51
|
Knapp BD, Odermatt P, Rojas ER, Cheng W, He X, Huang KC, Chang F. Decoupling of Rates of Protein Synthesis from Cell Expansion Leads to Supergrowth. Cell Syst 2019; 9:434-445.e6. [PMID: 31706948 PMCID: PMC6911364 DOI: 10.1016/j.cels.2019.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/02/2019] [Accepted: 09/30/2019] [Indexed: 01/02/2023]
Abstract
Cell growth is a complex process in which cells synthesize cellular components while they increase in size. It is generally assumed that the rate of biosynthesis must somehow be coordinated with the rate of growth in order to maintain intracellular concentrations. However, little is known about potential feedback mechanisms that could achieve proteome homeostasis or the consequences when this homeostasis is perturbed. Here, we identify conditions in which fission yeast cells are prevented from volume expansion but nevertheless continue to synthesize biomass, leading to general accumulation of proteins and increased cytoplasmic density. Upon removal of these perturbations, this biomass accumulation drove cells to undergo a multi-generational period of "supergrowth" wherein rapid volume growth outpaced biosynthesis, returning proteome concentrations back to normal within hours. These findings demonstrate a mechanism for global proteome homeostasis based on modulation of volume growth and dilution.
Collapse
Affiliation(s)
- Benjamin D Knapp
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Pascal Odermatt
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Enrique R Rojas
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wenpeng Cheng
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiangwei He
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Kerwyn Casey Huang
- Biophysics Program, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 941586, USA.
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
52
|
Mechanical stress compromises multicomponent efflux complexes in bacteria. Proc Natl Acad Sci U S A 2019; 116:25462-25467. [PMID: 31772020 DOI: 10.1073/pnas.1909562116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Physical forces have a profound effect on growth, morphology, locomotion, and survival of organisms. At the level of individual cells, the role of mechanical forces is well recognized in eukaryotic physiology, but much less is known about prokaryotic organisms. Recent findings suggest an effect of physical forces on bacterial shape, cell division, motility, virulence, and biofilm initiation, but it remains unclear how mechanical forces applied to a bacterium are translated at the molecular level. In Gram-negative bacteria, multicomponent protein complexes can form rigid links across the cell envelope and are therefore subject to physical forces experienced by the cell. Here we manipulate tensile and shear mechanical stress in the bacterial cell envelope and use single-molecule tracking to show that octahedral shear (but not hydrostatic) stress within the cell envelope promotes disassembly of the tripartite efflux complex CusCBA, a system used by Escherichia coli to resist copper and silver toxicity. By promoting disassembly of this protein complex, mechanical forces within the cell envelope make the bacteria more susceptible to metal toxicity. These findings demonstrate that mechanical forces can inhibit the function of cell envelope protein assemblies in bacteria and suggest the possibility that other multicomponent, transenvelope efflux complexes may be sensitive to mechanical forces including complexes involved in antibiotic resistance, cell division, and translocation of outer membrane components. By modulating the function of proteins within the cell envelope, mechanical stress has the potential to regulate multiple processes required for bacterial survival and growth.
Collapse
|
53
|
Jensen C, Bæk KT, Gallay C, Thalsø-Madsen I, Xu L, Jousselin A, Ruiz Torrubia F, Paulander W, Pereira AR, Veening JW, Pinho MG, Frees D. The ClpX chaperone controls autolytic splitting of Staphylococcus aureus daughter cells, but is bypassed by β-lactam antibiotics or inhibitors of WTA biosynthesis. PLoS Pathog 2019; 15:e1008044. [PMID: 31518377 PMCID: PMC6760813 DOI: 10.1371/journal.ppat.1008044] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/25/2019] [Accepted: 08/26/2019] [Indexed: 12/02/2022] Open
Abstract
β-lactam antibiotics interfere with cross-linking of the bacterial cell wall, but the killing mechanism of this important class of antibiotics is not fully understood. Serendipitously we found that sub-lethal doses of β-lactams rescue growth and prevent spontaneous lysis of Staphylococcus aureus mutants lacking the widely conserved chaperone ClpX, and we reasoned that a better understanding of the clpX phenotypes could provide novel insights into the downstream effects of β-lactam binding to the PBP targets. Super-resolution imaging revealed that clpX cells display aberrant septum synthesis, and initiate daughter cell separation prior to septum completion at 30°C, but not at 37°C, demonstrating that ClpX becomes critical for coordinating the S. aureus cell cycle as the temperature decreases. FtsZ localization and dynamics were not affected in the absence of ClpX, suggesting that ClpX affects septum formation and autolytic activation downstream of Z-ring formation. Interestingly, oxacillin antagonized the septum progression defects of clpX cells and prevented lysis of prematurely splitting clpX cells. Strikingly, inhibitors of wall teichoic acid (WTA) biosynthesis that work synergistically with β-lactams to kill MRSA synthesis also rescued growth of the clpX mutant, as did genetic inactivation of the gene encoding the septal autolysin, Sle1. Taken together, our data support a model in which Sle1 causes premature splitting and lysis of clpX daughter cells unless Sle1-dependent lysis is antagonized by β-lactams or by inhibiting an early step in WTA biosynthesis. The finding that β-lactams and inhibitors of WTA biosynthesis specifically prevent lysis of a mutant with dysregulated autolytic activity lends support to the idea that PBPs and WTA biosynthesis play an important role in coordinating cell division with autolytic splitting of daughter cells, and that β-lactams do not kill S. aureus simply by weakening the cell wall. The bacterium Staphylococcus aureus is a major cause of human disease, and the rapid spread of S. aureus strains that are resistant to almost all β-lactam antibiotics has made treatment increasingly difficult. β-lactams interfere with cross-linking of the bacterial cell wall but the killing mechanism of this important class of antibiotics is not fully understood. Here we provide novel insight into this topic by examining a defined S. aureus mutant that has the unusual property of growing markedly better in the presence of β-lactams. Without β-lactams this mutant dies spontaneously at a high frequency due to premature separation of daughter cells during cell division. Cell death of the mutant can, however, be prevented either by exposure to β-lactam antibiotics or by inhibiting synthesis of wall teichoic acid, a major component of the cell wall in Gram-positive bacteria with a conserved role in activation of autolytic splitting of daughter cells. The finding that β-lactam antibiotics can prevent lysis of a mutant with deregulated activity of autolytic enzymes involved in daughter cell splitting, emphasizes the idea that β-lactams interfere with the coordination between cell division and daughter cell splitting, and do not kill S. aureus simply by weakening the cell wall.
Collapse
Affiliation(s)
- Camilla Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer T. Bæk
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Clement Gallay
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ida Thalsø-Madsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lijuan Xu
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ambre Jousselin
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Fernando Ruiz Torrubia
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wilhelm Paulander
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ana R. Pereira
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mariana G. Pinho
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
54
|
Floc'h K, Lacroix F, Servant P, Wong YS, Kleman JP, Bourgeois D, Timmins J. Cell morphology and nucleoid dynamics in dividing Deinococcus radiodurans. Nat Commun 2019; 10:3815. [PMID: 31444361 PMCID: PMC6707255 DOI: 10.1038/s41467-019-11725-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
Our knowledge of bacterial nucleoids originates mostly from studies of rod- or crescent-shaped bacteria. Here we reveal that Deinococcus radiodurans, a relatively large spherical bacterium with a multipartite genome, constitutes a valuable system for the study of the nucleoid in cocci. Using advanced microscopy, we show that D. radiodurans undergoes coordinated morphological changes at both the cellular and nucleoid level as it progresses through its cell cycle. The nucleoid is highly condensed, but also surprisingly dynamic, adopting multiple configurations and presenting an unusual arrangement in which oriC loci are radially distributed around clustered ter sites maintained at the cell centre. Single-particle tracking and fluorescence recovery after photobleaching studies of the histone-like HU protein suggest that its loose binding to DNA may contribute to this remarkable plasticity. These findings demonstrate that nucleoid organization is complex and tightly coupled to cell cycle progression in this organism.
Collapse
Affiliation(s)
- Kevin Floc'h
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France
| | | | - Pascale Servant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Yung-Sing Wong
- Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France
| | | | | | - Joanna Timmins
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France.
| |
Collapse
|
55
|
Monk IR, Shaikh N, Begg SL, Gajdiss M, Sharkey LKR, Lee JYH, Pidot SJ, Seemann T, Kuiper M, Winnen B, Hvorup R, Collins BM, Bierbaum G, Udagedara SR, Morey JR, Pulyani N, Howden BP, Maher MJ, McDevitt CA, King GF, Stinear TP. Zinc-binding to the cytoplasmic PAS domain regulates the essential WalK histidine kinase of Staphylococcus aureus. Nat Commun 2019; 10:3067. [PMID: 31296851 PMCID: PMC6624279 DOI: 10.1038/s41467-019-10932-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 06/05/2019] [Indexed: 01/23/2023] Open
Abstract
WalKR (YycFG) is the only essential two-component regulator in the human pathogen Staphylococcus aureus. WalKR regulates peptidoglycan synthesis, but this function alone does not explain its essentiality. Here, to further understand WalKR function, we investigate a suppressor mutant that arose when WalKR activity was impaired; a histidine to tyrosine substitution (H271Y) in the cytoplasmic Per-Arnt-Sim (PASCYT) domain of the histidine kinase WalK. Introducing the WalKH271Y mutation into wild-type S. aureus activates the WalKR regulon. Structural analyses of the WalK PASCYT domain reveal a metal-binding site, in which a zinc ion (Zn2+) is tetrahedrally-coordinated by four amino acids including H271. The WalKH271Y mutation abrogates metal binding, increasing WalK kinase activity and WalR phosphorylation. Thus, Zn2+-binding negatively regulates WalKR. Promoter-reporter experiments using S. aureus confirm Zn2+ sensing by this system. Identification of a metal ligand recognized by the WalKR system broadens our understanding of this critical S. aureus regulon.
Collapse
Affiliation(s)
- Ian R Monk
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.
| | - Nausad Shaikh
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Stephanie L Begg
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Mike Gajdiss
- University Clinics of Bonn, Institute of Medical Microbiology, Immunology and Parasitology, 53127, Bonn, Germany
| | - Liam K R Sharkey
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Jean Y H Lee
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Sacha J Pidot
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.,Melbourne Bioinformatics, University of Melbourne, Melbourne, VIC, 3000, Australia
| | | | | | - Rikki Hvorup
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Gabriele Bierbaum
- University Clinics of Bonn, Institute of Medical Microbiology, Immunology and Parasitology, 53127, Bonn, Germany
| | - Saumya R Udagedara
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Jacqueline R Morey
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Neha Pulyani
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Megan J Maher
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.,Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
56
|
Boudjemaa R, Steenkeste K, Canette A, Briandet R, Fontaine-Aupart MP, Marlière C. Direct observation of the cell-wall remodeling in adhering Staphylococcus aureus 27217: An AFM study supported by SEM and TEM. Cell Surf 2019; 5:100018. [PMID: 32743135 PMCID: PMC7389151 DOI: 10.1016/j.tcsw.2019.100018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/19/2018] [Accepted: 01/24/2019] [Indexed: 01/28/2023] Open
Abstract
We took benefit from Atomic Force Microscopy (AFM) in the force spectroscopy mode to describe the time evolution – over 24 h – of the surface nanotopography and mechanical properties of the strain Staphylococcus aureus 27217 from bacterial adhesion to the first stage of biofilm genesis. In addition, Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) experiments allowed identifying two types of self-adhering subpopulations (the so-called “bald” and “hairy” cells) and revealed changes in their relative populations with the bacterial culture age and the protocol of preparation. We indeed observed a dramatic evanescing of the “hairy” subpopulation for samples that underwent centrifugation and resuspension processes. When examined by AFM, the “hairy” cell surface resembled to a herringbone structure characterized by upper structural units with lateral dimensions of ∼70 nm and a high Young modulus value (∼2.3 MPa), a mean depth of the trough between them of ∼15 nm and a resulting roughness of ∼5 nm. By contrast, the “bald” cells appeared much softer (∼0.35 MPa) with a roughness one order of magnitude lower. We observed too the gradual detachment of the herringbone patterns from the “hairy” bacterial envelope of cell harvested from a 16 h old culture and their progressive accumulation between the bacteria in the form of globular clusters. The secretion of a soft extracellular polymeric substance was also identified that, in addition to the globular clusters, may contribute to the initiation of the biofilm spatial organization.
Collapse
Affiliation(s)
- Rym Boudjemaa
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Karine Steenkeste
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Alexis Canette
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Institut de Biologie Paris-Seine (FR 3631), Unité Mixte de Service (UMS 30) d'Imagerie et de Cytométrie (LUMIC), Sorbonne Université, CNRS, Paris, France
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marie-Pierre Fontaine-Aupart
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Christian Marlière
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| |
Collapse
|
57
|
Abstract
Spatial organization is a hallmark of all living systems. Even bacteria, the smallest forms of cellular life, display defined shapes and complex internal organization, showcasing a highly structured genome, cytoskeletal filaments, localized scaffolding structures, dynamic spatial patterns, active transport, and occasionally, intracellular organelles. Spatial order is required for faithful and efficient cellular replication and offers a powerful means for the development of unique biological properties. Here, we discuss organizational features of bacterial cells and highlight how bacteria have evolved diverse spatial mechanisms to overcome challenges cells face as self-replicating entities.
Collapse
|
58
|
Sequential assembly of the septal cell envelope prior to V snapping in Corynebacterium glutamicum. Nat Chem Biol 2019; 15:221-231. [PMID: 30664686 DOI: 10.1038/s41589-018-0206-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/27/2018] [Indexed: 12/11/2022]
Abstract
Members of the Corynebacterineae, including Corynebacterium and Mycobacterium, have an atypical cell envelope characterized by an additional mycomembrane outside of the peptidoglycan layer. How this multilayered cell envelope is assembled remains unclear. Here, we tracked the assembly dynamics of different envelope layers in Corynebacterium glutamicum and Mycobacterium smegmatis by using metabolic labeling and found that the septal cell envelope is assembled sequentially in both species. Additionally, we demonstrate that in C. glutamicum, the peripheral peptidoglycan layer at the septal junction remains contiguous throughout septation, forming a diffusion barrier for the fluid mycomembrane. This diffusion barrier is resolved through perforations in the peripheral peptidoglycan, thus leading to the confluency of the mycomembrane before daughter cell separation (V snapping). Furthermore, the same junctional peptidoglycan also serves as a mechanical link holding the daughter cells together and undergoes mechanical fracture during V snapping. Finally, we show that normal V snapping in C. glutamicum depends on complete assembly of the septal cell envelope.
Collapse
|
59
|
Minasyan H, Flachsbart F. Blood coagulation: a powerful bactericidal mechanism of human innate immunity. Int Rev Immunol 2019; 38:3-17. [DOI: 10.1080/08830185.2018.1533009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hayk Minasyan
- Private laboratory, Immunology Microbiology, Yerevan, Armenia
| | | |
Collapse
|
60
|
Bor B, McLean JS, Foster KR, Cen L, To TT, Serrato-Guillen A, Dewhirst FE, Shi W, He X. Rapid evolution of decreased host susceptibility drives a stable relationship between ultrasmall parasite TM7x and its bacterial host. Proc Natl Acad Sci U S A 2018; 115:12277-12282. [PMID: 30442671 PMCID: PMC6275545 DOI: 10.1073/pnas.1810625115] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Around one-quarter of bacterial diversity comprises a single radiation with reduced genomes, known collectively as the Candidate Phyla Radiation. Recently, we coisolated TM7x, an ultrasmall strain of the Candidate Phyla Radiation phylum Saccharibacteria, with its bacterial host Actinomyces odontolyticus strain XH001 from human oral cavity and stably maintained as a coculture. Our current work demonstrates that within the coculture, TM7x cells establish a long-term parasitic association with host cells by infecting only a subset of the population, which stay viable yet exhibit severely inhibited cell division. In contrast, exposure of a naïve A. odontolyticus isolate, XH001n, to TM7x cells leads to high numbers of TM7x cells binding to each host cell, massive host cell death, and a host population crash. However, further passaging reveals that XH001n becomes less susceptible to TM7x over time and enters a long-term stable relationship similar to that of XH001. We show that this reduced susceptibility is driven by rapid host evolution that, in contrast to many forms of phage resistance, offers only partial protection. The result is a stalemate where infected hosts cannot shed their parasites; nevertheless, parasite load is sufficiently low that the host population persists. Finally, we show that TM7x can infect and form stable long-term relationships with other species in a single clade of Actinomyces, displaying a narrow host range. This system serves as a model to understand how parasitic bacteria with reduced genomes such as those of the Candidate Phyla Radiation have persisted with their hosts and ultimately expanded in their diversity.
Collapse
Affiliation(s)
- Batbileg Bor
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142;
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Jeffrey S McLean
- Department of Periodontics, University of Washington, Seattle, WA 98119
| | - Kevin R Foster
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom
| | - Lujia Cen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142
| | - Thao T To
- Department of Periodontics, University of Washington, Seattle, WA 98119
| | - Alejandro Serrato-Guillen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Floyd E Dewhirst
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Wenyuan Shi
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142;
| |
Collapse
|
61
|
Stamsås GA, Myrbråten IS, Straume D, Salehian Z, Veening JW, Håvarstein LS, Kjos M. CozEa and CozEb play overlapping and essential roles in controlling cell division in Staphylococcus aureus. Mol Microbiol 2018; 109:615-632. [PMID: 29884993 DOI: 10.1111/mmi.13999] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 01/07/2023]
Abstract
Staphylococcus aureus needs to control the position and timing of cell division and cell wall synthesis to maintain its spherical shape. We identified two membrane proteins, named CozEa and CozEb, which together are important for proper cell division in S. aureus. CozEa and CozEb are homologs of the cell elongation regulator CozESpn of Streptococcus pneumoniae. While cozEa and cozEb were not essential individually, the ΔcozEaΔcozEb double mutant was lethal. To study the functions of cozEa and cozEb, we constructed a CRISPR interference (CRISPRi) system for S. aureus, allowing transcriptional knockdown of essential genes. CRISPRi knockdown of cozEa in the ΔcozEb strain (and vice versa) causes cell morphological defects and aberrant nucleoid staining, showing that cozEa and cozEb have overlapping functions and are important for normal cell division. We found that CozEa and CozEb interact with and possibly influence localization of the cell division protein EzrA. Furthermore, the CozE-EzrA interaction is conserved in S. pneumoniae, and cell division is mislocalized in cozESpn -depleted S. pneumoniae cells. Together, our results show that CozE proteins mediate control of cell division in S. aureus and S. pneumoniae, likely via interactions with key cell division proteins such as EzrA.
Collapse
Affiliation(s)
- Gro Anita Stamsås
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Ine Storaker Myrbråten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Daniel Straume
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Zhian Salehian
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Leiv Sigve Håvarstein
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
62
|
Jiang Y, Liang X, Guo M, Cao Y, Cai S. Fracture mechanics modeling of popping event during daughter cell separation. Biomech Model Mechanobiol 2018; 17:1131-1137. [PMID: 29748837 DOI: 10.1007/s10237-018-1019-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/23/2018] [Indexed: 10/16/2022]
Abstract
Most bacteria cells divide by binary fission which is part of a bacteria cell cycle and requires tight regulations and precise coordination. Fast separation of Staphylococcus Aureus (S. Aureus) daughter cells, named as popping event, has been observed in recent experiments. The popping event was proposed to be driven by mechanical crack propagation in the peripheral ring which connected two daughter cells before their separation. It has also been shown that after the fast separation, a small portion of the peripheral ring was left as a hinge. In the article, we develop a fracture mechanics model for the crack growth in the peripheral ring during S. Aureus daughter cell separation. In particular, using finite element analysis, we calculate the energy release rate associated with the crack growth in the peripheral ring, when daughter cells are inflated by a uniform turgor pressure inside. Our results show that with a fixed inflation of daughter cells, the energy release rate depends on the crack length non-monotonically. The energy release rate reaches a maximum value for a crack of an intermediate length. The non-monotonic relationship between the energy release rate and crack length clearly indicates that the crack propagation in the peripheral ring can be unstable. The computed energy release rate as a function of crack length can also be used to explain the existence of a small portion of peripheral ring remained as hinge after the popping event.
Collapse
Affiliation(s)
- Yuxuan Jiang
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xudong Liang
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yanping Cao
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
63
|
Lund VA, Wacnik K, Turner RD, Cotterell BE, Walther CG, Fenn SJ, Grein F, Wollman AJ, Leake MC, Olivier N, Cadby A, Mesnage S, Jones S, Foster SJ. Molecular coordination of Staphylococcus aureus cell division. eLife 2018; 7:32057. [PMID: 29465397 PMCID: PMC5821461 DOI: 10.7554/elife.32057] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
The bacterial cell wall is essential for viability, but despite its ability to withstand internal turgor must remain dynamic to permit growth and division. Peptidoglycan is the major cell wall structural polymer, whose synthesis requires multiple interacting components. The human pathogen Staphylococcus aureus is a prolate spheroid that divides in three orthogonal planes. Here, we have integrated cellular morphology during division with molecular level resolution imaging of peptidoglycan synthesis and the components responsible. Synthesis occurs across the developing septal surface in a diffuse pattern, a necessity of the observed septal geometry, that is matched by variegated division component distribution. Synthesis continues after septal annulus completion, where the core division component FtsZ remains. The novel molecular level information requires re-evaluation of the growth and division processes leading to a new conceptual model, whereby the cell cycle is expedited by a set of functionally connected but not regularly distributed components.
Collapse
Affiliation(s)
- Victoria A Lund
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Katarzyna Wacnik
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Robert D Turner
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.,Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Bryony E Cotterell
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.,Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | - Christa G Walther
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Samuel J Fenn
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, German Center for Infection Research (DZIF), University of Bonn, Bonn, Germany
| | - Adam Jm Wollman
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Mark C Leake
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Nicolas Olivier
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Ashley Cadby
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Stéphane Mesnage
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Simon Jones
- Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | - Simon J Foster
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
64
|
Veening JW, Tamayo R. Editorial overview: Bacterial cell regulation: from genes to complex environments. Curr Opin Microbiol 2018; 42:110-114. [PMID: 29444492 DOI: 10.1016/j.mib.2018.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland; Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
65
|
Cesar S, Huang KC. Thinking big: the tunability of bacterial cell size. FEMS Microbiol Rev 2017; 41:672-678. [PMID: 28961755 DOI: 10.1093/femsre/fux026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/10/2017] [Indexed: 11/13/2022] Open
Abstract
The determination of cell size is a fundamental challenge for all living organisms. In a given growth condition, cell size for a particular bacterial species typically falls within a narrow distribution. Nonetheless, size can vary enormously across species, and the size of a single bacterium can even vary substantially across growth conditions. Recent phenomenological studies have revived classic interest in how cells maintain their size and how they adjust their size with changes in growth rate. However, the mechanisms by which cells establish a particular size are relatively enigmatic. Here, we review existing knowledge on how size in rod-shaped bacteria is shaped by nutrient, mechanical, and genetic factors. We also examine obstacles to accurate size measurement and recent technologies that help to overcome these hurdles. Finally, we discuss the relevance of cell size to bacterial physiology.
Collapse
Affiliation(s)
- Spencer Cesar
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
66
|
Chang F. Forces that shape fission yeast cells. Mol Biol Cell 2017; 28:1819-1824. [PMID: 28684607 PMCID: PMC5541833 DOI: 10.1091/mbc.e16-09-0671] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 11/11/2022] Open
Abstract
One of the major challenges of modern cell biology is to understand how cells are assembled from nanoscale components into micrometer-scale entities with a specific size and shape. Here I describe how our quest to understand the morphogenesis of the fission yeast Schizosaccharomyces pombe drove us to investigate cellular mechanics. These studies build on the view that cell shape arises from the physical properties of an elastic cell wall inflated by internal turgor pressure. Consideration of cellular mechanics provides new insights into not only mechanisms responsible for cell-shape determination and growth, but also cellular processes such as cytokinesis and endocytosis. Studies in yeast can help to illuminate approaches and mechanisms to study the mechanobiology of the cell surface in other cell types, including animal cells.
Collapse
Affiliation(s)
- Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
67
|
Rojas ER, Huang KC. Regulation of microbial growth by turgor pressure. Curr Opin Microbiol 2017; 42:62-70. [PMID: 29125939 DOI: 10.1016/j.mib.2017.10.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 12/24/2022]
Abstract
Rapid changes in environmental osmolarity are a natural aspect of microbial lifestyles. The change in turgor pressure resulting from an osmotic shock alters the mechanical forces within the cell envelope, and can impact cell growth across a range of timescales, through a variety of mechanical mechanisms. Here, we first summarize measurements of turgor pressure in various organisms. We then review how the combination of microfluidic flow cells and quantitative image analysis has driven discovery of the diverse ways in which turgor pressure mechanically regulates bacterial growth, independent of the effect of cytoplasmic crowding. In Gram-positive, rod-shaped bacteria, reductions in turgor pressure cause decreased growth rate. Moreover, a hypoosmotic shock, which increases turgor pressure and membrane tension, leads to transient inhibition of cell-wall growth via electrical depolarization. By contrast, Gram-negative Escherichia coli is remarkably insensitive to changes in turgor. We discuss the extent to which turgor pressure impacts processes such as cell division that alter cell shape, in particular that turgor facilitates millisecond-scale daughter-cell separation in many Actinobacteria and eukaryotic fission yeast. This diverse set of responses showcases the potential for using osmotic shocks to interrogate how mechanical perturbations affect cellular processes.
Collapse
Affiliation(s)
- Enrique R Rojas
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
68
|
Even C, Marlière C, Ghigo JM, Allain JM, Marcellan A, Raspaud E. Recent advances in studying single bacteria and biofilm mechanics. Adv Colloid Interface Sci 2017; 247:573-588. [PMID: 28754382 DOI: 10.1016/j.cis.2017.07.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022]
Abstract
Bacterial biofilms correspond to surface-associated bacterial communities embedded in hydrogel-like matrix, in which high cell density, reduced diffusion and physico-chemical heterogeneity play a protective role and induce novel behaviors. In this review, we present recent advances on the understanding of how bacterial mechanical properties, from single cell to high-cell density community, determine biofilm tri-dimensional growth and eventual dispersion and we attempt to draw a parallel between these properties and the mechanical properties of other well-studied hydrogels and living systems.
Collapse
|
69
|
|
70
|
Erickson HP. How bacterial cell division might cheat turgor pressure - a unified mechanism of septal division in Gram-positive and Gram-negative bacteria. Bioessays 2017; 39. [PMID: 28699183 DOI: 10.1002/bies.201700045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An important question for bacterial cell division is how the invaginating septum can overcome the turgor force generated by the high osmolarity of the cytoplasm. I suggest that it may not need to. Several studies in Gram-negative bacteria have shown that the periplasm is isoosmolar with the cytoplasm. Indirect evidence suggests that this is also true for Gram-positive bacteria. In this case the invagination of the septum takes place within the uniformly high osmotic pressure environment, and does not have to fight turgor pressure. A related question is how the V-shaped constriction of Gram-negative bacteria relates to the plate-like septum of Gram-positive bacteria. I collected evidence that Gram-negative bacteria have a latent capability of forming plate-like septa, and present a model in which septal division is the basic mechanism in both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Harold P Erickson
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| |
Collapse
|
71
|
Abstract
The last three decades have witnessed an explosion of discoveries about the mechanistic details of binary fission in model bacteria such as Escherichia coli, Bacillus subtilis, and Caulobacter crescentus. This was made possible not only by advances in microscopy that helped answer questions about cell biology but also by clever genetic manipulations that directly and easily tested specific hypotheses. More recently, research using understudied organisms, or nonmodel systems, has revealed several alternate mechanistic strategies that bacteria use to divide and propagate. In this review, we highlight new findings and compare these strategies to cell division mechanisms elucidated in model organisms.
Collapse
Affiliation(s)
- Prahathees J Eswara
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620;
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5132;
| |
Collapse
|
72
|
Yu FB, Willis L, Chau RMW, Zambon A, Horowitz M, Bhaya D, Huang KC, Quake SR. Long-term microfluidic tracking of coccoid cyanobacterial cells reveals robust control of division timing. BMC Biol 2017; 15:11. [PMID: 28196492 PMCID: PMC5310064 DOI: 10.1186/s12915-016-0344-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 12/10/2016] [Indexed: 01/25/2023] Open
Abstract
Background Cyanobacteria are important agents in global carbon and nitrogen cycling and hold great promise for biotechnological applications. Model organisms such as Synechocystis sp. and Synechococcus sp. have advanced our understanding of photosynthetic capacity and circadian behavior, mostly using population-level measurements in which the behavior of individuals cannot be monitored. Synechocystis sp. cells are small and divide slowly, requiring long-term experiments to track single cells. Thus, the cumulative effects of drift over long periods can cause difficulties in monitoring and quantifying cell growth and division dynamics. Results To overcome this challenge, we enhanced a microfluidic cell-culture device and developed an image analysis pipeline for robust lineage reconstruction. This allowed simultaneous tracking of many cells over multiple generations, and revealed that cells expand exponentially throughout their cell cycle. Generation times were highly correlated for sister cells, but not between mother and daughter cells. Relationships between birth size, division size, and generation time indicated that cell-size control was inconsistent with the “sizer” rule, where division timing is based on cell size, or the “timer” rule, where division occurs after a fixed time interval. Instead, single cell growth statistics were most consistent with the “adder” rule, in which division occurs after a constant increment in cell volume. Cells exposed to light-dark cycles exhibited growth and division only during the light period; dark phases pause but do not disrupt cell-cycle control. Conclusions Our analyses revealed that the “adder” model can explain both the growth-related statistics of single Synechocystis cells and the correlation between sister cell generation times. We also observed rapid phenotypic response to light-dark transitions at the single cell level, highlighting the critical role of light in cyanobacterial cell-cycle control. Our findings suggest that by monitoring the growth kinetics of individual cells we can build testable models of circadian control of the cell cycle in cyanobacteria. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0344-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Feiqiao Brian Yu
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.,Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Lisa Willis
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.,Sainsbury Laboratory, Cambridge University, Cambridge, CB2 1LR, UK
| | | | - Alessandro Zambon
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.,Department of Industrial Engineering, University of Padova, Padova, 35131, Italy
| | - Mark Horowitz
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA. .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
73
|
Lea-Smith DJ, Ortiz-Suarez ML, Lenn T, Nürnberg DJ, Baers LL, Davey MP, Parolini L, Huber RG, Cotton CAR, Mastroianni G, Bombelli P, Ungerer P, Stevens TJ, Smith AG, Bond PJ, Mullineaux CW, Howe CJ. Hydrocarbons Are Essential for Optimal Cell Size, Division, and Growth of Cyanobacteria. PLANT PHYSIOLOGY 2016; 172:1928-1940. [PMID: 27707888 PMCID: PMC5100757 DOI: 10.1104/pp.16.01205] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/03/2016] [Indexed: 05/04/2023]
Abstract
Cyanobacteria are intricately organized, incorporating an array of internal thylakoid membranes, the site of photosynthesis, into cells no larger than other bacteria. They also synthesize C15-C19 alkanes and alkenes, which results in substantial production of hydrocarbons in the environment. All sequenced cyanobacteria encode hydrocarbon biosynthesis pathways, suggesting an important, undefined physiological role for these compounds. Here, we demonstrate that hydrocarbon-deficient mutants of Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 exhibit significant phenotypic differences from wild type, including enlarged cell size, reduced growth, and increased division defects. Photosynthetic rates were similar between strains, although a minor reduction in energy transfer between the soluble light harvesting phycobilisome complex and membrane-bound photosystems was observed. Hydrocarbons were shown to accumulate in thylakoid and cytoplasmic membranes. Modeling of membranes suggests these compounds aggregate in the center of the lipid bilayer, potentially promoting membrane flexibility and facilitating curvature. In vivo measurements confirmed that Synechococcus sp. PCC 7002 mutants lacking hydrocarbons exhibit reduced thylakoid membrane curvature compared to wild type. We propose that hydrocarbons may have a role in inducing the flexibility in membranes required for optimal cell division, size, and growth, and efficient association of soluble and membrane bound proteins. The recent identification of C15-C17 alkanes and alkenes in microalgal species suggests hydrocarbons may serve a similar function in a broad range of photosynthetic organisms.
Collapse
Affiliation(s)
- David J Lea-Smith
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., L.L.B., C.A.R.C., P.B., C.J.H.);
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom (M.L.O.-S., P.J.B.);
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom (T.L., D.J.N., G.M., P.U., C.W.M.);
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (M.P.D., A.G.S.);
- Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom (L.P.);
- Bioinformatics Institute, A*STAR, Singapore 138671 (R.G.H., P.J.B.);
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom (T.J.S.); and
- National University of Singapore, Department of Biological Sciences, Singapore 117543 (P.J.B.)
| | - Maite L Ortiz-Suarez
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., L.L.B., C.A.R.C., P.B., C.J.H.)
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom (M.L.O.-S., P.J.B.)
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom (T.L., D.J.N., G.M., P.U., C.W.M.)
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (M.P.D., A.G.S.)
- Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom (L.P.)
- Bioinformatics Institute, A*STAR, Singapore 138671 (R.G.H., P.J.B.)
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom (T.J.S.); and
- National University of Singapore, Department of Biological Sciences, Singapore 117543 (P.J.B.)
| | - Tchern Lenn
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., L.L.B., C.A.R.C., P.B., C.J.H.)
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom (M.L.O.-S., P.J.B.)
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom (T.L., D.J.N., G.M., P.U., C.W.M.)
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (M.P.D., A.G.S.)
- Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom (L.P.)
- Bioinformatics Institute, A*STAR, Singapore 138671 (R.G.H., P.J.B.)
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom (T.J.S.); and
- National University of Singapore, Department of Biological Sciences, Singapore 117543 (P.J.B.)
| | - Dennis J Nürnberg
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., L.L.B., C.A.R.C., P.B., C.J.H.)
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom (M.L.O.-S., P.J.B.)
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom (T.L., D.J.N., G.M., P.U., C.W.M.)
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (M.P.D., A.G.S.)
- Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom (L.P.)
- Bioinformatics Institute, A*STAR, Singapore 138671 (R.G.H., P.J.B.)
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom (T.J.S.); and
- National University of Singapore, Department of Biological Sciences, Singapore 117543 (P.J.B.)
| | - Laura L Baers
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., L.L.B., C.A.R.C., P.B., C.J.H.)
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom (M.L.O.-S., P.J.B.)
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom (T.L., D.J.N., G.M., P.U., C.W.M.)
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (M.P.D., A.G.S.)
- Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom (L.P.)
- Bioinformatics Institute, A*STAR, Singapore 138671 (R.G.H., P.J.B.)
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom (T.J.S.); and
- National University of Singapore, Department of Biological Sciences, Singapore 117543 (P.J.B.)
| | - Matthew P Davey
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., L.L.B., C.A.R.C., P.B., C.J.H.)
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom (M.L.O.-S., P.J.B.)
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom (T.L., D.J.N., G.M., P.U., C.W.M.)
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (M.P.D., A.G.S.)
- Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom (L.P.)
- Bioinformatics Institute, A*STAR, Singapore 138671 (R.G.H., P.J.B.)
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom (T.J.S.); and
- National University of Singapore, Department of Biological Sciences, Singapore 117543 (P.J.B.)
| | - Lucia Parolini
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., L.L.B., C.A.R.C., P.B., C.J.H.)
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom (M.L.O.-S., P.J.B.)
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom (T.L., D.J.N., G.M., P.U., C.W.M.)
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (M.P.D., A.G.S.)
- Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom (L.P.)
- Bioinformatics Institute, A*STAR, Singapore 138671 (R.G.H., P.J.B.)
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom (T.J.S.); and
- National University of Singapore, Department of Biological Sciences, Singapore 117543 (P.J.B.)
| | - Roland G Huber
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., L.L.B., C.A.R.C., P.B., C.J.H.)
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom (M.L.O.-S., P.J.B.)
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom (T.L., D.J.N., G.M., P.U., C.W.M.)
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (M.P.D., A.G.S.)
- Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom (L.P.)
- Bioinformatics Institute, A*STAR, Singapore 138671 (R.G.H., P.J.B.)
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom (T.J.S.); and
- National University of Singapore, Department of Biological Sciences, Singapore 117543 (P.J.B.)
| | - Charles A R Cotton
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., L.L.B., C.A.R.C., P.B., C.J.H.)
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom (M.L.O.-S., P.J.B.)
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom (T.L., D.J.N., G.M., P.U., C.W.M.)
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (M.P.D., A.G.S.)
- Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom (L.P.)
- Bioinformatics Institute, A*STAR, Singapore 138671 (R.G.H., P.J.B.)
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom (T.J.S.); and
- National University of Singapore, Department of Biological Sciences, Singapore 117543 (P.J.B.)
| | - Giulia Mastroianni
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., L.L.B., C.A.R.C., P.B., C.J.H.)
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom (M.L.O.-S., P.J.B.)
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom (T.L., D.J.N., G.M., P.U., C.W.M.)
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (M.P.D., A.G.S.)
- Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom (L.P.)
- Bioinformatics Institute, A*STAR, Singapore 138671 (R.G.H., P.J.B.)
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom (T.J.S.); and
- National University of Singapore, Department of Biological Sciences, Singapore 117543 (P.J.B.)
| | - Paolo Bombelli
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., L.L.B., C.A.R.C., P.B., C.J.H.)
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom (M.L.O.-S., P.J.B.)
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom (T.L., D.J.N., G.M., P.U., C.W.M.)
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (M.P.D., A.G.S.)
- Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom (L.P.)
- Bioinformatics Institute, A*STAR, Singapore 138671 (R.G.H., P.J.B.)
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom (T.J.S.); and
- National University of Singapore, Department of Biological Sciences, Singapore 117543 (P.J.B.)
| | - Petra Ungerer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., L.L.B., C.A.R.C., P.B., C.J.H.)
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom (M.L.O.-S., P.J.B.)
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom (T.L., D.J.N., G.M., P.U., C.W.M.)
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (M.P.D., A.G.S.)
- Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom (L.P.)
- Bioinformatics Institute, A*STAR, Singapore 138671 (R.G.H., P.J.B.)
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom (T.J.S.); and
- National University of Singapore, Department of Biological Sciences, Singapore 117543 (P.J.B.)
| | - Tim J Stevens
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., L.L.B., C.A.R.C., P.B., C.J.H.)
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom (M.L.O.-S., P.J.B.)
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom (T.L., D.J.N., G.M., P.U., C.W.M.)
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (M.P.D., A.G.S.)
- Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom (L.P.)
- Bioinformatics Institute, A*STAR, Singapore 138671 (R.G.H., P.J.B.)
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom (T.J.S.); and
- National University of Singapore, Department of Biological Sciences, Singapore 117543 (P.J.B.)
| | - Alison G Smith
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., L.L.B., C.A.R.C., P.B., C.J.H.)
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom (M.L.O.-S., P.J.B.)
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom (T.L., D.J.N., G.M., P.U., C.W.M.)
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (M.P.D., A.G.S.)
- Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom (L.P.)
- Bioinformatics Institute, A*STAR, Singapore 138671 (R.G.H., P.J.B.)
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom (T.J.S.); and
- National University of Singapore, Department of Biological Sciences, Singapore 117543 (P.J.B.)
| | - Peter J Bond
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., L.L.B., C.A.R.C., P.B., C.J.H.)
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom (M.L.O.-S., P.J.B.)
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom (T.L., D.J.N., G.M., P.U., C.W.M.)
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (M.P.D., A.G.S.)
- Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom (L.P.)
- Bioinformatics Institute, A*STAR, Singapore 138671 (R.G.H., P.J.B.)
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom (T.J.S.); and
- National University of Singapore, Department of Biological Sciences, Singapore 117543 (P.J.B.)
| | - Conrad W Mullineaux
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., L.L.B., C.A.R.C., P.B., C.J.H.)
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom (M.L.O.-S., P.J.B.)
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom (T.L., D.J.N., G.M., P.U., C.W.M.)
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (M.P.D., A.G.S.)
- Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom (L.P.)
- Bioinformatics Institute, A*STAR, Singapore 138671 (R.G.H., P.J.B.)
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom (T.J.S.); and
- National University of Singapore, Department of Biological Sciences, Singapore 117543 (P.J.B.)
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., L.L.B., C.A.R.C., P.B., C.J.H.)
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom (M.L.O.-S., P.J.B.)
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom (T.L., D.J.N., G.M., P.U., C.W.M.)
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (M.P.D., A.G.S.)
- Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom (L.P.)
- Bioinformatics Institute, A*STAR, Singapore 138671 (R.G.H., P.J.B.)
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom (T.J.S.); and
- National University of Singapore, Department of Biological Sciences, Singapore 117543 (P.J.B.)
| |
Collapse
|
74
|
Pader V, Hakim S, Painter KL, Wigneshweraraj S, Clarke TB, Edwards AM. Staphylococcus aureus inactivates daptomycin by releasing membrane phospholipids. Nat Microbiol 2016; 2:16194. [PMID: 27775684 DOI: 10.1038/nmicrobiol.2016.194] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 09/07/2016] [Indexed: 01/27/2023]
Abstract
Daptomycin is a bactericidal antibiotic of last resort for serious infections caused by methicillin-resistant Staphylococcus aureus (MRSA)1,2. Although resistance is rare, treatment failure can occur in more than 20% of cases3,4 and so there is a pressing need to identify and mitigate factors that contribute to poor therapeutic outcomes. Here, we show that loss of the Agr quorum-sensing system, which frequently occurs in clinical isolates, enhances S. aureus survival during daptomycin treatment. Wild-type S. aureus was killed rapidly by daptomycin, but Agr-defective mutants survived antibiotic exposure by releasing membrane phospholipids, which bound and inactivated the antibiotic. Although wild-type bacteria also released phospholipid in response to daptomycin, Agr-triggered secretion of small cytolytic toxins, known as phenol soluble modulins, prevented antibiotic inactivation. Phospholipid shedding by S. aureus occurred via an active process and was inhibited by the β-lactam antibiotic oxacillin, which slowed inactivation of daptomycin and enhanced bacterial killing. In conclusion, S. aureus possesses a transient defence mechanism that protects against daptomycin, which can be compromised by Agr-triggered toxin production or an existing therapeutic antibiotic.
Collapse
Affiliation(s)
- Vera Pader
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Sanika Hakim
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Kimberley L Painter
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Sivaramesh Wigneshweraraj
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Thomas B Clarke
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| |
Collapse
|
75
|
Zhou X, Halladin DK, Theriot JA. Fast Mechanically Driven Daughter Cell Separation Is Widespread in Actinobacteria. mBio 2016; 7:e00952-16. [PMID: 27578753 PMCID: PMC4999543 DOI: 10.1128/mbio.00952-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/27/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Dividing cells of the coccoid Gram-positive bacterium Staphylococcus aureus undergo extremely rapid (millisecond) daughter cell separation (DCS) driven by mechanical crack propagation, a strategy that is very distinct from the gradual, enzymatically driven cell wall remodeling process that has been well described in several rod-shaped model bacteria. To determine if other bacteria, especially those in the same phylum (Firmicutes) or with similar coccoid shapes as S. aureus, might use a similar mechanically driven strategy for DCS, we used high-resolution video microscopy to examine cytokinesis in a phylogenetically wide range of species with various cell shapes and sizes. We found that fast mechanically driven DCS is rather rare in the Firmicutes (low G+C Gram positives), observed only in Staphylococcus and its closest coccoid relatives in the Macrococcus genus, and we did not observe this division strategy among the Gram-negative Proteobacteria In contrast, several members of the high-G+C Gram-positive phylum Actinobacteria (Micrococcus luteus, Brachybacterium faecium, Corynebacterium glutamicum, and Mycobacterium smegmatis) with diverse shapes ranging from coccoid to rod all undergo fast mechanical DCS during cell division. Most intriguingly, similar fast mechanical DCS was also observed during the sporulation of the actinobacterium Streptomyces venezuelae IMPORTANCE Much of our knowledge on bacterial cytokinesis comes from studying rod-shaped model organisms such as Escherichia coli and Bacillus subtilis Less is known about variations in this process among different bacterial species. While cell division in many bacteria has been characterized to some extent genetically or biochemically, few species have been examined using video microscopy to uncover the kinetics of cytokinesis and daughter cell separation (DCS). In this work, we found that fast (millisecond) DCS is exhibited by species in two independent clades of Gram-positive bacteria and is particularly prevalent among the Actinobacteria, a diverse group that includes significant pathogens as well as bacteria that generate medically important antibiotics.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - David K Halladin
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Julie A Theriot
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
76
|
Wang HY, Hua XW, Jia HR, Li C, Lin F, Chen Z, Wu FG. Universal Cell Surface Imaging for Mammalian, Fungal, and Bacterial Cells. ACS Biomater Sci Eng 2016; 2:987-997. [DOI: 10.1021/acsbiomaterials.6b00130] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Hong-Yin Wang
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Xian-Wu Hua
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Hao-Ran Jia
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Chengcheng Li
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Fengming Lin
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Zhan Chen
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, United States
| | - Fu-Gen Wu
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
77
|
Abstract
We introduce a general theoretical framework to study the shape dynamics of actively growing and remodeling surfaces. Using this framework we develop a physical model for growing bacterial cell walls and study the interplay of cell shape with the dynamics of growth and constriction. The model allows us to derive constraints on cell wall mechanical energy based on the observed dynamics of cell shape. We predict that exponential growth in cell size requires a constant amount of cell wall energy to be dissipated per unit volume. We use the model to understand and contrast growth in bacteria with different shapes such as spherical, ellipsoidal, cylindrical and toroidal morphologies. Coupling growth to cell wall constriction, we predict a discontinuous shape transformation, from partial constriction to cell division, as a function of the chemical potential driving cell wall synthesis. Our model for cell wall energy and shape dynamics relates growth kinetics with cell geometry, and provides a unified framework to describe the interplay between shape, growth and division in bacterial cells.
Collapse
|
78
|
Lázaro-Díez M, Remuzgo-Martínez S, Rodríguez-Mirones C, Acosta F, Icardo JM, Martínez-Martínez L, Ramos-Vivas J. Effects of Subinhibitory Concentrations of Ceftaroline on Methicillin-Resistant Staphylococcus aureus (MRSA) Biofilms. PLoS One 2016; 11:e0147569. [PMID: 26800524 PMCID: PMC4723258 DOI: 10.1371/journal.pone.0147569] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/05/2016] [Indexed: 11/19/2022] Open
Abstract
Ceftaroline (CPT) is a novel cephalosporin with in vitro activity against Staphylococcus aureus. Ceftaroline exhibits a level of binding affinity for PBPs in S. aureus including PBP2a of methicillin-resistant S. aureus (MRSA). The aims of this study were to investigate the morphological, physiological and molecular responses of MRSA clinical strains and MRSA biofilms to sub-MICs (1/4 and 1/16 MIC) of ceftaroline by using transmission, scanning and confocal microscopy. We have also used quantitative Real-Time PCR to study the effect of sub-MICs of ceftaroline on the expression of the staphylococcal icaA, agrA, sarA and sasF genes in MRSA biofilms. In one set of experiments, ceftaroline was able to inhibit biofilm formation in all strains tested at MIC, however, a strain dependent behavior in presence of sub-MICs of ceftaroline was shown. In a second set of experiments, destruction of preformed biofilms by addition of ceftaroline was evaluated. Ceftaroline was able to inhibit biofilm formation at MIC in all strains tested but not at the sub-MICs. Destruction of preformed biofilms was strain dependent because the biofilm formed by a matrix-producing strain was resistant to a challenge with ceftaroline at MIC, whereas in other strains the biofilm was sensitive. At sub-MICs, the impact of ceftaroline on expression of virulence genes was strain-dependent at 1/4 MIC and no correlation between ceftaroline-enhanced biofilm formation and gene regulation was established at 1/16 MIC. Our findings suggest that sub-MICs of ceftaroline enhance bacterial attachment and biofilm formation by some, but not all, MRSA strains and, therefore, stress the importance of maintaining effective bactericidal concentrations of ceftaroline to fight biofilm-MRSA related infections.
Collapse
Affiliation(s)
- María Lázaro-Díez
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Sara Remuzgo-Martínez
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Cristina Rodríguez-Mirones
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Felix Acosta
- Grupo de Investigación en Acuicultura, Universidad de Las Palmas de Gran Canaria, Arucas, Gran Canaria, Spain
| | - Jose M. Icardo
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Luis Martínez-Martínez
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Cantabria, Spain
| | - José Ramos-Vivas
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
79
|
Manual, In situ, Real-Time Nanofabrication using Cracking through Indentation. Sci Rep 2016; 6:18892. [PMID: 26725520 PMCID: PMC4698748 DOI: 10.1038/srep18892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/30/2015] [Indexed: 11/25/2022] Open
Abstract
Nanofabrication has seen an increasing demand for applications in many fields of science and technology, but its production still requires relatively difficult, time-consuming, and expensive processes. Here we report a simple but very effective one dimensional (1D) nano-patterning technology that suggests a new nanofabrication method. This new technique involves the control of naturally propagating cracks initiated through simple, manually generated indentation, obviating the necessity of complicated equipment and elaborate experimental environments such as those that employ clean rooms, high vacuums, and the fastidious maintenance of processing temperatures. The channel fabricated with this technique can be as narrow as 10 nm with unlimited length and very high cross-sectional aspect ratio, an accomplishment difficult even for a state-of-the-art technology such as e-beam lithography. More interestingly, the fabrication speed can be controlled and achieved to as little as several hundred micrometers per second. Along with the simplicity and real-time fabrication capability of the technique, this tunable fabrication speed makes the method introduced here the authentic nanofabrication for in situ experiments.
Collapse
|
80
|
Spatial Organization of Cell Wall-Anchored Proteins at the Surface of Gram-Positive Bacteria. Curr Top Microbiol Immunol 2016; 404:177-201. [DOI: 10.1007/82_2016_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
81
|
Monteiro JM, Fernandes PB, Vaz F, Pereira AR, Tavares AC, Ferreira MT, Pereira PM, Veiga H, Kuru E, VanNieuwenhze MS, Brun YV, Filipe SR, Pinho MG. Cell shape dynamics during the staphylococcal cell cycle. Nat Commun 2015; 6:8055. [PMID: 26278781 PMCID: PMC4557339 DOI: 10.1038/ncomms9055] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 07/13/2015] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus is an aggressive pathogen and a model organism to study cell division in sequential orthogonal planes in spherical bacteria. However, the small size of staphylococcal cells has impaired analysis of changes in morphology during the cell cycle. Here we use super-resolution microscopy and determine that S. aureus cells are not spherical throughout the cell cycle, but elongate during specific time windows, through peptidoglycan synthesis and remodelling. Both peptidoglycan hydrolysis and turgor pressure are required during division for reshaping the flat division septum into a curved surface. In this process, the septum generates less than one hemisphere of each daughter cell, a trait we show is common to other cocci. Therefore, cell surface scars of previous divisions do not divide the cells in quadrants, generating asymmetry in the daughter cells. Our results introduce a need to reassess the models for division plane selection in cocci. Staphylococci are spherical bacteria that divide in sequential orthogonal planes. Here, the authors use super-resolution microscopy to show that staphylococcal cells elongate before dividing, and that the division septum generates less than one hemisphere of each daughter cell, generating asymmetry.
Collapse
Affiliation(s)
- João M Monteiro
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Pedro B Fernandes
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Filipa Vaz
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Ana R Pereira
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Andreia C Tavares
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Maria T Ferreira
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Pedro M Pereira
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Helena Veiga
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Erkin Kuru
- 1] Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, USA [2] Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47405, USA
| | | | - Yves V Brun
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47405, USA
| | - Sérgio R Filipe
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Mariana G Pinho
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| |
Collapse
|
82
|
Abstract
UNLABELLED Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. IMPORTANCE Understanding bacterial growth and division is a fundamental problem, and knowledge in this area underlies the treatment of many infectious diseases. Almost all bacteria are surrounded by a macromolecule of peptidoglycan that encloses the cell and maintains shape, and bacterial cells must increase the size of this molecule in order to enlarge themselves. This requires not only the insertion of new peptidoglycan monomers, a process targeted by antibiotics, including penicillin, but also breakage of existing bonds, a potentially hazardous activity for the cell. Using Staphylococcus aureus, we have identified a set of enzymes that are critical for cellular enlargement. We show that these enzymes are required for normal growth and define the mechanism through which cellular enlargement is accomplished, i.e., by breaking bonds in the peptidoglycan, which reduces the stiffness of the cell wall, enabling it to stretch and expand, a process that is likely to be fundamental to many bacteria.
Collapse
|