sequences and corresponding full transcriptomes from 3'-barcoded scRNA-seq samples. This approach is compatible with common 3' scRNA-seq methods, and adaptable to processed samples post hoc. We applied the technique to identify transcriptional signatures associated with T cells sharing common TCRs from immunized mice and from patients with food allergy. We observed preferential phenotypes among subsets of expanded clonotypes, including type 2 helper CD4+ T cell (TH2) states associated with food allergy. These results demonstrate the utility of our method when studying diseases in which clonotype-driven responses are critical to understanding the underlying biology.
Collapse
|
64
|
Zhang J, Ji Z, Smith KN. Analysis of TCR β CDR3 sequencing data for tracking anti-tumor immunity. Methods Enzymol 2019; 629:443-464. [PMID: 31727253 DOI: 10.1016/bs.mie.2019.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anti-tumor T cells are the soldiers in the body's war against cancer. Effector T cells can detect and eliminate cells expressing their cognate antigen via activation through engagement of the T cell receptor (TCR) with its cognate peptide:MHC complex. Owing to the recent success of immunotherapy in the treatment of many different cancer types, research efforts have shifted toward identifying and tracking anti-tumor T cell responses upon treatment in cancer patients. While traditional methods, such as ELISpot and flow cytometric intracellular staining have had limited success, likely owing to the inability to get viable biospecimens or the lower magnitude of tumor-specific T cell responses relative to virus-specific responses, new techniques that utilize next generation sequencing enable T cell response tracking independent of cytokine production or cell viability. The TCR, which confers T cell antigen-specificity, can be used as a molecular barcode to track T cell clonotypic dynamics across biological compartments and over time in cancer patients undergoing treatment. Because this method does not require viable cells, these T cell clonotypes can also be tracked in archival tumor tissue and flash frozen cell pellets. While exciting, quantitative TCR sequencing (TCRseq) technologies have been met with the conundrum of how to properly analyze and interpret the data. Here we provide a comprehensive guide on how to acquire, analyze, and interpret TCRseq data, as well as special considerations that should be taken prior to experimental setup.
Collapse
Affiliation(s)
- Jiajia Zhang
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, United States; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Zhicheng Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Heath, Johns Hopkins University, Baltimore, MD, United States
| | - Kellie N Smith
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, United States; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
65
|
Soon CF, Zhang S, Suneetha PV, Antunes DA, Manns MP, Raha S, Schultze-Florey C, Prinz I, Wedemeyer H, Sällberg Chen M, Cornberg M. Hepatitis E Virus (HEV)-Specific T Cell Receptor Cross-Recognition: Implications for Immunotherapy. Front Immunol 2019; 10:2076. [PMID: 31552033 PMCID: PMC6738269 DOI: 10.3389/fimmu.2019.02076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/16/2019] [Indexed: 12/26/2022] Open
Abstract
T cell immunotherapy is a concept developed for the treatment of cancer and infectious diseases, based on cytotoxic T lymphocytes to target tumor- or pathogen-specific antigens. Antigen-specificity of the T cell receptors (TCRs) is an important selection criterion in the developmental design of immunotherapy. However, off-target specificity is a possible autoimmunity concern if the engineered antigen-specific T cells are cross-reacting to self-peptides in-vivo. In our recent work, we identified several hepatitis E virus (HEV)-specific TCRs as potential candidates to be developed into T cell therapy to treat chronic hepatitis E. One of the identified TCRs, targeting a HLA-A2-restricted epitope at the RNA-dependent RNA polymerase (HEV-1527: LLWNTVWNM), possessed a unique multiple glycine motif in the TCR-β CDR3, which might be a factor inducing cross-reactivity. The aim of our study was to explore if this TCR could cross-recognize self-peptides to underlay autoimmunity. Indeed, we found that this HEV-1527-specific TCR could also cross-recognize an apoptosis-related epitope, Nonmuscle Myosin Heavy Chain 9 (MYH9-478: QLFNHTMFI). While this TCR had dual specificities to both viral epitope and a self-antigen by double Dextramer binding, it was selectively functional against HEV-1527 but not activated against MYH9-478. The consecutive glycine motif in β chain may be the reason promoting TCR binding promiscuity to recognize a secondary target, thereby facilitating cross-recognition. In conclusion, candidate TCRs for immunotherapy development should be screened for autoimmune potential, especially when the TCRs exhibit unique sequence pattern.
Collapse
Affiliation(s)
- Chai Fen Soon
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany
| | - Shihong Zhang
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany
| | | | | | - Michael Peter Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany
| | - Solaiman Raha
- Hannover Medical School, Institute of Immunology, Hanover, Germany
| | - Christian Schultze-Florey
- Hannover Medical School, Institute of Immunology, Hanover, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hanover, Germany
| | - Immo Prinz
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany.,Hannover Medical School, Institute of Immunology, Hanover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany.,German Center for Infection Research, Partner Site Hannover-Braunschweig, Hanover, Germany.,Department of Gastroenterology and Hepatology, University Clinic Essen, Essen, Germany
| | - Margaret Sällberg Chen
- Department of Dental Medicine and Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany.,German Center for Infection Research, Partner Site Hannover-Braunschweig, Hanover, Germany.,Centre for Individualised Infection Medicine, Hanover, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
66
|
Zamkova M, Kalinina A, Silaeva Y, Persiyantseva N, Bruter A, Deikin A, Khromykh L, Kazansky D. Dominant role of the α-chain in rejection of tumor cells bearing a specific alloantigen in TCRα transgenic mice and in in vitro experiments. Oncotarget 2019; 10:4808-4821. [PMID: 31448049 PMCID: PMC6690675 DOI: 10.18632/oncotarget.27093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/29/2019] [Indexed: 12/17/2022] Open
Abstract
Both TCRα and TCRβ types of T-cell receptors contribute to antigen recognition. However, some TCRs have chain centricity, which means that either the α-chain or the β-chain dictates the peptide–MHC complex specificity. Most earlier reports investigated the role of well-studied β-chains in antigen recognition by TCRαβ. In a previous study, we identified TCRs specific to the H-2Kb molecule. In the present work, we generated transgenic mice carrying the α-chain of this TCR. We found that these transgenic mice rejected EL-4 tumor cells bearing alloantigen H-2Kb more effectively than wild-type mice and similarly to mice with established specific memory T cells. Moreover, we found that T cells transduced with this TCRα can inhibit EL-4 cell growth in vitro and in vivo. We also found that transgenic mice recruit fewer CD8 T cells into the peritoneal cavity at the peak of the immune response and had a significantly higher number of central memory CD8 T cells in the spleen of intact transgenic mice compared to intact wild-type control. These results indicate the ability of a single transgenic α-chain of the H-2Kb-specific TCR to determine specific recognition of the H-2Kb molecule by a repertoire of T lymphocytes and to rapidly reject H-2Kb-bearing lymphoma cells.
Collapse
Affiliation(s)
- Maria Zamkova
- "N. N. Blokhin National Medical Research Centre of Oncology" of the Health Ministry of Russia, Moscow, Russia
| | - Anastasiya Kalinina
- "N. N. Blokhin National Medical Research Centre of Oncology" of the Health Ministry of Russia, Moscow, Russia
| | - Yuliya Silaeva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda Persiyantseva
- "N. N. Blokhin National Medical Research Centre of Oncology" of the Health Ministry of Russia, Moscow, Russia
| | - Alexandra Bruter
- Russian Academy of Sciences, Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Alexey Deikin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila Khromykh
- "N. N. Blokhin National Medical Research Centre of Oncology" of the Health Ministry of Russia, Moscow, Russia
| | - Dmitry Kazansky
- "N. N. Blokhin National Medical Research Centre of Oncology" of the Health Ministry of Russia, Moscow, Russia
| |
Collapse
|
67
|
T follicular helper cells and T follicular regulatory cells in rheumatic diseases. Nat Rev Rheumatol 2019; 15:475-490. [DOI: 10.1038/s41584-019-0254-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 12/15/2022]
|
68
|
Dupic T, Marcou Q, Walczak AM, Mora T. Genesis of the αβ T-cell receptor. PLoS Comput Biol 2019; 15:e1006874. [PMID: 30830899 PMCID: PMC6417744 DOI: 10.1371/journal.pcbi.1006874] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 03/14/2019] [Accepted: 02/17/2019] [Indexed: 11/18/2022] Open
Abstract
The T-cell (TCR) repertoire relies on the diversity of receptors composed of two chains, called α and β, to recognize pathogens. Using results of high throughput sequencing and computational chain-pairing experiments of human TCR repertoires, we quantitively characterize the αβ generation process. We estimate the probabilities of a rescue recombination of the β chain on the second chromosome upon failure or success on the first chromosome. Unlike β chains, α chains recombine simultaneously on both chromosomes, resulting in correlated statistics of the two genes which we predict using a mechanistic model. We find that ∼35% of cells express both α chains. Altogether, our statistical analysis gives a complete quantitative mechanistic picture that results in the observed correlations in the generative process. We learn that the probability to generate any TCRαβ is lower than 10(-12) and estimate the generation diversity and sharing properties of the αβ TCR repertoire.
Collapse
MESH Headings
- Chromosomes, Human
- Humans
- Probability
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Recombination, Genetic
Collapse
Affiliation(s)
- Thomas Dupic
- Laboratoire de physique théorique et hautes énergies, CNRS and Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
- Laboratoire de physique de l’ENS, CNRS, Sorbonne Université, and École normale supérieure (PSL), 24 rue Lhomond, 75005 Paris, France
| | - Quentin Marcou
- Laboratoire de physique de l’ENS, CNRS, Sorbonne Université, and École normale supérieure (PSL), 24 rue Lhomond, 75005 Paris, France
| | - Aleksandra M. Walczak
- Laboratoire de physique de l’ENS, CNRS, Sorbonne Université, and École normale supérieure (PSL), 24 rue Lhomond, 75005 Paris, France
- * E-mail: (AMW); (TM)
| | - Thierry Mora
- Laboratoire de physique de l’ENS, CNRS, Sorbonne Université, and École normale supérieure (PSL), 24 rue Lhomond, 75005 Paris, France
- * E-mail: (AMW); (TM)
| |
Collapse
|
69
|
Mai AT, Tong WL, Tu YN, Blanck G. TcR-α recombinations in renal cell carcinoma exome files correlate with an intermediate level of T-cell exhaustion biomarkers. Int Immunol 2019; 30:35-40. [PMID: 29361059 DOI: 10.1093/intimm/dxx074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma exome-derived, V(D)J recombination reads had an elevated presence and variability, for both TcR-α and -β, when compared to marginal tissue, reflecting an opportunity to assess tumor immunogenicity by comparison with marginal tissue T cells. PD-1, PD-L2, CTLA4 and FOXP3, all of which are implicated in the evasion of an anti-tumor immune response, had a significantly higher expression for samples representing co-detection of productive TcR-α and -β recombination reads. Samples representing tumors with productive TcR-α recombination reads but no detectable, productive TcR-β recombination reads, reflected a 20% survival advantage, and RNASeq data indicated an intermediate level of immune checkpoint gene expression for those samples. These results raise the question of whether relatively high levels of detection of productive TcR-α recombination reads, in comparison with detection of reads representing the TcR-β gene, identify a microenvironment that has not yet entered a T-cell exhaustion phase and may thereby represent conditions for immune enhancements that do not require anti-immune checkpoint therapies.
Collapse
Affiliation(s)
- Anne T Mai
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, USA
| | - Wei Lue Tong
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, USA
| | - Yaping N Tu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, USA.,Immunology Program, USF Magnolia Dr., H. Lee Moffitt Cancer Center and Research Institute, FL, USA
| |
Collapse
|
70
|
Li Y, Teteloshvili N, Tan S, Rao S, Han A, Yang YG, Creusot RJ. Humanized Mice Reveal New Insights Into the Thymic Selection of Human Autoreactive CD8 + T Cells. Front Immunol 2019; 10:63. [PMID: 30778347 PMCID: PMC6369192 DOI: 10.3389/fimmu.2019.00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/11/2019] [Indexed: 11/13/2022] Open
Abstract
Thymic selection constitutes the first checkpoint in T-cell development to purge autoreactive T cells. Most of our understanding of this process comes from animal models because of the challenges of studying thymopoiesis and how T cell receptor (TCR) specificity impacts thymocyte phenotype in humans. We developed a humanized mouse model involving the introduction of autoreactive TCRs and cognate autoantigens that enables the analysis of selection of human T cells in human thymic tissue in vivo. Here, we describe the thymic development of MART1-specific autoreactive CD8+ T cells that normally escape deletion and how their phenotype and survival are affected by introduction of the missing epitope in the hematopoietic lineage. Expression of the epitope in a fraction of hematopoietic cells, including all major types of antigen-presenting cells (APCs), led to profound yet incomplete deletion of these T cells. Upregulation of PD-1 upon antigen encounter occurred through the different stages of thymocyte development. PD-1 and CCR7 expression were mutually exclusive in both transgenic and non-transgenic thymocytes, challenging the view that CCR7 is necessary for negative selection in humans. In the presence of antigen, MART1-reactive T cells down-regulated TCR, CD3, CD8, and CD4 in the thymus and periphery. Moreover, expression of secondary TCRs influences MHC class I-restricted T cells to develop as CD4+, particularly regulatory T cells. This new model constitutes a valuable tool to better understand the development of autoreactive T cells identified in different human autoimmune diseases and the role of different APC subsets in their selection.
Collapse
Affiliation(s)
- Yang Li
- The First Hospital of Jilin University, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China.,Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Nato Teteloshvili
- Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY, United States.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, United States
| | - Shulian Tan
- The First Hospital of Jilin University, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China.,Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Samhita Rao
- Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY, United States.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, United States
| | - Arnold Han
- Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY, United States.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, United States
| | - Yong-Guang Yang
- The First Hospital of Jilin University, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China.,Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Rémi J Creusot
- Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY, United States.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
71
|
Schuldt NJ, Binstadt BA. Dual TCR T Cells: Identity Crisis or Multitaskers? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:637-644. [PMID: 30670579 PMCID: PMC11112972 DOI: 10.4049/jimmunol.1800904] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/21/2018] [Indexed: 05/25/2024]
Abstract
Dual TCR T cells are a common and natural product of TCR gene rearrangement and thymocyte development. As much as one third of the T cell population may have the capability to express two different TCR specificities on the cell surface. This discovery provoked a reconsideration of the classic model of thymic selection. Many potential roles for dual TCR T cells have since been hypothesized, including posing an autoimmune hazard, dominating alloreactive T cell responses, inducing allergy, and expanding the TCR repertoire to improve protective immunity. Yet, since the initial wave of publications following the discovery of dual TCR T cells, research in the area has slowed. In this study, we aim to provide a brief but comprehensive history of dual TCR T cell research, re-evaluate past observations in the context of current knowledge of the immune system, and identify key issues for future study.
Collapse
Affiliation(s)
- Nathaniel J Schuldt
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454; and Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Bryce A Binstadt
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454; and Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
72
|
Sprouse ML, Bates NA, Felix KM, Wu HJJ. Impact of gut microbiota on gut-distal autoimmunity: a focus on T cells. Immunology 2019; 156:305-318. [PMID: 30560993 DOI: 10.1111/imm.13037] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/07/2018] [Accepted: 11/25/2018] [Indexed: 12/14/2022] Open
Abstract
The immune system is essential for maintaining a delicate balance between eliminating pathogens and maintaining tolerance to self-tissues to avoid autoimmunity. An enormous and complex community of gut microbiota provides essential health benefits to the host, particularly by regulating immune homeostasis. Many of the metabolites derived from commensals can impact host health by directly regulating the immune system. Many autoimmune diseases arise from an imbalance between pathogenic effector T cells and regulatory T (Treg) cells. Recent interest has emerged in understanding how cross-talk between gut microbiota and the host immune system promotes autoimmune development by controlling the differentiation and plasticity of T helper and Treg cells. At the molecular level, our recent study, along with others, demonstrates that asymptomatic colonization by commensal bacteria in the gut is capable of triggering autoimmune disease by molecular mimicking self-antigen and skewing the expression of dual T-cell receptors on T cells. Dysbiosis, an imbalance of the gut microbiota, is involved in autoimmune development in both mice and humans. Although it is well known that dysbiosis can impact diseases occurring within the gut, growing literature suggests that dysbiosis also causes the development of gut-distal/non-gut autoimmunity. In this review, we discuss recent advances in understanding the potential molecular mechanisms whereby gut microbiota induces autoimmunity, and the evidence that the gut microbiota triggers gut-distal autoimmune diseases.
Collapse
Affiliation(s)
- Maran L Sprouse
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Nicholas A Bates
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Krysta M Felix
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Hsin-Jung Joyce Wu
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA.,Arizona Arthritis Center, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
73
|
Huth A, Liang X, Krebs S, Blum H, Moosmann A. Antigen-Specific TCR Signatures of Cytomegalovirus Infection. THE JOURNAL OF IMMUNOLOGY 2018; 202:979-990. [PMID: 30587531 DOI: 10.4049/jimmunol.1801401] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022]
Abstract
CMV is a prevalent human pathogen. The virus cannot be eliminated from the body, but is kept in check by CMV-specific T cells. Patients with an insufficient T cell response, such as transplant recipients, are at high risk of developing CMV disease. However, the CMV-specific T cell repertoire is complex, and it is not yet clear which T cells protect best against virus reactivation and disease. In this study, we present a highly resolved characterization of CMV-specific human CD8+ T cells based on enrichment by specific peptide stimulation and mRNA sequencing of their TCR β-chains (TCRβ). Our analysis included recently identified T cell epitopes restricted through HLA-C, whose presentation is resistant to viral immunomodulation, and well-studied HLA-B-restricted epitopes. In eight healthy virus carriers, we identified a total of 1052 CMV-specific TCRβ sequences. HLA-C-restricted, CMV-specific TCRβ clonotypes dominated the ex vivo T cell response and contributed the highest-frequency clonotype of the entire repertoire in two of eight donors. We analyzed sharing and similarity of CMV-specific TCRβ sequences and identified 63 public or related sequences belonging to 17 public TCRβ families. In our cohort, and in an independent cohort of 352 donors, the cumulative frequency of these public TCRβ family members was a highly discriminatory indicator of carrying both CMV infection and the relevant HLA type. Based on these findings, we propose CMV-specific TCRβ signatures as a biomarker for an antiviral T cell response to identify patients in need of treatment and to guide future development of immunotherapy.
Collapse
Affiliation(s)
- Alina Huth
- German Center for Infection Research Group Host Control of Viral Latency and Reactivation, Research Unit Gene Vectors, Helmholtz Center Munich, 81377 Munich, Germany.,Deutsches Zentrum für Infektionsforschung, 81377 Munich, Germany; and
| | - Xiaoling Liang
- German Center for Infection Research Group Host Control of Viral Latency and Reactivation, Research Unit Gene Vectors, Helmholtz Center Munich, 81377 Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Andreas Moosmann
- German Center for Infection Research Group Host Control of Viral Latency and Reactivation, Research Unit Gene Vectors, Helmholtz Center Munich, 81377 Munich, Germany; .,Deutsches Zentrum für Infektionsforschung, 81377 Munich, Germany; and
| |
Collapse
|
74
|
Rojas M, Restrepo-Jiménez P, Monsalve DM, Pacheco Y, Acosta-Ampudia Y, Ramírez-Santana C, Leung PS, Ansari AA, Gershwin ME, Anaya JM. Molecular mimicry and autoimmunity. J Autoimmun 2018; 95:100-123. [DOI: 10.1016/j.jaut.2018.10.012] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/15/2022]
|
75
|
Minagawa A, Yoshikawa T, Yasukawa M, Hotta A, Kunitomo M, Iriguchi S, Takiguchi M, Kassai Y, Imai E, Yasui Y, Kawai Y, Zhang R, Uemura Y, Miyoshi H, Nakanishi M, Watanabe A, Hayashi A, Kawana K, Fujii T, Nakatsura T, Kaneko S. Enhancing T Cell Receptor Stability in Rejuvenated iPSC-Derived T Cells Improves Their Use in Cancer Immunotherapy. Cell Stem Cell 2018; 23:850-858.e4. [PMID: 30449714 DOI: 10.1016/j.stem.2018.10.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 07/31/2018] [Accepted: 10/03/2018] [Indexed: 12/23/2022]
Abstract
Limited T cell availability and proliferative exhaustion present major barriers to successful T cell-based immunotherapies and may potentially be overcome through the use of "rejuvenated" induced pluripotent stem cells derived from antigen-specific T cells (T-iPSCs). However, strict antigen specificity is essential for safe and efficient T cell immunotherapy. Here, we report that CD8αβ T cells from human T-iPSCs lose their antigen specificity through additional rearrangement of the T cell receptor (TCR) α chain gene during the CD4/CD8 double positive stage of in vitro differentiation. CRISPR knockout of a recombinase gene in the T-iPSCs prevented this additional TCR rearrangement. Moreover, when CD8αβ T cells were differentiated from monocyte-derived iPSCs that were transduced with an antigen-specific TCR, they showed monoclonal expression of the transduced TCR. TCR-stabilized, regenerated CD8αβ T cells effectively inhibit tumor growth in xenograft cancer models. These approaches could contribute to safe and effective regenerative T cell immunotherapies.
Collapse
Affiliation(s)
- Atsutaka Minagawa
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Masaki Yasukawa
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Japan
| | - Akitsu Hotta
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto, Japan
| | - Mihoko Kunitomo
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan; Regenerative Medicine Unit, Takeda Pharmaceutical Company, Fujisawa, Japan
| | - Shoichi Iriguchi
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan
| | - Maiko Takiguchi
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan; Regenerative Medicine Unit, Takeda Pharmaceutical Company, Fujisawa, Japan
| | - Yoshiaki Kassai
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan; Regenerative Medicine Unit, Takeda Pharmaceutical Company, Fujisawa, Japan
| | - Eri Imai
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yutaka Yasui
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yohei Kawai
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Rong Zhang
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Yasushi Uemura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Hiroyuki Miyoshi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Mahito Nakanishi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Akira Watanabe
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto, Japan
| | - Akira Hayashi
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan; Regenerative Medicine Unit, Takeda Pharmaceutical Company, Fujisawa, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan; Facility for iPS Cell Therapy, CiRA, Kyoto University, Kyoto, Japan.
| |
Collapse
|
76
|
Bystander T Cells: A Balancing Act of Friends and Foes. Trends Immunol 2018; 39:1021-1035. [PMID: 30413351 DOI: 10.1016/j.it.2018.10.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/27/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023]
Abstract
T cell responses are essential for appropriate protection against pathogens. T cell immunity is achieved through the ability to discriminate between foreign and self-molecules, and this relies heavily on stringent T cell receptor (TCR) specificity. Recently, bystander activated T lymphocytes, that are specific for unrelated epitopes during an antigen-specific response, have been implicated in diverse diseases. Numerous infection models have challenged the classic dogma of T cell activation as being solely dependent on TCR and major histocompatibility complex (MHC) interactions, indicating an unappreciated role for pathogen-associated receptors on T cells. We discuss here the specific roles of bystander activated T cells in pathogenesis, shedding light on the ability of these cells to modulate disease severity independently from TCR recognition.
Collapse
|
77
|
Hu Z, Anandappa AJ, Sun J, Kim J, Leet DE, Bozym DJ, Chen C, Williams L, Shukla SA, Zhang W, Tabbaa D, Steelman S, Olive O, Livak KJ, Kishi H, Muraguchi A, Guleria I, Stevens J, Lane WJ, Burkhardt UE, Fritsch EF, Neuberg D, Ott PA, Keskin DB, Hacohen N, Wu CJ. A cloning and expression system to probe T-cell receptor specificity and assess functional avidity to neoantigens. Blood 2018; 132:1911-1921. [PMID: 30150207 PMCID: PMC6213317 DOI: 10.1182/blood-2018-04-843763] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/19/2018] [Indexed: 12/23/2022] Open
Abstract
Recent studies have highlighted the promise of targeting tumor neoantigens to generate potent antitumor immune responses and provide strong motivation for improving our understanding of antigen-T-cell receptor (TCR) interactions. Advances in single-cell sequencing technologies have opened the door for detailed investigation of the TCR repertoire, providing paired information from TCRα and TCRβ, which together determine specificity. However, a need remains for efficient methods to assess the specificity of discovered TCRs. We developed a streamlined approach for matching TCR sequences with cognate antigen through on-demand cloning and expression of TCRs and screening against candidate antigens. Here, we first demonstrate the system's capacity to identify viral-antigen-specific TCRs and compare the functional avidity of TCRs specific for a given antigen target. We then apply this system to identify neoantigen-specific TCR sequences from patients with melanoma treated with personalized neoantigen vaccines and characterize functional avidity of neoantigen-specific TCRs. Furthermore, we use a neoantigen-prediction pipeline to show that an insertion-deletion mutation in a putative chronic lymphocytic leukemia (CLL) driver gives rise to an immunogenic neoantigen mut-MGA, and use this approach to identify the mut-MGA-specific TCR sequence. This approach provides a means to identify and express TCRs, and then rapidly assess antigen specificity and functional avidity of a reconstructed TCR, which can be applied for monitoring antigen-specific T-cell responses, and potentially for guiding the design of effective T-cell-based immunotherapies.
Collapse
MESH Headings
- Antigens, Neoplasm/immunology
- Cancer Vaccines/therapeutic use
- Cells, Cultured
- Cloning, Molecular/methods
- HEK293 Cells
- Humans
- Jurkat Cells
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Melanoma/immunology
- Melanoma/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- T-Cell Antigen Receptor Specificity
Collapse
Affiliation(s)
- Zhuting Hu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Annabelle J Anandappa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Jing Sun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jintaek Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Donna E Leet
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - David J Bozym
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Christina Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Sachet A Shukla
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA
| | - Wandi Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Diana Tabbaa
- Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Oriol Olive
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Kenneth J Livak
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA
| | - Hiroyuki Kishi
- Department of Immunology, University of Toyama, Toyama, Japan
| | | | - Indira Guleria
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Jonathan Stevens
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - William J Lane
- Harvard Medical School, Boston, MA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Ute E Burkhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Edward F Fritsch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA; and
| | - Derin B Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA; and
| | - Nir Hacohen
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Massachusetts General Hospital, Boston, MA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA; and
| |
Collapse
|
78
|
Zhang C, Ding H, Huang H, Palashati H, Miao Y, Xiong H, Lu Z. TCR repertoire intratumor heterogeneity of CD4 + and CD8 + T cells in centers and margins of localized lung adenocarcinomas. Int J Cancer 2018; 144:818-827. [PMID: 30151844 DOI: 10.1002/ijc.31760] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/08/2018] [Accepted: 07/12/2018] [Indexed: 12/28/2022]
Abstract
Intratumor heterogeneity (ITH) of T cell receptor (TCR) repertoire in different T-cell subsets and locations in lung adenocarcinomas was unclear. Here, we investigated percentages and TCR repertoire of freshly isolated CD4+ and CD8+ tumor infiltrating lymphocytes (TILs) in tumor centers and margins by flow cytometry on 80 tumor samples from 20 patients and high-throughput TCR sequencing on 27 and 25 samples of CD4+ and CD8+ TILs from seven patients. Our results demonstrated that amount and TCR repertoire diversity of CD4+ TILs were significantly higher than those of CD8+ TILs and moreover substantial ITH regarding amount and TCR repertoire of CD4+ and CD8+ TILs were observed. Additionally, ITH of CD4/CD8 T-cell ratio and CD8+ TIL repertoire across center regions was lower than that across margin regions. The amount and TCR repertoire ITH of CD4+ and CD8+ TILs and mean clonality of CD8+ TILs in tumor centers were associated with relapse. Our study provides insights into amount and TCR repertoire ITH of CD4+ and CD8+ TILs in tumor centers and margins as well as corresponding association with prognosis in lung adenocarcinoma patients, suggesting potential clinical significance of TCR repertoire.
Collapse
Affiliation(s)
- Chaoting Zhang
- Laboratory of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Huirong Ding
- Core laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Core laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hongying Huang
- Department of Pathology, New York University Langone Medical Center, 560 First Avenue, New York, New York, 10016
| | - Heyilimu Palashati
- Laboratory of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yu Miao
- Research and Development Department, MyGenostics Inc. Beijing, China
| | - Hongchao Xiong
- Department of Thoracic Surgery, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zheming Lu
- Laboratory of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| |
Collapse
|
79
|
Balakrishnan A, Jama B, Morris GP. Endogenous co‐expression of two T cell receptors promotes lymphopenia‐induced proliferation via increased affinity for self‐antigen. J Leukoc Biol 2018; 104:1097-1104. [DOI: 10.1002/jlb.1ab0618-214rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 11/11/2022] Open
Affiliation(s)
- Amritha Balakrishnan
- Department of PathologyUniversity of California San Diego La Jolla California USA
| | - Burhan Jama
- Department of PathologyUniversity of California San Diego La Jolla California USA
| | - Gerald P. Morris
- Department of PathologyUniversity of California San Diego La Jolla California USA
| |
Collapse
|
80
|
Segmented Filamentous Bacteria Provoke Lung Autoimmunity by Inducing Gut-Lung Axis Th17 Cells Expressing Dual TCRs. Cell Host Microbe 2018; 22:697-704.e4. [PMID: 29120746 DOI: 10.1016/j.chom.2017.10.007] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/04/2017] [Accepted: 10/16/2017] [Indexed: 01/19/2023]
Abstract
Lung complications are a major cause of rheumatoid arthritis-related mortality. Involvement of gut microbiota in lung diseases by the gut-lung axis has been widely observed, but the underlying mechanism remains mostly unknown. Using an autoimmune arthritis model, we show that a constituent of the gut microbiota, segmented filamentous bacteria (SFB), distantly provoke lung pathology. SFB induce autoantibodies in lung during the pre-arthritic phase, and SFB-dependent lung pathology requires the T helper 17 (Th17) responses. SFB-induced gut Th17 cells are preferentially recruited to lung over spleen due to robust expression in the lung of the Th17 chemoattractant, CCL20. Additionally, we found that in peripheral tissues, SFB selectively expand dual T cell receptor (TCR)-expressing Th17 cells recognizing both an SFB epitope and self-antigen, thus augmenting autoimmunity. This study reveals mechanisms for commensal-mediated gut-lung crosstalk and dual TCR-based autoimmunity.
Collapse
|
81
|
Tsuji T, Yoneda A, Matsuzaki J, Miliotto A, Ryan C, Koya RC, Odunsi K. Rapid Construction of Antitumor T-cell Receptor Vectors from Frozen Tumors for Engineered T-cell Therapy. Cancer Immunol Res 2018; 6:594-604. [PMID: 29588318 DOI: 10.1158/2326-6066.cir-17-0434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/26/2017] [Accepted: 03/12/2018] [Indexed: 12/31/2022]
Abstract
T cells genetically engineered with tumor antigen-specific T-cell receptor (TCR) genes have demonstrated therapeutic potential in patients with solid tumors. In order to achieve broader application, an efficient method to identify TCR genes for an array of tumor antigens and HLA restriction elements is required. Here, we have developed a method to construct a TCR-expression library from specimens, including frozen tumor biopsies, that contain antigen-specific T cells. TCR-expressing cassettes were constructed and cloned in a retroviral plasmid vector within 24 hours by unbiased PCR amplification of TCR α and β chain variable regions assembled with TCR constant regions. The method was validated by constructing TCR-expressing vectors from tumor antigen-specific T-cell clones and functionally assessing TCR gene-transduced T cells. We applied this method to frozen ovarian tumor specimens that were infiltrated by tumor antigen-specific T cells. The tumor-derived TCR libraries were expressed in peripheral T cells from healthy volunteers and screened for tumor antigen-specific TCR pairs with the use of an MHC/peptide tetramer reagent. Tumor antigen-specific TCR-expressing transgenes were recovered from isolated tetramer-positive T cells. Peripheral T cells that were engineered with library-derived TCR gene showed potent therapeutic antitumor effect in a tumor xenograft model. Our method can efficiently and rapidly provide tumor-specific TCR-expressing viral vectors for the manufacture of therapeutic and personalized antitumor T-cell products. Cancer Immunol Res; 6(5); 594-604. ©2018 AACR.
Collapse
Affiliation(s)
- Takemasa Tsuji
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York.,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Akira Yoneda
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York
| | - Junko Matsuzaki
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York.,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Anthony Miliotto
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York
| | - Courtney Ryan
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York
| | - Richard C Koya
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York.,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Kunle Odunsi
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York. .,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York.,Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
82
|
Lu YC, Zheng Z, Robbins PF, Tran E, Prickett TD, Gartner JJ, Li YF, Ray S, Franco Z, Bliskovsky V, Fitzgerald PC, Rosenberg SA. An Efficient Single-Cell RNA-Seq Approach to Identify Neoantigen-Specific T Cell Receptors. Mol Ther 2018; 26:379-389. [PMID: 29174843 PMCID: PMC5835023 DOI: 10.1016/j.ymthe.2017.10.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
The adoptive transfer of neoantigen-reactive tumor-infiltrating lymphocytes (TILs) can result in tumor regression in patients with metastatic cancer. To improve the efficacy of adoptive T cell therapy targeting these tumor-specific mutations, we have proposed a new therapeutic strategy, which involves the genetic modification of autologous T cells with neoantigen-specific T cell receptors (TCRs) and the transfer of these modified T cells back to cancer patients. However, the current techniques to isolate neoantigen-specific TCRs are labor intensive, time consuming, and technically challenging, not suitable for clinical applications. To facilitate this process, a new approach was developed, which included the co-culture of TILs with tandem minigene (TMG)-transfected or peptide-pulsed autologous antigen-presenting cells (APCs) and the single-cell RNA sequencing (RNA-seq) analysis of T cells to identify paired TCR sequences associated with cells expressing high levels of interferon-γ (IFN-γ) and interleukin-2 (IL-2). Following this new approach, multiple TCRs were identified, synthesized, cloned into a retroviral vector, and then transduced into donor T cells. These transduced T cells were shown to specifically recognize the neoantigens presented by autologous APCs. In conclusion, this approach provides an efficient procedure to isolate neoantigen-specific TCRs for clinical applications, as well as for basic and translational research.
Collapse
Affiliation(s)
- Yong-Chen Lu
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Zhili Zheng
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul F Robbins
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eric Tran
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Todd D Prickett
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jared J Gartner
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong F Li
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Satyajit Ray
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zulmarie Franco
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Valery Bliskovsky
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter C Fitzgerald
- Genome Analysis Unit, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
83
|
Sonntag K, Hashimoto H, Eyrich M, Menzel M, Schubach M, Döcker D, Battke F, Courage C, Lambertz H, Handgretinger R, Biskup S, Schilbach K. Immune monitoring and TCR sequencing of CD4 T cells in a long term responsive patient with metastasized pancreatic ductal carcinoma treated with individualized, neoepitope-derived multipeptide vaccines: a case report. J Transl Med 2018; 16:23. [PMID: 29409514 PMCID: PMC5801813 DOI: 10.1186/s12967-018-1382-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cancer vaccines can effectively establish clinically relevant tumor immunity. Novel sequencing approaches rapidly identify the mutational fingerprint of tumors, thus allowing to generate personalized tumor vaccines within a few weeks from diagnosis. Here, we report the case of a 62-year-old patient receiving a four-peptide-vaccine targeting the two sole mutations of his pancreatic tumor, identified via exome sequencing. METHODS Vaccination started during chemotherapy in second complete remission and continued monthly thereafter. We tracked IFN-γ+ T cell responses against vaccine peptides in peripheral blood after 12, 17 and 34 vaccinations by analyzing T-cell receptor (TCR) repertoire diversity and epitope-binding regions of peptide-reactive T-cell lines and clones. By restricting analysis to sorted IFN-γ-producing T cells we could assure epitope-specificity, functionality, and TH1 polarization. RESULTS A peptide-specific T-cell response against three of the four vaccine peptides could be detected sequentially. Molecular TCR analysis revealed a broad vaccine-reactive TCR repertoire with clones of discernible specificity. Four identical or convergent TCR sequences could be identified at more than one time-point, indicating timely persistence of vaccine-reactive T cells. One dominant TCR expressing a dual TCRVα chain could be found in three T-cell clones. The observed T-cell responses possibly contributed to clinical outcome: The patient is alive 6 years after initial diagnosis and in complete remission for 4 years now. CONCLUSIONS Therapeutic vaccination with a neoantigen-derived four-peptide vaccine resulted in a diverse and long-lasting immune response against these targets which was associated with prolonged clinical remission. These data warrant confirmation in a larger proof-of concept clinical trial.
Collapse
Affiliation(s)
- Katja Sonntag
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | - Hisayoshi Hashimoto
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | - Matthias Eyrich
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Medical Center Würzburg, Josef-Schneider Street 2, 97080, Würzburg, Germany
| | - Moritz Menzel
- Center for Genomics and Transcriptomics (CeGaT) GmbH and Practice for Human Genetics, Paul-Ehrlich-Straße 23, 72076, Tübingen, Germany
| | - Max Schubach
- Institute for Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Dennis Döcker
- Center for Genomics and Transcriptomics (CeGaT) GmbH and Practice for Human Genetics, Paul-Ehrlich-Straße 23, 72076, Tübingen, Germany
| | - Florian Battke
- Center for Genomics and Transcriptomics (CeGaT) GmbH and Practice for Human Genetics, Paul-Ehrlich-Straße 23, 72076, Tübingen, Germany
| | - Carolina Courage
- Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00014, Helsinki, Finland
| | - Helmut Lambertz
- Klinikum Garmisch-Partenkirchen GmbH, Zentrum für Innere Medizin, 82467, Garmisch-Partenkirchen, Germany
| | - Rupert Handgretinger
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | - Saskia Biskup
- Center for Genomics and Transcriptomics (CeGaT) GmbH and Practice for Human Genetics, Paul-Ehrlich-Straße 23, 72076, Tübingen, Germany
| | - Karin Schilbach
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany. .,University Children's Hospital, University Medical Center Tübingen, Hoppe-Seyler-Street 1, 72076, Tübingen, Germany.
| |
Collapse
|
84
|
Tu YN, Tong WL, Yavorski JM, Blanck G. Immunogenomics: A Negative Prostate Cancer Outcome Associated with TcR-γ/δ Recombinations. CANCER MICROENVIRONMENT 2018; 11:41-49. [PMID: 29357011 DOI: 10.1007/s12307-018-0204-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/02/2018] [Indexed: 11/30/2022]
Abstract
We developed a scripted algorithm, based on previous, earlier editions of the algorithm, to mine prostate cancer exome files for T-cell receptor (TcR) recombination reads: Reads representing TcR gene recombinations were identified in 497 prostate cancer exome files from the cancer genome atlas (TCGA). As has been reported for melanoma, co-detection of productive TcR-α and TcR-β recombination reads correlated with an RNA expression signature representing T-cell exhaustion, particularly with high RNA levels for PD-1 and PD-L1, in comparison to several different control sets of samples. Co-detection of TcR-α and TcR-β recombination reads also correlated with high level expression of genes representing antigen presenting functions, further supporting the conclusion that co-detection of TcR-α and TcR-β recombination reads represents an immunologically relevant microenvironment. Finally, detection of unproductive TcR-δ recombinations, and unproductive and productive TcR-γ recombinations, strongly correlated with, and may represent a convenient biomarker for a poor clinical outcome. These results underscore the value of the genomics-based assessment of unproductive TcR recombinations and raise questions about the impact of tumor microenvironment lymphocytes in the absence of antigenicity.
Collapse
Affiliation(s)
- Yaping N Tu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
| | - Wei Lue Tong
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
| | - John M Yavorski
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA.
| |
Collapse
|
85
|
Artificial Methods for T Cell Activation: Critical Tools in T Cell Biology and T Cell Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:207-219. [PMID: 30471035 DOI: 10.1007/978-981-13-0445-3_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Antigen-specific immunity conferred by T lymphocytes is a result of complex molecular interactions at the immunological synapse. A variety of biomimetic approaches have been devised to artificially induce T cell activation either to study the T cell biology or to expand and prime the therapeutic T cell populations. Here we first briefly review the molecular and cellular, structural and phenotypical bases that are involved in T cell activation. The artificial methods for T cell activation are then discussed in two grand categories, the soluble (3D) and the surface-anchored (2D) platforms with their design parameters. With the growing number of successful adoptive T cell therapies, the spurring demands for effective and safe T cell expansion as well as precise control over resulting T cell functions and phenotypes warrant the extensions of engineering parameters in the development of novel methodologies for T cell activation.
Collapse
|
86
|
Tu YN, Tong WL, Fawcett TJ, Blanck G. Lung tumor exome files with T-cell receptor recombinations: a mouse model of T-cell infiltrates reflecting mutation burdens. J Transl Med 2017; 97:1516-1520. [PMID: 28805806 DOI: 10.1038/labinvest.2017.80] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/15/2017] [Accepted: 05/30/2017] [Indexed: 12/24/2022] Open
Abstract
Tumor exomes and RNASeq data were originally intended for obtaining tumor mutations and gene expression profiles, respectively. However, recent work has determined that tumor exome and RNAseq read files contain reads representing T-cell and B-cell receptor (TcR and BcR) recombinations, presumably due to infiltrating lymphocytes. Furthermore, the recovery of immune receptor recombination reads has demonstrated correlations with specific, previously appreciated aspects of tumor immunology. To further understand the usefulness of recovering TcR and BcR recombinations from tumor exome files, we developed a scripted algorithm for recovery of reads representing these recombinations from a previously described mouse model of lung tumorigenesis. Results indicated that exomes representing lung adenomas reveal significantly more TcR recombinations than do exomes from lung adenocarcinomas; and that exome files representing high mutation adenomas, arising from chemical mutagens, have more TcR recombinations than do exome files from low mutation adenomas arising from an activating Kras mutation. The latter results were also consistent with a similar analysis performed on human lung adenocarcinoma exomes. The mouse and human results for obtaining TcR recombination reads from tumor specimen exomes are consistent with human tumor biology results indicating that adenomas and high mutation cancers are sites of high immune activity. The results indicate hitherto unappreciated opportunities for the use of tumor specimen exome files, particularly from experimental animal models, to study the connection between the adenoma stage of tumorigenesis, or high cancer mutation rates, and high level lymphocyte infiltrates.
Collapse
Affiliation(s)
- Yaping N Tu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Wei Lue Tong
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Timothy J Fawcett
- Department of Chemical and Biomedical Engineering, College of Engineering, Research Computing University of South Florida, Tampa, FL, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
87
|
Gong Q, Wang C, Zhang W, Iqbal J, Hu Y, Greiner TC, Cornish A, Kim JH, Rabadan R, Abate F, Wang X, Inghirami GG, McKeithan TW, Chan WC. Assessment of T-cell receptor repertoire and clonal expansion in peripheral T-cell lymphoma using RNA-seq data. Sci Rep 2017; 7:11301. [PMID: 28900149 PMCID: PMC5595876 DOI: 10.1038/s41598-017-11310-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022] Open
Abstract
T-cell clonality of peripheral T-cell lymphoma (PTCL) is routinely evaluated with a PCR-based method using genomic DNA. However, there are limitations with this approach. The purpose of this study was to determine the utility of RNA-seq for assessing T-cell clonality and T-cell antigen receptor (TCR) repertoire of the neoplastic T-cells in 108 PTCL samples. TCR transcripts, including complementarity-determining region 3 (CDR3) sequences, were assessed. In normal T cells, the CDR3 sequences were extremely diverse, without any clonotype representing more than 2% of the overall TCR population. Dominant clones could be identified in 65 out of 76 PTCL cases (86%) with adequate TCR transcript expression. In monoclonal cases, the dominant clone varied between 11% and 99% of TCRβ transcripts. No unique Vα or Vβ usage was observed. Small T-cell clones were often observed in T- and NK-cell tumors in a percentage higher than observed in reactive conditions. γ chain expression was very low in tumors expressing TCRαβ, but its expression level was high and clonality was detected in a TCRγδ expressing tumor. NK cell lymphoma (NKCL) did not express significant levels of TCR Vβ or Vγ genes. RNA-seq is a useful tool for detecting and characterizing clonal TCR rearrangements in PTCL.
Collapse
Affiliation(s)
- Qiang Gong
- Department of Pathology, City of Hope National Medical Center, Duarte, 91010, CA, United States
| | - Chao Wang
- Department of Pathology, City of Hope National Medical Center, Duarte, 91010, CA, United States.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Hematology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, P.R. China
| | - Weiwei Zhang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yang Hu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Timothy C Greiner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Adam Cornish
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jo-Heon Kim
- Department of Pathology, City of Hope National Medical Center, Duarte, 91010, CA, United States.,Department of Pathology, Chonnam National University Medical School and Research Institute of Medical Sciences, Gwangju, South Korea
| | - Raul Rabadan
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
| | - Francesco Abate
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, P.R. China
| | - Giorgio G Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Timothy W McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, 91010, CA, United States
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, 91010, CA, United States.
| |
Collapse
|
88
|
Teng F, Felix KM, Bradley CP, Naskar D, Ma H, Raslan WA, Wu HJJ. The impact of age and gut microbiota on Th17 and Tfh cells in K/BxN autoimmune arthritis. Arthritis Res Ther 2017; 19:188. [PMID: 28810929 PMCID: PMC5558662 DOI: 10.1186/s13075-017-1398-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/27/2017] [Indexed: 02/08/2023] Open
Abstract
Background Age is an important risk factor for rheumatoid arthritis (RA), which often develops in middle age. However, how age-associated changes in immunity impact RA is poorly understood. Gut microbiota are known to be involved in the pathogenesis of RA, but the effects of microbiota in older subjects remain mostly unknown. Methods We used segmented filamentous bacteria (SFB), a gut commensal species with immunomodulatory effects, and K/BxN mice, a T cell receptor (TCR) transgenic model, to study the effect of age and microbiota on autoimmune arthritis. Comparing young and middle-aged K/BxN T cells of the same TCR specificity allows us to study T cells with an age focus eliminating a key variable: TCR repertoire alteration with age. In addition to joints, we also studied pathological changes in the lung, an important extra-articular RA manifestation. We used flow cytometry to evaluate T follicular helper (Tfh) and T helper 17 (Th17) cells, as they both contribute to autoantibody production, a key disease index in both RA and K/BxN arthritis. Results Middle-aged K/BxN mice had aggravated arthritis and pathological changes in the lung compared to young mice. Middle-aged mice displayed a strong accumulation of Tfh but not Th17 cells, and had defective Th17 differentiation and low expression of interleukin-23, a critical cytokine for Th17 maintenance. Although a soaring Tfh cell population accompanied by robust germinal center B cell responses were found in middle-aged mice, there was decreased cycling of Tfh cells, and SFB only induced the non-Tfh cells to upregulate Bcl-6, the Tfh master transcription factor, in the young but not the middle-aged group. Finally, the accumulated Tfh cells in middle-aged mice had an effector phenotype (CD62LloCD44hi). Conclusion Age-dependent Tfh cell accumulation may play a crucial role in the increased autoimmune disease phenotype in middle-age. SFB, a potent stimulus for inducing Tfh differentiation, fails to promote Tfh differentiation in middle-aged K/BxN mice, suggesting that most of the middle-aged Tfh cells with an effector phenotype are Tfh effector memory cells induced at an earlier age. Our results also indicate that exposure to immunomodulatory commensals may allow the young host to develop an overactive immune system reminiscent of that found in the middle-aged host.
Collapse
Affiliation(s)
- Fei Teng
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85719, USA
| | - Krysta M Felix
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85719, USA
| | - C Pierce Bradley
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85719, USA
| | - Debdut Naskar
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85719, USA
| | - Heqing Ma
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85719, USA
| | - Walid A Raslan
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85719, USA
| | - Hsin-Jung Joyce Wu
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85719, USA. .,Arizona Arthritis Center, College of Medicine, University of Arizona, Tucson, AZ, 85719, USA.
| |
Collapse
|
89
|
Proinflammatory Dual Receptor T Cells in Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant 2017; 23:1852-1860. [PMID: 28750779 DOI: 10.1016/j.bbmt.2017.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/16/2017] [Indexed: 12/11/2022]
Abstract
Defective post-transplantation thymopoiesis is associated with chronic graft-versus-host disease (GVHD), a multiorgan pathology affecting up to 80% of patients after allogeneic hematopoietic stem cell transplantation (HSCT). Previous work demonstrated that the subset of T cells expressing 2 T cell receptors (TCRs) is predisposed to alloreactivity, driving selective and disproportionate activity in acute GVHD in both mouse models and HSCT patients. Here we investigate a potential role for this pathogenic T cell subset in chronic GVHD (cGVHD). HSCT patients with cGVHD demonstrated increased numbers of dual TCR cells in circulation. These dual receptor cells had an activated phenotype, indicating an active role in cGVHD. Notably, single-cell RNA sequencing identified the increased dual TCR cells in cGVHD as predominantly expressing Tbet, indicative of a proinflammatory phenotype. These results identify dual TCR cells as specific mediators of pathogenic inflammation underlying cGVHD and highlight Tbet-driven T cell function as a potential pathway for potential therapeutic targeting.
Collapse
|
90
|
Rosati E, Dowds CM, Liaskou E, Henriksen EKK, Karlsen TH, Franke A. Overview of methodologies for T-cell receptor repertoire analysis. BMC Biotechnol 2017; 17:61. [PMID: 28693542 PMCID: PMC5504616 DOI: 10.1186/s12896-017-0379-9] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/26/2017] [Indexed: 12/13/2022] Open
Abstract
Background The T-cell receptor (TCR), located on the surface of T cells, is responsible for the recognition of the antigen-major histocompatibility complex, leading to the initiation of an inflammatory response. Analysing the TCR repertoire may help to gain a better understanding of the immune system features and of the aetiology and progression of diseases, in particular those with unknown antigenic triggers. The extreme diversity of the TCR repertoire represents a major analytical challenge; this has led to the development of specialized methods which aim to characterize the TCR repertoire in-depth. Currently, next generation sequencing based technologies are most widely employed for the high-throughput analysis of the immune cell repertoire. Results Here, we report on the latest methodological advancements in the field by describing and comparing the available tools; from the choice of the starting material and library preparation method, to the sequencing technologies and data analysis. Finally, we provide a practical example and our own experience by reporting some exemplary results from a small internal benchmark study, where current approaches from the literature and the market are employed and compared. Conclusions Several valid methods for clonotype identification and TCR repertoire analysis exist, however, a gold standard method for the field has not yet been identified. Depending on the purpose of the scientific study, some approaches may be more suitable than others. Finally, due to possible method specific biases, scientists must be careful when comparing results obtained using different methods. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0379-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisa Rosati
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Str. 12, 24105, Kiel, Germany
| | - C Marie Dowds
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Str. 12, 24105, Kiel, Germany
| | - Evaggelia Liaskou
- Centre for Liver Research and NIHR Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Eva Kristine Klemsdal Henriksen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tom H Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Str. 12, 24105, Kiel, Germany.
| |
Collapse
|
91
|
Schuldt NJ, Auger JL, Spanier JA, Martinov T, Breed ER, Fife BT, Hogquist KA, Binstadt BA. Cutting Edge: Dual TCRα Expression Poses an Autoimmune Hazard by Limiting Regulatory T Cell Generation. THE JOURNAL OF IMMUNOLOGY 2017; 199:33-38. [PMID: 28539428 DOI: 10.4049/jimmunol.1700406] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/27/2017] [Indexed: 11/19/2022]
Abstract
Despite accounting for 10-30% of the T cell population in mice and humans, the role of dual TCR-expressing T cells in immunity remains poorly understood. It has been hypothesized that dual TCR T cells pose an autoimmune hazard by allowing self-reactive TCRs to escape thymic selection. We revisited this hypothesis using the NOD murine model of type 1 diabetes. We bred NOD mice hemizygous at both TCRα and β (TCRα+/- β+/-) loci, rendering them incapable of producing dual TCR T cells. We found that the lack of dual TCRα expression skewed the insulin-specific thymocyte population toward greater regulatory T (Treg) cell commitment, resulting in a more tolerogenic Treg to conventional T cell ratio and protection from diabetes. These data support a novel hypothesis by which dual TCR expression can promote autoimmunity by limiting agonist selection of self-reactive thymocytes into the Treg cell lineage.
Collapse
Affiliation(s)
- Nathaniel J Schuldt
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Jennifer L Auger
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Justin A Spanier
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Department of Medicine, University of Minnesota, Minneapolis, MN 55455; and
| | - Tijana Martinov
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Department of Medicine, University of Minnesota, Minneapolis, MN 55455; and
| | - Elise R Breed
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Brian T Fife
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Department of Medicine, University of Minnesota, Minneapolis, MN 55455; and
| | - Kristin A Hogquist
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Bryce A Binstadt
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455; .,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
92
|
T follicular helper and T follicular regulatory cells have different TCR specificity. Nat Commun 2017; 8:15067. [PMID: 28429709 PMCID: PMC5413949 DOI: 10.1038/ncomms15067] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/24/2017] [Indexed: 12/27/2022] Open
Abstract
Immunization leads to the formation of germinal centres (GCs) that contain both T follicular helper (Tfh) and T follicular regulatory (Tfr) cells. Whether T-cell receptor (TCR) specificity defines the differential functions of Tfh and Tfr cells is unclear. Here we show that antigen-specific T cells after immunization are preferentially recruited to the GC to become Tfh cells, but not Tfr cells. Tfh cells, but not Tfr cells, also proliferate efficiently on restimulation with the same immunizing antigen in vitro. Ex vivo TCR repertoire analysis shows that immunization induces oligoclonal expansion of Tfh cells. By contrast, the Tfr pool has a TCR repertoire that more closely resembles that of regulatory T (Treg) cells. Our data thus indicate that the GC Tfh and Tfr pools are generated from distinct TCR repertoires, with Tfh cells expressing antigen-responsive TCRs to promote antibody responses, and Tfr cells expressing potentially autoreactive TCRs to suppress autoimmunity. T follicular helper and regulatory cells are generated in the germinal centre; however, whether antigen specificity defines their differential functions is unclear. Here the authors show that T cells with distinct antigen specificity spectra are recruited to the germinal centre to establish these two populations.
Collapse
|
93
|
Tu YN, Tong WL, Samy MD, Yavorski JM, Kim M, Blanck G. Assessing microenvironment immunogenicity using tumor specimen exomes: Co-detection of TcR-α/β V(D)J recombinations correlates with PD-1 expression. Int J Cancer 2017; 140:2568-2576. [DOI: 10.1002/ijc.30675] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/24/2017] [Accepted: 02/17/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Yaping N. Tu
- Department of Molecular Medicine; Morsani College of Medicine, University of South Florida; Tampa FL
| | - Wei Lue Tong
- Department of Molecular Medicine; Morsani College of Medicine, University of South Florida; Tampa FL
| | - Mohammad D. Samy
- Department of Molecular Medicine; Morsani College of Medicine, University of South Florida; Tampa FL
| | - John M. Yavorski
- Department of Molecular Medicine; Morsani College of Medicine, University of South Florida; Tampa FL
| | - Minjung Kim
- Department of Molecular Oncology; H. Lee Moffitt Cancer Center and Research Institute; Tampa FL
| | - George Blanck
- Department of Molecular Medicine; Morsani College of Medicine, University of South Florida; Tampa FL
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute; Tampa FL
| |
Collapse
|
94
|
Samy MD, Tong WL, Yavorski JM, Sexton WJ, Blanck G. T cell receptor gene recombinations in human tumor specimen exome files: detection of T cell receptor-β VDJ recombinations associates with a favorable oncologic outcome for bladder cancer. Cancer Immunol Immunother 2017; 66:403-410. [PMID: 27995306 PMCID: PMC11028825 DOI: 10.1007/s00262-016-1943-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/06/2016] [Indexed: 02/05/2023]
Abstract
Understanding tumor-resident T cells is important for cancer prognosis and treatment options. Conventional, solid tumor specimen exome files can be searched directly for recombined T cell receptor (TcR)-α segments; RNASeq files can include TcR-β VDJ recombinations. To learn whether there are medically relevant uses of exome-based detection of TcR V(D)J recombinations in the tumor microenvironment, we searched cancer genome atlas and Moffitt Cancer Center, tumor specimen exome files for TcR-β, TcR-γ, and TcR-δ recombinations, for bladder and stomach cancer. We found that bladder cancer exomes with productive TcR-β recombinations had a significant association with No Subsequent Tumors and a positive response to drug treatments, with p < 0.004, p < 0.05, and p < 0.004, depending on the sample sets examined. We also discovered the opportunity to detect productive TcR-γ and TcR-δ recombinations in the tumor microenvironment, via the tumor specimen exome files.
Collapse
Affiliation(s)
- Mohammad D Samy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd., Tampa, FL, 33612, USA
| | - Wei Lue Tong
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd., Tampa, FL, 33612, USA
| | - John M Yavorski
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd., Tampa, FL, 33612, USA
| | - Wade J Sexton
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd., Tampa, FL, 33612, USA.
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
95
|
Kean LS, Turka LA, Blazar BR. Advances in targeting co-inhibitory and co-stimulatory pathways in transplantation settings: the Yin to the Yang of cancer immunotherapy. Immunol Rev 2017; 276:192-212. [PMID: 28258702 PMCID: PMC5338458 DOI: 10.1111/imr.12523] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past decade, the power of harnessing T-cell co-signaling pathways has become increasingly understood to have significant clinical importance. In cancer immunotherapy, the field has concentrated on two related modalities: First, targeting cancer antigens through highly activated chimeric antigen T cells (CAR-Ts) and second, re-animating endogenous quiescent T cells through checkpoint blockade. In each of these strategies, the therapeutic goal is to re-ignite T-cell immunity, in order to eradicate tumors. In transplantation, there is also great interest in targeting T-cell co-signaling, but with the opposite goal: in this field, we seek the Yin to cancer immunotherapy's Yang, and focus on manipulating T-cell co-signaling to induce tolerance rather than activation. In this review, we discuss the major T-cell signaling pathways that are being investigated for tolerance induction, detailing preclinical studies and the path to the clinic for many of these molecules. These include blockade of co-stimulation pathways and agonism of coinhibitory pathways, in order to achieve the delicate state of balance that is transplant tolerance: a state which guarantees lifelong transplant acceptance without ongoing immunosuppression, and with preservation of protective immune responses. In the context of the clinical translation of immune tolerance strategies, we discuss the significant challenge that is embodied by the fact that targeted pathway modulators may have opposing effects on tolerance based on their impact on effector vs regulatory T-cell biology. Achieving this delicate balance holds the key to the major challenge of transplantation: lifelong control of alloreactivity while maintaining an otherwise intact immune system.
Collapse
Affiliation(s)
- Leslie S Kean
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
- The Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Laurence A Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Immune Tolerance Network, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
96
|
Identifying T Cell Receptors from High-Throughput Sequencing: Dealing with Promiscuity in TCRα and TCRβ Pairing. PLoS Comput Biol 2017; 13:e1005313. [PMID: 28103239 PMCID: PMC5289640 DOI: 10.1371/journal.pcbi.1005313] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 02/02/2017] [Accepted: 12/15/2016] [Indexed: 12/20/2022] Open
Abstract
Characterisation of the T cell receptors (TCR) involved in immune responses is important for the design of vaccines and immunotherapies for cancer and autoimmune disease. The specificity of the interaction between the TCR heterodimer and its peptide-MHC ligand derives largely from the juxtaposed hypervariable CDR3 regions on the TCRα and TCRβ chains, and obtaining the paired sequences of these regions is a standard for functionally defining the TCR. A brute force approach to identifying the TCRs in a population of T cells is to use high-throughput single-cell sequencing, but currently this process remains costly and risks missing small clones. Alternatively, CDR3α and CDR3β sequences can be associated using their frequency of co-occurrence in independent samples, but this approach can be confounded by the sharing of CDR3α and CDR3β across clones, commonly observed within epitope-specific T cell populations. The accurate, exhaustive, and economical recovery of TCR sequences from such populations therefore remains a challenging problem. Here we describe an algorithm for performing frequency-based pairing (alphabetr) that accommodates CDR3α- and CDR3β-sharing, cells expressing two TCRα chains, and multiple forms of sequencing error. The algorithm also yields accurate estimates of clonal frequencies.
Collapse
|
97
|
Chamoto K, Guo T, Scally SW, Kagoya Y, Anczurowski M, Wang CH, Rahman MA, Saso K, Butler MO, Chiu PPL, Julien JP, Hirano N. Key Residues at Third CDR3β Position Impact Structure and Antigen Recognition of Human Invariant NK TCRs. THE JOURNAL OF IMMUNOLOGY 2016; 198:1056-1065. [PMID: 28003379 DOI: 10.4049/jimmunol.1601556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/21/2016] [Indexed: 01/27/2023]
Abstract
The human invariant NK (iNK) TCR is largely composed of the invariant TCR Vα24-Jα18 chain and semivariant TCR Vβ11 chains with variable CDR3β sequences. The direct role of CDR3β in Ag recognition has been studied extensively. Although it was noted that CDR3β can interact with CDR3α, how this interaction might indirectly influence Ag recognition is not fully elucidated. We observed that the third position of Vβ11 CDR3 can encode an Arg or Ser residue as a result of somatic rearrangement. Clonotypic analysis of the two iNK TCR types with a single amino acid substitution revealed that the staining intensity by anti-Vα24 Abs depends on whether Ser or Arg is encoded. When stained with an anti-Vα24-Jα18 Ab, human primary invariant NKT cells could be divided into Vα24 low- and high-intensity subsets, and Arg-encoding TCR Vβ11 chains were more frequently isolated from the Vα24 low-intensity subpopulation compared with the Vα24 high-intensity subpopulation. The Arg/Ser substitution also influenced Ag recognition as determined by CD1d multimer staining and CD1d-restricted functional responses. Importantly, in silico modeling validated that this Ser-to-Arg mutation could alter the structure of the CDR3β loop, as well as the CDR3α loop. Collectively, these results indicate that the Arg/Ser encoded at the third CDR3β residue can effectively modulate the overall structure of, and Ag recognition by, human iNK TCRs.
Collapse
Affiliation(s)
- Kenji Chamoto
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Tingxi Guo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Stephen W Scally
- Program in Molecular Structure and Function, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Yuki Kagoya
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Mark Anczurowski
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Chung-Hsi Wang
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Muhammed A Rahman
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Kayoko Saso
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Marcus O Butler
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Priscilla P L Chiu
- Division of Pediatric Surgery, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Jean-Philippe Julien
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Structure and Function, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Naoto Hirano
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
98
|
The CD8 T-cell response during tolerance induction in liver transplantation. Clin Transl Immunology 2016; 5:e102. [PMID: 27867515 PMCID: PMC5099425 DOI: 10.1038/cti.2016.53] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/12/2022] Open
Abstract
Both experimental and clinical studies have shown that the liver possesses unique tolerogenic properties. Liver allografts can be spontaneously accepted across complete major histocompatibility mismatch in some animal models. In addition, some liver transplant patients can be successfully withdrawn from immunosuppressive medications, developing ‘operational tolerance'. Multiple mechanisms have been shown to be involved in inducing and maintaining alloimmune tolerance associated with liver transplantation. Here, we focus on CD8 T-cell tolerance in this setting. We first discuss how alloreactive cytotoxic T-cell responses are generated against allografts, before reviewing how the liver parenchyma, donor passenger leucocytes and the host immune system function together to attenuate alloreactive CD8 T-cell responses to promote the long-term survival of liver transplants.
Collapse
|
99
|
Guo T, Ochi T, Nakatsugawa M, Kagoya Y, Anczurowski M, Wang CH, Rahman MA, Saso K, Butler MO, Hirano N. Generating De Novo Antigen-specific Human T Cell Receptors by Retroviral Transduction of Centric Hemichain. J Vis Exp 2016. [PMID: 27805596 DOI: 10.3791/54697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
T cell receptors (TCRs) are used clinically to direct the specificity of T cells to target tumors as a promising modality of immunotherapy. Therefore, cloning TCRs specific for various tumor-associated antigens has been the goal of many studies. To elicit an effective T cell response, the TCR must recognize the target antigen with optimal affinity. However, cloning such TCRs has been a challenge and many available TCRs possess sub-optimal affinity for the cognate antigen. In this protocol, we describe a method of cloning de novo high affinity antigen-specific TCRs using existing TCRs by exploiting hemichain centricity. It is known that for some TCRs, each TCRα or TCRβ hemichain do not contribute equally to antigen recognition, and the dominant hemichain is referred to as the centric hemichain. We have shown that by pairing the centric hemichain with counter-chains differing from the original counter-chain, we are able to maintain the antigen specificity, while modulating its interaction strength for the cognate antigen. Thus, the therapeutic potential of a given TCR can be improved by optimizing the pairing between the centric and counter hemichains.
Collapse
Affiliation(s)
- Tingxi Guo
- Department of Immunology, University of Toronto; Princess Margaret Cancer Centre, University Health Network
| | - Toshiki Ochi
- Princess Margaret Cancer Centre, University Health Network
| | | | - Yuki Kagoya
- Princess Margaret Cancer Centre, University Health Network
| | - Mark Anczurowski
- Department of Immunology, University of Toronto; Princess Margaret Cancer Centre, University Health Network
| | - Chung-Hsi Wang
- Department of Immunology, University of Toronto; Princess Margaret Cancer Centre, University Health Network
| | | | - Kayoko Saso
- Princess Margaret Cancer Centre, University Health Network
| | - Marcus O Butler
- Department of Immunology, University of Toronto; Princess Margaret Cancer Centre, University Health Network
| | - Naoto Hirano
- Department of Immunology, University of Toronto; Princess Margaret Cancer Centre, University Health Network;
| |
Collapse
|
100
|
T cell receptor diversity in the human thymus. Mol Immunol 2016; 76:116-22. [DOI: 10.1016/j.molimm.2016.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 01/21/2023]
|