51
|
Chen X, Haribowo AG, Baik AH, Fossati A, Stevenson E, Chen YR, Reyes NS, Peng T, Matthay MA, Traglia M, Pico AR, Jarosz DF, Buchwalter A, Ghaemmaghami S, Swaney DL, Jain IH. In vivo protein turnover rates in varying oxygen tensions nominate MYBBP1A as a mediator of the hyperoxia response. SCIENCE ADVANCES 2023; 9:eadj4884. [PMID: 38064566 PMCID: PMC10708181 DOI: 10.1126/sciadv.adj4884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Oxygen deprivation and excess are both toxic. Thus, the body's ability to adapt to varying oxygen tensions is critical for survival. While the hypoxia transcriptional response has been well studied, the post-translational effects of oxygen have been underexplored. In this study, we systematically investigate protein turnover rates in mouse heart, lung, and brain under different inhaled oxygen tensions. We find that the lung proteome is the most responsive to varying oxygen tensions. In particular, several extracellular matrix (ECM) proteins are stabilized in the lung under both hypoxia and hyperoxia. Furthermore, we show that complex 1 of the electron transport chain is destabilized in hyperoxia, in accordance with the exacerbation of associated disease models by hyperoxia and rescue by hypoxia. Moreover, we nominate MYBBP1A as a hyperoxia transcriptional regulator, particularly in the context of rRNA homeostasis. Overall, our study highlights the importance of varying oxygen tensions on protein turnover rates and identifies tissue-specific mediators of oxygen-dependent responses.
Collapse
Affiliation(s)
- Xuewen Chen
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Augustinus G. Haribowo
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Alan H. Baik
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Andrea Fossati
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Erica Stevenson
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Yiwen R. Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Nabora S. Reyes
- Department of Medicine and Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tien Peng
- Department of Medicine and Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Michael A. Matthay
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, CA, USA
| | - Michela Traglia
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Alexander R. Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Daniel F. Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, CA, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Sina Ghaemmaghami
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Danielle L. Swaney
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Isha H. Jain
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
52
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
53
|
Moreira JD, Smith KK, Zilber S, Woleben K, Fetterman JL. Teamwork makes the dream work: functional collaborations between families, scientists, and healthcare providers to drive progress in the treatment of Leigh Syndrome. Orphanet J Rare Dis 2023; 18:355. [PMID: 37974220 PMCID: PMC10652456 DOI: 10.1186/s13023-023-02871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/23/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Leigh syndrome, an inherited neurometabolic disorder, is estimated to be the most common pediatric manifestation of mitochondrial disease. No treatments are currently available for Leigh syndrome due to many hurdles in drug discovery efforts. Leigh syndrome causal variants span over 110 different genes and likely lead to both unique and shared biochemical alterations, often resulting in overlapping phenotypic features. The mechanisms by which pathogenic variants in mitochondrial genes alter cellular phenotype to promote disease remain poorly understood. The rarity of cases of specific causal variants creates barriers to drug discovery and adequately sized clinical trials. BODY: To address the current challenges in drug discovery and facilitate communication between researchers, healthcare providers, patients, and families, the Boston University integrative Cardiovascular Metabolism and Pathophysiology (iCAMP) Lab and Cure Mito Foundation hosted a Leigh Syndrome Symposium. This symposium brought together expert scientists and providers to highlight the current successes in drug discovery and novel models of mitochondrial disease, and to connect patients to providers and scientists to foster community and communication. CONCLUSION In this symposium review, we describe the research presented, the hurdles ahead, and strategies to better connect the Leigh syndrome community members to advance treatments for Leigh syndrome.
Collapse
Affiliation(s)
- Jesse D Moreira
- Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, 02118, Boston, MA, USA
| | - Karan K Smith
- Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, 02118, Boston, MA, USA
| | - Sophia Zilber
- Cure Mito Foundation, 6808 Old Glory Ct., 75071, McKinney, TX, USA
| | - Kasey Woleben
- Cure Mito Foundation, 6808 Old Glory Ct., 75071, McKinney, TX, USA.
| | - Jessica L Fetterman
- Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, 02118, Boston, MA, USA.
| |
Collapse
|
54
|
Di Leo V, Bernardino Gomes TM, Vincent AE. Interactions of mitochondrial and skeletal muscle biology in mitochondrial myopathy. Biochem J 2023; 480:1767-1789. [PMID: 37965929 PMCID: PMC10657187 DOI: 10.1042/bcj20220233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Mitochondrial dysfunction in skeletal muscle fibres occurs with both healthy aging and a range of neuromuscular diseases. The impact of mitochondrial dysfunction in skeletal muscle and the way muscle fibres adapt to this dysfunction is important to understand disease mechanisms and to develop therapeutic interventions. Furthermore, interactions between mitochondrial dysfunction and skeletal muscle biology, in mitochondrial myopathy, likely have important implications for normal muscle function and physiology. In this review, we will try to give an overview of what is known to date about these interactions including metabolic remodelling, mitochondrial morphology, mitochondrial turnover, cellular processes and muscle cell structure and function. Each of these topics is at a different stage of understanding, with some being well researched and understood, and others in their infancy. Furthermore, some of what we know comes from disease models. Whilst some findings are confirmed in humans, where this is not yet the case, we must be cautious in interpreting findings in the context of human muscle and disease. Here, our goal is to discuss what is known, highlight what is unknown and give a perspective on the future direction of research in this area.
Collapse
Affiliation(s)
- Valeria Di Leo
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
| | - Tiago M. Bernardino Gomes
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Amy E. Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
| |
Collapse
|
55
|
Piroli GG, Manuel AM, McCain RS, Smith HH, Ozohanics O, Mellid S, Cox JH, Cotham WE, Walla MD, Cascón A, Ambrus A, Frizzell N. Defective function of α-ketoglutarate dehydrogenase exacerbates mitochondrial ATP deficits during complex I deficiency. Redox Biol 2023; 67:102932. [PMID: 37883842 PMCID: PMC10618796 DOI: 10.1016/j.redox.2023.102932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
The NDUFS4 knockout (KO) mouse phenotype resembles the human Complex I deficiency Leigh Syndrome. The irreversible succination of protein thiols by fumarate is increased in select regions of the NDUFS4 KO brain affected by neurodegeneration. We report that dihydrolipoyllysine-residue succinyltransferase (DLST), a component of the α-ketoglutarate dehydrogenase complex (KGDHC) of the tricarboxylic acid (TCA) cycle, is succinated in the affected regions of the NDUFS4 KO brain. Succination of DLST reduced KGDHC activity in the brainstem (BS) and olfactory bulb (OB) of KO mice. The defective production of KGDHC derived succinyl-CoA resulted in decreased mitochondrial substrate level phosphorylation (SLP), further aggravating the existing oxidative phosphorylation (OXPHOS) ATP deficit. Protein succinylation, an acylation modification that requires succinyl-CoA, was reduced in the KO mice. Modeling succination of a cysteine in the spatial vicinity of the DLST active site or introduction of succinomimetic mutations recapitulates these metabolic deficits. Our data demonstrate that the biochemical deficit extends beyond impaired Complex I assembly and OXPHOS deficiency, functionally impairing select components of the TCA cycle to drive metabolic perturbations in affected neurons.
Collapse
Affiliation(s)
- Gerardo G Piroli
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Allison M Manuel
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Richard S McCain
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Holland H Smith
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Oliver Ozohanics
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Sara Mellid
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - J Hunter Cox
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - William E Cotham
- Mass Spectrometry Center, Department of Chemistry & Biochemistry, University of South Carolina, Columbia, SC, 29205, USA
| | - Michael D Walla
- Mass Spectrometry Center, Department of Chemistry & Biochemistry, University of South Carolina, Columbia, SC, 29205, USA
| | - Alberto Cascón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Attila Ambrus
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Norma Frizzell
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA.
| |
Collapse
|
56
|
Spencer KA, Mulholland M, Snell J, Howe M, James K, Hanaford AR, Morgan PG, Sedensky M, Johnson SC. Volatile anaesthetic toxicity in the genetic mitochondrial disease Leigh syndrome. Br J Anaesth 2023; 131:832-846. [PMID: 37770252 PMCID: PMC10636522 DOI: 10.1016/j.bja.2023.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/16/2023] [Accepted: 08/07/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Volatile anaesthetics are widely used in human medicine. Although generally safe, hypersensitivity and toxicity can occur in rare cases, such as in certain genetic disorders. Anaesthesia hypersensitivity is well-documented in a subset of mitochondrial diseases, but whether volatile anaesthetics are toxic in this setting has not been explored. METHODS We exposed Ndufs4(-/-) mice, a model of Leigh syndrome, to isoflurane (0.2-0.6%), oxygen 100%, or air. Cardiorespiratory function, weight, blood metabolites, and survival were assessed. We exposed post-symptom onset and pre-symptom onset animals and animals treated with the macrophage depleting drug PLX3397/pexidartinib to define the role of overt neuroinflammation in volatile anaesthetic toxicities. RESULTS Isoflurane induced hyperlactataemia, weight loss, and mortality in a concentration- and duration-dependent manner from 0.2% to 0.6% compared with carrier gas (O2 100%) or mock (air) exposures (lifespan after 30-min exposures ∗P<0.05 for isoflurane 0.4% vs air or vs O2, ∗∗P<0.005 for isoflurane 0.6% vs air or O2; 60-min exposures ∗∗P<0.005 for isoflurane 0.2% vs air, ∗P<0.05 for isoflurane 0.2% vs O2). Isoflurane toxicity was significantly reduced in Ndufs4(-/-) exposed before CNS disease onset, and the macrophage depleting drug pexidartinib attenuated sequelae of isoflurane toxicity (survival ∗∗∗P=0.0008 isoflurane 0.4% vs pexidartinib plus isoflurane 0.4%). Finally, the laboratory animal standard of care of 100% O2 as a carrier gas contributed significantly to weight loss and reduced survival, but not to metabolic changes, and increased acute mortality. CONCLUSIONS Isoflurane is toxic in the Ndufs4(-/-) model of Leigh syndrome. Toxic effects are dependent on the status of underlying neurologic disease, largely prevented by the CSF1R inhibitor pexidartinib, and influenced by oxygen concentration in the carrier gas.
Collapse
Affiliation(s)
- Kira A Spencer
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, Seattle, WA, USA
| | - Michael Mulholland
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - John Snell
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Miranda Howe
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Katerina James
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Allison R Hanaford
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Philip G Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, Seattle, WA, USA
| | - Margaret Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, Seattle, WA, USA
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, Seattle, WA, USA; Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK; Department of Laboratory Medicine and Pathology, Seattle, WA, USA; Department of Neurology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
57
|
Liu Y, Li J, Huang H, Shu Y. A fluorescent probe for imaging nitroreductase with signal amplification in high-viscosity environments. J Mater Chem B 2023; 11:9509-9515. [PMID: 37740378 DOI: 10.1039/d3tb01760e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Herein, we developed a fluorescent probe ENBT for in vitro detection of nitroreductase (NTR) as well as imaging intracellular NTR. ENBT itself is non-fluorescent and it could be catalyzed by NTR to generate a viscosity-sensitive fluorophore EBT. The fluorescence intensity of EBT could be further enhanced in cancer cells with relatively high viscosity due to the inhibition of the twisted intramolecular charge transfer effect. The probe ENBT has a good response to NTR with a detection limit of 36.8 ng mL-1, and EBT has a good response to viscosity. Furthermore, different concentrations of NTR (0-1.4 μg mL-1) were used to react with the probe and the reaction systems were subjected to different viscosity solutions, and the fluorescence signals of the products in the viscosity range of 45.86-163.60 cP were increased up to 1.69-fold. ENBT was successfully used to image NTR in cells under different hypoxic conditions as well as in Staphylococcus aureus. Finally, lipopolysaccharide was added to stimulate an increase in cellular viscosity after ENBT was catalyzed by intracellular NTR into EBT, and the fluorescence signals were observed to increase by 1.72-fold. The signal amplification capability gives ENBT higher sensitivity and immunity to interference. Moreover, it has the advantages of mitochondrial targeting, large Stokes shift (190 nm), high selectivity, and can be easily synthesized.
Collapse
Affiliation(s)
- Yunfan Liu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Jiaying Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Hongjin Huang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
58
|
Zaslavsky K, Donaldson L, Margolin E. Conversion to Leber Hereditary Optic Neuropathy After Hyperbaric Oxygen Therapy. J Neuroophthalmol 2023; 43:e70-e73. [PMID: 34629399 DOI: 10.1097/wno.0000000000001357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Kirill Zaslavsky
- Department of Ophthalmology and Vision Sciences (KZ, LD, EM), University of Toronto, Toronto, Canada ; and Division of Neurology (EM), Department of Medicine, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
59
|
Zhang R, Yang A, Zhang L, He L, Gu X, Yu C, Lu Z, Wang C, Zhou F, Li F, Ji L, Xing J, Guo H. MFN2 deficiency promotes cardiac response to hypobaric hypoxia by reprogramming cardiomyocyte metabolism. Acta Physiol (Oxf) 2023; 239:e14018. [PMID: 37401731 DOI: 10.1111/apha.14018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
AIM Under hypobaric hypoxia (HH), the heart triggers various defense mechanisms including metabolic remodeling against lack of oxygen. Mitofusin 2 (MFN2), located at the mitochondrial outer membrane, is closely involved in the regulation of mitochondrial fusion and cell metabolism. To date, however, the role of MFN2 in cardiac response to HH has not been explored. METHODS Loss- and gain-of-function approaches were used to investigate the role of MFN2 in cardiac response to HH. In vitro, the function of MFN2 in the contraction of primary neonatal rat cardiomyocytes under hypoxia was examined. Non-targeted metabolomics and mitochondrial respiration analyses, as well as functional experiments were performed to explore underlying molecular mechanisms. RESULTS Our data demonstrated that, following 4 weeks of HH, cardiac-specific MFN2 knockout (MFN2 cKO) mice exhibited significantly better cardiac function than control mice. Moreover, restoring the expression of MFN2 clearly inhibited the cardiac response to HH in MFN2 cKO mice. Importantly, MFN2 knockout significantly improved cardiac metabolic reprogramming during HH, resulting in reduced capacity for fatty acid oxidation (FAO) and oxidative phosphorylation, and increased glycolysis and ATP production. In vitro data showed that down-regulation of MFN2 promoted cardiomyocyte contractility under hypoxia. Interestingly, increased FAO through palmitate treatment decreased contractility of cardiomyocyte with MFN2 knockdown under hypoxia. Furthermore, treatment with mdivi-1, an inhibitor of mitochondrial fission, disrupted HH-induced metabolic reprogramming and subsequently promoted cardiac dysfunction in MFN2-knockout hearts. CONCLUSION Our findings provide the first evidence that down-regulation of MFN2 preserves cardiac function in chronic HH by promoting cardiac metabolic reprogramming.
Collapse
Affiliation(s)
- Ru Zhang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
- Department of Aerospace Physiology, Air Force Medical University, Xi'an, China
| | - Ailin Yang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
| | - Lin Zhang
- Department of Aerospace Physiology, Air Force Medical University, Xi'an, China
| | - Linjie He
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
| | - Xiaoming Gu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
| | - Caiyong Yu
- Military Medical Innovation Center, Air Force Medical University, Xi'an, China
| | - Zhenxing Lu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Chuang Wang
- College of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Feng Zhou
- Department of General Surgery, The 71st Group Army Hospital of the People's Liberation Army, Xuzhou, China
| | - Fei Li
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Lele Ji
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
- Experimental Teaching Center of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
| | - Haitao Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
| |
Collapse
|
60
|
Ehrenreich H, Gassmann M, Poustka L, Burtscher M, Hammermann P, Sirén AL, Nave KA, Miskowiak K. Exploiting moderate hypoxia to benefit patients with brain disease: Molecular mechanisms and translational research in progress. NEUROPROTECTION 2023; 1:9-19. [PMID: 37671067 PMCID: PMC7615021 DOI: 10.1002/nep3.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 09/07/2023]
Abstract
Hypoxia is increasingly recognized as an important physiological driving force. A specific transcriptional program, induced by a decrease in oxygen (O2) availability, for example, inspiratory hypoxia at high altitude, allows cells to adapt to lower O2 and limited energy metabolism. This transcriptional program is partly controlled by and partly independent of hypoxia-inducible factors. Remarkably, this same transcriptional program is stimulated in the brain by extensive motor-cognitive exercise, leading to a relative decrease in O2 supply, compared to the acutely augmented O2 requirement. We have coined the term "functional hypoxia" for this important demand-responsive, relative reduction in O2 availability. Functional hypoxia seems to be critical for enduring adaptation to higher physiological challenge that includes substantial "brain hardware upgrade," underlying advanced performance. Hypoxia-induced erythropoietin expression in the brain likely plays a decisive role in these processes, which can be imitated by recombinant human erythropoietin treatment. This article review presents hints of how inspiratory O2 manipulations can potentially contribute to enhanced brain function. It thereby provides the ground for exploiting moderate inspiratory plus functional hypoxia to treat individuals with brain disease. Finally, it sketches a planned multistep pilot study in healthy volunteers and first patients, about to start, aiming at improved performance upon motor-cognitive training under inspiratory hypoxia.
Collapse
Affiliation(s)
- Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Max Gassmann
- Institute of Veterinary Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Burtscher
- Faculty of Sports Science, University of Innsbruck, Innsbruck, Austria
| | | | - Anna-Leena Sirén
- Departments of Neurophysiology and Neurosurgery, University of Würzburg, Würzburg, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kamilla Miskowiak
- Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
61
|
Joshi PR, Sadre S, Guo XA, McCoy JG, Mootha VK. Lipoylation is dependent on the ferredoxin FDX1 and dispensable under hypoxia in human cells. J Biol Chem 2023; 299:105075. [PMID: 37481209 PMCID: PMC10470009 DOI: 10.1016/j.jbc.2023.105075] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/24/2023] Open
Abstract
Iron-sulfur clusters (ISC) are essential cofactors that participate in electron transfer, environmental sensing, and catalysis. Amongst the most ancient ISC-containing proteins are the ferredoxin (FDX) family of electron carriers. Humans have two FDXs- FDX1 and FDX2, both of which are localized to mitochondria, and the latter of which is itself important for ISC synthesis. We have previously shown that hypoxia can eliminate the requirement for some components of the ISC biosynthetic pathway, but FDXs were not included in that study. Here, we report that FDX1, but not FDX2, is dispensable under 1% O2 in cultured human cells. We find that FDX1 is essential for production of the lipoic acid cofactor, which is synthesized by the ISC-containing enzyme lipoyl synthase. While hypoxia can rescue the growth phenotype of either FDX1 or lipoyl synthase KO cells, lipoylation in these same cells is not rescued, arguing against an alternative biosynthetic route or salvage pathway for lipoate in hypoxia. Our work reveals the divergent roles of FDX1 and FDX2 in mitochondria, identifies a role for FDX1 in lipoate synthesis, and suggests that loss of lipoic acid can be tolerated under low oxygen tensions in cell culture.
Collapse
Affiliation(s)
- Pallavi R Joshi
- Broad Institute, Cambridge, Massachusetts, USA; Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shayan Sadre
- Broad Institute, Cambridge, Massachusetts, USA; Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoyan A Guo
- Broad Institute, Cambridge, Massachusetts, USA; Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason G McCoy
- Broad Institute, Cambridge, Massachusetts, USA; Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Vamsi K Mootha
- Broad Institute, Cambridge, Massachusetts, USA; Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
62
|
Kuang G, Halimitabrizi M, Edziah AA, Salowe R, O’Brien JM. The potential for mitochondrial therapeutics in the treatment of primary open-angle glaucoma: a review. Front Physiol 2023; 14:1184060. [PMID: 37601627 PMCID: PMC10433652 DOI: 10.3389/fphys.2023.1184060] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Glaucoma, an age-related neurodegenerative disease, is characterized by the death of retinal ganglion cells (RGCs) and the corresponding loss of visual fields. This disease is the leading cause of irreversible blindness worldwide, making early diagnosis and effective treatment paramount. The pathophysiology of primary open-angle glaucoma (POAG), the most common form of the disease, remains poorly understood. Current available treatments, which target elevated intraocular pressure (IOP), are not effective at slowing disease progression in approximately 30% of patients. There is a great need to identify and study treatment options that target other disease mechanisms and aid in neuroprotection for POAG. Increasingly, the role of mitochondrial injury in the development of POAG has become an emphasized area of research interest. Disruption in the function of mitochondria has been linked to problems with neurodevelopment and systemic diseases. Recent studies have shown an association between RGC death and damage to the cells' mitochondria. In particular, oxidative stress and disrupted oxidative phosphorylation dynamics have been linked to increased susceptibility of RGC mitochondria to secondary mechanical injury. Several mitochondria-targeted treatments for POAG have been suggested, including physical exercise, diet and nutrition, antioxidant supplementation, stem cell therapy, hypoxia exposure, gene therapy, mitochondrial transplantation, and light therapy. Studies have shown that mitochondrial therapeutics may have the potential to slow the progression of POAG by protecting against mitochondrial decline associated with age, genetic susceptibility, and other pathology. Further, these therapeutics may potentially target already present neuronal damage and symptom manifestations. In this review, the authors outline potential mitochondria-targeted treatment strategies and discuss their utility for use in POAG.
Collapse
Affiliation(s)
- Grace Kuang
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| | - Mina Halimitabrizi
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| | - Amy-Ann Edziah
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| | - Rebecca Salowe
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| | - Joan M. O’Brien
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
63
|
Zhang T, Xu D, Liu J, Wang M, Duan LJ, Liu M, Meng H, Zhuang Y, Wang H, Wang Y, Lv M, Zhang Z, Hu J, Shi L, Guo R, Xie X, Liu H, Erickson E, Wang Y, Yu W, Dang F, Guan D, Jiang C, Dai X, Inuzuka H, Yan P, Wang J, Babuta M, Lian G, Tu Z, Miao J, Szabo G, Fong GH, Karnoub AE, Lee YR, Pan L, Kaelin WG, Yuan J, Wei W. Prolonged hypoxia alleviates prolyl hydroxylation-mediated suppression of RIPK1 to promote necroptosis and inflammation. Nat Cell Biol 2023; 25:950-962. [PMID: 37400498 PMCID: PMC10617019 DOI: 10.1038/s41556-023-01170-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/21/2023] [Indexed: 07/05/2023]
Abstract
The prolyl hydroxylation of hypoxia-inducible factor 1α (HIF-1α) mediated by the EGLN-pVHL pathway represents a classic signalling mechanism that mediates cellular adaptation under hypoxia. Here we identify RIPK1, a known regulator of cell death mediated by tumour necrosis factor receptor 1 (TNFR1), as a target of EGLN1-pVHL. Prolyl hydroxylation of RIPK1 mediated by EGLN1 promotes the binding of RIPK1 with pVHL to suppress its activation under normoxic conditions. Prolonged hypoxia promotes the activation of RIPK1 kinase by modulating its proline hydroxylation, independent of the TNFα-TNFR1 pathway. As such, inhibiting proline hydroxylation of RIPK1 promotes RIPK1 activation to trigger cell death and inflammation. Hepatocyte-specific Vhl deficiency promoted RIPK1-dependent apoptosis to mediate liver pathology. Our findings illustrate a key role of the EGLN-pVHL pathway in suppressing RIPK1 activation under normoxic conditions to promote cell survival and a model by which hypoxia promotes RIPK1 activation through modulating its proline hydroxylation to mediate cell death and inflammation in human diseases, independent of TNFR1.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Daichao Xu
- Interdisciplinary Center of Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Jianping Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Wang
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Juan Duan
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Min Liu
- Transfusion Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Huyan Meng
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Yuan Zhuang
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Huibing Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yingnan Wang
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mingming Lv
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Zhengyi Zhang
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jia Hu
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Linyu Shi
- Interdisciplinary Center of Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Rui Guo
- Interdisciplinary Center of Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xingxing Xie
- Interdisciplinary Center of Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Hui Liu
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Emily Erickson
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yaru Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenyu Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fabin Dang
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cong Jiang
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiaoming Dai
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hiroyuki Inuzuka
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peiqiang Yan
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jingchao Wang
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mrigya Babuta
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gewei Lian
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Zhenbo Tu
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Guo-Hua Fong
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Antoine E Karnoub
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yu-Ru Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Lifeng Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Junying Yuan
- Interdisciplinary Center of Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Wenyi Wei
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
64
|
Tyshkovskiy A, Ma S, Shindyapina AV, Tikhonov S, Lee SG, Bozaykut P, Castro JP, Seluanov A, Schork NJ, Gorbunova V, Dmitriev SE, Miller RA, Gladyshev VN. Distinct longevity mechanisms across and within species and their association with aging. Cell 2023; 186:2929-2949.e20. [PMID: 37269831 PMCID: PMC11192172 DOI: 10.1016/j.cell.2023.05.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/29/2022] [Accepted: 05/02/2023] [Indexed: 06/05/2023]
Abstract
Lifespan varies within and across species, but the general principles of its control remain unclear. Here, we conducted multi-tissue RNA-seq analyses across 41 mammalian species, identifying longevity signatures and examining their relationship with transcriptomic biomarkers of aging and established lifespan-extending interventions. An integrative analysis uncovered shared longevity mechanisms within and across species, including downregulated Igf1 and upregulated mitochondrial translation genes, and unique features, such as distinct regulation of the innate immune response and cellular respiration. Signatures of long-lived species were positively correlated with age-related changes and enriched for evolutionarily ancient essential genes, involved in proteolysis and PI3K-Akt signaling. Conversely, lifespan-extending interventions counteracted aging patterns and affected younger, mutable genes enriched for energy metabolism. The identified biomarkers revealed longevity interventions, including KU0063794, which extended mouse lifespan and healthspan. Overall, this study uncovers universal and distinct strategies of lifespan regulation within and across species and provides tools for discovering longevity interventions.
Collapse
Affiliation(s)
- Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119234, Russia
| | - Siming Ma
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anastasia V Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stanislav Tikhonov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119234, Russia
| | - Sang-Goo Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Perinur Bozaykut
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - José P Castro
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Nicholas J Schork
- Quantitative Medicine and Systems Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119234, Russia
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
65
|
Janssen Daalen JM, Meinders MJ, Straatsma IR, Ainslie PN, Thijssen DHJ, Bloem BR. Reply to: Hypoxia treatment of Parkinson's disease may disrupt the circadian system. BMC Neurol 2023; 23:235. [PMID: 37337147 DOI: 10.1186/s12883-023-03281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands.
- Department of Physiology, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Marjan J Meinders
- Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- IQ Healthcare, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Isabel R Straatsma
- Department of Physiology, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Philip N Ainslie
- Center for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Dick H J Thijssen
- Department of Physiology, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
66
|
Dar GM, Ahmad E, Ali A, Mahajan B, Ashraf GM, Saluja SS. Genetic aberration analysis of mitochondrial respiratory complex I implications in the development of neurological disorders and their clinical significance. Ageing Res Rev 2023; 87:101906. [PMID: 36905963 DOI: 10.1016/j.arr.2023.101906] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Growing neurological diseases pose difficult challenges for modern medicine to diagnose and manage them effectively. Many neurological disorders mainly occur due to genetic alteration in genes encoding mitochondrial proteins. Moreover, mitochondrial genes exhibit a higher rate of mutation due to the generation of Reactive oxygen species (ROS) during oxidative phosphorylation operating in their vicinity. Among the different complexes of Electron transport chain (ETC), NADH: Ubiquinone oxidoreductase (Mitochondrial complex I) is the most important. This multimeric enzyme, composed of 44 subunits, is encoded by both nuclear and mitochondrial genes. It often exhibits mutations resulting in development of various neurological diseases. The most prominent diseases include leigh syndrome (LS), leber hereditary optic neuropathy (LHON), mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS), myoclonic epilepsy associated with ragged-red fibers (MERRF), idiopathic Parkinson's disease (PD) and, Alzheimer's disease (AD). Preliminary data suggest that mitochondrial complex I subunit genes mutated are frequently of nuclear origin; however, most of the mtDNA gene encoding subunits are also primarily involved. In this review, we have discussed the genetic origins of neurological disorders involving mitochondrial complex I and signified recent approaches to unravel the diagnostic and therapeutic potentials and their management.
Collapse
Affiliation(s)
- Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Asgar Ali
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Bhawna Mahajan
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India.
| |
Collapse
|
67
|
Bitto A, Grillo AS, Ito TK, Stanaway IB, Nguyen BMG, Ying K, Tung H, Smith K, Tran N, Velikanje G, Urfer SR, Snyder JM, Barton J, Sharma A, Kayser EB, Wang L, Smith DL, Thompson JW, DuBois L, DePaolo W, Kaeberlein M. Acarbose suppresses symptoms of mitochondrial disease in a mouse model of Leigh syndrome. Nat Metab 2023; 5:955-967. [PMID: 37365290 DOI: 10.1038/s42255-023-00815-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/04/2023] [Indexed: 06/28/2023]
Abstract
Mitochondrial diseases represent a spectrum of disorders caused by impaired mitochondrial function, ranging in severity from mortality during infancy to progressive adult-onset disease. Mitochondrial dysfunction is also recognized as a molecular hallmark of the biological ageing process. Rapamycin, a drug that increases lifespan and health during normative ageing, also increases survival and reduces neurological symptoms in a mouse model of the severe mitochondrial disease Leigh syndrome. The Ndufs4 knockout (Ndufs4-/-) mouse lacks the complex I subunit NDUFS4 and shows rapid onset and progression of neurodegeneration mimicking patients with Leigh syndrome. Here we show that another drug that extends lifespan and delays normative ageing in mice, acarbose, also suppresses symptoms of disease and improves survival of Ndufs4-/- mice. Unlike rapamycin, acarbose rescues disease phenotypes independently of inhibition of the mechanistic target of rapamycin. Furthermore, rapamycin and acarbose have additive effects in delaying neurological symptoms and increasing maximum lifespan in Ndufs4-/- mice. We find that acarbose remodels the intestinal microbiome and alters the production of short-chain fatty acids. Supplementation with tributyrin, a source of butyric acid, recapitulates some effects of acarbose on lifespan and disease progression, while depletion of the endogenous microbiome in Ndufs4-/- mice appears to fully recapitulate the effects of acarbose on healthspan and lifespan in these animals. To our knowledge, this study provides the first evidence that alteration of the gut microbiome plays a significant role in severe mitochondrial disease and provides further support for the model that biological ageing and severe mitochondrial disorders share underlying common mechanisms.
Collapse
Affiliation(s)
- Alessandro Bitto
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Anthony S Grillo
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Takashi K Ito
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Ian B Stanaway
- Division of Nephrology, School of Medicine, University of Washington, Seattle, WA, USA
- Harborview Medical Center, Kidney Research Institute, Seattle, WA, USA
| | - Bao M G Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kejun Ying
- T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | | | | | - Ngoc Tran
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Gunnar Velikanje
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Silvan R Urfer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Jacob Barton
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Ayush Sharma
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Daniel L Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Will Thompson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Laura DuBois
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - William DePaolo
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
68
|
Rogers RS, Wang H, Durham TJ, Stefely JA, Owiti NA, Markhard AL, Sandler L, To TL, Mootha VK. Hypoxia extends lifespan and neurological function in a mouse model of aging. PLoS Biol 2023; 21:e3002117. [PMID: 37220109 PMCID: PMC10204955 DOI: 10.1371/journal.pbio.3002117] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/07/2023] [Indexed: 05/25/2023] Open
Abstract
There is widespread interest in identifying interventions that extend healthy lifespan. Chronic continuous hypoxia delays the onset of replicative senescence in cultured cells and extends lifespan in yeast, nematodes, and fruit flies. Here, we asked whether chronic continuous hypoxia is beneficial in mammalian aging. We utilized the Ercc1 Δ/- mouse model of accelerated aging given that these mice are born developmentally normal but exhibit anatomic, physiological, and biochemical features of aging across multiple organs. Importantly, they exhibit a shortened lifespan that is extended by dietary restriction, the most potent aging intervention across many organisms. We report that chronic continuous 11% oxygen commenced at 4 weeks of age extends lifespan by 50% and delays the onset of neurological debility in Ercc1 Δ/- mice. Chronic continuous hypoxia did not impact food intake and did not significantly affect markers of DNA damage or senescence, suggesting that hypoxia did not simply alleviate the proximal effects of the Ercc1 mutation, but rather acted downstream via unknown mechanisms. To the best of our knowledge, this is the first study to demonstrate that "oxygen restriction" can extend lifespan in a mammalian model of aging.
Collapse
Affiliation(s)
- Robert S Rogers
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hong Wang
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Timothy J Durham
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan A Stefely
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Norah A Owiti
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Andrew L Markhard
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lev Sandler
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tsz-Leung To
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
69
|
Chen B, Daneshgar N, Lee HC, Song LS, Dai DF. Mitochondrial Oxidative Stress Mediates Bradyarrhythmia in Leigh Syndrome Mitochondrial Disease Mice. Antioxidants (Basel) 2023; 12:1001. [PMID: 37237867 PMCID: PMC10215409 DOI: 10.3390/antiox12051001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondrial oxidative stress has been implicated in aging and several cardiovascular diseases, including heart failure and cardiomyopathy, ventricular tachycardia, and atrial fibrillation. The role of mitochondrial oxidative stress in bradyarrhythmia is less clear. Mice with a germline deletion of Ndufs4 subunit respiratory complex I develop severe mitochondrial encephalomyopathy resembling Leigh Syndrome (LS). Several types of cardiac bradyarrhythmia are present in LS mice, including a frequent sinus node dysfunction and episodic atrioventricular (AV) block. Treatment with the mitochondrial antioxidant Mitotempo or mitochondrial protective peptide SS31 significantly ameliorated the bradyarrhythmia and extended the lifespan of LS mice. Using an ex vivo Langendorff perfused heart with live confocal imaging of mitochondrial and total cellular reactive oxygen species (ROS), we showed increased ROS in the LS heart, which was potentiated by ischemia-reperfusion. A simultaneous ECG recording showed a sinus node dysfunction and AV block concurrent with the severity of the oxidative stress. Treatment with Mitotempo abolished ROS and restored the sinus rhythm. Our study reveals robust evidence of the direct mechanistic roles of mitochondrial and total ROS in bradyarrhythmia in the setting of LS mitochondrial cardiomyopathy. Our study also supports the potential clinical application of mitochondrial-targeted antioxidants or SS31 for the treatment of LS patients.
Collapse
Affiliation(s)
- Biyi Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Nastaran Daneshgar
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Hsiang-Chun Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Dao-Fu Dai
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
70
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
71
|
Sandrelli F, Bisaglia M. Molecular and Physiological Determinants of Amyotrophic Lateral Sclerosis: What the DJ-1 Protein Teaches Us. Int J Mol Sci 2023; 24:ijms24087674. [PMID: 37108835 PMCID: PMC10144135 DOI: 10.3390/ijms24087674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset disease which causes the progressive degeneration of cortical and spinal motoneurons, leading to death a few years after the first symptom onset. ALS is mainly a sporadic disorder, and its causative mechanisms are mostly unclear. About 5-10% of cases have a genetic inheritance, and the study of ALS-associated genes has been fundamental in defining the pathological pathways likely also involved in the sporadic forms of the disease. Mutations affecting the DJ-1 gene appear to explain a subset of familial ALS forms. DJ-1 is involved in multiple molecular mechanisms, acting primarily as a protective agent against oxidative stress. Here, we focus on the involvement of DJ-1 in interconnected cellular functions related to mitochondrial homeostasis, reactive oxygen species (ROS) levels, energy metabolism, and hypoxia response, in both physiological and pathological conditions. We discuss the possibility that impairments in one of these pathways may affect the others, contributing to a pathological background in which additional environmental or genetic factors may act in favor of the onset and/or progression of ALS. These pathways may represent potential therapeutic targets to reduce the likelihood of developing ALS and/or slow disease progression.
Collapse
Affiliation(s)
| | - Marco Bisaglia
- Department of Biology, University of Padova, 35131 Padova, Italy
- Study Center for Neurodegeneration (CESNE), 35100 Padova, Italy
| |
Collapse
|
72
|
Baik AH, Haribowo AG, Chen X, Queliconi BB, Barrios AM, Garg A, Maishan M, Campos AR, Matthay MA, Jain IH. Oxygen toxicity causes cyclic damage by destabilizing specific Fe-S cluster-containing protein complexes. Mol Cell 2023; 83:942-960.e9. [PMID: 36893757 PMCID: PMC10148707 DOI: 10.1016/j.molcel.2023.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/12/2023] [Accepted: 02/14/2023] [Indexed: 03/11/2023]
Abstract
Oxygen is toxic across all three domains of life. Yet, the underlying molecular mechanisms remain largely unknown. Here, we systematically investigate the major cellular pathways affected by excess molecular oxygen. We find that hyperoxia destabilizes a specific subset of Fe-S cluster (ISC)-containing proteins, resulting in impaired diphthamide synthesis, purine metabolism, nucleotide excision repair, and electron transport chain (ETC) function. Our findings translate to primary human lung cells and a mouse model of pulmonary oxygen toxicity. We demonstrate that the ETC is the most vulnerable to damage, resulting in decreased mitochondrial oxygen consumption. This leads to further tissue hyperoxia and cyclic damage of the additional ISC-containing pathways. In support of this model, primary ETC dysfunction in the Ndufs4 KO mouse model causes lung tissue hyperoxia and dramatically increases sensitivity to hyperoxia-mediated ISC damage. This work has important implications for hyperoxia pathologies, including bronchopulmonary dysplasia, ischemia-reperfusion injury, aging, and mitochondrial disorders.
Collapse
Affiliation(s)
- Alan H Baik
- Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Augustinus G Haribowo
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xuewen Chen
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bruno B Queliconi
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alec M Barrios
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ankur Garg
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mazharul Maishan
- Cardiovascular Research Institute, UCSF, San Francisco, CA 94143, USA
| | - Alexandre R Campos
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Michael A Matthay
- Cardiovascular Research Institute, UCSF, San Francisco, CA 94143, USA; Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Isha H Jain
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
73
|
Midha AD, Zhou Y, Queliconi BB, Barrios AM, Haribowo AG, Chew BTL, Fong COY, Blecha JE, VanBrocklin H, Seo Y, Jain IH. Organ-specific fuel rewiring in acute and chronic hypoxia redistributes glucose and fatty acid metabolism. Cell Metab 2023; 35:504-516.e5. [PMID: 36889284 PMCID: PMC10077660 DOI: 10.1016/j.cmet.2023.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023]
Abstract
Oxygen deprivation can be detrimental. However, chronic hypoxia is also associated with decreased incidence of metabolic syndrome and cardiovascular disease in high-altitude populations. Previously, hypoxic fuel rewiring has primarily been studied in immortalized cells. Here, we describe how systemic hypoxia rewires fuel metabolism to optimize whole-body adaptation. Acclimatization to hypoxia coincided with dramatically lower blood glucose and adiposity. Using in vivo fuel uptake and flux measurements, we found that organs partitioned fuels differently during hypoxia adaption. Acutely, most organs increased glucose uptake and suppressed aerobic glucose oxidation, consistent with previous in vitro investigations. In contrast, brown adipose tissue and skeletal muscle became "glucose savers," suppressing glucose uptake by 3-5-fold. Interestingly, chronic hypoxia produced distinct patterns: the heart relied increasingly on glucose oxidation, and unexpectedly, the brain, kidney, and liver increased fatty acid uptake and oxidation. Hypoxia-induced metabolic plasticity carries therapeutic implications for chronic metabolic diseases and acute hypoxic injuries.
Collapse
Affiliation(s)
- Ayush D Midha
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuyin Zhou
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bruno B Queliconi
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alec M Barrios
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Augustinus G Haribowo
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brandon T L Chew
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cyril O Y Fong
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Joseph E Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Henry VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Isha H Jain
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
74
|
Anitha A, Thanseem I, Iype M, Thomas SV. Mitochondrial dysfunction in cognitive neurodevelopmental disorders: Cause or effect? Mitochondrion 2023; 69:18-32. [PMID: 36621534 DOI: 10.1016/j.mito.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Mitochondria have a crucial role in brain development and neurogenesis, both in embryonic and adult brains. Since the brain is the highest energy consuming organ, it is highly vulnerable to mitochondrial dysfunction. This has been implicated in a range of brain disorders including, neurodevelopmental conditions, psychiatric illnesses, and neurodegenerative diseases. Genetic variations in mitochondrial DNA (mtDNA), and nuclear DNA encoding mitochondrial proteins, have been associated with several cognitive disorders. However, it is not yet clear whether mitochondrial dysfunction is a primary cause of these conditions or a secondary effect. Our review article deals with this topic, and brings out recent advances in mitochondria-oriented therapies. Mitochondrial dysfunction could be involved in the pathogenesis of a subset of disorders involving cognitive impairment. In these patients, mitochondrial dysfunction could be the cause of the condition, rather than the consequence. There are vast areas in this topic that remains to be explored and elucidated.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Dept. of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India.
| | - Ismail Thanseem
- Dept. of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Mary Iype
- Dept. of Pediatric Neurology, Government Medical College, Thiruvananthapuram 695 011, Kerala, India; Dept. of Neurology, ICCONS, Thiruvananthapuram 695 033, Kerala, India
| | - Sanjeev V Thomas
- Dept. of Neurology, ICCONS, Thiruvananthapuram 695 033, Kerala, India
| |
Collapse
|
75
|
Wang Y, Zhang H, Wang J, Tang G, Bai H. An Engineered Design of Self-Assembly Nanomedicine Guided by Molecular Dynamic Simulation for Photodynamic and Hypoxia-Directed Therapy. Mol Pharm 2023; 20:2128-2137. [PMID: 36848620 DOI: 10.1021/acs.molpharmaceut.2c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
To overcome the hypoxia barrier in tumor therapy, a hypoxia-activated prodrug of docetaxel (DTX-PNB) was synthesized and self-assembled with indocyanine green (ICG), forming a combination nanomedicine ISDNN. With the guidance of molecular dynamic simulation, the ISDNN construction could be accurately controlled, achieving uniform size distribution and high drug loading up to 90%. Within the hypoxic tumor environment, ISDNN exerted ICG-mediated photodynamic therapy and aggravated hypoxia to boost DTX-PNB activation for chemotherapy, enabling enhanced antitumor efficacy.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Haotian Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hongzhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
76
|
Karaa A, Klopstock T. Clinical trials in mitochondrial diseases. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:229-250. [PMID: 36813315 DOI: 10.1016/b978-0-12-821751-1.00002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Primary mitochondrial diseases are some of the most common and complex inherited inborn errors of metabolism. Their molecular and phenotypic diversity has led to difficulties in finding disease-modifying therapies and clinical trial efforts have been slow due to multiple significant challenges. Lack of robust natural history data, difficulties in finding specific biomarkers, absence of well-validated outcome measures, and small patient numbers have made clinical trial design and conduct difficult. Encouragingly, new interest in treating mitochondrial dysfunction in common diseases and regulatory incentives to develop therapies for rare conditions have led to significant interest and efforts to develop drugs for primary mitochondrial diseases. Here, we review past and present clinical trials and future strategies of drug development in primary mitochondrial diseases.
Collapse
Affiliation(s)
- Amel Karaa
- Mitochondrial Disease Program, Division of Medical Genetics and Metabolism, Massachusetts General Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Network for mitochondrial disorders (mitoNET), Munich, Germany
| |
Collapse
|
77
|
Viscomi C, Zeviani M. Experimental therapy for mitochondrial diseases. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:259-277. [PMID: 36813318 DOI: 10.1016/b978-0-12-821751-1.00013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Mitochondrial diseases are extremely heterogeneous genetic disorders due to faulty oxidative phosphorylation (OxPhos). No cure is currently available for these conditions, beside supportive interventions aimed at relieving complications. Mitochondria are under a double genetic control carried out by the mitochondrial DNA (mtDNA) and by nuclear DNA. Thus, not surprisingly, mutations in either genome can cause mitochondrial disease. Although mitochondria are usually associated with respiration and ATP synthesis, they play fundamental roles in a large number of other biochemical, signaling, and execution pathways, each being a potential target for therapeutic interventions. These can be classified as general therapies, i.e., potentially applicable to a number of different mitochondrial conditions, or therapies tailored to a single disease, i.e., personalized approaches, such as gene therapy, cell therapy, and organ replacement. Mitochondrial medicine is a particularly lively research field, and the last few years witnessed a steady increase in the number of clinical applications. This chapter will present the most recent therapeutic attempts emerged from preclinical work and an update of the currently ongoing clinical applications. We think that we are starting a new era in which the etiologic treatment of these conditions is becoming a realistic option.
Collapse
Affiliation(s)
- Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Massimo Zeviani
- Department of Neurosciences, University of Padova, Padova, Italy; Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
78
|
Kelly CJ, Couch RK, Ha VT, Bodart CM, Wu J, Huff S, Herrel NT, Kim HD, Zimmermann AO, Shattuck J, Pan YC, Kaeberlein M, Grillo AS. Iron status influences mitochondrial disease progression in Complex I-deficient mice. eLife 2023; 12:e75825. [PMID: 36799301 PMCID: PMC10030112 DOI: 10.7554/elife.75825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Mitochondrial dysfunction caused by aberrant Complex I assembly and reduced activity of the electron transport chain is pathogenic in many genetic and age-related diseases. Mice missing the Complex I subunit NADH dehydrogenase [ubiquinone] iron-sulfur protein 4 (NDUFS4) are a leading mammalian model of severe mitochondrial disease that exhibit many characteristic symptoms of Leigh Syndrome including oxidative stress, neuroinflammation, brain lesions, and premature death. NDUFS4 knockout mice have decreased expression of nearly every Complex I subunit. As Complex I normally contains at least 8 iron-sulfur clusters and more than 25 iron atoms, we asked whether a deficiency of Complex I may lead to iron perturbations, thereby accelerating disease progression. Consistent with this, iron supplementation accelerates symptoms of brain degeneration in these mice, while iron restriction delays the onset of these symptoms, reduces neuroinflammation, and increases survival. NDUFS4 knockout mice display signs of iron overload in the liver including increased expression of hepcidin and show changes in iron-responsive element-regulated proteins consistent with increased cellular iron that were prevented by iron restriction. These results suggest that perturbed iron homeostasis may contribute to pathology in Leigh Syndrome and possibly other mitochondrial disorders.
Collapse
Affiliation(s)
- CJ Kelly
- Department of Laboratory Medicine & Pathology, University of WashingtonSeattleUnited States
| | - Reid K Couch
- Department of Laboratory Medicine & Pathology, University of WashingtonSeattleUnited States
| | - Vivian T Ha
- Department of Laboratory Medicine & Pathology, University of WashingtonSeattleUnited States
| | - Camille M Bodart
- Department of Laboratory Medicine & Pathology, University of WashingtonSeattleUnited States
| | - Judy Wu
- Department of Laboratory Medicine & Pathology, University of WashingtonSeattleUnited States
| | - Sydney Huff
- Department of Laboratory Medicine & Pathology, University of WashingtonSeattleUnited States
| | - Nicole T Herrel
- Department of Laboratory Medicine & Pathology, University of WashingtonSeattleUnited States
| | - Hyunsung D Kim
- Department of Laboratory Medicine & Pathology, University of WashingtonSeattleUnited States
| | - Azaad O Zimmermann
- Department of Laboratory Medicine & Pathology, University of WashingtonSeattleUnited States
| | - Jessica Shattuck
- Department of Laboratory Medicine & Pathology, University of WashingtonSeattleUnited States
| | - Yu-Chen Pan
- Department of Laboratory Medicine & Pathology, University of WashingtonSeattleUnited States
| | - Matt Kaeberlein
- Department of Laboratory Medicine & Pathology, University of WashingtonSeattleUnited States
| | - Anthony S Grillo
- Department of Laboratory Medicine & Pathology, University of WashingtonSeattleUnited States
| |
Collapse
|
79
|
Fang T, Ma C, Zhang Z, Sun L, Zheng N. Roxadustat, a HIF-PHD inhibitor with exploitable potential on diabetes-related complications. Front Pharmacol 2023; 14:1088288. [PMID: 36843948 PMCID: PMC9950780 DOI: 10.3389/fphar.2023.1088288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic diseases caused by absolute or relative deficiency of insulin secretion and characterized by chronic hyperglycemia. Its complications affect almost every tissue of the body, usually leading to blindness, renal failure, amputation, etc. and in the final stage, it mostly develops into cardiac failure, which is the main reason why diabetes mellitus manifests itself as a high clinical lethality. The pathogenesis of diabetes mellitus and its complications involves various pathological processes including excessive production of mitochondrial reactive oxygen species (ROS) and metabolic imbalance. Hypoxia-inducible Factor (HIF) signaling pathway plays an important role in both of the above processes. Roxadustat is an activator of Hypoxia-inducible Factor-1α, which increases the transcriptional activity of Hypoxia-inducible Factor-1α by inhibiting hypoxia-inducible factor prolyl hydroxylase (HIF-PHD). Roxadustat showed regulatory effects on maintaining metabolic stability in the hypoxic state of the body by activating many downstream signaling pathways such as vascular endothelial growth factor (VEGF), glucose transporter protein-1 (GLUT1), lactate dehydrogenase (LDHA), etc. This review summarizes the current research findings of roxadustat on the diseases of cardiomyopathy, nephropathy, retinal damage and impaired wound healing, which also occur at different stages of diabetes and greatly contribute to the damage caused by diabetes to the organism. We attempts to uncover a more comprehensive picture of the therapeutic effects of roxadustat, and inform its expanding research about diabetic complications treatment.
Collapse
Affiliation(s)
- Tingting Fang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Congcong Ma
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Zhanming Zhang
- Pharmaceutical Sciences, China Medical University-The Queen’s University of Belfast Joint College, Shenyang, Liaoning, China
| | - Luning Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Ningning Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China,*Correspondence: Ningning Zheng,
| |
Collapse
|
80
|
Mallet RT, Burtscher J, Pialoux V, Pasha Q, Ahmad Y, Millet GP, Burtscher M. Molecular Mechanisms of High-Altitude Acclimatization. Int J Mol Sci 2023; 24:ijms24021698. [PMID: 36675214 PMCID: PMC9866500 DOI: 10.3390/ijms24021698] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
High-altitude illnesses (HAIs) result from acute exposure to high altitude/hypoxia. Numerous molecular mechanisms affect appropriate acclimatization to hypobaric and/or normobaric hypoxia and curtail the development of HAIs. The understanding of these mechanisms is essential to optimize hypoxic acclimatization for efficient prophylaxis and treatment of HAIs. This review aims to link outcomes of molecular mechanisms to either adverse effects of acute high-altitude/hypoxia exposure or the developing tolerance with acclimatization. After summarizing systemic physiological responses to acute high-altitude exposure, the associated acclimatization, and the epidemiology and pathophysiology of various HAIs, the article focuses on molecular adjustments and maladjustments during acute exposure and acclimatization to high altitude/hypoxia. Pivotal modifying mechanisms include molecular responses orchestrated by transcription factors, most notably hypoxia inducible factors, and reciprocal effects on mitochondrial functions and REDOX homeostasis. In addition, discussed are genetic factors and the resultant proteomic profiles determining these hypoxia-modifying mechanisms culminating in successful high-altitude acclimatization. Lastly, the article discusses practical considerations related to the molecular aspects of acclimatization and altitude training strategies.
Collapse
Affiliation(s)
- Robert T. Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Vincent Pialoux
- Inter-University Laboratory of Human Movement Biology EA7424, University Claude Bernard Lyon 1, University of Lyon, FR-69008 Lyon, France
| | - Qadar Pasha
- Institute of Hypoxia Research, New Delhi 110067, India
| | - Yasmin Ahmad
- Defense Institute of Physiology & Allied Sciences (DIPAS), Defense Research & Development Organization(DRDO), New Delhi 110054, India
| | - Grégoire P. Millet
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, A-6020 Innsbruck, Austria
- Austrian Society for Alpine and High-Altitude Medicine, A-6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
81
|
Reyes Gaido OE, Schole KL, Anderson ME, Luczak ED. Genome-wide CRISPR screen reveals genetic modifiers of Ca 2+ -mediated cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523980. [PMID: 36712017 PMCID: PMC9882248 DOI: 10.1101/2023.01.13.523980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ca 2+ is a fundamental determinant of survival in living cells. Excessive intracellular Ca 2+ causes cellular toxicity and death but the genetic pathways contributing to Ca 2+ induced cell death are incompletely understood. Here, we performed genome-wide CRISPR knock-out screening in human cells challenged with the Ca 2+ ionophore ionomycin and identified genes and pathways essential for cell death after Ca 2+ overload. We discovered 115 protective gene knockouts, 82 of which are non-essential genes and 21 of which belong to the druggable genome. Notably, members of store operated Ca 2+ entry (SOCE), very long-chain fatty acid synthesis, and SWItch/Sucrose Non-Fermentable (SWI/SNF) pathways provided marked protection against Ca 2+ toxicity. These results reveal pathways previously unknown to mediate Ca 2+ -induced cell death and provide a resource for the development of pharmacotherapies against the sequelae of Ca 2+ overload in disease.
Collapse
|
82
|
Sturm G, Karan KR, Monzel AS, Santhanam B, Taivassalo T, Bris C, Ware SA, Cross M, Towheed A, Higgins-Chen A, McManus MJ, Cardenas A, Lin J, Epel ES, Rahman S, Vissing J, Grassi B, Levine M, Horvath S, Haller RG, Lenaers G, Wallace DC, St-Onge MP, Tavazoie S, Procaccio V, Kaufman BA, Seifert EL, Hirano M, Picard M. OxPhos defects cause hypermetabolism and reduce lifespan in cells and in patients with mitochondrial diseases. Commun Biol 2023; 6:22. [PMID: 36635485 PMCID: PMC9837150 DOI: 10.1038/s42003-022-04303-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/26/2022] [Indexed: 01/13/2023] Open
Abstract
Patients with primary mitochondrial oxidative phosphorylation (OxPhos) defects present with fatigue and multi-system disorders, are often lean, and die prematurely, but the mechanistic basis for this clinical picture remains unclear. By integrating data from 17 cohorts of patients with mitochondrial diseases (n = 690) we find evidence that these disorders increase resting energy expenditure, a state termed hypermetabolism. We examine this phenomenon longitudinally in patient-derived fibroblasts from multiple donors. Genetically or pharmacologically disrupting OxPhos approximately doubles cellular energy expenditure. This cell-autonomous state of hypermetabolism occurs despite near-normal OxPhos coupling efficiency, excluding uncoupling as a general mechanism. Instead, hypermetabolism is associated with mitochondrial DNA instability, activation of the integrated stress response (ISR), and increased extracellular secretion of age-related cytokines and metabokines including GDF15. In parallel, OxPhos defects accelerate telomere erosion and epigenetic aging per cell division, consistent with evidence that excess energy expenditure accelerates biological aging. To explore potential mechanisms for these effects, we generate a longitudinal RNASeq and DNA methylation resource dataset, which reveals conserved, energetically demanding, genome-wide recalibrations. Taken together, these findings highlight the need to understand how OxPhos defects influence the energetic cost of living, and the link between hypermetabolism and aging in cells and patients with mitochondrial diseases.
Collapse
Affiliation(s)
- Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Kalpita R Karan
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S Monzel
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Balaji Santhanam
- Departments of Biological Sciences, Systems Biology, and Biochemistry and Molecular Biophysics, Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Tanja Taivassalo
- Department of Physiology and Functional Genomics, Clinical and Translational Research Building, University of Florida, Gainesville, FL, USA
| | - Céline Bris
- Department of Genetics and Neurology, Angers Hospital, Angers, France
- UMR CNRS 6015, INSERM U1083, MITOVASC, SFR ICAT, Université d'Angers, Angers, France
| | - Sarah A Ware
- Department of Medicine, Vascular Medicine Institute and Center for Metabolic and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marissa Cross
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Atif Towheed
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Internal Medicine-Pediatrics Residency Program, University of Pittsburgh Medical Centre, Pittsburgh, PA, USA
| | - Albert Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Meagan J McManus
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Elissa S Epel
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, and Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| | | | | | - Ronald G Haller
- Neuromuscular Center, Institute for Exercise and Environmental Medicine of Texas Health Resources and Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guy Lenaers
- Department of Genetics and Neurology, Angers Hospital, Angers, France
- UMR CNRS 6015, INSERM U1083, MITOVASC, SFR ICAT, Université d'Angers, Angers, France
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marie-Pierre St-Onge
- Center of Excellence for Sleep & Circadian Research and Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Saeed Tavazoie
- Departments of Biological Sciences, Systems Biology, and Biochemistry and Molecular Biophysics, Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Vincent Procaccio
- Department of Genetics and Neurology, Angers Hospital, Angers, France
- UMR CNRS 6015, INSERM U1083, MITOVASC, SFR ICAT, Université d'Angers, Angers, France
| | - Brett A Kaufman
- Department of Medicine, Vascular Medicine Institute and Center for Metabolic and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erin L Seifert
- Department of Pathology and Genomic Medicine, and MitoCare Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
83
|
Long G, Pei Z, Wu M, Wei K, Du Y, Wang Q, Zhang Y, Huang S, Chen H, Xia W, Jia Z. Novel function of Roxadustat (FG-4592) as an anti-shock drug in sepsis by regulating mitochondrial oxidative stress and energy metabolism. Biochim Biophys Acta Gen Subj 2023; 1867:130264. [PMID: 36273674 DOI: 10.1016/j.bbagen.2022.130264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Septic shock is a serious clinical syndrome leading to high mortality. A new anti-anemia drug Roxadustat (FG-4592) protected against cardiac injury and hypertension. However, its effect and mechanism on shock and cardiac dysfunction induced by sepsis require to be investigated. METHODS C57BL/6j mice received FG-4592 (10 mg/kg/day) by i.p injection, followed by lipopolysaccharide (LPS) or cecal ligation and puncture (CLP) treatment. Mortality and shock status were monitored during the experiment. Cardiac function was assessed using echocardiography and serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) assay. TEM, COX-SDH staining and ATP production were used to evaluate mitochondrial function. A non-targeted metabolomic analysis was performed to evaluate the metabolic disorders. RESULTS Both pre- and post-treatment of FG-4592 could improve the survival rate in LPS- and CLP-induced sepsis mice with a better effect in pre-treated animals. Meanwhile, FG-4592 improved systolic blood pressure and body temperature drop in septic mice along with alleviated cardiac dysfunction (as shown by the restoration of decreased LVEF and LVFS and increased LDH and CK-MB) and inflammation. Interestingly, we observed that FG-4592 improved mitochondrial oxidative stress possibly by upregulating the anti-oxidative enzymes of SOD2 and HO-1. Furthermore, FG-4592 improved the energy supply and glycerophospholipid metabolism in cardiomyocytes, possibly through upregulating the HIF-1α-targeted genes of LDHA and PDK1 in glycolysis and CHK-α, respectively. CONCLUSIONS FG-4592 protected against mortality and shock in septic animals possibly by antagonizing mitochondrial oxidative stress and metabolic disorders. GENERAL SIGNIFICANCE This study provides a potential of FG-4592 as a novel drug for treating septic shock.
Collapse
Affiliation(s)
- Guangfeng Long
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Zhiyin Pei
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Meng Wu
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Ke Wei
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China
| | - Yang Du
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Qian Wang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China
| | - Hongbing Chen
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| | - Weiwei Xia
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| |
Collapse
|
84
|
Mitochondrial Unfolded Protein Response and Integrated Stress Response as Promising Therapeutic Targets for Mitochondrial Diseases. Cells 2022; 12:cells12010020. [PMID: 36611815 PMCID: PMC9818186 DOI: 10.3390/cells12010020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The development and application of high-throughput omics technologies have enabled a more in-depth understanding of mitochondrial biosynthesis metabolism and the pathogenesis of mitochondrial diseases. In accordance with this, a host of new treatments for mitochondrial disease are emerging. As an essential pathway in maintaining mitochondrial proteostasis, the mitochondrial unfolded protein response (UPRmt) is not only of considerable significance for mitochondrial substance metabolism but also plays a fundamental role in the development of mitochondrial diseases. Furthermore, in mammals, the integrated stress response (ISR) and UPRmt are strongly coupled, functioning together to maintain mitochondrial function. Therefore, ISR and UPRmt show great application prospects in the treatment of mitochondrial diseases. In this review, we provide an overview of the molecular mechanisms of ISR and UPRmt and focus on them as potential targets for mitochondrial disease therapy.
Collapse
|
85
|
Warwick AM, Bomze HM, Wang L, Klingeborn M, Hao Y, Stinnett SS, Gospe III SM. Continuous Hypoxia Reduces Retinal Ganglion Cell Degeneration in a Mouse Model of Mitochondrial Optic Neuropathy. Invest Ophthalmol Vis Sci 2022; 63:21. [PMID: 36538003 PMCID: PMC9769749 DOI: 10.1167/iovs.63.13.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose To test whether continuous hypoxia is neuroprotective to retinal ganglion cells (RGCs) in a mouse model of mitochondrial optic neuropathy. Methods RGC degeneration was assessed in genetically modified mice in which the floxed gene for the complex I subunit NDUFS4 is deleted from RGCs using Vlgut2-driven Cre recombinase. Beginning at postnatal day 25 (P25), Vglut2-Cre;ndufs4loxP/loxP mice and control littermates were housed under hypoxia (11% oxygen) or kept under normoxia (21% oxygen). Survival of RGC somas and axons was assessed at P60 and P90 via histological analysis of retinal flatmounts and optic nerve cross-sections, respectively. Retinal tissue was also assessed for gliosis and neuroinflammation using western blot and immunofluorescence. Results Consistent with our previous characterization of this model, at least one-third of RGCs had degenerated by P60 in Vglut2-Cre;ndufs4loxP/loxP mice remaining under normoxia. However, continuous hypoxia resulted in complete rescue of RGC somas and axons at this time point, with normal axonal myelination observed on electron microscopy. Though only partial, hypoxia-mediated rescue of complex I-deficient RGC somas and axons remained significant at P90. Hypoxia prevented reactive gliosis at P60, but the retinal accumulation of Iba1+ mononuclear phagocytic cells was not substantially reduced. Conclusions Continuous hypoxia achieved dramatic rescue of early RGC degeneration in mice with severe mitochondrial dysfunction. Although complete rescue was not durable to P90, our observations suggest that investigating the mechanisms underlying hypoxia-mediated neuroprotection of RGCs may identify useful therapeutic strategies for optic neuropathies resulting from less profound mitochondrial impairment, such as Leber hereditary optic neuropathy.
Collapse
Affiliation(s)
- Alexander M. Warwick
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Howard M. Bomze
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Luyu Wang
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Mikael Klingeborn
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Ying Hao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Sandra S. Stinnett
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Sidney M. Gospe III
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
86
|
Sturm G, Monzel AS, Karan KR, Michelson J, Ware SA, Cardenas A, Lin J, Bris C, Santhanam B, Murphy MP, Levine ME, Horvath S, Belsky DW, Wang S, Procaccio V, Kaufman BA, Hirano M, Picard M. A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations. Sci Data 2022; 9:751. [PMID: 36463290 PMCID: PMC9719499 DOI: 10.1038/s41597-022-01852-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Aging is a process of progressive change. To develop biological models of aging, longitudinal datasets with high temporal resolution are needed. Here we report a multi-omics longitudinal dataset for cultured primary human fibroblasts measured across their replicative lifespans. Fibroblasts were sourced from both healthy donors (n = 6) and individuals with lifespan-shortening mitochondrial disease (n = 3). The dataset includes cytological, bioenergetic, DNA methylation, gene expression, secreted proteins, mitochondrial DNA copy number and mutations, cell-free DNA, telomere length, and whole-genome sequencing data. This dataset enables the bridging of mechanistic processes of aging as outlined by the "hallmarks of aging", with the descriptive characterization of aging such as epigenetic age clocks. Here we focus on bridging the gap for the hallmark mitochondrial metabolism. Our dataset includes measurement of healthy cells, and cells subjected to over a dozen experimental manipulations targeting oxidative phosphorylation (OxPhos), glycolysis, and glucocorticoid signaling, among others. These experiments provide opportunities to test how cellular energetics affect the biology of cellular aging. All data are publicly available at our webtool: https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study/.
Collapse
Affiliation(s)
- Gabriel Sturm
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Anna S Monzel
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Kalpita R Karan
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeremy Michelson
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah A Ware
- University of Pittsburgh, School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, 94305, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Céline Bris
- UMR CNRS 6015, INSERM U1083, MITOVASC, SFR ICAT, Université d'Angers, Angers, F-49000, France
- Department of Genetics, CHU Angers, Angers, F-49000, France
| | - Balaji Santhanam
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Michael P Murphy
- MRC-Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Morgan E Levine
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
- Altos Labs, San Diego, USA
| | - Steve Horvath
- Altos Labs, San Diego, USA
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Daniel W Belsky
- Department of Epidemiology & Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Shuang Wang
- Department of Biostatistics, Columbia University Irving Medical Center, New York, NY, USA
| | - Vincent Procaccio
- UMR CNRS 6015, INSERM U1083, MITOVASC, SFR ICAT, Université d'Angers, Angers, F-49000, France
- Department of Genetics, CHU Angers, Angers, F-49000, France
| | - Brett A Kaufman
- University of Pittsburgh, School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Michio Hirano
- Merritt Center and Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- Merritt Center and Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
87
|
The Goldilocks Oxygen Principle: not too little and not too much. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1101-1103. [PMID: 36816751 PMCID: PMC9937547 DOI: 10.1038/s44161-022-00178-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nature has evolved creative ways to maintain oxygen homeostasis, but what happens when these adaptations are insufficient? Here we discuss biochemical failure points across the oxygen spectrum from 'too little' to 'too much' oxygen and their potential contributions to cardiovascular disease.
Collapse
|
88
|
Yang W, Wu W, Zhao Y, Li Y, Zhang C, Zhang J, Chen C, Cui S. Caveolin-1 suppresses hippocampal neuron apoptosis via the regulation of HIF1α in hypoxia in naked mole-rats. Cell Biol Int 2022; 46:2060-2074. [PMID: 36054154 PMCID: PMC9826031 DOI: 10.1002/cbin.11890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/08/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
Naked mole-rats (NMRs) (Heterocephalus glaber) are highly social and subterranean rodents with large communal colonies in burrows containing low oxygen levels. The inhibition of severe hypoxic conditions is of particular interest to this study. To understand the mechanisms that facilitate neuronal preservation during hypoxia, we investigated the proteins regulating hypoxia tolerance in NMR hippocampal neurons. Caveolin-1 (Cav-1), a transmembrane scaffolding protein, confers prosurvival signalling in the central nervous system. The present study aimed to investigate the role of Cav-1 in hypoxia-induced neuronal injury. Western blotting analysis and immunocytochemistry showed that Cav-1 expression was significantly upregulated in NMR hippocampal neurons under 8% O2 conditions for 8 h. Cav-1 alleviates apoptotic neuronal death from hypoxia. Downregulation of Cav-1 by lentiviral vectors suggested damage to NMR hippocampal neurons under hypoxic conditions in vitro and in vivo. Overexpression of Cav-1 by LV-Cav-1 enhanced hypoxic tolerance of NMR hippocampal neurons in vitro and in vivo. Mechanistically, the levels of hypoxia inducible factor-1α (HIF-1α) are also increased under hypoxic conditions. After inhibiting the binding of HIF-1α to hypoxia response elements in the DNA by echinomycin, Cav-1 levels were downregulated significantly. Furthermore, chromatin immunoprecipitation assays showed the direct role of HIF1α in regulating the expression levels of Cav-1 in NMR hippocampal neurons under hypoxic conditions. These findings suggest that Cav-1 plays a critical role in modulating the apoptosis of NMR hippocampal neurons and warrant further studies targeting Cav-1 to treat hypoxia-associated brain diseases.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Wenqing Wu
- Department of Laboratory Animal CenterAcademy of Military Medical SciencesBeijingChina
| | - Ying Zhao
- Shanghai Laboratory Animal Research CenterShanghaiChina
| | - Yu Li
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Chengcai Zhang
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Jingyuan Zhang
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Chao Chen
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Shufang Cui
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| |
Collapse
|
89
|
Shao Q, Liu J, Li G, Gu Y, Guo M, Guan Y, Tian Z, Ma W, Wang C, Ji X. Proteomic Analysis Reveals That Mitochondria Dominate the Hippocampal Hypoxic Response in Mice. Int J Mol Sci 2022; 23:ijms232214094. [PMID: 36430571 PMCID: PMC9697535 DOI: 10.3390/ijms232214094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Hypoxic stress occurs in various physiological and pathological states, such as aging, disease, or high-altitude exposure, all of which pose a challenge to many organs in the body, necessitating adaptation. However, the exact mechanisms by which hypoxia affects advanced brain function (learning and memory skills in particular) remain unclear. In this study, we investigated the effects of hypoxic stress on hippocampal function. Specifically, we studied the effects of the dysfunction of mitochondrial oxidative phosphorylation using global proteomics. First, we found that hypoxic stress impaired cognitive and motor abilities, whereas it caused no substantial changes in the brain morphology or structure of mice. Second, bioinformatics analysis indicated that hypoxia affected the expression of 516 proteins, of which 71.1% were upregulated and 28.5% were downregulated. We demonstrated that mitochondrial function was altered and manifested as a decrease in NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4 expression, accompanied by increased reactive oxygen species generation, resulting in further neuronal injury. These results may provide some new insights into how hypoxic stress alters hippocampal function via the dysfunction of mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Qianqian Shao
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
| | - Jia Liu
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
| | - Gaifen Li
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yakun Gu
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
| | - Mengyuan Guo
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
| | - Yuying Guan
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zhengming Tian
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
| | - Wei Ma
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
| | - Chaoyu Wang
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
| | - Xunming Ji
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Correspondence: ; Tel.: +86-139-1107-7166
| |
Collapse
|
90
|
Mori MP, Penjweini R, Knutson JR, Wang PY, Hwang PM. Mitochondria and oxygen homeostasis. FEBS J 2022; 289:6959-6968. [PMID: 34235856 PMCID: PMC8790743 DOI: 10.1111/febs.16115] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 01/13/2023]
Abstract
Molecular oxygen possesses a dual nature due to its highly reactive free radical property: it is capable of oxidizing metabolic substrates to generate cellular energy, but can also serve as a substrate for genotoxic reactive oxygen species generation. As a labile substance upon which aerobic life depends, the mechanisms for handling cellular oxygen have been fine-tuned and orchestrated in evolution. Protection from atmospheric oxygen toxicity as originally posited by the Endosymbiotic Theory of the Mitochondrion is likely to be one basic principle underlying oxygen homeostasis. We briefly review the literature on oxygen homeostasis both in vitro and in vivo with a focus on the role of the mitochondrion where the majority of cellular oxygen is consumed. The insights gleaned from these basic mechanisms are likely to be important for understanding disease pathogenesis and developing strategies for maintaining health.
Collapse
Affiliation(s)
- Mateus P. Mori
- Cardiovascular Branch; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, Maryland, USA
| | - Rozhin Penjweini
- Laboratory of Advanced Microscopy and Biophotonics; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, Maryland, USA
| | - Jay R. Knutson
- Laboratory of Advanced Microscopy and Biophotonics; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, Maryland, USA
| | - Ping-yuan Wang
- Cardiovascular Branch; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, Maryland, USA
| | - Paul M. Hwang
- Cardiovascular Branch; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, Maryland, USA
| |
Collapse
|
91
|
Bennett CF, Ronayne CT, Puigserver P. Targeting adaptive cellular responses to mitochondrial bioenergetic deficiencies in human disease. FEBS J 2022; 289:6969-6993. [PMID: 34510753 PMCID: PMC8917243 DOI: 10.1111/febs.16195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/25/2021] [Accepted: 09/10/2021] [Indexed: 01/13/2023]
Abstract
Mitochondrial dysfunction is increasingly appreciated as a central contributor to human disease. Oxidative metabolism at the mitochondrial respiratory chain produces ATP and is intricately tied to redox homeostasis and biosynthetic pathways. Metabolic stress arising from genetic mutations in mitochondrial genes and environmental factors such as malnutrition or overnutrition is perceived by the cell and leads to adaptive and maladaptive responses that can underlie pathology. Here, we will outline cellular sensors that react to alterations in energy production, organellar redox, and metabolites stemming from mitochondrial disease (MD) mutations. MD is a heterogeneous group of disorders primarily defined by defects in mitochondrial oxidative phosphorylation from nuclear or mitochondrial-encoded gene mutations. Preclinical therapies that improve fitness of MD mouse models have been recently identified. Targeting metabolic/energetic deficiencies, maladaptive signaling processes, and hyper-oxygenation of tissues are all strategies aside from direct genetic approaches that hold therapeutic promise. A further mechanistic understanding of these curative processes as well as the identification of novel targets will significantly impact mitochondrial biology and disease research.
Collapse
Affiliation(s)
- Christopher F Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Conor T Ronayne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
92
|
Qi X, Walton DA, Plafker KS, Boulton ME, Plafker SM. Sulforaphane recovers cone function in an Nrf2-dependent manner in middle-aged mice undergoing RPE oxidative stress. Mol Vis 2022; 28:378-393. [PMID: 36338670 PMCID: PMC9603948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has therapeutic efficacy in numerous animal models of human disease, including mouse models of retinal degeneration. However, despite dozens of clinical trials, the compound remains to be tested as a clinical treatment for ocular disease. Numerous cellular activities of SFN have been identified, including the activation of Nrf2, a transcription factor that induces a battery of target gene products to neutralize oxidative and xenobiotic stresses. As Nrf2 expression and function reportedly decrease with aging, we tested whether the loss of the transcription factor limits the therapeutic efficacy of SFN against retinal degeneration. METHODS Six- to 8-month-old wild-type and Nrf2 knockout mice were treated with SFN beginning 1 month after ribozyme-mediated knockdown of superoxide dismutase 2 (SOD2) mRNA in the RPE. The impacts of MnSOD (the protein product of SOD2) knockdown and the efficacy of SFN were evaluated using a combination of electroretinography (ERG), spectral domain optical coherence tomography (SD-OCT), and postmortem histology. RESULTS SFN restored the ERG photopic b-wave suppressed by MnSOD loss in wild-type mice, but not in the Nrf2 knockout mice. In contrast, ERG scotopic a- and b-wave loss was not restored for either genotype. SFN significantly improved retinal thickness in the Nrf2 knockout mice with MnSOD knockdown, but this was not observed in the wild-type mice. In both genotypes, SFN treatment reduced morphological markers of RPE atrophy and degeneration, although these improvements did not correlate proportionally with functional recovery. CONCLUSIONS These findings highlight the capacity of SFN to preserve cone function, as well as the potential challenges of using the compound as a standalone treatment for age-related retinal degeneration under conditions associated with reduced Nrf2 function.
Collapse
Affiliation(s)
- Xiaoping Qi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL
| | - Dorothy A. Walton
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Kendra S. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL
| | - Scott M. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| |
Collapse
|
93
|
Wu YY, Yang C, Yan HJ, Lu P, Zhang L, Feng WC, Long YS. Lysine acetylome profiling in mouse hippocampus and its alterations upon FMRP deficiency linked to abnormal energy metabolism. J Proteomics 2022; 269:104720. [PMID: 36089189 DOI: 10.1016/j.jprot.2022.104720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/07/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Loss of fragile X retardation protein (FMRP) leads to fragile X syndrome (FXS), a common cause of inherited intellectual disability. Protein lysine acetylation (K-ac), a reversible post-translational modification of proteins, is associated with the regulation of brain development and neuropathies. However, a comprehensive hippocampal K-ac protein profile in response to FMRP deficiency has not been reported until now. Using LC-MS/MS to analyze the enriched K-ac peptides, this study identified 1629 K-ac hits across 717 proteins in the mouse hippocampus, and these proteins were enriched in several metabolic processes. Of them, 51 K-ac hits across 45 proteins were significantly changed upon loss of FMRP. These altered K-ac proteins were enriched in energy metabolic processes including carboxylic acid metabolism process, aerobic respiration and citrate cycle, linking with several neurological disorders such as lactic acidosis, Lewy body disease, Leigh disease and encephalopathies. In the mouse hippocampus and the hippocampal HT-22 cells, FMRP deficiency could induce altered K-ac modification of several key enzymes, decrease in ATP and increase in lactate. Thus, this study identified a global hippocampal lysine acetylome and an altered K-ac protein profile upon loss of FMRP linked to abnormal energy metabolism, implicating in the pathogenesis of FXS. SIGNIFICANCE: Fragile X syndrome (FXS) is a common inherited neurodevelopment disorder characterized by intellectual disability and an increased risk for autism spectrum disorder. FXS is resulted from silencing of the FMR1 gene, which induces loss of its encoding protein FMRP. Molecular and metabolic changes of Fmr1-null animal models of FXS have been identified to potentially contribute to the pathogenesis of FXS. Here, we used a TMT-labeled quantitative proteomic analysis of the peptides enriched by anti-K-ac antibodies and identified a global K-ac protein profile in the mouse hippocampus with a total of 1629 K-ac peptides on 717 proteins. Of them, 51 K-ac peptides regarding 45 proteins altered in response to loss of FMRP, which were enriched in energy metabolic processes and were implicated in several neurological disorders. Thus this study for the first time provides a global hippocampal lysine acetylome upon FMRP deficiency linked to abnormal metabolic pathways, which may contribute to pathogenic mechanism of FXS.
Collapse
Affiliation(s)
- Yue-Ying Wu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Cui Yang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Hua-Juan Yan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Ping Lu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Li Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Weng-Cai Feng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yue-Sheng Long
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
94
|
Hanaford A, Johnson SC. The immune system as a driver of mitochondrial disease pathogenesis: a review of evidence. Orphanet J Rare Dis 2022; 17:335. [PMID: 36056365 PMCID: PMC9438277 DOI: 10.1186/s13023-022-02495-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Genetic mitochondrial diseases represent a significant challenge to human health. These diseases are extraordinarily heterogeneous in clinical presentation and genetic origin, and often involve multi-system disease with severe progressive symptoms. Mitochondrial diseases represent the most common cause of inherited metabolic disorders and one of the most common causes of inherited neurologic diseases, yet no proven therapeutic strategies yet exist. The basic cell and molecular mechanisms underlying the pathogenesis of mitochondrial diseases have not been resolved, hampering efforts to develop therapeutic agents. MAIN BODY In recent pre-clinical work, we have shown that pharmacologic agents targeting the immune system can prevent disease in the Ndufs4(KO) model of Leigh syndrome, indicating that the immune system plays a causal role in the pathogenesis of at least this form of mitochondrial disease. Intriguingly, a number of case reports have indicated that immune-targeting therapeutics may be beneficial in the setting of genetic mitochondrial disease. Here, we summarize clinical and pre-clinical evidence suggesting a key role for the immune system in mediating the pathogenesis of at least some forms of genetic mitochondrial disease. CONCLUSIONS Significant clinical and pre-clinical evidence indicates a key role for the immune system as a significant in the pathogenesis of at least some forms of genetic mitochondrial disease.
Collapse
Affiliation(s)
- Allison Hanaford
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave., JMB-925, Seattle, WA, 98101, USA
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave., JMB-925, Seattle, WA, 98101, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
- Department of Neurology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
95
|
Abstract
The human brain consumes five orders of magnitude more energy than the sun by unit of mass and time. This staggering bioenergetic cost serves mostly synaptic transmission and actin cytoskeleton dynamics. The peak of both brain bioenergetic demands and the age of onset for neurodevelopmental disorders is approximately 5 years of age. This correlation suggests that defects in the machinery that provides cellular energy would be causative and/or consequence of neurodevelopmental disorders. We explore this hypothesis from the perspective of the machinery required for the synthesis of the electron transport chain, an ATP-producing and NADH-consuming enzymatic cascade. The electron transport chain is constituted by nuclear- and mitochondrial-genome-encoded subunits. These subunits are synthesized by the 80S and the 55S ribosomes, which are segregated to the cytoplasm and the mitochondrial matrix, correspondingly. Mitochondrial protein synthesis by the 55S ribosome is the rate-limiting step in the synthesis of electron transport chain components, suggesting that mitochondrial protein synthesis is a bottleneck for tissues with high bionergetic demands. We discuss genetic defects in the human nuclear and mitochondrial genomes that affect these protein synthesis machineries and cause a phenotypic spectrum spanning autism spectrum disorders to neurodegeneration during neurodevelopment. We propose that dysregulated mitochondrial protein synthesis is a chief, yet understudied, causative mechanism of neurodevelopmental and behavioral disorders.
Collapse
|
96
|
Baysal BE, Alahmari AA, Rodrick TC, Tabaczynski D, Curtin L, Seshadri M, Jones DR, Sexton S. Succinate dehydrogenase inversely regulates red cell distribution width and healthy lifespan in chronically hypoxic mice. JCI Insight 2022; 7:158737. [PMID: 35881479 PMCID: PMC9536274 DOI: 10.1172/jci.insight.158737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Increased red cell distribution width (RDW), which measures erythrocyte volume (MCV) variability (anisocytosis), has been linked to early mortality in many diseases and in older adults through unknown mechanisms. Hypoxic stress has been proposed as a potential mechanism. However, experimental models to investigate the link between increased RDW and reduced survival are lacking. Here, we show that lifelong hypobaric hypoxia (~10% O2) increases erythrocyte numbers, hemoglobin and RDW, while reducing longevity in male mice. Compound heterozygous knockout (chKO) mutations in succinate dehydrogenase (Sdh; mitochondrial complex II) genes Sdhb, Sdhc and Sdhd reduce Sdh subunit protein levels, RDW, and increase healthy lifespan compared to wild-type (WT) mice in chronic hypoxia. RDW-SD, a direct measure of MCV variability, and the standard deviation of MCV (1SD-RDW) show the most statistically significant reductions in Sdh hKO mice. Tissue metabolomic profiling of 147 common metabolites shows the largest increase in succinate with elevated succinate to fumarate and succinate to oxoglutarate (2-ketoglutarate) ratios in Sdh hKO mice. These results demonstrate that mitochondrial complex II level is an underlying determinant of both RDW and healthy lifespan in hypoxia, and suggest that therapeutic targeting of Sdh might reduce high RDW-associated clinical mortality in hypoxic diseases.
Collapse
Affiliation(s)
- Bora E Baysal
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, United States of America
| | - Abdulrahman A Alahmari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, United States of America
| | - Tori C Rodrick
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, United States of America
| | - Debra Tabaczynski
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, United States of America
| | - Leslie Curtin
- Laboratory Animal Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, United States of America
| | - Mukund Seshadri
- Department of Dentistry and Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, United States of America
| | - Drew R Jones
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, United States of America
| | - Sandra Sexton
- Laboratory Animal Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, United States of America
| |
Collapse
|
97
|
Sabharwal A, Campbell JM, Schwab TL, WareJoncas Z, Wishman MD, Ata H, Liu W, Ichino N, Hunter DE, Bergren JD, Urban MD, Urban RM, Holmberg SR, Kar B, Cook A, Ding Y, Xu X, Clark KJ, Ekker SC. A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish. Genes (Basel) 2022; 13:1317. [PMID: 35893052 PMCID: PMC9331066 DOI: 10.3390/genes13081317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are a dynamic eukaryotic innovation that play diverse roles in biology and disease. The mitochondrial genome is remarkably conserved in all vertebrates, encoding the same 37-gene set and overall genomic structure, ranging from 16,596 base pairs (bp) in the teleost zebrafish (Danio rerio) to 16,569 bp in humans. Mitochondrial disorders are amongst the most prevalent inherited diseases, affecting roughly 1 in every 5000 individuals. Currently, few effective treatments exist for those with mitochondrial ailments, representing a major unmet patient need. Mitochondrial dysfunction is also a common component of a wide variety of other human illnesses, ranging from neurodegenerative disorders such as Huntington's disease and Parkinson's disease to autoimmune illnesses such as multiple sclerosis and rheumatoid arthritis. The electron transport chain (ETC) component of mitochondria is critical for mitochondrial biology and defects can lead to many mitochondrial disease symptoms. Here, we present a publicly available collection of genetic mutants created in highly conserved, nuclear-encoded mitochondrial genes in Danio rerio. The zebrafish system represents a potentially powerful new opportunity for the study of mitochondrial biology and disease due to the large number of orthologous genes shared with humans and the many advanced features of this model system, from genetics to imaging. This collection includes 15 mutant lines in 13 different genes created through locus-specific gene editing to induce frameshift or splice acceptor mutations, leading to predicted protein truncation during translation. Additionally, included are 11 lines created by the random insertion of the gene-breaking transposon (GBT) protein trap cassette. All these targeted mutant alleles truncate conserved domains of genes critical to the proper function of the ETC or genes that have been implicated in human mitochondrial disease. This collection is designed to accelerate the use of zebrafish to study many different aspects of mitochondrial function to widen our understanding of their role in biology and human disease.
Collapse
Affiliation(s)
- Ankit Sabharwal
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Jarryd M. Campbell
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Tanya L. Schwab
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Zachary WareJoncas
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Mark D. Wishman
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Hirotaka Ata
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Wiebin Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
- Division of Cardiovascular Diseases, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Noriko Ichino
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Danielle E. Hunter
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Jake D. Bergren
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Mark D. Urban
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Rhianna M. Urban
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Shannon R. Holmberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Bibekananda Kar
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Alex Cook
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
- Division of Cardiovascular Diseases, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
- Division of Cardiovascular Diseases, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| |
Collapse
|
98
|
Janssen Daalen JM, Meinders MJ, Giardina F, Roes KCB, Stunnenberg BC, Mathur S, Ainslie PN, Thijssen DHJ, Bloem BR. Multiple N-of-1 trials to investigate hypoxia therapy in Parkinson's disease: study rationale and protocol. BMC Neurol 2022; 22:262. [PMID: 35836147 PMCID: PMC9281145 DOI: 10.1186/s12883-022-02770-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Parkinson’s disease (PD) is a neurodegenerative disease, for which no disease-modifying therapies exist. Preclinical and clinical evidence suggest that hypoxia-based therapy might have short- and long-term benefits in PD. We present the contours of the first study to assess the safety, feasibility and physiological and symptomatic impact of hypoxia-based therapy in individuals with PD. Methods/Design In 20 individuals with PD, we will investigate the safety, tolerability and short-term symptomatic efficacy of continuous and intermittent hypoxia using individual, double-blind, randomized placebo-controlled N-of-1 trials. This design allows for dose finding and for including more individualized outcomes, as each individual serves as its own control. A wide range of exploratory outcomes is deployed, including the Movement Disorders Society Unified Parkinson’s Disease Rating scale (MDS-UPDRS) part III, Timed Up & Go Test, Mini Balance Evaluation Systems (MiniBES) test and wrist accelerometry. Also, self-reported impression of overall symptoms, motor and non-motor symptoms and urge to take dopaminergic medication will be assessed on a 10-point Likert scale. As part of a hypothesis-generating part of the study, we also deploy several exploratory outcomes to probe possible underlying mechanisms of action, including cortisol, erythropoietin and platelet-derived growth factor β. Efficacy will be assessed primarily by a Bayesian analysis. Discussion This evaluation of hypoxia therapy could provide insight in novel pathways that may be pursued for PD treatment. This trial also serves as a proof of concept for deploying an N-of-1 design and for including individualized outcomes in PD research, as a basis for personalized treatment approaches. Trial registration ClinicalTrials.gov Identifier: NCT05214287 (registered January 28, 2022).
Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02770-7.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson & Movement Disorders; Nijmegen, the Netherlands, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson & Movement Disorders; Nijmegen, the Netherlands, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.,IQ Healthcare, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Federica Giardina
- Department of Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Section Biostatistics, Nijmegen, The Netherlands
| | - Kit C B Roes
- Department of Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Section Biostatistics, Nijmegen, The Netherlands
| | - Bas C Stunnenberg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Neurology, Rijnstate Hospital, Arnhem, Netherlands
| | | | - Philip N Ainslie
- Center for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson & Movement Disorders; Nijmegen, the Netherlands, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
99
|
Romero-Morales AI, Robertson GL, Rastogi A, Rasmussen ML, Temuri H, McElroy GS, Chakrabarty RP, Hsu L, Almonacid PM, Millis BA, Chandel NS, Cartailler JP, Gama V. Human iPSC-derived cerebral organoids model features of Leigh syndrome and reveal abnormal corticogenesis. Development 2022; 149:275911. [PMID: 35792828 PMCID: PMC9357378 DOI: 10.1242/dev.199914] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 05/18/2022] [Indexed: 01/12/2023]
Abstract
Leigh syndrome (LS) is a rare, inherited neurometabolic disorder that presents with bilateral brain lesions caused by defects in the mitochondrial respiratory chain and associated nuclear-encoded proteins. We generated human induced pluripotent stem cells (iPSCs) from three LS patient-derived fibroblast lines. Using whole-exome and mitochondrial sequencing, we identified unreported mutations in pyruvate dehydrogenase (GM0372, PDH; GM13411, MT-ATP6/PDH) and dihydrolipoyl dehydrogenase (GM01503, DLD). These LS patient-derived iPSC lines were viable and capable of differentiating into progenitor populations, but we identified several abnormalities in three-dimensional differentiation models of brain development. LS patient-derived cerebral organoids showed defects in neural epithelial bud generation, size and cortical architecture at 100 days. The double mutant MT-ATP6/PDH line produced organoid neural precursor cells with abnormal mitochondrial morphology, characterized by fragmentation and disorganization, and showed an increased generation of astrocytes. These studies aim to provide a comprehensive phenotypic characterization of available patient-derived cell lines that can be used to study Leigh syndrome.
Collapse
Affiliation(s)
| | - Gabriella L. Robertson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Anuj Rastogi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Megan L. Rasmussen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Hoor Temuri
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Gregory Scott McElroy
- Feinberg School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ram Prosad Chakrabarty
- Feinberg School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lawrence Hsu
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology,Vanderbilt University,Nashville, TN 37232, USA
| | | | - Bryan A. Millis
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA,Vanderbilt Biophotonics Center,Vanderbilt University, Nashville, TN 37232, USA
| | - Navdeep S. Chandel
- Feinberg School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL 60611, USA,Feinberg School of Medicine, Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Jean-Philippe Cartailler
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology,Vanderbilt University,Nashville, TN 37232, USA
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA,Creative Data Solutions, Vanderbilt Center for Stem Cell Biology,Vanderbilt University,Nashville, TN 37232, USA,Vanderbilt Brain Institute,Vanderbilt University,Nashville, TN 37232, USA,Author for correspondence ()
| |
Collapse
|
100
|
Yoon J, Daneshgar N, Chu Y, Chen B, Hefti M, Vikram A, Irani K, Song L, Brenner C, Abel ED, London B, Dai D. Metabolic rescue ameliorates mitochondrial encephalo-cardiomyopathy in murine and human iPSC models of Leigh syndrome. Clin Transl Med 2022; 12:e954. [PMID: 35872650 PMCID: PMC9309541 DOI: 10.1002/ctm2.954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Mice with deletion of complex I subunit Ndufs4 develop mitochondrial encephalomyopathy resembling Leigh syndrome (LS). The metabolic derangement and underlying mechanisms of cardio-encephalomyopathy in LS remains incompletely understood. METHODS We performed echocardiography, electrophysiology, confocal microscopy, metabolic and molecular/morphometric analysis of the mice lacking Ndufs4. HEK293 cells, human iPS cells-derived cardiomyocytes and neurons were used to determine the mechanistic role of mitochondrial complex I deficiency. RESULTS LS mice develop severe cardiac bradyarrhythmia and diastolic dysfunction. Human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) with Ndufs4 deletion recapitulate LS cardiomyopathy. Mechanistically, we demonstrate a direct link between complex I deficiency, decreased intracellular (nicotinamide adenine dinucleotide) NAD+ /NADH and bradyarrhythmia, mediated by hyperacetylation of the cardiac sodium channel NaV 1.5, particularly at K1479 site. Neuronal apoptosis in the cerebellar and midbrain regions in LS mice was associated with hyperacetylation of p53 and activation of microglia. Targeted metabolomics revealed increases in several amino acids and citric acid cycle intermediates, likely due to impairment of NAD+ -dependent dehydrogenases, and a substantial decrease in reduced Glutathione (GSH). Metabolic rescue by nicotinamide riboside (NR) supplementation increased intracellular NAD+ / NADH, restored metabolic derangement, reversed protein hyperacetylation through NAD+ -dependent Sirtuin deacetylase, and ameliorated cardiomyopathic phenotypes, concomitant with improvement of NaV 1.5 current and SERCA2a function measured by Ca2+ -transients. NR also attenuated neuronal apoptosis and microglial activation in the LS brain and human iPS-derived neurons with Ndufs4 deletion. CONCLUSIONS Our study reveals direct mechanistic explanations of the observed cardiac bradyarrhythmia, diastolic dysfunction and neuronal apoptosis in mouse and human induced pluripotent stem cells (iPSC) models of LS.
Collapse
Affiliation(s)
- Jin‐Young Yoon
- Division of Cardiovascular Medicine, Department of Internal MedicineUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Nastaran Daneshgar
- Department of Pathology, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Yi Chu
- Department of Pathology, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Biyi Chen
- Division of Cardiovascular Medicine, Department of Internal MedicineUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Marco Hefti
- Department of Pathology, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Ajit Vikram
- Division of Cardiovascular Medicine, Department of Internal MedicineUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Kaikobad Irani
- Division of Cardiovascular Medicine, Department of Internal MedicineUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Long‐Sheng Song
- Division of Cardiovascular Medicine, Department of Internal MedicineUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Charles Brenner
- Department of Diabetes & Cancer MetabolismCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - E. Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Department of Internal MedicineUniversity of Iowa Carver College of Medicine, University of IowaIowa CityIowaUSA
| | - Barry London
- Division of Cardiovascular Medicine, Department of Internal MedicineUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Dao‐Fu Dai
- Department of Pathology, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| |
Collapse
|