51
|
Thom D, Rammer W, Laux P, Smiatek G, Kunstmann H, Seibold S, Seidl R. Will forest dynamics continue to accelerate throughout the 21st century in the Northern Alps? GLOBAL CHANGE BIOLOGY 2022; 28:3260-3274. [PMID: 35170829 DOI: 10.1111/gcb.16133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Observational evidence suggests that forests in the Northern Alps are changing at an increasing rate as a consequence of climate change. Yet, it remains unclear whether the acceleration of forest change will continue in the future, or whether downregulating feedbacks will eventually decouple forest dynamics from climate change. Here we studied future forest dynamics at Berchtesgaden National Park, Germany by means of a process-based forest landscape model, simulating an ensemble of 22 climate projections until the end of the 21st century. Our objectives were (i) to assess whether the observed acceleration of forest dynamics will continue in the future, (ii) to analyze how uncertainty in future climate translates to variation in future forest disturbance, structure, and composition, and (iii) to determine the main drivers of future forest dynamics. We found that forest dynamics continue to accelerate in the coming decades, with a trend towards denser, structurally more complex and more species rich forests. However, changes in forest structure leveled off in the second half of the 21st century regardless of climate scenario. In contrast, climate scenarios caused trajectories of tree species change to diverge in the second half of the 21st century, with stabilization under RCP 2.6 and RCP 4.5 scenarios and accelerated loss of conifers under RCP 8.5. Disturbance projections were 3 to 20 times more variable than future climate, whereas projected future forest structure and composition varied considerably less than climate. Indirect effects of climate change via alterations of the disturbance regime had a stronger impact on future forest dynamics than direct effects. Our findings suggest that dampening feedbacks within forest dynamics will decelerate forest change in the second half of the 21st century. However, warming beyond the levels projected under RCP 4.5 might profoundly alter future forest disturbance and composition, challenging conservation efforts and ecosystem service supply.
Collapse
Affiliation(s)
- Dominik Thom
- Ecosystem Dynamics and Forest Management Group, School of Life Sciences, Technical University of Munich, Freising, Germany
- Gund Institute for Environment, University of Vermont, Burlington, Vermont, USA
| | - Werner Rammer
- Ecosystem Dynamics and Forest Management Group, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Patrick Laux
- Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Campus Alpin, Garmisch-Partenkirchen, Germany
- Institute of Geography, University of Augsburg, Augsburg, Germany
| | - Gerhard Smiatek
- Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Campus Alpin, Garmisch-Partenkirchen, Germany
| | - Harald Kunstmann
- Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Campus Alpin, Garmisch-Partenkirchen, Germany
- Institute of Geography, University of Augsburg, Augsburg, Germany
| | - Sebastian Seibold
- Ecosystem Dynamics and Forest Management Group, School of Life Sciences, Technical University of Munich, Freising, Germany
- Berchtesgaden National Park, Berchtesgaden, Germany
| | - Rupert Seidl
- Ecosystem Dynamics and Forest Management Group, School of Life Sciences, Technical University of Munich, Freising, Germany
- Berchtesgaden National Park, Berchtesgaden, Germany
| |
Collapse
|
52
|
Sturm J, Santos MJ, Schmid B, Damm A. Satellite data reveal differential responses of Swiss forests to unprecedented 2018 drought. GLOBAL CHANGE BIOLOGY 2022; 28:2956-2978. [PMID: 35182091 PMCID: PMC9310759 DOI: 10.1111/gcb.16136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 05/31/2023]
Abstract
Extreme events such as the summer drought of 2018 in Central Europe are projected to occur more frequently in the future and may cause major damages including increased tree mortality and negative impacts on forest ecosystem services. Here, we quantify the response of >1 million forest pixels of 10 × 10 m across Switzerland to the 2018 drought in terms of resistance, recovery, and resilience. We used the Normalized Difference Water Index (NDWI) derived from Sentinel-2 satellite data as a proxy for canopy water content and analyzed its relative change. We calculated NDWI change between the 2017 pre-drought and 2018 drought years (indicating resistance), 2018 and the 2019 post-drought (indicating recovery), and between 2017-2019 (indicating resilience). Analyzing the data from this large natural experiment, we found that for 4.3% of the Swiss forest the NDWI declined between 2017 and 2018, indicating areas with low resistance of the forest canopy to drought effects. While roughly 50% of this area recovered, in 2.7% of the forested area NDWI continued to decline from 2018 to 2019, suggesting prolonged negative effects or delayed damage. We found differential forest responses to drought associated with site topographic characteristics and forest stand characteristics, and to a lesser extent with climatic conditions and interactions between these drivers. Low drought resistance and high recovery were most prominent at forest edges, but also on south-facing slopes and lower elevations. Tree functional type was the most important driver of drought resilience, with most of the damage in stands with high conifer abundance. Our results demonstrate the suitability of satellite-based quantification of drought-induced forest damage at high spatial resolution across large areas. Such information is important to predict how local site characteristics may impact forest vulnerability to future extreme events and help in the search for appropriate adaptation strategies.
Collapse
Affiliation(s)
- Joan Sturm
- Department of GeographyUniversity of ZurichZürichSwitzerland
| | - Maria J. Santos
- Department of GeographyUniversity of ZurichZürichSwitzerland
| | - Bernhard Schmid
- Department of GeographyUniversity of ZurichZürichSwitzerland
| | - Alexander Damm
- Department of GeographyUniversity of ZurichZürichSwitzerland
- Eawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| |
Collapse
|
53
|
Liu F, Zhou Y, Zhang S, Liu N. Inorganic Nitrogen Enhances the Drought Tolerance of Evergreen Broad-Leaved Tree Species in the Short-Term, but May Aggravate Their Water Shortage in the Mid-Term. FRONTIERS IN PLANT SCIENCE 2022; 13:875293. [PMID: 35548273 PMCID: PMC9083258 DOI: 10.3389/fpls.2022.875293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 06/15/2023]
Abstract
With global climate change, atmospheric nitrogen (N) deposition and drought have been well documented to cause substantial challenges for tropical and subtropical evergreen broad-leaved forests. Here, we conducted an experiment that measured the physiological responses of the seedlings of three dominant tree species (Tabebuia chrysantha, Elaeocarpus sylvestris, and Bischofia javanica) of the evergreen broad-leaved forests in South China under control (CT), drought stress (D), N addition (N), and drought stress plus N addition (N+D). We found that N addition significantly decreased malondialdehyde (MDA) content, abscisic acid (ABA) content, total antioxidant capacity (T-AOC), but significantly increased the content of proline (PRO), and the activities of ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco), nitrate reductase (NR), nitrite reductase (NiR), and glutamine synthetase (GS) in the three species under D. Meanwhile, we also found that under drought conditions, N addition promoted the leaf transpiration rate (E), stomatal conductance (g s ), and light-saturated net photosynthetic rate (A max ) of the three species. These results indicate that N addition can enhance the drought tolerance of the three species by osmotic adjustment and protecting the photosystem. However, the enhancement in A max and E will cause plants to face more severe drought conditions, especially B. javanica (large tree species). This study helps to explain why the evergreen broad-leaved forests in South China are gradually degrading to shrublands in recent decades.
Collapse
Affiliation(s)
- Fangyan Liu
- Chinese Academy of Sciences Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuheng Zhou
- Chinese Academy of Sciences Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shike Zhang
- Chinese Academy of Sciences Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Liu
- Chinese Academy of Sciences Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
54
|
Liu H, Xu C, Allen CD, Hartmann H, Wei X, Yakir D, Wu X, Yu P. Nature-based framework for sustainable afforestation in global drylands under changing climate. GLOBAL CHANGE BIOLOGY 2022; 28:2202-2220. [PMID: 34953175 DOI: 10.1111/gcb.16059] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Drylands cover more than 40% of Earth's land surface and occur at the margin of forest distributions due to the limited availability of water for tree growth. Recent elevated temperature and low precipitation have driven greater forest declines and pulses of tree mortality on dryland sites compared to humid sites, particularly in temperate Eurasia and North America. Afforestation of dryland areas has been widely implemented and is expected to increase in many drylands globally to enhance carbon sequestration and benefits to the human environment, but the interplay of sometimes conflicting afforestation outcomes has not been formally evaluated yet. Most previous studies point to conflicts between additional forest area and water consumption, in particular water yield and soil conservation/desalinization in drylands, but were generally confined to local and regional scales. Our global synthesis demonstrates that additional tree cover can amplify water consumption through a nonlinear increase in evapotranspiration-depending on tree species, age, and structure-which will be further intensified by future climate change. In this review we identify substantial knowledge gaps in addressing the dryland afforestation dilemma, where there are trade-offs with planted forests between increased availability of some resources and benefits to human habitats versus the depletion of other resources that are required for sustainable development of drylands. Here we propose a method of addressing comprehensive vegetation carrying capacity, based on regulating the distribution and structure of forest plantations to better deal with these trade-offs in forest multifunctionality. We also recommend new priority research topics for dryland afforestation, including: responses and feedbacks of dryland forests to climate change; shifts in the ratio of ecosystem ET to tree cover; assessing the role of scale of afforestation in influencing the trade-offs of dryland afforestation; and comprehensive modeling of the multifunctionality of dryland forests, including both ecophysiological and socioeconomic aspects, under a changing climate.
Collapse
Affiliation(s)
- Hongyan Liu
- College of Urban and Environmental Sciences, Sino-French Institute of Earth System Science, PKU-Saihanba Station, and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Chongyang Xu
- College of Urban and Environmental Sciences, Sino-French Institute of Earth System Science, PKU-Saihanba Station, and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Craig D Allen
- Department of Geography and Environmental Studies, University of New Mexico, Albuquerque, New Mexico, USA
| | - Henrik Hartmann
- Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena, Germany
| | - Xiaohua Wei
- Department of Earth, Environmental and Geographic Sciences, University of British Columbia (Okanagan Campus), Kelowna, British Columbia, Canada
| | - Dan Yakir
- Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, Israel
| | - Xiuchen Wu
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
| | - Pengtao Yu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
55
|
Decadal Changes of Organic Carbon, Nitrogen, and Acidity of Austrian Forest Soils. SOIL SYSTEMS 2022. [DOI: 10.3390/soilsystems6010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Repeated soil surveys provide opportunities to quantify the effect of long-term environmental change. In recent decades, the topics of forest soil acidification as a consequence of acidic deposition, the enrichment of forest ecosystems with nitrogen, and the loss of carbon due to climate change have been discussed. We used two forest soil surveys that were 20 years apart, in order to establish the direction and magnitude of changes in soil carbon, nitrogen, and soil acidity. Soils have been initially sampled in the late 1980s. The plots were revisited twenty years later. Archived soil samples from the first survey were reanalyzed with the same protocol as the new samples. We found changes in the stocks of soil organic carbon, soil nitrogen, and soil pH. However, the changes were inconsistent. In general, as many sites have gained soil organic carbon, as sites have lost carbon. Most soils have been slightly enriched with nitrogen. The soil pH has not changed significantly. We conclude that changes in the evaluated soil chemical properties are mainly driven by forest management activities and ensuing forest stand dynamics, and atmospheric deposition. We have no convincing evidence that climate change effects have already changed the soil organic carbon stock, irrespective of bedrock type.
Collapse
|
56
|
Short-Interval, Severe Wildfires Alter Saproxylic Beetle Diversity in Andean Araucaria Forests in Northwest Chilean Patagonia. FORESTS 2022. [DOI: 10.3390/f13030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The occurrence of short-interval, severe wildfires are increasing drastically at a global scale, and appear as a novel phenomenon in areas where fire historically returns in large time lapses. In forest ecosystems, these events induce drastic changes in population dynamics, which could dramatically impact species diversity. Here, we studied the effect on diversity of recent short-interval, severe wildfires (SISF), which occurred in rapid succession in the summers of 2002 and 2015 in Chilean Northern Patagonian Araucaria–Nothofagus forests. We analyzed the diversity of deadwood-dependent (i.e., saproxylic) and fire-sensitive beetles as biological indicators across four conditions: 2002-burned areas, 2015-burned areas, SISF areas (i.e., burned in 2002 and again in 2015), and unburned areas. Saproxylic beetles were collected using window traps in 2017 to 2019 summer seasons. To investigate the mechanisms underpinning the fire-related disturbance of the assemblage, we evaluated the effects of post-fire habitat quality (e.g., dead wood decomposition) and quantity (e.g., burned dead wood volume and tree density) on the abundances and species richness of the entire assemblage and also multiple trophic groups. Compared with the unburned condition, SISF drastically reduced species richness, evenness, and Shannon’s diversity and altered the composition of the saproxylic beetle assemblages. The between-condition variation in composition was accounted for by a species replacement (turnover) between SISF and 2015-burned areas, but both species replacement and extinction (nestedness) between SISF and unburned areas. Dead wood decomposition and tree density were the variables with the strongest effects on the abundance and species richness of the entire saproxylic beetle assemblage and most trophic groups. These results suggest that SISF, through degraded habitat quality (dead wood decomposition) and quantity (arboreal density), have detrimental impacts on diversity and population dynamics of saproxylic beetle assemblages. Therefore, habitat loss is a central mechanism underpinning fire-related biodiversity loss in these forest ecosystems.
Collapse
|
57
|
Britton TG, Brodribb TJ, Richards SA, Ridley C, Hovenden MJ. Canopy damage during a natural drought depends on species identity, physiology and stand composition. THE NEW PHYTOLOGIST 2022; 233:2058-2070. [PMID: 34850394 DOI: 10.1111/nph.17888] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Vulnerability to xylem cavitation is a strong predictor of drought-induced damage in forest communities. However, biotic features of the community itself can influence water availability at the individual tree-level, thereby modifying patterns of drought damage. Using an experimental forest in Tasmania, Australia, we determined the vulnerability to cavitation (leaf P50 ) of four tree species and assessed the drought-induced canopy damage of 2944 6-yr-old trees after an extreme natural drought episode. We examined how individual damage was related to their size and the density and species identity of neighbouring trees. The two co-occurring dominant tree species, Eucalyptus delegatensis and Eucalyptus regnans, were the most vulnerable to drought-induced xylem cavitation and both species suffered significantly greater damage than neighbouring, subdominant species Pomaderris apetala and Acacia dealbata. While the two eucalypts had similar leaf P50 values, E. delegatensis suffered significantly greater damage, which was strongly related to the density of neighbouring P. apetala. Damage in E. regnans was less impacted by neighbouring plants and smaller trees of both eucalypts sustained significantly more damage than larger trees. Our findings demonstrate that natural drought damage is influenced by individual plant physiology as well as the composition, physiology and density of the surrounding stand.
Collapse
Affiliation(s)
- Travis G Britton
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tas., 7001, Australia
| | - Timothy J Brodribb
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
| | - Shane A Richards
- School of Natural Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
| | - Chantelle Ridley
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
| | - Mark J Hovenden
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tas., 7001, Australia
| |
Collapse
|
58
|
Furniss TJ, Das AJ, van Mantgem PJ, Stephenson NL, Lutz JA. Crowding, climate, and the case for social distancing among trees. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2507. [PMID: 34870871 DOI: 10.1002/eap.2507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/25/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
In an emerging era of megadisturbance, bolstering forest resilience to wildfire, insects, and drought has become a central objective in many western forests. Climate has received considerable attention as a driver of these disturbances, but few studies have examined the complexities of climate-vegetation-disturbance interactions. Current strategies for creating resilient forests often rely on retrospective approaches, seeking to impart resilience by restoring historical conditions to contemporary landscapes, but historical conditions are becoming increasingly unattainable amidst modern bioclimatic conditions. What becomes an appropriate benchmark for resilience when we have novel forests, rapidly changing climate, and unprecedented disturbance regimes? We combined two longitudinal datasets-each representing some of the most comprehensive spatially explicit, annual tree mortality data in existence-in a post-hoc factorial design to examine the nonlinear relationships between fire, climate, forest spatial structure, and bark beetles. We found that while prefire drought elevated mortality risk, advantageous local neighborhoods could offset these effects. Surprisingly, mortality risk (Pm ) was higher in crowded local neighborhoods that burned in wet years (Pm = 42%) compared with sparse neighborhoods that burned during drought (Pm = 30%). Risk of beetle attack was also increased by drought, but lower conspecific crowding impeded the otherwise positive interaction between fire and beetle attack. Antecedent fire increased drought-related mortality over short timespans (<7 years) but reduced mortality over longer intervals. These results clarify interacting disturbance dynamics and provide a mechanistic underpinning for forest restoration strategies. Importantly, they demonstrate the potential for managed fire and silvicultural strategies to offset climate effects and bolster resilience to fire, beetles, and drought.
Collapse
Affiliation(s)
- Tucker J Furniss
- Wildland Resources Department and Ecology Center, Utah State University, Logan, Utah, USA
- USDA Forest Service, Pacific Northwest Research Station, Wenatchee, Washington, USA
| | - Adrian J Das
- U.S. Geological Survey, Western Ecological Research Center, Three Rivers, California, USA
| | | | - Nathan L Stephenson
- U.S. Geological Survey, Western Ecological Research Center, Three Rivers, California, USA
| | - James A Lutz
- Wildland Resources Department and Ecology Center, Utah State University, Logan, Utah, USA
| |
Collapse
|
59
|
Das AJ, Slaton MR, Mallory J, Asner GP, Martin RE, Hardwick P. Empirically validated drought vulnerability mapping in the mixed conifer forests of the Sierra Nevada. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2514. [PMID: 35094444 DOI: 10.1002/eap.2514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/26/2021] [Indexed: 06/14/2023]
Abstract
Severe droughts are predicted to become more frequent in the future, and the consequences of such droughts on forests can be dramatic, resulting in massive tree mortality, rapid change in forest structure and composition, and substantially increased risk of catastrophic fire. Forest managers have tools at their disposal to try to mitigate these effects but are often faced with limited resources, forcing them to make choices about which parts of the landscape to target for treatment. Such planning can greatly benefit from landscape vulnerability assessments, but many existing vulnerability analyses are unvalidated and not grounded in robust empirical datasets. We combined robust sets of ground-based plot and remote sensing data, collected during the 2012-2016 California drought, to develop rigorously validated tools for assessing forest vulnerability to drought-related canopy tree mortality for the mixed conifer forests of the Sequoia and Kings Canyon national parks and potentially for mixed conifer forests in the Sierra Nevada as a whole. Validation was carried out using a large external dataset. The best models included normalized difference vegetation index (NDVI), elevation, and species identity. Models indicated that tree survival probability decreased with greenness (as measured by NDVI) and elevation, particularly if trees were growing slowly. Overall, models showed good calibration and validation, especially for Abies concolor, which comprise a large majority of the trees in many mixed conifer forests in the Sierra Nevada. Our models tended to overestimate mortality risk for Calocedrus decurrens and underestimate risk for pine species, in the latter case probably due to pine bark beetle outbreak dynamics. Validation results indicated dangers of overfitting, as well as showing that the inclusion of trees already under attack by bark beetles at the time of sampling can give false confidence in model strength, while also biasing predictions. These vulnerability tools should be useful to forest managers trying to assess which parts of their landscape were vulnerable during the 2012-2016 drought, and, with additional validation, may prove useful for ongoing assessments and predictions of future forest vulnerability.
Collapse
Affiliation(s)
- Adrian J Das
- U.S. Geological Survey, Western Ecological Research Center, Sequoia and Kings Canyon Field Station, Three Rivers, California, USA
| | - Michèle R Slaton
- USDA Forest Service, Pacific Southwest Region, Remote Sensing Laboratory, McClellan, California, USA
| | - Jeffrey Mallory
- USDA Forest Service, Pacific Southwest Region, Remote Sensing Laboratory, McClellan, California, USA
| | - Gregory P Asner
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, Arizona, USA
| | - Roberta E Martin
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, Arizona, USA
| | - Paul Hardwick
- Division of Resources Management and Science, Sequoia and Kings Canyon National Parks, Three Rivers, California, USA
| |
Collapse
|
60
|
Keen RM, Voelker SL, Wang SYS, Bentz BJ, Goulden ML, Dangerfield CR, Reed CC, Hood SM, Csank AZ, Dawson TE, Merschel AG, Still CJ. Changes in tree drought sensitivity provided early warning signals to the California drought and forest mortality event. GLOBAL CHANGE BIOLOGY 2022; 28:1119-1132. [PMID: 34735729 DOI: 10.1111/gcb.15973] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Climate warming in recent decades has negatively impacted forest health in the western United States. Here, we report on potential early warning signals (EWS) for drought-related mortality derived from measurements of tree-ring growth (ring width index; RWI) and carbon isotope discrimination (∆13 C), primarily focused on ponderosa pine (Pinus ponderosa). Sampling was conducted in the southern Sierra Nevada Mountains, near the epicenter of drought severity and mortality associated with the 2012-2015 California drought and concurrent outbreak of western pine beetle (Dendroctonus brevicomis). At this site, we found that widespread mortality was presaged by five decades of increasing sensitivity (i.e., increased explained variation) of both tree growth and ∆13 C to Palmer Drought Severity Index (PDSI). We hypothesized that increasing sensitivity of tree growth and ∆13 C to hydroclimate constitute EWS that indicate an increased likelihood of widespread forest mortality caused by direct and indirect effects of drought. We then tested these EWS in additional ponderosa pine-dominated forests that experienced varying mortality rates associated with the same California drought event. In general, drier sites showed increasing sensitivity of RWI to PDSI over the last century, as well as higher mortality following the California drought event compared to wetter sites. Two sites displayed evidence that thinning or fire events that reduced stand basal area effectively reversed the trend of increasing hydroclimate sensitivity. These comparisons indicate that reducing competition for soil water and/or decreasing bark beetle host tree density via forest management-particularly in drier regions-may buffer these forests against drought stress and associated mortality risk. EWS such as these could provide land managers more time to mitigate the extent or severity of forest mortality in advance of droughts. Substantial efforts at deploying additional dendrochronological research in concert with remote sensing and forest modeling will aid in forecasting of forest responses to continued climate warming.
Collapse
Affiliation(s)
- Rachel M Keen
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Steven L Voelker
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - S-Y Simon Wang
- Department of Plants, Soils and Climate, Utah State University, Logan, Utah, USA
| | - Barbara J Bentz
- USDA Forest Service, Rocky Mountain Research Station, Logan, Utah, USA
| | - Michael L Goulden
- Department of Earth System Science, University of California, Irvine, California, USA
| | - Cody R Dangerfield
- Department of Wildland Resources, Utah State University, Logan, Utah, USA
| | - Charlotte C Reed
- Fire Sciences Laboratory, USDA Forest Service, Rocky Mountain Research Station, Missoula, Montana, USA
| | - Sharon M Hood
- Fire Sciences Laboratory, USDA Forest Service, Rocky Mountain Research Station, Missoula, Montana, USA
| | - Adam Z Csank
- Department of Geography, University of Nevada, Reno, Nevada, USA
| | - Todd E Dawson
- Department of Environmental Science, Policy & Management, University of California, Berkeley, California, USA
| | - Andrew G Merschel
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA
| | - Christopher J Still
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
61
|
Naqinezhad A, De Lombaerde E, Gholizadeh H, Wasof S, Perring MP, Meeussen C, De Frenne P, Verheyen K. The combined effects of climate and canopy cover changes on understorey plants of the Hyrcanian forest biodiversity hotspot in northern Iran. GLOBAL CHANGE BIOLOGY 2022; 28:1103-1118. [PMID: 34679209 DOI: 10.1111/gcb.15946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Understanding forest understorey community response to environmental change, including management actions, is vital given the understorey's importance for biodiversity conservation and ecosystem functioning. The Natural World Heritage Hyrcanian temperate forests (Iran) provide an ideal template for furnishing an appreciation of how management actions can mitigate undesired climate change effects, due to the forests' broad environmental gradients, isolation from colonization sources and varied light environments. We used records of 95 understorey plant species from 512 plots to model their probability of occurrence as a function of contemporary climate and soil variables, and canopy cover. For 65 species with good predictive accuracy, we then projected two climate scenarios in the context of either increasing or decreasing canopy cover, to assess whether overstorey management could mitigate or aggravate climate change effects. Climate variables were the most important predictors for the distribution of all species. Soil and canopy cover varied in importance depending on understorey growth form. Climate change was projected to negatively affect future probabilities of occurrence. However, management, here represented by canopy cover change, is predicted to modify this trajectory for some species groups. Models predict increases in light-adapted and generalist forbs with reduced canopy cover, while graminoids and ferns still decline. Increased canopy cover is projected to buffer an otherwise significant decreasing response of cold-adapted species to climate change. However, increasing canopy cover is not projected to buffer the predicted negative impact of climate change on shade-adapted forest specialists. Inconsistent responses of different species and/or growth forms to climate change and canopy cover reflect their complicated life histories and habitat preferences. Canopy cover management may help prevent the climate change induced loss of some important groups for biodiversity conservation. However, for shade-adapted forest specialists, our results imply a need to adopt other conservation measures in the face of anticipated climate change.
Collapse
Affiliation(s)
- Alireza Naqinezhad
- Department of Plant Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
- Forest & Nature Lab, Ghent University, Gontrode-Melle, Belgium
| | | | - Hamid Gholizadeh
- Department of Plant Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Safaa Wasof
- Forest & Nature Lab, Ghent University, Gontrode-Melle, Belgium
| | - Michael P Perring
- Forest & Nature Lab, Ghent University, Gontrode-Melle, Belgium
- Ecosystem Restoration and Intervention Ecology Research Group, The University of Western Australia, Crawley, WA, Australia
- UKCEH (UK Centre for Ecology & Hydrology), Environment Centre Wales, Bangor, Gwynedd, UK
| | | | | | - Kris Verheyen
- Forest & Nature Lab, Ghent University, Gontrode-Melle, Belgium
| |
Collapse
|
62
|
Li Y, Bateman C, Skelton J, Wang B, Black A, Huang YT, Gonzalez A, Jusino MA, Nolen ZJ, Freeman S, Mendel Z, Kolařík M, Knížek M, Park JH, Sittichaya W, Pham TH, Ito SI, Torii M, Gao L, Johnson AJ, Lu M, Sun J, Zhang Z, Adams DC, Hulcr J. Preinvasion Assessment of Exotic Bark Beetle-Vectored Fungi to Detect Tree-Killing Pathogens. PHYTOPATHOLOGY 2022; 112:261-270. [PMID: 34261341 DOI: 10.1094/phyto-01-21-0041-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exotic diseases and pests of trees have caused continental-scale disturbances in forest ecosystems and industries, and their invasions are considered largely unpredictable. We tested the concept of preinvasion assessment of not yet invasive organisms, which enables empirical risk assessment of potential invasion and impact. Our example assesses fungi associated with Old World bark and ambrosia beetles and their potential to impact North American trees. We selected 55 Asian and European scolytine beetle species using host use, economic, and regulatory criteria. We isolated 111 of their most consistent fungal associates and tested their effect on four important southeastern American pine and oak species. Our test dataset found no highly virulent pathogens that should be classified as an imminent threat. Twenty-two fungal species were minor pathogens, which may require context-dependent response for their vectors at North American borders, while most of the tested fungi displayed no significant impact. Our results are significant in three ways; they ease the concerns over multiple overseas fungus vectors suspected of heightened potential risk, they provide a basis for the focus on the prevention of introduction and establishment of species that may be of consequence, and they demonstrate that preinvasion assessment, if scaled up, can support practical risk assessment of exotic pathogens.
Collapse
Affiliation(s)
- You Li
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
- Fujian Province Key Laboratory of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Craig Bateman
- Florida Museum of Natural History, University of Florida, Gainesville 32611, U.S.A
| | - James Skelton
- Department of Biology, William and Mary, Williamsburg 23185, U.S.A
| | - Bo Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Adam Black
- Peckerwood Garden Conservation Foundation, Hempstead 77445, U.S.A
| | - Yin-Tse Huang
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
| | - Allan Gonzalez
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
| | | | | | - Stanley Freeman
- Plant Protection Institute, The Volcani Center, Rishon LeZion, Israel
| | - Zvi Mendel
- Plant Protection Institute, The Volcani Center, Rishon LeZion, Israel
| | - Miroslav Kolařík
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Miloš Knížek
- Forestry and Game Management Research Institute, 156 04 Prague 5-Zbraslav, Czech Republic
| | - Ji-Hyun Park
- National Institute of Forest Science, Seoul, South Korea
| | - Wisut Sittichaya
- Department of Pest Management, Faculty of Natural Resources, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thai-Hong Pham
- Mientrung Institute for Scientific Research, VNMN and Graduate School of Science and Technology, Vietnam Academy of Science and Technology, Hue, Vietnam
| | | | - Masato Torii
- Department of Mushroom Science and Forest Microbiology, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
| | - Lei Gao
- Shanghai Academy of Landscape Architecture Science and Planning, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai, China
| | - Andrew J Johnson
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
| | - Min Lu
- School of Life Sciences, Hubei University, Wuhan, China
| | - Jianghua Sun
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Damian C Adams
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
| | - Jiri Hulcr
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
| |
Collapse
|
63
|
Germain SJ, Lutz JA. Climate warming may weaken stabilizing mechanisms in old forests. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sara J. Germain
- Department of Wildland Resources Utah State University Logan Utah USA
| | - James A. Lutz
- Department of Wildland Resources Utah State University Logan Utah USA
| |
Collapse
|
64
|
Gill NS, Turner MG, Brown CD, Glassman SI, Haire SL, Hansen WD, Pansing ER, St Clair SB, Tomback DF. Limitations to Propagule Dispersal Will Constrain Postfire Recovery of Plants and Fungi in Western Coniferous Forests. Bioscience 2022. [DOI: 10.1093/biosci/biab139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Many forest species are adapted to long-interval, high-severity fires, but the intervals between severe fires are decreasing with changes in climate, land use, and biological invasions. Although the effects of changing fire regimes on some important recovery processes have previously been considered, the consequences for the dispersal of propagules (plant seeds and fungal spores) in forest communities have not. We characterize three mechanisms by which changing fire regimes disrupt propagule dispersal in mesic temperate, boreal, and high-elevation forests: reduced abundance and altered spatial distributions of propagule source populations, less effective dispersal of propagules by wind, and altered behavior of animal dispersers and propagule predators. We consider how disruptions to propagule dispersal may interact with other factors that are also influenced by fire regime change, potentially increasing risk of forest conversion. Finally, we highlight urgent research topics regarding how dispersal limitation may shape twenty-first century forest recovery after stand-replacing fire.
Collapse
Affiliation(s)
- Nathan S Gill
- Texas Tech University, Lubbock, Texas, United States
| | - Monica G Turner
- University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Carissa D Brown
- Memorial University, St. John's, Newfoundland and Labrador, Canada
| | | | - Sandra L Haire
- Haire Laboratory for Landscape Ecology, Tucson, Arizona, United States
| | | | | | | | - Diana F Tomback
- University of Colorado Denver, Denver, Colorado, United States
| |
Collapse
|
65
|
North American tree migration paced by climate in the West, lagging in the East. Proc Natl Acad Sci U S A 2022; 119:2116691118. [PMID: 34983867 PMCID: PMC8784119 DOI: 10.1073/pnas.2116691118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Suitable habitats for forest trees may be shifting fast with recent climate change. Studies tracking the shift in suitable habitat for forests have been inconclusive, in part because responses in tree fecundity and seedling establishment can diverge. Analysis of both components at a continental scale reveals a poleward migration of northern species that is in progress now. Recruitment and fecundity both contribute to poleward spread in the West, while fecundity limits spread in the East, despite a fecundity hotspot in the Southeast. Fecundity limitation on population spread can confront conservation and management efforts with persistent disequilibrium between forest diversity and rapid climate change. Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution.
Collapse
|
66
|
Valuing the Impact of Forest Disturbances on the Climate Regulation Service of Western U.S. Forests. SUSTAINABILITY 2022. [DOI: 10.3390/su14020903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The protection and expansion of forest carbon sinks are critical to achieving climate-change mitigation targets. Yet, the increasing frequency and severity of forest disturbances challenge the sustainable provision of forest services. We investigated patterns of forest disturbances’ impacts on carbon sinks by combining spatial datasets of forest carbon sequestration from biomass growth and emissions from fire and bark beetle damage in the western United States (U.S.) and valued the social costs of forest carbon losses. We also examined potential future trends of forest carbon sinks under two climate-change projections using a global vegetation model. We found that forest carbon losses from bark-beetle damage were larger than emissions from fires between 2003 and 2012. The cumulative social costs of forest carbon losses ranged from USD 7 billion to USD 72 billion, depending on the severity of global warming and the discount rate. Forest carbon stocks could increase around 5% under Representative Concentration Pathway (RCP) 4.5 or 7% under RCP 8.5 by 2091 relative to 2011 levels, mostly in forests with high net primary productivity. These results indicate that spatially explicit management of forest disturbances may increase forest carbon sinks, thereby improving opportunities to achieve critical climate-change mitigation goals.
Collapse
|
67
|
Marini L, Ayres MP, Jactel H. Impact of Stand and Landscape Management on Forest Pest Damage. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:181-199. [PMID: 34606366 DOI: 10.1146/annurev-ento-062321-065511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One promising approach to mitigate the negative impacts of insect pests in forests is to adapt forestry practices to create ecosystems that are more resistant and resilient to biotic disturbances. At the stand scale, local stand management practices often cause idiosyncratic effects on forest pests depending on the environmental context and the focal pest species. However, increasing tree diversity appears to be a general strategy for reducing pest damage across several forest types. At the landscape scale, increasing forest heterogeneity (e.g., intermixing different forest types and/or age classes) represents a promising frontier for improving forest resistance and resilience and for avoiding large-scale outbreaks. In addition to their greater resilience, heterogeneous forest landscapes frequently support a wide range of ecosystem functions and services. A challenge will be to develop cooperation and coordination among multiple actors at spatial scales that transcend historical practices in forest management.
Collapse
Affiliation(s)
- Lorenzo Marini
- DAFNAE, University of Padova, 35020 Legnaro, Padova, Italy;
| | - Matthew P Ayres
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Hervé Jactel
- INRAE, University of Bordeaux, BIOGECO, F-33610 Cestas, France
| |
Collapse
|
68
|
Morris JE, Buonanduci MS, Agne MC, Battaglia MA, Harvey BJ. Does the legacy of historical thinning treatments foster resilience to bark beetle outbreaks in subalpine forests? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02474. [PMID: 34653267 DOI: 10.1002/eap.2474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/10/2021] [Accepted: 04/05/2021] [Indexed: 06/13/2023]
Abstract
Promoting ecological resilience to increasing disturbance activity is a key management priority under warming climate. Across the Northern Hemisphere, tree mortality from widespread bark beetle outbreaks raises concerns for how forest management can foster resilience to future outbreaks. Density reduction (i.e., thinning) treatments can increase vigor of remaining trees, but the longevity of treatment efficacy for reducing susceptibility to future disturbance remains a key knowledge gap. Using one of the longest-running replicated experiments in old-growth subalpine forests, we measured stand structure following a recent (early 2000s) severe mountain pine beetle (MPB; Dendroctonus ponderosae) outbreak to examine the legacy of historical (1940s) thinning treatments on two components of resilience. We asked: 'How did historical thinning intensity affect (1) tree-scale survival probability and stand-scale survival proportion (collectively "resistance" to outbreak) for susceptible trees (lodgepole pine [Pinus contorta] ≥ 12 cm diameter) and (2) post-outbreak stand successional trajectories?' Overall outbreak severity was high (MPB killed 59% of susceptible individuals and 78% of susceptible basal area), and historical thinning had little effect on tree-scale and stand-scale resistance. Tree-scale survival probability decreased sharply with increasing tree diameter and did not differ from the control (uncut stands) in the historical thinning treatments. Stand-scale proportion of surviving susceptible trees and basal area did not differ from the control in historically thinned stands, except for treatments that removed nearly all susceptible trees, in which survival proportion approximately doubled. Despite limited effects on resistance to MPB outbreak, the legacy of historical treatments shifted dominance from large-diameter to small-diameter lodgepole pine by the time of outbreak, resulting in historically thinned stands with ~2× greater post-outbreak live basal area than control stands. MPB-driven mortality of large-diameter lodgepole pine in control stands and density-dependent mortality of small-diameter trees in historically thinned stands led to convergence in post-outbreak live tree stand structure. One exception was the heaviest historical thinning treatments (59-77% basal area removed), for which sapling dominance of shade-tolerant, unsusceptible conifers was lower than control stands. After six decades, thinning treatments have had minimal effect on resistance to bark beetle outbreaks, but leave persistent legacies in shaping post-outbreak successional trajectories.
Collapse
Affiliation(s)
- Jenna E Morris
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, 98195, USA
| | - Michele S Buonanduci
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, 98195, USA
- Quantitative Ecology and Resource Management, University of Washington, Seattle, Washington, 98195, USA
| | - Michelle C Agne
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, 98195, USA
| | - Mike A Battaglia
- USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, 80526, USA
| | - Brian J Harvey
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, 98195, USA
- Quantitative Ecology and Resource Management, University of Washington, Seattle, Washington, 98195, USA
| |
Collapse
|
69
|
Colangelo M, Camarero JJ, Gazol A, Piovesan G, Borghetti M, Baliva M, Gentilesca T, Rita A, Schettino A, Ripullone F. Mediterranean old-growth forests exhibit resistance to climate warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149684. [PMID: 34467901 DOI: 10.1016/j.scitotenv.2021.149684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/24/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Old-growth mountain forests represent an ideal setting for studying long-term impacts of climate change. We studied the few remnants of old-growth forests located within the Pollino massif (southern Italy) to evaluate how the growth of conspecific young and old trees responded to climate change. We investigated two conifer species (Abies alba and Pinus leucodermis) and two hardwood species (Fagus sylvatica and Quercus cerris). We sampled one stand per species along an altitudinal gradient, ranging from a drought-limited low-elevation hardwood forest to a cold-limited subalpine pine forest. We used a dendrochronological approach to characterize the long-term growth dynamics of old (age > 120 years) versus young (age < 120 years) trees. Younger trees grew faster than their older conspecifics during their juvenile stage, regardless of species. Linear mixed effect models were used to quantify recent growth trends (1950-2015) and responses to climate for old and young trees. Climate sensitivity, expressed as radial growth responses to climate during the last three decades, partially differed between species because high spring temperatures enhanced conifer growth, whereas F. sylvatica growth was negatively affected by warmer spring conditions. Furthermore, tree growth was negatively impacted by summer drought in all species. Climate sensitivity differed between young and old trees, with younger trees tending to be more sensitive in P. leucodermis and A. alba, whereas older F. sylvatica trees were more sensitive. In low-elevation Q. cerris stands, limitation of growth due to drought was not related to tree age, suggesting symmetric water competition. We found evidence for a fast-growth trend in young individuals compared with that in their older conspecifics. Notably, old trees tended to have relatively stable growth rates, showing remarkable resistance to climate warming. These responses to climate change should be recognized when forecasting the future dynamics of old-growth forests for their sustainable management.
Collapse
Affiliation(s)
- Michele Colangelo
- Instituto Pirenaico de Ecología (IPE-CSIC), 50192 Zaragoza, Spain; School of Agricultural, Forest, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy.
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), 50192 Zaragoza, Spain.
| | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), 50192 Zaragoza, Spain.
| | - Gianluca Piovesan
- Department of Agriculture and Forest Sciences (DAFNE), Università della Tuscia, 01100 Viterbo, Italy.
| | - Marco Borghetti
- School of Agricultural, Forest, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy.
| | - Michele Baliva
- Department of Agriculture and Forest Sciences (DAFNE), Università della Tuscia, 01100 Viterbo, Italy.
| | - Tiziana Gentilesca
- School of Agricultural, Forest, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy.
| | - Angelo Rita
- School of Agricultural, Forest, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy; Dipartimento di Agraria, Università di Napoli Federico II, via Università 100, IT-80055 Portici (Napoli), Italy.
| | | | - Francesco Ripullone
- School of Agricultural, Forest, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy.
| |
Collapse
|
70
|
Uncertainty, Complexity and Constraints: How Do We Robustly Assess Biological Responses under a Rapidly Changing Climate? CLIMATE 2021. [DOI: 10.3390/cli9120177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
How robust is our assessment of impacts to ecosystems and species from a rapidly changing climate during the 21st century? We examine the challenges of uncertainty, complexity and constraints associated with applying climate projections to understanding future biological responses. This includes an evaluation of how to incorporate the uncertainty associated with different greenhouse gas emissions scenarios and climate models, and constraints of spatiotemporal scales and resolution of climate data into impact assessments. We describe the challenges of identifying relevant climate metrics for biological impact assessments and evaluate the usefulness and limitations of different methodologies of applying climate change to both quantitative and qualitative assessments. We discuss the importance of incorporating extreme climate events and their stochastic tendencies in assessing ecological impacts and transformation, and provide recommendations for better integration of complex climate–ecological interactions at relevant spatiotemporal scales. We further recognize the compounding nature of uncertainty when accounting for our limited understanding of the interactions between climate and biological processes. Given the inherent complexity in ecological processes and their interactions with climate, we recommend integrating quantitative modeling with expert elicitation from diverse disciplines and experiential understanding of recent climate-driven ecological processes to develop a more robust understanding of ecological responses under different scenarios of future climate change. Inherently complex interactions between climate and biological systems also provide an opportunity to develop wide-ranging strategies that resource managers can employ to prepare for the future.
Collapse
|
71
|
Schultz CA, Abrams JB, Davis EJ, Cheng AS, Huber-Stearns HR, Moseley C. Disturbance shapes the US forest governance frontier: A review and conceptual framework for understanding governance change. AMBIO 2021; 50:2168-2182. [PMID: 34637087 PMCID: PMC8563890 DOI: 10.1007/s13280-021-01629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 05/23/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Conflict in US forest management for decades centered around balancing demands from forested ecosystems, with a rise in place-based collaborative governance at the end of the twentieth century. By the early 2000s, it was becoming apparent that not only had the mix of players involved in forest management changed, but so had the playing field, as climate-driven disturbances such as wildfire and insect and disease outbreaks were becoming more extensive and severe. In this conceptual review paper, we argue that disturbance has become the most prominent driver of governance change on US national forests, but we also recognize that the governance responses to disturbance are shaped by variables such as discourses, institutional history and path dependence, and institutional innovation operating at different system levels. We review the governance changes in response to disturbance that constitute a new frontier in US federal forest governance and offer a conceptual framework to examine how these governance responses are shaped by multi-level factors.
Collapse
|
72
|
Clifford KR, Cravens AE, Knapp CN. Responding to Ecological Transformation: Mental Models, External Constraints, and Manager Decision-Making. Bioscience 2021. [DOI: 10.1093/biosci/biab086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Ecological transformation creates many challenges for public natural resource management and requires managers to grapple with new relationships to change and new ways to manage it. In the context of unfamiliar trajectories of ecological change, a manager can resist, accept, or direct change, choices that make up the resist-accept-direct (RAD) framework. In this article, we provide a conceptual framework for how to think about this new decision space that managers must navigate. We identify internal factors (mental models) and external factors (social feasibility, institutional context, and scientific uncertainty) that shape management decisions. We then apply this conceptual framework to the RAD strategies (resist, accept, direct) to illuminate how internal and external factors shape those decisions. Finally, we conclude with a discussion of how this conceptual framework shapes our understanding of management decisions, especially how these decisions are not just ecological but also social, and the implications for research and management.
Collapse
Affiliation(s)
- Katherine R Clifford
- Postdoctoral social science research fellow, Fort Collins, Colorado, United States
| | - Amanda E Cravens
- US Geological Survey's Social and Economic Analysis Branch, Fort Collins, Colorado, United States
| | | |
Collapse
|
73
|
Crausbay SD, Sofaer HR, Cravens AE, Chaffin BC, Clifford KR, Gross JE, Knapp CN, Lawrence DJ, Magness DR, Miller-Rushing AJ, Schuurman GW, Stevens-Rumann CS. A Science Agenda to Inform Natural Resource Management Decisions in an Era of Ecological Transformation. Bioscience 2021. [DOI: 10.1093/biosci/biab102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Earth is experiencing widespread ecological transformation in terrestrial, freshwater, and marine ecosystems that is attributable to directional environmental changes, especially intensifying climate change. To better steward ecosystems facing unprecedented and lasting change, a new management paradigm is forming, supported by a decision-oriented framework that presents three distinct management choices: resist, accept, or direct the ecological trajectory. To make these choices strategically, managers seek to understand the nature of the transformation that could occur if change is accepted while identifying opportunities to intervene to resist or direct change. In this article, we seek to inspire a research agenda for transformation science that is focused on ecological and social science and based on five central questions that align with the resist–accept–direct (RAD) framework. Development of transformation science is needed to apply the RAD framework and support natural resource management and conservation on our rapidly changing planet.
Collapse
Affiliation(s)
- Shelley D Crausbay
- Conservation Science Partners, Fort Collins, Colorado, and is a consortium partner for the US Geological Survey's North Central Climate Adaptation Science Center, Boulder, Colorado, United States
| | - Helen R Sofaer
- US Geological Survey Pacific Island Ecosystems Research Center, Hawaii Volcanoes National Park, Hawai'i, United States
| | - Amanda E Cravens
- US Geological Survey's Social and Economic Analysis Branch, Fort Collins, Colorado, United States
| | | | - Katherine R Clifford
- US Geological Survey's Social and Economic Analysis Branch, Fort Collins, Colorado, United States
| | - John E Gross
- US National Park Service Climate Change Response Program, Fort Collins, Colorado, United States
| | | | - David J Lawrence
- US National Park Service Climate Change Response Program, Fort Collins, Colorado, United States
| | - Dawn R Magness
- US Fish and Wildlife Service, Kenai National Wildlife Refuge, Soldotna, Alaska, United States
| | | | - Gregor W Schuurman
- US National Park Service Climate Change Response Program, in Fort Collins, Colorado, United States
| | - Camille S Stevens-Rumann
- Forest and Rangeland Stewardship Department and assistant director of the Colorado Forest Restoration Institute, at Colorado State University, Fort Collins, Colorado, United States
| |
Collapse
|
74
|
Schuurman GW, Cole DN, Cravens AE, Covington S, Crausbay SD, Hoffman CH, Lawrence DJ, Magness DR, Morton JM, Nelson EA, O'Malley R. Navigating Ecological Transformation: Resist–Accept–Direct as a Path to a New Resource Management Paradigm. Bioscience 2021. [DOI: 10.1093/biosci/biab067] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Natural resource managers worldwide face a growing challenge: Intensifying global change increasingly propels ecosystems toward irreversible ecological transformations. This nonstationarity challenges traditional conservation goals and human well-being. It also confounds a longstanding management paradigm that assumes a future that reflects the past. As once-familiar ecological conditions disappear, managers need a new approach to guide decision-making. The resist–accept–direct (RAD) framework, designed for and by managers, identifies the options managers have for responding and helps them make informed, purposeful, and strategic choices in this context. Moving beyond the diversity and complexity of myriad emerging frameworks, RAD is a simple, flexible, decision-making tool that encompasses the entire decision space for stewarding transforming ecosystems. Through shared application of a common approach, the RAD framework can help the wider natural resource management and research community build the robust, shared habits of mind necessary for a new, twenty-first-century natural resource management paradigm.
Collapse
Affiliation(s)
- Gregor W Schuurman
- US National Park Service Climate Change Response Program, Fort Collins, Colorado, United States
| | - David N Cole
- US Forest Service, Aldo Leopold Wilderness Research Institute, Missoula, Montana, United States
| | - Amanda E Cravens
- US Geological Survey's Social and Economic Analysis Branch, Fort Collins, Colorado, United States
| | - Scott Covington
- US Fish and Wildlife Service's National Wildlife Refuge System, Falls Church, Virginia, United States
| | - Shelley D Crausbay
- Conservation Science Partners, Inc, Fort Collins, Colorado, United States
- US Geological Survey North Central Climate Adaptation Science Center, Boulder, Colorado, United States
| | - Cat Hawkins Hoffman
- Supervisory natural resource specialist and program manager, Fort Collins, Colorado, United States
| | - David J Lawrence
- US National Park Service Climate Change Response Program, Fort Collins, Colorado, United States
| | - Dawn R Magness
- US Fish and Wildlife Service, Kenai National Wildlife Refuge, Soldotna, Alaska, United States
| | - John M Morton
- Alaska Wildlife Alliance, Anchorage, Alaska, United States
| | - Elizabeth A Nelson
- Science advisor on conservation and climate change at Parks Canada, Vancouver, British Columbia, Canada
| | - Robin O'Malley
- USGS North Central Climate Adaptation Science Center, and is based in Fort Collins, Colorado, United States
| |
Collapse
|
75
|
Turner MG, Braziunas KH, Hansen WD, Hoecker TJ, Rammer W, Ratajczak Z, Westerling AL, Seidl R. The magnitude, direction, and tempo of forest change in Greater Yellowstone in a warmer world with more fire. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Monica G. Turner
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin 53706 USA
| | - Kristin H. Braziunas
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin 53706 USA
| | - Winslow D. Hansen
- Earth Institute Columbia University New York City New York 10025 USA
| | - Tyler J. Hoecker
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin 53706 USA
| | - Werner Rammer
- School of Life Sciences Technical University of Munich 85354 Freising Germany
| | - Zak Ratajczak
- Department of Biology Kansas State University Manhattan Kansas 66506‐4901 USA
| | - A. Leroy Westerling
- Sierra Nevada Research Institute and School of Engineering University of California‐Merced Merced California 95343 USA
| | - Rupert Seidl
- School of Life Sciences Technical University of Munich 85354 Freising Germany
- Berchtesgaden National Park 83471 Berchtesgaden Germany
| |
Collapse
|
76
|
Efficacy of Chemical and Biological Stump Treatments for the Control of Heterobasidion occidentale Infection of California Abies concolor. Pathogens 2021; 10:pathogens10111390. [PMID: 34832546 PMCID: PMC8621004 DOI: 10.3390/pathogens10111390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
We conducted an experimental evaluation of treatments to limit Heterobasidion occidentale infection of white fir (Abies concolor) stumps and wounds in California mixed conifer forests. We tested the efficacy of urea, borate, and a mixture of two locally collected Phlebiopsis gigantea strains in preventing pathogen colonization of fir stumps and separately, urea and borate as infection controls on experimental stem wounds. These were paired with a laboratory test on ~100 g wood blocks with and without a one-week delay between inoculation and treatment. Urea, borates, and Phlebiopsis treatments all significantly reduced the stump surface area that was colonized by H. occidentale at 84%, 91%, and 68%, respectively, relative to the controls. However, only the borate treatments significantly lowered the number of stumps that were infected by the pathogen. The laboratory study matched the patterns that were found in the stump experiment with a reduced area of colonization for urea, borates, or P. gigantea treatments relative to the controls; delaying the treatment did not affect efficacy. The field wound experiment did not result in any Heterobasidion colonization, even in positive control treatments, rendering the experiment uninformative. Our study suggests treatments that are known to limit Heterobasidion establishment on pine or spruce stumps elsewhere in the world may also be effective on true firs in California.
Collapse
|
77
|
Bae S, Müller J, Förster B, Hilmers T, Hochrein S, Jacobs M, Leroy BML, Pretzsch H, Weisser WW, Mitesser O. Tracking the temporal dynamics of insect defoliation by high‐resolution radar satellite data. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Soyeon Bae
- Department of Animal Ecology and Tropical Biology Biocenter University of Würzburg Würzburg Germany
| | - Jörg Müller
- Department of Animal Ecology and Tropical Biology Biocenter University of Würzburg Würzburg Germany
- Bavarian Forest National Park Grafenau Germany
| | - Bernhard Förster
- Chair for Strategic Landscape Planning and Management Technical University of Munich Freising Germany
| | - Torben Hilmers
- Chair for Forest Growth and Yield Science School of Life Sciences Weihenstephan Technical University of Munich Freising Germany
| | - Sophia Hochrein
- Department of Animal Ecology and Tropical Biology Biocenter University of Würzburg Würzburg Germany
| | - Martin Jacobs
- Chair for Forest Growth and Yield Science School of Life Sciences Weihenstephan Technical University of Munich Freising Germany
| | - Benjamin M. L. Leroy
- Terrestrial Ecology Research Group Department of Ecology and Ecosystem Management Technical University of Munich Freising Germany
| | - Hans Pretzsch
- Chair for Forest Growth and Yield Science School of Life Sciences Weihenstephan Technical University of Munich Freising Germany
| | - Wolfgang W. Weisser
- Terrestrial Ecology Research Group Department of Ecology and Ecosystem Management Technical University of Munich Freising Germany
| | - Oliver Mitesser
- Department of Animal Ecology and Tropical Biology Biocenter University of Würzburg Würzburg Germany
| |
Collapse
|
78
|
Sturtevant BR, Fortin MJ. Understanding and Modeling Forest Disturbance Interactions at the Landscape Level. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.653647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Disturbances, both natural and anthropogenic, affect the configuration, composition, and function of forested ecosystems. Complex system behaviors emerge from the interactions between disturbance regimes, the vegetation response to those disturbances, and their interplay with multiple drivers (climate, topography, land use, etc.) across spatial and temporal scales. Here, we summarize conceptual advances and empirical approaches to disturbance interaction investigation, and used those insights to evaluate and categorize 146 landscape modeling studies emerging from a systematic review of the literature published since 2010. Recent conceptual advances include formal disaggregation of disturbances into their constituent components, embedding disturbance processes into system dynamics, and clarifying terminology for interaction factors, types, and ecosystem responses. Empirical studies investigating disturbance interactions now span a wide range of approaches, including (most recently) advanced statistical methods applied to an expanding set of spatial and temporal datasets. Concurrent development in spatially-explicit landscape models, informed by these empirical insights, integrate the interactions among natural and anthropogenic disturbances by coupling these processes to account for disturbance stochasticity, disturbance within and across scales, and non-linear landscape responses to climate change. Still, trade-offs between model elegance and complexity remain. We developed an index for the degree of process integration (i.e., balance of static vs. dynamic components) within a given disturbance agent and applied it to the studies from our systematic review. Contemporary model applications in this line of research have applied a wide range process integration, depending on the specific question, but also limited in part by data and knowledge. Non-linear “threshold” behavior and cross-scaled interactions remain a frontier in temperate, boreal, and alpine regions of North America and Europe, while even simplistic studies are lacking from other regions of the globe (e.g., subtropical and tropical biomes). Understanding and planning for uncertainty in system behavior—including disturbance interactions—is paramount at a time of accelerated anthropogenic change. While progress in landscape modeling studies in this area is evident, work remains to increase model transparency and confidence, especially for understudied regions and processes. Moving forward, a multi-dimensional approach is recommended to address the uncertainties of complex human-ecological dynamics.
Collapse
|
79
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Stephen T Jackson
- US Geological Survey, Southwest and South Central Climate Adaptation Science Centers, Tucson, AZ 85721, USA.,Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
80
|
Barker Plotkin A, Blumstein M, Laflower D, Pasquarella VJ, Chandler JL, Elkinton JS, Thompson JR. Defoliated trees die below a critical threshold of stored carbon. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Audrey Barker Plotkin
- Harvard Forest Harvard University Petersham MA USA
- Department of Environmental Conservation University of Massachusetts Amherst MA USA
| | - Meghan Blumstein
- Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge MA USA
| | | | | | - Jennifer L. Chandler
- Department of Environmental Conservation University of Massachusetts Amherst MA USA
| | - Joseph S. Elkinton
- Department of Environmental Conservation University of Massachusetts Amherst MA USA
| | | |
Collapse
|
81
|
Pöpperl F, Seidl R. Effects of stand edges on the structure, functioning, and diversity of a temperate mountain forest landscape. Ecosphere 2021. [DOI: 10.1002/ecs2.3692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Franziska Pöpperl
- Institute of Silviculture, Department of Forest‐ and Soil Sciences University of Natural Resources and Life Sciences (BOKU) Vienna Peter Jordan Straße 82 Wien 1190 Austria
- Ecosystem Dynamics and Forest Management Group Technical University of Munich Hans‐Carl‐von‐Carlowitz‐Platz 2 Freising 85354 Germany
| | - Rupert Seidl
- Institute of Silviculture, Department of Forest‐ and Soil Sciences University of Natural Resources and Life Sciences (BOKU) Vienna Peter Jordan Straße 82 Wien 1190 Austria
- Ecosystem Dynamics and Forest Management Group Technical University of Munich Hans‐Carl‐von‐Carlowitz‐Platz 2 Freising 85354 Germany
- Berchtesgaden National Park Doktorberg 6 Berchtesgaden 83471 Germany
| |
Collapse
|
82
|
Jupa R, Krabičková D, Plichta R, Mayr S, Gloser V. Do angiosperm tree species adjust intervessel lateral contact in response to soil drought? PHYSIOLOGIA PLANTARUM 2021; 172:2048-2058. [PMID: 33876443 DOI: 10.1111/ppl.13435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
During soil drought (i.e. limited soil water availability to plants), woody species may adjust the structure of their vessel network to improve their resistance against future soil drought stress. Impacts of soil drought on intervessel lateral contact remain poorly understood despite of its significance to xylem transport efficiency and safety. Here, we analysed drought-induced modifications in xylem structures of temperate angiosperm trees with a focus on intervessel lateral contact. Anatomical analyses were performed both in stems of seedlings cultivated under different substrate water availability and annual rings of mature individuals developed during years of low and high soil drought intensities. In response to limited water availability, a decrease in vessel diameter (up to -20%) and simultaneous increase in vessel density (up to +60%) were observed both in seedlings and mature trees. Conversely, there were only small and inconsistent drought-induced changes in intervessel contact frequency and intervessel contact fraction (typically up to ±15%) observed across species, indicating that intervessel lateral contact is a conservative trait. The small adjustments in intervessel lateral contacts were primarily driven by changes in the contact frequencies between neighbouring vessels (i.e. vessel grouping) rather than by changes in proportions of shared cell walls. Our results demonstrate that angiosperm tree species, despite remarkable adjustments in vessel dimensions and densities upon soil drought, exhibit surprisingly invariant intervessel lateral contact architecture.
Collapse
Affiliation(s)
- Radek Jupa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Forest Botany, Dendrology and Geobiocenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Dita Krabičková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Roman Plichta
- Department of Forest Botany, Dendrology and Geobiocenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Vít Gloser
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
83
|
Pellegrini AFA, Caprio AC, Georgiou K, Finnegan C, Hobbie SE, Hatten JA, Jackson RB. Low-intensity frequent fires in coniferous forests transform soil organic matter in ways that may offset ecosystem carbon losses. GLOBAL CHANGE BIOLOGY 2021; 27:3810-3823. [PMID: 33884700 DOI: 10.1111/gcb.15648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
The impact of shifting disturbance regimes on soil carbon (C) storage is a key uncertainty in global change research. Wildfires in coniferous forests are becoming more frequent in many regions, potentially causing large C emissions. Repeated low-intensity prescribed fires can mitigate wildfire severity, but repeated combustion may decrease soil C unless compensatory responses stabilize soil organic matter. Here, we tested how 30 years of decadal prescribed burning affected C and nitrogen (N) in plants, detritus, and soils in coniferous forests in the Sierra Nevada mountains, USA. Tree basal area and litter stocks were resilient to fire, but fire reduced forest floor C by 77% (-36.4 Mg C/ha). In mineral soils, fire reduced C that was free from minerals by 41% (-4.4 Mg C/ha) but not C associated with minerals, and only in depths ≤ 5 cm. Fire also transformed the properties of remaining mineral soil organic matter by increasing the proportion of C in a pyrogenic form (from 3.2% to 7.5%) and associated with minerals (from 46% to 58%), suggesting the remaining soil C is more resistant to decomposition. Laboratory assays illustrated that fire reduced microbial CO2 respiration rates by 55% and the activity of eight extracellular enzymes that degrade cellulosic and aromatic compounds by 40-66%. Lower decomposition was correlated with lower inorganic N (-49%), especially ammonium, suggesting N availability is coupled with decomposition. The relative increase in forms of soil organic matter that are resistant to decay or stabilized onto mineral surfaces, and the associated decline in decomposition suggest that low-intensity fires may promote mineral soil C storage in pools with long mean residence times in coniferous forests.
Collapse
Affiliation(s)
- Adam F A Pellegrini
- Department of Earth System Science, Stanford University, Stanford, CA, USA
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Anthony C Caprio
- United States Department of the Interior, National Park Service, Sequoia and Kings Canyon National Parks, Three Rivers, CA, USA
| | - Katerina Georgiou
- Department of Earth System Science, Stanford University, Stanford, CA, USA
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Colin Finnegan
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Sarah E Hobbie
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Jeffery A Hatten
- Department of Forest Engineering, Resources & Management, Oregon State University, Corvallis, OR, USA
| | - Robert B Jackson
- Department of Earth System Science, Stanford University, Stanford, CA, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA
- Precourt Institute for Energy, Stanford University, Stanford, CA, USA
| |
Collapse
|
84
|
Piovesan G, Biondi F. On tree longevity. THE NEW PHYTOLOGIST 2021; 231:1318-1337. [PMID: 33305422 DOI: 10.1111/nph.17148] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/25/2020] [Indexed: 05/03/2023]
Abstract
Large, majestic trees are iconic symbols of great age among living organisms. Published evidence suggests that trees do not die because of genetically programmed senescence in their meristems, but rather are killed by an external agent or a disturbance event. Long tree lifespans are therefore allowed by specific combinations of life history traits within realized niches that support resistance to, or avoidance of, extrinsic mortality. Another requirement for trees to achieve their maximum longevity is either sustained growth over extended periods of time or at least the capacity to increase their growth rates when conditions allow it. The growth plasticity and modularity of trees can then be viewed as an evolutionary advantage that allows them to survive and reproduce for centuries and millennia. As more and more scientific information is systematically collected on tree ages under various ecological settings, it is becoming clear that tree longevity is a key trait for global syntheses of life history strategies, especially in connection with disturbance regimes and their possible future modifications. In addition, we challenge the long-held notion that shade-tolerant, late-successional species have longer lifespans than early-successional species by pointing out that tree species with extreme longevity do not fit this paradigm. Identifying extremely old trees is therefore the groundwork not only for protecting and/or restoring entire landscapes, but also to revisit and update classic ecological theories that shape our understanding of environmental change.
Collapse
Affiliation(s)
- Gianluca Piovesan
- Dendrology Lab, Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, 01100, Italy
| | - Franco Biondi
- DendroLab, Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
85
|
Thom D, Seidl R. Accelerating Mountain Forest Dynamics in the Alps. Ecosystems 2021; 25:603-617. [PMID: 35509678 PMCID: PMC9016046 DOI: 10.1007/s10021-021-00674-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
Climate change alters forest development pathways, with consequences for ecosystem services and biodiversity. As the rate of warming increases, ecosystem change is expected to accelerate. However, ecosystem dynamics can have many causes unrelated to climate (for example, disturbance and stand development legacies). The compound effects of multiple drivers remain largely unclear. Here, we assessed forest dynamics over 28 years at Berchtesgaden National Park (BGNP), Germany, quantifying the spatiotemporal patterns and unraveling the drivers of forest change. We analyzed high-density forest inventory data, consisting of three consecutive censuses of 3759 permanent sample plots (132,866 tree records in total). We used semi-variograms to analyze spatial patterns of change, and boosted regression trees to quantify the effect of 30 covariates on changes in nine indicators of forest structure and composition. Over the 28 years investigated, the forests of BGNP were becoming denser, structurally more complex, and more species rich. Changes in forest structure were more pronounced and spatially correlated on the landscape than changes in tree species composition. Change rates of all indicators increased over time, signifying an acceleration of forest dynamics since the 1980s. Legacies and climate were the most important drivers of change, but had diverging impacts. Although forest change accelerated with increasing temperature, high legacy levels typical for late development stages dampened it. We here provide evidence for accelerating forest dynamics in mountain forests of the Alps, with potentially far-reaching consequences for biodiversity and ecosystem processes. We highlight that unmanaged forest development toward old-growth conditions could counteract climate-mediated acceleration of forest change.
Collapse
Affiliation(s)
- Dominik Thom
- Ecosystem Dynamics and Forest Management Group, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
- Department of Forest- and Soil Sciences, Institute of Silviculture, University of Natural Resources and Life Sciences (BOKU) Vienna, Peter-Jordan-Straße 82, 1190 Vienna, Austria
- Gund Institute for Environment, University of Vermont, 617 Main Street, Burlington, Vermont 05405 USA
| | - Rupert Seidl
- Ecosystem Dynamics and Forest Management Group, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
- Department of Forest- and Soil Sciences, Institute of Silviculture, University of Natural Resources and Life Sciences (BOKU) Vienna, Peter-Jordan-Straße 82, 1190 Vienna, Austria
- Berchtesgaden National Park, Doktorberg 6, 83471 Berchtesgaden, Germany
| |
Collapse
|
86
|
Bailey SN, Elliott GP, Schliep EM. Seasonal temperature–moisture interactions limit seedling establishment at upper treeline in the Southern Rockies. Ecosphere 2021. [DOI: 10.1002/ecs2.3568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Sydney N. Bailey
- Department of Geography University of Missouri Columbia Missouri65211USA
| | - Grant P. Elliott
- Department of Geography University of Missouri Columbia Missouri65211USA
| | - Erin M. Schliep
- Department of Statistics University of Missouri Columbia Missouri65211USA
| |
Collapse
|
87
|
Navarro-Noya YE, Montoya-Ciriaco N, Muñoz-Arenas LC, Hereira-Pacheco S, Estrada-Torres A, Dendooven L. Conversion of a High-Altitude Temperate Forest for Agriculture Reduced Alpha and Beta Diversity of the Soil Fungal Communities as Revealed by a Metabarcoding Analysis. Front Microbiol 2021; 12:667566. [PMID: 34234759 PMCID: PMC8255801 DOI: 10.3389/fmicb.2021.667566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
Land-use change is one of the most important drivers of change in biodiversity. Deforestation for grazing or agriculture has transformed large areas of temperate forest in the central highlands of Mexico, but its impact on soil fungal communities is still largely unknown. In this study, we determined how deforestation of a high-altitude temperate forest for cultivation of maize (Zea mays L.) or husbandry altered the taxonomic, phylogenetic, functional, and beta diversity of soil fungal communities using a 18S rRNA metabarcoding analysis. The true taxonomic and phylogenetic diversity at order q = 1, i.e., considering frequent operational taxonomic units, decreased significantly in the arable, but not in the pasture soil. The beta diversity decreased in the order forest > pasture > arable soil. The ordination analysis showed a clear effect of intensity of land-use as the forest soil clustered closer to pasture than to the arable soil. The most abundant fungal phyla in the studied soils were Ascomycota, Basidiomycota, and Mucoromycota. Deforestation more than halved the relative abundance of Basidiomycota; mostly Agaricomycetes, such as Lactarius and Inocybe. The relative abundance of Glomeromycota decreased in the order pasture > forest > arable soil. Symbiotrophs, especially ectomycorrhizal fungi, were negatively affected by deforestation while pathotrophs, especially animal pathogens, were enriched in the pasture and arable soil. Ectomycorrhizal fungi were more abundant in the forest soil as they are usually associated with conifers. Arbuscular mycorrhizal fungi were more abundant in the pasture than in the arable soil as the higher plant diversity provided more suitable hosts. Changes in fungal communities resulting from land-use change can provide important information for soil management and the assessment of the environmental impact of deforestation and conversion of vulnerable ecosystems such as high-altitude temperate forests.
Collapse
Affiliation(s)
- Yendi E Navarro-Noya
- Laboratory of Biotic Interactions, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Nina Montoya-Ciriaco
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Ligia C Muñoz-Arenas
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico.,Facultad de Ingeniería Ambiental, UPAEP, Puebla, Mexico
| | | | - Arturo Estrada-Torres
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Luc Dendooven
- Laboratory of Soil Ecology, CINVESTAV-IPN, Ciudad de México, Mexico
| |
Collapse
|
88
|
Simulating the Effects of Intensifying Silviculture on Desired Species Yields across a Broad Environmental Gradient. FORESTS 2021. [DOI: 10.3390/f12060755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the past two decades, forest management has undergone major paradigm shifts that are challenging the current forest modelling architecture. New silvicultural systems, guidelines for natural disturbance emulation, a desire to enhance structural complexity, major advances in successional theory, and climate change have all highlighted the limitations of current empirical models in covering this range of conditions. Mechanistic models, which focus on modelling underlying ecological processes rather than specific forest conditions, have the potential to meet these new paradigm shifts in a consistent framework, thereby streamlining the planning process. Here we use the NEBIE (a silvicultural intervention scale that classifies management intensities as natural, extensive, basic, intensive, and elite) plot network, from across Ontario, Canada, to examine the applicability of a mechanistic model, ZELIG-CFS (a version of the ZELIG tree growth model developed by the Canadian Forest Service), to simulate yields and species compositions. As silvicultural intensity increased, overall yield generally increased. Species compositions met the desired outcomes when specific silvicultural treatments were implemented and otherwise generally moved from more shade-intolerant to more shade-tolerant species through time. Our results indicated that a mechanistic model can simulate complex stands across a range of forest types and silvicultural systems while accounting for climate change. Finally, we highlight the need to improve the modelling of regeneration processes in ZELIG-CFS to better represent regeneration dynamics in plantations. While fine-tuning is needed, mechanistic models present an option to incorporate adaptive complexity into modelling forest management outcomes.
Collapse
|
89
|
Shriver RK, Yackulic CB, Bell DM, Bradford JB. Quantifying the demographic vulnerabilities of dry woodlands to climate and competition using rangewide monitoring data. Ecology 2021; 102:e03425. [PMID: 34091890 DOI: 10.1002/ecy.3425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/08/2021] [Accepted: 03/21/2021] [Indexed: 01/25/2023]
Abstract
Climate change is expected to alter the distribution and abundance of tree species, impacting ecosystem structure and function. Yet, anticipating where this will occur is often hampered by a lack of understanding of how demographic rates, most notably recruitment, vary in response to climate and competition across a species range. Using large-scale monitoring data on two dry woodland tree species (Pinus edulis and Juniperus osteosperma), we develop an approach to infer recruitment, survival, and growth of both species across their range. In doing so, we account for ecological and statistical dependencies inherent in large-scale monitoring data. We find that drying and warming conditions generally lead to declines in recruitment and survival, but the strength of responses varied between species. These climate conditions point to geographic regions of high vulnerability for particular species, such as Pinus edulis in northern Arizona, where both survival and recruitment are low. Our approach provides a path forward for leveraging emerging large-scale monitoring and remotely sensed data to anticipate the impacts of global change on species distributions.
Collapse
Affiliation(s)
- Robert K Shriver
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada, 89557, USA.,U.S. Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona, 86001, USA
| | - Charles B Yackulic
- U.S. Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona, 86001, USA
| | - David M Bell
- U.S. Department of Agriculture Forest Service, Pacific Northwest Research Station, Corvallis, Oregon, 97331, USA
| | - John B Bradford
- U.S. Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona, 86001, USA
| |
Collapse
|
90
|
Framework for Spatial and Temporal Monitoring of Urban Forest and Vegetation Conditions: Case Study Zagreb, Croatia. SUSTAINABILITY 2021. [DOI: 10.3390/su13116055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urban forest and vegetation conditions are an important variable in urban ecosystem management decision-making. However, it is difficult to evaluate and monitor solely on the basis of field measurements. Remote sensing technologies can greatly contribute to the faster extraction and mapping of vegetation health status indicators, on the basis of which agronomy and forestry experts can draw conclusions about the condition of urban vegetation in larger areas. A new remote sensing-based urban forest and vegetation cover monitoring framework is presented and applied to a case study of the city of Zagreb, Croatia. In this study, Sentinel-2 multi-temporal imagery was used to derive and analyze the current state of urban forest cover. Vegetation indices (NDVI, RVI, and GRVI) were calculated. K-means unsupervised classification of the vegetation indices was conducted. In this way, the dimensionality of the vegetation indices was reduced, while all the data contained in it were used to represent their graded values. Vegetation that was in a poor condition stood out better that way. Finally, PCA-based change detection was performed on the vegetation indices graded values, and a map of change was produced. These results need to be interpreted and validated by foresters and agronomists in further research.
Collapse
|
91
|
Jones GM, Kramer HA, Berigan WJ, Whitmore SA, Gutiérrez RJ, Peery MZ. Megafire causes persistent loss of an old‐forest species. Anim Conserv 2021. [DOI: 10.1111/acv.12697] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- G. M. Jones
- USDA Forest Service Rocky Mountain Research Station Albuquerque NM USA
| | - H. A. Kramer
- Department of Forest and Wildlife Ecology University of Wisconsin‐Madison Madison WI USA
| | - W. J. Berigan
- Department of Forest and Wildlife Ecology University of Wisconsin‐Madison Madison WI USA
| | - S. A. Whitmore
- Department of Forest and Wildlife Ecology University of Wisconsin‐Madison Madison WI USA
| | - R. J. Gutiérrez
- Department of Forest and Wildlife Ecology University of Wisconsin‐Madison Madison WI USA
| | - M. Z. Peery
- Department of Forest and Wildlife Ecology University of Wisconsin‐Madison Madison WI USA
| |
Collapse
|
92
|
Stewart JAE, van Mantgem PJ, Young DJN, Shive KL, Preisler HK, Das AJ, Stephenson NL, Keeley JE, Safford HD, Wright MC, Welch KR, Thorne JH. Effects of postfire climate and seed availability on postfire conifer regeneration. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02280. [PMID: 33331069 DOI: 10.1002/eap.2280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 07/21/2020] [Accepted: 08/17/2020] [Indexed: 06/12/2023]
Abstract
Large, severe fires are becoming more frequent in many forest types across the western United States and have resulted in tree mortality across tens of thousands of hectares. Conifer regeneration in these areas is limited because seeds must travel long distances to reach the interior of large burned patches and establishment is jeopardized by increasingly hot and dry conditions. To better inform postfire management in low elevation forests of California, USA, we collected 5-yr postfire recovery data from 1,234 study plots in 19 wildfires that burned from 2004-2012 and 18 yrs of seed production data from 216 seed fall traps (1999-2017). We used these data in conjunction with spatially extensive climate, topography, forest composition, and burn severity surfaces to construct taxon-specific, spatially explicit models of conifer regeneration that incorporate climate conditions and seed availability during postfire recovery windows. We found that after accounting for other predictors both postfire and historical precipitation were strong predictors of regeneration, suggesting that both direct effects of postfire moisture conditions and biological inertia from historical climate may play a role in regeneration. Alternatively, postfire regeneration may simply be driven by postfire climate and apparent relationships with historical climate could be spurious. The estimated sensitivity of regeneration to postfire seed availability was strongest in firs and all conifers combined and weaker in pines. Seed production exhibited high temporal variability with seed production varying by over two orders of magnitude among years. Our models indicate that during droughts postfire conifer regeneration declines most substantially in low-to-moderate elevation forests. These findings enhance our mechanistic understanding of forecasted and historically documented shifts in the distribution of trees.
Collapse
Affiliation(s)
- Joseph A E Stewart
- Western Ecological Research Center, U.S. Geological Survey, Arcata, California, 95521, USA
- Department of Environmental Science and Policy, UC Davis, Davis, California, 95616, USA
| | - Phillip J van Mantgem
- Western Ecological Research Center, U.S. Geological Survey, Arcata, California, 95521, USA
| | - Derek J N Young
- Department of Plant Sciences, UC Davis, Davis, California, 95616, USA
| | - Kristen L Shive
- Western Ecological Research Center, U.S. Geological Survey, Arcata, California, 95521, USA
| | - Haiganoush K Preisler
- Pacific Southwest Research Station, U.S. Forest Service, Albany, California, 94710, USA
| | - Adrian J Das
- Western Ecological Research Center, U.S. Geological Survey, Three Rivers, California, 93271, USA
| | - Nathan L Stephenson
- Western Ecological Research Center, U.S. Geological Survey, Three Rivers, California, 93271, USA
| | - Jon E Keeley
- Western Ecological Research Center, U.S. Geological Survey, Three Rivers, California, 93271, USA
| | - Hugh D Safford
- Department of Environmental Science and Policy, UC Davis, Davis, California, 95616, USA
- Pacific Southwest Region, U.S. Forest Service, Vallejo, California, 94592, USA
| | - Micah C Wright
- Western Ecological Research Center, U.S. Geological Survey, Arcata, California, 95521, USA
| | - Kevin R Welch
- California Department of Forestry and Fire Protection, Sacramento, California, 94244, USA
| | - James H Thorne
- Department of Environmental Science and Policy, UC Davis, Davis, California, 95616, USA
| |
Collapse
|
93
|
Di Sacco A, Hardwick KA, Blakesley D, Brancalion PHS, Breman E, Cecilio Rebola L, Chomba S, Dixon K, Elliott S, Ruyonga G, Shaw K, Smith P, Smith RJ, Antonelli A. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. GLOBAL CHANGE BIOLOGY 2021; 27:1328-1348. [PMID: 33494123 DOI: 10.1111/gcb.15498] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/13/2020] [Indexed: 05/21/2023]
Abstract
Urgent solutions to global climate change are needed. Ambitious tree-planting initiatives, many already underway, aim to sequester enormous quantities of carbon to partly compensate for anthropogenic CO2 emissions, which are a major cause of rising global temperatures. However, tree planting that is poorly planned and executed could actually increase CO2 emissions and have long-term, deleterious impacts on biodiversity, landscapes and livelihoods. Here, we highlight the main environmental risks of large-scale tree planting and propose 10 golden rules, based on some of the most recent ecological research, to implement forest ecosystem restoration that maximizes rates of both carbon sequestration and biodiversity recovery while improving livelihoods. These are as follows: (1) Protect existing forest first; (2) Work together (involving all stakeholders); (3) Aim to maximize biodiversity recovery to meet multiple goals; (4) Select appropriate areas for restoration; (5) Use natural regeneration wherever possible; (6) Select species to maximize biodiversity; (7) Use resilient plant material (with appropriate genetic variability and provenance); (8) Plan ahead for infrastructure, capacity and seed supply; (9) Learn by doing (using an adaptive management approach); and (10) Make it pay (ensuring the economic sustainability of the project). We focus on the design of long-term strategies to tackle the climate and biodiversity crises and support livelihood needs. We emphasize the role of local communities as sources of indigenous knowledge, and the benefits they could derive from successful reforestation that restores ecosystem functioning and delivers a diverse range of forest products and services. While there is no simple and universal recipe for forest restoration, it is crucial to build upon the currently growing public and private interest in this topic, to ensure interventions provide effective, long-term carbon sinks and maximize benefits for biodiversity and people.
Collapse
Affiliation(s)
| | | | - David Blakesley
- Wildlife Landscapes, Maidstone, UK
- Autism and Nature, Maidstone, UK
| | - Pedro H S Brancalion
- Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | | | - Loic Cecilio Rebola
- Royal Botanic Gardens, Kew, Richmond, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Kingsley Dixon
- Australian Research Council Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
- Missouri Botanical Garden, St Louis, MO, USA
| | - Stephen Elliott
- Forest Restoration Research Unit and Environmental Science Research Centre, Biology Department, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Kirsty Shaw
- Botanic Gardens Conservation International, Richmond, UK
| | - Paul Smith
- Botanic Gardens Conservation International, Richmond, UK
| | | | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
94
|
The Timber Footprint of the German Bioeconomy—State of the Art and Past Development. SUSTAINABILITY 2021. [DOI: 10.3390/su13073878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The article gives a comprehensive overview of the roundwood equivalents (RE) consumed in the German bioeconomy from Germany and abroad between 1995 and 2015, i.e., the Timber Footprint of final Consumption (TFPcon). The calculation is based on an adapted version of Exiobase 3.4. The sustainability of roundwood procurement for the TFPcon is assessed. A systematic embedding of the tree compartments considered in the TFP in the context of national forest inventories and material flow analysis is presented. The results show that, in 2015, the total volume of the TFPcon of Germany is 90 Mm3 (slightly above the 1995 level) and is composed of 61% coniferous and 39% non-coniferous wood. Germany is strongly dependent on roundwood sourced from abroad and thus was a net importer of RE in 2015. Among the 17 countries with the largest supply of RE for the TFPcon, around one third very likely include large shares of roundwood procured from deforestation or clear-cutting. The self-sufficiency rate in 2015 was only 76%. It would be possible to increase domestic roundwood production by 8–41% (mainly in the hardwood sector) without exceeding the sustainability limits as defined in the WEHAM scenarios.
Collapse
|
95
|
Maher CT, Millar CI, Affleck DLR, Keane RE, Sala A, Tobalske C, Larson AJ, Nelson CR. Alpine treeline ecotones are potential refugia for a montane pine species threatened by bark beetle outbreaks. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e2274. [PMID: 33617144 DOI: 10.1002/eap.2274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Warming-induced mountain pine beetle (Dendroctonus ponderosae; MPB) outbreaks have caused extensive mortality of whitebark pine (Pinus albicaulis; WBP) throughout the species' range. In the highest mountains where WBP occur, they cross alpine treeline ecotones (ATEs) where growth forms transition from trees to shrub-like krummholz, some of which survived recent MPB outbreaks. This observation motivated the hypothesis that ATEs are refugia for WBP because krummholz growth forms escape MPB attack and have the potential to produce viable seed. To test this hypothesis, we surveyed WBP mortality along transects from the ATE edge (locally highest krummholz WBP) downslope into the forest and, to distinguish if survival mechanisms are unique to ATEs, across other forest ecotones (OFEs) from the edge of WBP occurrence into the forest. We replicated this design at 10 randomly selected sites in the U.S. Northern Rocky Mountains. We also surveyed reproduction in a subset of ATE sites. Mortality was nearly absent in upper ATEs (mean ± SE percent dead across all sites of 0.03% ± 0.03% 0-100 m from the edge and 14.1% ± 1.7% 100-500 m from the edge) but was above 20% along OFEs (21.4 ± 5.2% 0-100 m and 32.4 ± 2.7% 100-500 m from the edge). We observed lower reproduction in upper ATEs (16 ± 9.9 cones/ha and 12.9 ± 5.3 viable seeds/cone 0-100 m from the edge) compared to forests below (317.1 ± 64.4 cones/ha and 32.5 ± 2.5 viable seeds/cone 100-500 m from the edge). Uniquely high WBP survival supports the hypothesis that ATEs serve as refugia because krummholz growth forms escape MPB attack. However, low reproduction suggests ATE refugia function over longer time periods. Beyond our WBP system, we propose that plant populations in marginal environments are candidate refugia if distinct phenotypes result in reduced disturbance impacts.
Collapse
Affiliation(s)
- Colin T Maher
- WA Franke College of Forestry and Conservation, The University of Montana, 32 Campus Drive, Missoula, Montana, 59812, USA
| | - Constance I Millar
- Pacific Southwest Research Station, USDA Forest Service, 800 Buchanan Street, Albany, California, 94710, USA
| | - David L R Affleck
- WA Franke College of Forestry and Conservation, The University of Montana, 32 Campus Drive, Missoula, Montana, 59812, USA
| | - Robert E Keane
- Rocky Mountain Research Station, Missoula Fire Science Laboratory, USDA Forest Service, 5775 Highway 10 West, Missoula, Montana, 59808, USA
| | - Anna Sala
- Division of Biological Sciences, The University of Montana, 32 Campus Drive, Missoula, Montana, 59812, USA
| | - Claudine Tobalske
- Spatial Analysis Lab, Montana Natural Heritage Program, The University of Montana, 32 Campus Drive, Missoula, Montana, 59812, USA
| | - Andrew J Larson
- WA Franke College of Forestry and Conservation, Wilderness Institute, The University of Montana, 32 Campus Drive, Missoula, Montana, 59812, USA
| | - Cara R Nelson
- WA Franke College of Forestry and Conservation, The University of Montana, 32 Campus Drive, Missoula, Montana, 59812, USA
| |
Collapse
|
96
|
Wayman RB, Safford HD. Recent bark beetle outbreaks influence wildfire severity in mixed-conifer forests of the Sierra Nevada, California, USA. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02287. [PMID: 33426715 DOI: 10.1002/eap.2287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 06/12/2023]
Abstract
In temperate forests, elevated frequency of drought related disturbances will likely increase the incidence of interactions between disturbances such as bark beetle epidemics and wildfires. Our understanding of the influence of recent drought and insect-induced tree mortality on wildfire severity has largely lacked information from forests adapted to frequent fire. A recent unprecedented tree mortality event in California's Sierra Nevada provides an opportunity to examine this disturbance interaction in historically frequent-fire forests. Using field data collected within areas of recent tree mortality that subsequently burned in wildfire, we examined whether and under what conditions wildfire severity relates to severity of prefire tree mortality in Sierra Nevada mixed-conifer forests. We collected data on 180 plots within the 2015 Rough Fire and 2016 Cedar Fire footprints (California, USA). Our analyses identified prefire tree mortality as influential on all measures of wildfire severity (basal area killed by fire, RdNBR, and canopy torch) on the Cedar Fire, although it was less influential than fire weather (relative humidity). Prefire tree mortality was influential on two of three fire-severity measures on the Rough Fire, and was the most important predictor of basal area killed by fire; topographic position was influential on two metrics. On the Cedar Fire, the influence of prefire mortality on basal area killed by fire was greater under milder weather conditions. All measures of fire severity increased as prefire mortality increased up to prefire mortality levels of approximately 30-40%; further increases did not result in greater fire severity. The interacting disturbances shifted a pine-dominated system (Rough Fire) to a cedar-pine-fir system, while the pre-disturbance fir-cedar system (Cedar Fire) saw its dominant species unchanged. Managers of historically frequent-fire forests will benefit from utilizing this information when prioritizing fuels reduction treatments in areas of recent tree mortality, as it is the first empirical study to document a relationship between prefire mortality and subsequent wildfire severity in these systems. This study contributes to a growing body of evidence that the influence of prefire tree mortality on wildfire severity in temperate coniferous forests may depend on other conditions capable of driving extreme wildfire behavior, such as weather.
Collapse
Affiliation(s)
- Rebecca B Wayman
- Department of Environmental Science and Policy, University of California, Davis, 95616, USA
| | - Hugh D Safford
- Department of Environmental Science and Policy, University of California, Davis, 95616, USA
- Pacific Southwest Region, USDA Forest Service, Vallejo, California, 94592, USA
| |
Collapse
|
97
|
Johnston JD, Greenler SM, Miller BA, Reilly MJ, Lindsay AA, Dunn CJ. Diameter limits impede restoration of historical conditions in dry mixed‐conifer forests of eastern Oregon, USA. Ecosphere 2021. [DOI: 10.1002/ecs2.3394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- James D. Johnston
- Oregon State University College of Forestry 140 Peavy Hall, 3100 SW Jefferson Way Corvallis Oregon97333USA
| | - Skye M. Greenler
- Oregon State University College of Forestry 140 Peavy Hall, 3100 SW Jefferson Way Corvallis Oregon97333USA
| | - Becky A. Miller
- Parks Canada Agency 2220 Harbour Road Sidney British ColumbiaV8L 2P6Canada
| | - Matthew J. Reilly
- USDA Forest ServicePacific Northwest Research Station, Western Wildland Environmental Threat Assessment Center Corvallis Oregon97331USA
| | - Amanda A. Lindsay
- USDA Forest ServiceMalheur National Forest 431 Patterson Bridge Road John Day Oregon97845USA
| | - Christopher J. Dunn
- Oregon State University College of Forestry 140 Peavy Hall, 3100 SW Jefferson Way Corvallis Oregon97333USA
| |
Collapse
|
98
|
Observational Evidence of the Need for Gender-Sensitive Approaches to Wildfires Locally and Globally: Case Study of 2018 Wildfire in Mati, Greece. SUSTAINABILITY 2021. [DOI: 10.3390/su13031556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The study takes an equality justice perspective to compare resilience against the controlled management of wildfires, for an effective preparedness, which is a prerequisite for equitable mitigation. The objectives were (a) conceptualizing wildfire mitigation by exploring the ties with gender equality to wildfire hazards, (b) taking the case of wildfire 2018 in Mati, Greece, to contribute reducing the country’s gender inequality, and (c) increasing resilience to climate change hazards by considering lessons learnt. The authors underscore the benefits of a workshop-based and instrumental case study methodology for unravelling evidence on the need for gender-sensitive approaches and tools for future planning at local, regional, and global scales. The case study unravels women’s lack of preparedness to wildfires in Greece, their absence in decision-making for fire management, and the need for capacity building to transform communities’ resilience. The literature research and the specific interviews conducted helped bring awareness to the wildfire’s dynamics, in alignment with the fundamental aspect of gender equality, and to ground recommendations for socio-ecological resilience transition and gender-sensitive approaches in fire management, from reactive fire-fighting to proactive integration. Although in the geographical-context, the study can bring widespread geographical awareness, bringing insights for relevance to similar areas worldwide.
Collapse
|
99
|
Ranade SS, García-Gil MR. Molecular signatures of local adaptation to light in Norway spruce. PLANTA 2021; 253:53. [PMID: 33511433 PMCID: PMC7843583 DOI: 10.1007/s00425-020-03517-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/02/2020] [Indexed: 05/12/2023]
Abstract
MAIN CONCLUSION Transcriptomic and exome capture analysis reveal an adaptive cline for shade tolerance in Norway spruce. Genes involved in the lignin pathway and immunity seem to play a potential role in contributing towards local adaptation to light. The study of natural variation is an efficient method to elucidate how plants adapt to local climatic conditions, a key process for the evolution of a species. Norway spruce is a shade-tolerant conifer in which the requirement of far-red light for growth increases latitudinally northwards. The objective of the study is to characterize the genetic control of local adaptation to light enriched in far-red in Norway spruce, motivated by a latitudinal gradient for the Red:Far-red (R:FR) ratio to which Norway spruce has been proven to be genetically adapted. We have established the genomic signatures of local adaptation by conducting transcriptomic (total RNA-sequencing) and genomic analyses (exome capture), for the identification of genes differentially regulated along the cline. RNA-sequencing revealed 274 differentially expressed genes in response to SHADE (low R:FR light), between the southern and northern natural populations in Sweden. Exome capture included analysis of a uniquely large data set (1654 trees) that revealed missense variations in coding regions of nine differentially expressed candidate genes, which followed a latitudinal cline in allele and genotype frequencies. These genes included five transcription factors involved in vital processes like bud-set/bud-flush, lignin pathway, and cold acclimation and other genes that take part in cell-wall remodeling, secondary cell-wall thickening, response to starvation, and immunity. Based on these results, we suggest that the northern populations might not only be able to adjust their growing season in response to low R:FR light, but they may also be better adapted towards disease resistance by up-regulation of the lignin pathway that is linked to immunity. This forms a concrete basis for local adaptation to light quality in Norway spruce, one of the most economically important conifer tree species in Sweden.
Collapse
Affiliation(s)
- Sonali Sachin Ranade
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
- Department of Plant Physiology, Umeå Plant Science Centre, University of Umeå, 901 87 Umeå, Sweden
| | - María Rosario García-Gil
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| |
Collapse
|
100
|
Over half of western United States' most abundant tree species in decline. Nat Commun 2021; 12:451. [PMID: 33469023 PMCID: PMC7815881 DOI: 10.1038/s41467-020-20678-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023] Open
Abstract
Changing forest disturbance regimes and climate are driving accelerated tree mortality across temperate forests. However, it remains unknown if elevated mortality has induced decline of tree populations and the ecological, economic, and social benefits they provide. Here, we develop a standardized forest demographic index and use it to quantify trends in tree population dynamics over the last two decades in the western United States. The rate and pattern of change we observe across species and tree size-distributions is alarming and often undesirable. We observe significant population decline in a majority of species examined, show decline was particularly severe, albeit size-dependent, among subalpine tree species, and provide evidence of widespread shifts in the size-structure of montane forests. Our findings offer a stark warning of changing forest composition and structure across the western US, and suggest that sustained anthropogenic and natural stress will likely result in broad-scale transformation of temperate forests globally.
Collapse
|