51
|
Liu S, Xiao H, Zhang F, Lu Z, Zhang Y, Deng A, Li Z, Yang C, Wen T. A seamless and iterative DNA assembly method named PS-Brick and its assisted metabolic engineering for threonine and 1-propanol production. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:180. [PMID: 31338122 PMCID: PMC6628500 DOI: 10.1186/s13068-019-1520-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND DNA assembly is an essential technique enabling metabolic engineering and synthetic biology. Combining novel DNA assembly technologies with rational metabolic engineering can facilitate the construction of microbial cell factories. Amino acids and derived biochemicals are important products in industrial biotechnology with wide application and huge markets. DNA assembly scenarios encountered in metabolic engineering for the construction of amino acid and related compound producers, such as design-build-test-learn cycles, construction of precise genetic circuits and repetitive DNA molecules, usually require for iterative, scarless and repetitive sequence assembly methods, respectively. RESULTS Restriction endonuclease (RE)-assisted strategies constitute one of the major categories of DNA assembly. Here, we developed a Type IIP and IIS RE-assisted method named PS-Brick that comprehensively takes advantage of the properties of PCR fragments and REs for iterative, seamless and repetitive sequence assembly. One round of PS-Brick reaction using purified plasmids and PCR fragments was accomplished within several hours, and transformation of the resultant reaction product from this PS-Brick assembly reaction exhibited high efficiency (104-105 CFUs/µg DNA) and high accuracy (~ 90%). An application of metabolic engineering to threonine production, including the release of feedback regulation, elimination of metabolic bottlenecks, intensification of threonine export and inactivation of threonine catabolism, was stepwise resolved in E. coli by rounds of "design-build-test-learn" cycles through the iterative PS-Brick paradigm, and 45.71 g/L threonine was obtained through fed-batch fermentation. In addition to the value of the iterative character of PS-Brick for sequential strain engineering, seamless cloning enabled precise in-frame fusion for codon saturation mutagenesis and bicistronic design, and the repetitive sequence cloning ability of PS-Brick enabled construction of tandem CRISPR sgRNA arrays for genome editing. Moreover, the heterologous pathway deriving 1-propanol pathway from threonine, composed of Lactococcus lactis kivD and Saccharomyces cerevisiae ADH2, was assembled by one cycle of PS-Brick, resulting in 1.35 g/L 1-propanol in fed-batch fermentation. CONCLUSIONS To the best of our knowledge, the PS-Brick framework is the first RE-assisted DNA assembly method using the strengths of both Type IIP and IIS REs. In this study, PS-Brick was demonstrated to be an efficient DNA assembly method for pathway construction and genome editing and was successfully applied in design-build-test-learn (DBTL) cycles of metabolic engineering for the production of threonine and threonine-derived 1-propanol. The PS-Brick presents a valuable addition to the current toolbox of synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Shuwen Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Haihan Xiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fangfang Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230039 China
| | - Zheng Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Aihua Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhongcai Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Cui Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
52
|
Datta A, Hossain A, Roy S. An Overview on Biofuels and Their Advantages and Disadvantages. ACTA ACUST UNITED AC 2019. [DOI: 10.14233/ajchem.2019.22098] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Blazing of fossil energy resources generally changes the global climate. Speeding up of global temperate nowadays is an important aspect. Emission of greenhouse gases mainly from blazing of fossil energy resources is one of the most important sources. So, to carry the significant energy and to reduce air pollution, biofuels might be a substitute energy sources. The unnecessary utilization of fossil energy resources or fuels results deficient in the storage in underground earth then people naturally have to depend on biofuels. Consequently increasing demand for the manufacture of biofuels will put a huge burden on agriculture and food prices. Biofuels generally attributed as liquid fuels which are made from the biomass. This consists of mostly wood, vegetable oils, forestry products, agricultural crops, agricultural residues or municipal garbage, residues of domestic animal wastes and aquatic plants. In this review, we summarized the different types of biofuels including biodiesel and their comparative study, production and uses from an ecological perspective.
Collapse
Affiliation(s)
- Arup Datta
- Department of Chemistry, Shibpur Dinobundhoo Institution (College), 412/1, G.T. Road (South), Howrah-711102, India
| | - Aslam Hossain
- Department of Physical and Inorganic Chemistry, Institute of Natural Sciences and Mathematics, Ural Federal University, 620000, Yekaterinburg, Russia
| | - Sanjay Roy
- Department of Chemistry, Shibpur Dinobundhoo Institution (College), 412/1, G.T. Road (South), Howrah-711102, India
| |
Collapse
|
53
|
Selão TT, Włodarczyk A, Nixon PJ, Norling B. Growth and selection of the cyanobacterium Synechococcus sp. PCC 7002 using alternative nitrogen and phosphorus sources. Metab Eng 2019; 54:255-263. [PMID: 31063791 DOI: 10.1016/j.ymben.2019.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/08/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
Abstract
Cyanobacteria, such as Synechococcus sp. PCC 7002 (Syn7002), are promising chassis strains for "green" biotechnological applications as they can be grown in seawater using oxygenic photosynthesis to fix carbon dioxide into biomass. Their other major nutritional requirements for efficient growth are sources of nitrogen (N) and phosphorus (P). As these organisms are more economically cultivated in outdoor open systems, there is a need to develop cost-effective approaches to prevent the growth of contaminating organisms, especially as the use of antibiotic selection markers is neither economically feasible nor ecologically desirable due to the risk of horizontal gene transfer. Here we have introduced a synthetic melamine degradation pathway into Syn7002 and evolved the resulting strain to efficiently use the nitrogen-rich xenobiotic compound melamine as the sole N source. We also show that expression of phosphite dehydrogenase in the absence of its cognate phosphite transporter permits growth of Syn7002 on phosphite and can be used as a selectable marker in Syn7002. We combined these two strategies to generate a strain that can grow on melamine and phosphite as sole N and P sources, respectively. This strain is able to resist deliberate contamination in large excess and should be a useful chassis for metabolic engineering and biotechnological applications using cyanobacteria.
Collapse
Affiliation(s)
| | - Artur Włodarczyk
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Peter J Nixon
- School of Biological Sciences, Nanyang Technological University, Singapore; Sir Ernst Chain Building- Wolfson Laboratories, Department of Life Sciences, Imperial College London, S. Kensington Campus, London, SW7 2AZ, UK
| | - Birgitta Norling
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
54
|
Cheng D, Li X, Yuan Y, Yang C, Tang T, Zhao Q, Sun Y. Adaptive evolution and carbon dioxide fixation of Chlorella sp. in simulated flue gas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2931-2938. [PMID: 30373069 DOI: 10.1016/j.scitotenv.2018.10.070] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Carbon dioxide and other greenhouse gas emissions leads to global warming. Biological capture through microalgae is a potential approach for solving this environmental problem. It is still a technical challenge to enhance the tolerance of microalgae to flue gas if CO2 is fixed from flue gas directly. A new strain, Chlorella sp. Cv was obtained through adaptive evolution (46 cycles) against simulated flue gas (10% CO2, 200 ppm NOx and 100 ppm SOx). It was confirmed that Chlorella sp. Cv could tolerate simulated flue gas conditions and the maximum CO2 fixation rate was 1.2 g L-1 d-1. In a two-stage process, the biomass concentration was 2.7 g L-1 and the carbohydrate content was 68.4%. Comparative transcriptomic analysis was performed for Chlorella sp. Cv under simulated flue gas and control conditions (10% CO2). These responses against simulated flue gas uncovered the significant difference between the evolved strain and the original strain. The metabolic responses to flue gas were explored with focus on various specific genes. Upregulation of several genes related to photosynthesis, oxidative phosphorylation, CO2 fixation, sulfur metabolism and nitrogen metabolism was beneficial for the evolved strain to tolerate the simulated flue gas. The upregulation of genes related to extracellular sulfur transport and nitrate reductase was essential to utilize the sulfate and nitrate from dissolved SOx and NOx. The results in this study are helpful to establish a new process for CO2 capture directly from industrial flue gas.
Collapse
Affiliation(s)
- Dujia Cheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Xuyang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yizhong Yuan
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Chengyu Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Tao Tang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China
| | - Quanyu Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; ShanghaiTech University, 100 Haike Road, Shanghai 201210, China; School of Pharmaceutical Science, Nanjing Tech University, 30 Puzhu South Road, Nanjing, China.
| | - Yuhan Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
55
|
Kim M, Park BG, Kim EJ, Kim J, Kim BG. In silico identification of metabolic engineering strategies for improved lipid production in Yarrowia lipolytica by genome-scale metabolic modeling. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:187. [PMID: 31367232 PMCID: PMC6657051 DOI: 10.1186/s13068-019-1518-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/03/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Yarrowia lipolytica, an oleaginous yeast, is a promising platform strain for production of biofuels and oleochemicals as it can accumulate a high level of lipids in response to nitrogen limitation. Accordingly, many metabolic engineering efforts have been made to develop engineered strains of Y. lipolytica with higher lipid yields. Genome-scale model of metabolism (GEM) is a powerful tool for identifying novel genetic designs for metabolic engineering. Several GEMs for Y. lipolytica have recently been developed; however, not many applications of the GEMs have been reported for actual metabolic engineering of Y. lipolytica. The major obstacle impeding the application of Y. lipolytica GEMs is the lack of proper methods for predicting phenotypes of the cells in the nitrogen-limited condition, or more specifically in the stationary phase of a batch culture. RESULTS In this study, we showed that environmental version of minimization of metabolic adjustment (eMOMA) can be used for predicting metabolic flux distribution of Y. lipolytica under the nitrogen-limited condition and identifying metabolic engineering strategies to improve lipid production in Y. lipolytica. Several well-characterized overexpression targets, such as diglyceride acyltransferase, acetyl-CoA carboxylase, and stearoyl-CoA desaturase, were successfully rediscovered by our eMOMA-based design method, showing the relevance of prediction results. Interestingly, the eMOMA-based design method also suggested non-intuitive knockout targets, and we experimentally validated the prediction with a mutant lacking YALI0F30745g, one of the predicted targets involved in one-carbon/methionine metabolism. The mutant accumulated 45% more lipids compared to the wild-type. CONCLUSION This study demonstrated that eMOMA is a powerful computational method for understanding and engineering the metabolism of Y. lipolytica and potentially other oleaginous microorganisms.
Collapse
Affiliation(s)
- Minsuk Kim
- Institute of Engineering Research, Seoul National University, Seoul, 08826 Republic of Korea
- Present Address: Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Beom Gi Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826 Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826 Republic of Korea
| | - Eun-Jung Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826 Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, 08826 Republic of Korea
| | - Joonwon Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826 Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826 Republic of Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826 Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826 Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
56
|
Howe GW, van der Donk WA. 18O Kinetic Isotope Effects Reveal an Associative Transition State for Phosphite Dehydrogenase Catalyzed Phosphoryl Transfer. J Am Chem Soc 2018; 140:17820-17824. [PMID: 30525552 DOI: 10.1021/jacs.8b06301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phosphite dehydrogenase (PTDH) catalyzes an unusual phosphoryl transfer reaction in which water displaces a hydride leaving group. Despite extensive effort, it remains unclear whether PTDH catalysis proceeds via an associative or dissociative mechanism. Here, primary 2H and secondary 18O kinetic isotope effects (KIEs) were determined and used together with computation to characterize the transition state (TS) catalyzed by a thermostable PTDH (17X-PTDH). The large, normal 18O KIEs suggest an associative mechanism. Various transition state structures were computed within a model of the enzyme active site and 2H and 18O KIEs were predicted to evaluate the accuracy of each TS. This analysis suggests that 17X-PTDH catalyzes an associative process with little leaving group displacement and extensive nucleophilic participation. This tight TS is likely a consequence of the extremely poor leaving group requiring significant P-O bond formation to expel the hydride. This finding contrasts with the dissociative TSs in most phosphoryl transfer reactions from phosphate mono- and diesters.
Collapse
Affiliation(s)
- Graeme W Howe
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States.,Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , 1206 West Gregory Drive , Urbana , Illinois 61801 , United States
| | - Wilfred A van der Donk
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States.,Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , 1206 West Gregory Drive , Urbana , Illinois 61801 , United States.,Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , 1206 West Gregory Drive , Urbana , Illinois 61801 , United States
| |
Collapse
|
57
|
Larroude M, Rossignol T, Nicaud JM, Ledesma-Amaro R. Synthetic biology tools for engineering Yarrowia lipolytica. Biotechnol Adv 2018; 36:2150-2164. [PMID: 30315870 PMCID: PMC6261845 DOI: 10.1016/j.biotechadv.2018.10.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/11/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022]
Abstract
The non-conventional oleaginous yeast Yarrowia lipolytica shows great industrial promise. It naturally produces certain compounds of interest but can also artificially generate non-native metabolites, thanks to an engineering process made possible by the significant expansion of a dedicated genetic toolbox. In this review, we present recently developed synthetic biology tools that facilitate the manipulation of Y. lipolytica, including 1) DNA assembly techniques, 2) DNA parts for constructing expression cassettes, 3) genome-editing techniques, and 4) computational tools.
Collapse
Affiliation(s)
- M Larroude
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - T Rossignol
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - J-M Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - R Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom.
| |
Collapse
|
58
|
Production of chemicals using dynamic control of metabolic fluxes. Curr Opin Biotechnol 2018; 53:12-19. [DOI: 10.1016/j.copbio.2017.10.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 01/21/2023]
|
59
|
Yaguchi A, Spagnuolo M, Blenner M. Engineering yeast for utilization of alternative feedstocks. Curr Opin Biotechnol 2018; 53:122-129. [DOI: 10.1016/j.copbio.2017.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 11/16/2022]
|
60
|
Freedman AJE, Peet KC, Boock JT, Penn K, Prather KLJ, Thompson JR. Isolation, Development, and Genomic Analysis of Bacillus megaterium SR7 for Growth and Metabolite Production Under Supercritical Carbon Dioxide. Front Microbiol 2018; 9:2152. [PMID: 30319556 PMCID: PMC6167967 DOI: 10.3389/fmicb.2018.02152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/22/2018] [Indexed: 12/27/2022] Open
Abstract
Supercritical carbon dioxide (scCO2) is an attractive substitute for conventional organic solvents due to its unique transport and thermodynamic properties, its renewability and labile nature, and its high solubility for compounds such as alcohols, ketones, and aldehydes. However, biological systems that use scCO2 are mainly limited to in vitro processes due to its strong inhibition of cell viability and growth. To solve this problem, we used a bioprospecting approach to isolate a microbial strain with the natural ability to grow while exposed to scCO2. Enrichment culture and serial passaging of deep subsurface fluids from the McElmo Dome scCO2 reservoir in aqueous media under scCO2 headspace enabled the isolation of spore-forming strain Bacillus megaterium SR7. Sequencing and analysis of the complete 5.51 Mbp genome and physiological characterization revealed the capacity for facultative anaerobic metabolism, including fermentative growth on a diverse range of organic substrates. Supplementation of growth medium with L-alanine for chemical induction of spore germination significantly improved growth frequencies and biomass accumulation under scCO2 headspace. Detection of endogenous fermentative compounds in cultures grown under scCO2 represents the first observation of bioproduct generation and accumulation under this condition. Culturing development and metabolic characterization of B. megaterium SR7 represent initial advancements in the effort toward enabling exploitation of scCO2 as a sustainable solvent for in vivo bioprocessing.
Collapse
Affiliation(s)
- Adam J. E. Freedman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kyle C. Peet
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jason T. Boock
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kevin Penn
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kristala L. J. Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Janelle R. Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
61
|
Motomura K, Sano K, Watanabe S, Kanbara A, Gamal Nasser AH, Ikeda T, Ishida T, Funabashi H, Kuroda A, Hirota R. Synthetic Phosphorus Metabolic Pathway for Biosafety and Contamination Management of Cyanobacterial Cultivation. ACS Synth Biol 2018; 7:2189-2198. [PMID: 30203964 DOI: 10.1021/acssynbio.8b00199] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent progress in genetic engineering and synthetic biology have greatly expanded the production capabilities of cyanobacteria, but concerns regarding biosafety issues and the risk of contamination of cultures in outdoor culture conditions remain to be resolved. With this dual goal in mind, we applied the recently established biological containment strategy based on phosphite (H3PO3, Pt) dependency to the model cyanobacterium Synechococcus elongatus PCC 7942 ( Syn 7942). Pt assimilation capability was conferred on Syn 7942 by the introduction of Pt dehydrogenase (PtxD) and hypophosphite transporter (HtxBCDE) genes that allow the uptake of Pt, but not phosphate (H3PO4, Pi). We then identified and disrupted the two indigenous Pi transporters, pst (Synpcc7942_2441 to 2445) and pit (Synpcc7942_0184). The resultant strain failed to grow on any media containing various types of P compounds other than Pt. The strain did not yield any escape mutants for at least 28 days with a detection limit of 3.6 × 10-11 per colony forming unit, and rapidly lost viability in the absence of Pt. Moreover, growth competition of the Pt-dependent strain with wild-type cyanobacteria revealed that the Pt-dependent strain could dominate in cultures containing Pt as the sole P source. Because Pt is rarely available in aquatic environments this strategy can contribute to both biosafety and contamination management of genetically engineered cyanobacteria.
Collapse
Affiliation(s)
- Kei Motomura
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST-ALCA), Chiyoda-ku, Tokyo 102-0076, Japan
| | - Kosuke Sano
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Satoru Watanabe
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST-ALCA), Chiyoda-ku, Tokyo 102-0076, Japan
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Akihiro Kanbara
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Abdel-Hady Gamal Nasser
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Takeshi Ikeda
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Takenori Ishida
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Hisakage Funabashi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Akio Kuroda
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST-ALCA), Chiyoda-ku, Tokyo 102-0076, Japan
| | - Ryuichi Hirota
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST-ALCA), Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
62
|
Shen R, Yin J, Ye JW, Xiang RJ, Ning ZY, Huang WZ, Chen GQ. Promoter Engineering for Enhanced P(3HB- co-4HB) Production by Halomonas bluephagenesis. ACS Synth Biol 2018; 7:1897-1906. [PMID: 30024739 DOI: 10.1021/acssynbio.8b00102] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Promoters for the expression of heterologous genes in Halomonas bluephagenesis are quite limited, and many heterologous promoters function abnormally in this strain. Pporin, a promoter of the strongest expressed protein porin in H. bluephagenesis, is one of the few promoters available for heterologous expression in H. bluephagenesis, yet it has a fixed transcriptional activity that cannot be tuned. A stable promoter library with a wide range of activities is urgently needed. This study reports an approach to construct a promoter library based on the Pporin core region, namely, from the -35 box to the transcription start site, a spacer and an insulator. Saturation mutagenesis was conducted inside the promoter core region to significantly increase the diversity within the promoter library. The promoter library worked in both E. coli and H. bluephagenesis, covering a wide range of relative transcriptional strengths from 40 to 140 000. The library is therefore suitable for the transcription of many different heterologous genes, serving as a platform for protein expression and fine-tuned metabolic engineering of H. bluephagenesis TD01 and its derivative strains. H. bluephagenesis strains harboring the orfZ gene encoding 4HB-CoA transferase driven by selected promoters from the library were constructed, the best one produced over 100 g/L cell dry weight containing 80% poly(3-hydroxybutyrate- co-11 mol % 4-hydroxybutyrate) with a productivity of 1.59 g/L/h after 50 h growth under nonsterile fed-batch conditions. This strain was found the best for P(3HB- co-4HB) production in the laboratory scale.
Collapse
Affiliation(s)
- Rui Shen
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jin Yin
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jian-Wen Ye
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | | | - Zhi-Yu Ning
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wu-Zhe Huang
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
63
|
Ritchie ME. Reaction and diffusion thermodynamics explain optimal temperatures of biochemical reactions. Sci Rep 2018; 8:11105. [PMID: 30038415 PMCID: PMC6056565 DOI: 10.1038/s41598-018-28833-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/28/2018] [Indexed: 01/18/2023] Open
Abstract
Ubiquitous declines in biochemical reaction rates above optimal temperatures (Topt) are normally attributed to enzyme state changes, but such mechanisms appear inadequate to explain pervasive Topt well below enzyme deactivation temperatures (Tden). Here, a meta-analysis of 92 experimental studies shows that product formation responds twice as strongly to increased temperature than diffusion or transport. This response difference has multiple consequences for biochemical reactions, such as potential shifts in the factors limiting reactions as temperature increases and reaction-diffusion dynamics that predict potential product inhibition and limitation of the reaction by entropy production at temperatures below Tden. Maximizing entropy production by the reaction predicts Topt that depend on enzyme concentration and efficiency as well as reaction favorability, which are patterns not predicted by mechanisms of enzyme state change. However, these predictions are strongly supported by patterns in a meta-analysis of 121 enzyme kinetic studies. Consequently, reaction-diffusion thermodynamics and entropy production may constrain organism performance at higher temperatures, yielding temperature optima of life that may depend on reaction characteristics and environmental features rather than just enzyme state changes.
Collapse
Affiliation(s)
- Mark E Ritchie
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
64
|
Metabolic engineering of Escherichia coli for the production of L-malate from xylose. Metab Eng 2018; 48:25-32. [DOI: 10.1016/j.ymben.2018.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/08/2018] [Accepted: 05/18/2018] [Indexed: 11/19/2022]
|
65
|
Markham KA, Alper HS. Synthetic Biology Expands the Industrial Potential of Yarrowia lipolytica. Trends Biotechnol 2018; 36:1085-1095. [PMID: 29880228 DOI: 10.1016/j.tibtech.2018.05.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 10/14/2022]
Abstract
The oleaginous yeast Yarrowia lipolytica is quickly emerging as the most popular non-conventional (i.e., non-model organism) yeast in the bioproduction field. With a high propensity for flux through tricarboxylic acid (TCA) cycle intermediates and biological precursors such as acetyl-CoA and malonyl-CoA, this host is especially well suited to meet our industrial chemical production needs. Recent progress in synthetic biology tool development has greatly enhanced our ability to rewire this organism, with advances in genetic component design, CRISPR technologies, and modular cloning strategies. In this review we investigate recent developments in metabolic engineering and describe how the new tools being developed help to realize the full industrial potential of this host. Finally, we conclude with our vision of the developments that will be necessary to enhance future engineering efforts.
Collapse
Affiliation(s)
- Kelly A Markham
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 East Dean Keeton Street, Austin, TX 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 East Dean Keeton Street, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, USA.
| |
Collapse
|
66
|
Designer microbiomes for environmental, energy and health biotechnology. Curr Opin Microbiol 2018; 43:117-123. [DOI: 10.1016/j.mib.2017.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 01/19/2023]
|
67
|
Tang M, Zhou W, Liu Y, Yan J, Gong Z. A two-stage process facilitating microbial lipid production from N-acetylglucosamine by Cryptococcus curvatus cultured under non-sterile conditions. BIORESOURCE TECHNOLOGY 2018; 258:255-262. [PMID: 29533885 DOI: 10.1016/j.biortech.2018.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 05/21/2023]
Abstract
N-acetylglucosamine (GlcNAc), the monomeric constituent of chitin, is rarely studied for lipid production by oleaginous species. This study demonstrated that Cryptococcus curvatus had a great capacity to convert GlcNAc into lipid with high yield using a two-stage production process. Optimal inoculum age and inoculation size strongly improved the two-stage lipid production efficiency. More interestingly, this process rendered superior lipid production under non-sterile condition. The acetate liberated from GlcNAc was consumed timely, while the NH4+ released was rarely assimilated. Lipid titre, lipid content and lipid yield reached 9.9 g/L, 56.9% and 0.23 g/g, respectively, which were significantly higher than those from the conventional process where cell growth and lipid accumulation were coupled. The resulting lipid samples had similar fatty acid compositional profiles to those of vegetable oil, suggesting their potential for biodiesel production. These findings strongly supported the two-stage process as an attractive strategy for better techno-economics of the chitin-to-biodiesel routes.
Collapse
Affiliation(s)
- Mou Tang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, PR China
| | - Wenting Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, PR China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, PR China
| | - Jiabao Yan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, PR China
| | - Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, PR China.
| |
Collapse
|
68
|
Raschmanová H, Weninger A, Glieder A, Kovar K, Vogl T. Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects. Biotechnol Adv 2018; 36:641-665. [PMID: 29331410 DOI: 10.1016/j.biotechadv.2018.01.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/02/2018] [Accepted: 01/09/2018] [Indexed: 12/26/2022]
Abstract
Within five years, the CRISPR-Cas system has emerged as the dominating tool for genome engineering, while also changing the speed and efficiency of metabolic engineering in conventional (Saccharomyces cerevisiae and Schizosaccharomyces pombe) and non-conventional (Yarrowia lipolytica, Pichia pastoris syn. Komagataella phaffii, Kluyveromyces lactis, Candida albicans and C. glabrata) yeasts. Especially in S. cerevisiae, an extensive toolbox of advanced CRISPR-related applications has been established, including crisprTFs and gene drives. The comparison of innovative CRISPR-Cas expression strategies in yeasts presented here may also serve as guideline to implement and refine CRISPR-Cas systems for highly efficient genome editing in other eukaryotic organisms.
Collapse
Affiliation(s)
- Hana Raschmanová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 16628 Prague, Czech Republic
| | - Astrid Weninger
- Institute for Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Anton Glieder
- Institute for Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Karin Kovar
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820 Wädenswil, Switzerland
| | - Thomas Vogl
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
69
|
Holkenbrink C, Dam MI, Kildegaard KR, Beder J, Dahlin J, Doménech Belda D, Borodina I. EasyCloneYALI: CRISPR/Cas9-Based Synthetic Toolbox for Engineering of the Yeast Yarrowia lipolytica. Biotechnol J 2018; 13:e1700543. [PMID: 29377615 DOI: 10.1002/biot.201700543] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/11/2018] [Indexed: 01/27/2023]
Abstract
The oleaginous yeast Yarrowia lipolytica is an emerging host for production of fatty acid-derived chemicals. To enable rapid iterative metabolic engineering of this yeast, there is a need for well-characterized genetic parts and convenient and reliable methods for their incorporation into yeast. Here, the EasyCloneYALI genetic toolbox, which allows streamlined strain construction with high genome editing efficiencies in Y. lipolytica via the CRISPR/Cas9 technology is presented. The toolbox allows marker-free integration of gene expression vectors into characterized genome sites as well as marker-free deletion of genes with the help of CRISPR/Cas9. Genome editing efficiencies above 80% were achieved with transformation protocols using non-replicating DNA repair fragments (such as DNA oligos). Furthermore, the toolbox includes a set of integrative gene expression vectors with prototrophic markers conferring resistance to hygromycin and nourseothricin.
Collapse
Affiliation(s)
- Carina Holkenbrink
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800 Kongens Lyngby, Denmark
| | - Marie I Dam
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800 Kongens Lyngby, Denmark
| | - Kanchana R Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800 Kongens Lyngby, Denmark
| | - Johannes Beder
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800 Kongens Lyngby, Denmark
| | - Jonathan Dahlin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800 Kongens Lyngby, Denmark
| | - David Doménech Belda
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800 Kongens Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
70
|
Brabender M, Hussain MS, Rodriguez G, Blenner MA. Urea and urine are a viable and cost-effective nitrogen source for Yarrowia lipolytica biomass and lipid accumulation. Appl Microbiol Biotechnol 2018; 102:2313-2322. [DOI: 10.1007/s00253-018-8769-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/26/2017] [Accepted: 01/05/2018] [Indexed: 12/31/2022]
|
71
|
Niehus X, Crutz-Le Coq AM, Sandoval G, Nicaud JM, Ledesma-Amaro R. Engineering Yarrowia lipolytica to enhance lipid production from lignocellulosic materials. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:11. [PMID: 29387172 PMCID: PMC5776775 DOI: 10.1186/s13068-018-1010-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 01/08/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Yarrowia lipolytica is a common biotechnological chassis for the production of lipids, which are the preferred feedstock for the production of fuels and chemicals. To reduce the cost of microbial lipid production, inexpensive carbon sources must be used, such as lignocellulosic hydrolysates. Unfortunately, lignocellulosic materials often contain toxic compounds and a large amount of xylose, which cannot be used by Y. lipolytica. RESULTS In this work, we engineered this yeast to efficiently use xylose as a carbon source for the production of lipids by overexpressing native genes. We further increased the lipid content by overexpressing heterologous genes to facilitate the conversion of xylose-derived metabolites into lipid precursors. Finally, we showed that these engineered strains were able to grow and produce lipids in a very high yield (lipid content = 67%, titer = 16.5 g/L, yield = 3.44 g/g sugars, productivity 1.85 g/L/h) on a xylose-rich agave bagasse hydrolysate in spite of toxic compounds. CONCLUSIONS This work demonstrates the potential of metabolic engineering to reduce the costs of lipid production from inexpensive substrates as source of fuels and chemicals.
Collapse
Affiliation(s)
- Xochitl Niehus
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) A.C., 44270 Guadalajara, Jalisco Mexico
| | - Anne-Marie Crutz-Le Coq
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Georgina Sandoval
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) A.C., 44270 Guadalajara, Jalisco Mexico
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Rodrigo Ledesma-Amaro
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
- Department of Bioengineering, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
72
|
Tsakraklides V, Kamineni A, Consiglio AL, MacEwen K, Friedlander J, Blitzblau HG, Hamilton MA, Crabtree DV, Su A, Afshar J, Sullivan JE, LaTouf WG, South CR, Greenhagen EH, Shaw AJ, Brevnova EE. High-oleate yeast oil without polyunsaturated fatty acids. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:131. [PMID: 29760773 PMCID: PMC5941336 DOI: 10.1186/s13068-018-1131-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/28/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Oleate-enriched triacylglycerides are well-suited for lubricant applications that require high oxidative stability. Fatty acid carbon chain length and degree of desaturation are key determinants of triacylglyceride properties and the ability to manipulate fatty acid composition in living organisms is critical to developing a source of bio-based oil tailored to meet specific application requirements. RESULTS We sought to engineer the oleaginous yeast Yarrowia lipolytica for production of high-oleate triacylglyceride oil. We studied the effect of deletions and overexpressions in the fatty acid and triacylglyceride synthesis pathways to identify modifications that increase oleate levels. Oleic acid accumulation in triacylglycerides was promoted by exchanging the native ∆9 fatty acid desaturase and glycerol-3-phosphate acyltransferase with heterologous enzymes, as well as deletion of the Δ12 fatty acid desaturase and expression of a fatty acid elongase. By combining these engineering steps, we eliminated polyunsaturated fatty acids and created a Y. lipolytica strain that accumulates triglycerides with > 90% oleate content. CONCLUSIONS High-oleate content and lack of polyunsaturates distinguish this triacylglyceride oil from plant and algal derived oils. Its composition renders the oil suitable for applications that require high oxidative stability and further demonstrates the potential of Y. lipolytica as a producer of tailored lipid profiles.
Collapse
Affiliation(s)
| | | | | | - Kyle MacEwen
- Novogy, Inc, 85 Bolton Street, Cambridge, MA 02140 USA
| | | | | | | | | | - Austin Su
- Novogy, Inc, 85 Bolton Street, Cambridge, MA 02140 USA
| | | | | | | | | | - Emily H. Greenhagen
- Novogy, Inc, 85 Bolton Street, Cambridge, MA 02140 USA
- Present Address: Ginkgo Bioworks, 27 Drydock Avenue, 8th Floor, Boston, MA 02210 USA
| | - A. Joe Shaw
- Novogy, Inc, 85 Bolton Street, Cambridge, MA 02140 USA
| | - Elena E. Brevnova
- Novogy, Inc, 85 Bolton Street, Cambridge, MA 02140 USA
- Present Address: Ginkgo Bioworks, 27 Drydock Avenue, 8th Floor, Boston, MA 02210 USA
| |
Collapse
|
73
|
|
74
|
Jin YS, Cate JHD. Metabolic engineering of yeast for lignocellulosic biofuel production. Curr Opin Chem Biol 2017; 41:99-106. [DOI: 10.1016/j.cbpa.2017.10.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 01/04/2023]
|
75
|
Zhu M, Wang C, Sun W, Zhou A, Wang Y, Zhang G, Zhou X, Huo Y, Li C. Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants. Metab Eng 2017; 45:43-50. [PMID: 29196123 DOI: 10.1016/j.ymben.2017.11.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/08/2017] [Accepted: 11/18/2017] [Indexed: 01/20/2023]
Abstract
Glycyrrhetinic acid (GA) and its precursor, 11-oxo-β-amyrin, are typical triterpenoids found in the roots of licorice, a traditional Chinese medicinal herb that exhibits diverse functions and physiological effects. In this study, we developed a novel and highly efficient pathway for the synthesis of GA and 11-oxo-β-amyrin in Saccharomyces cerevisiae by introducing efficient cytochrome P450s (CYP450s: Uni25647 and CYP72A63) and pairing their reduction systems from legume plants through transcriptome and genome-wide screening and identification. By increasing the copy number of Uni25647 and pairing cytochrome P450 reductases (CPRs) from various plant sources, the titers of 11-oxo-β-amyrin and GA were increased to 108.1 ± 4.6mg/L and 18.9 ± 2.0mg/L, which were nearly 1422-fold and 946.5-fold higher, respectively, compared with previously reported data. To the best of our knowledge, these are the highest titers reported for GA and 11-oxo-β-amyrin from S. cerevisiae, indicating an encouraging and promising approach for obtaining increased GA and its related triterpenoids without destroying the licorice plant or the soil ecosystem.
Collapse
Affiliation(s)
- Ming Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Caixia Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Wentao Sun
- Institute for Biotransformation and Synthetic Biosystem/Department of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Anqi Zhou
- Institute for Biotransformation and Synthetic Biosystem/Department of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ying Wang
- Institute for Biotransformation and Synthetic Biosystem/Department of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Genlin Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaohong Zhou
- Institute for Biotransformation and Synthetic Biosystem/Department of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yixin Huo
- Institute for Biotransformation and Synthetic Biosystem/Department of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Institute for Biotransformation and Synthetic Biosystem/Department of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
76
|
The molecular basis of phosphite and hypophosphite recognition by ABC-transporters. Nat Commun 2017; 8:1746. [PMID: 29170493 PMCID: PMC5700983 DOI: 10.1038/s41467-017-01226-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/30/2017] [Indexed: 11/10/2022] Open
Abstract
Inorganic phosphate is the major bioavailable form of the essential nutrient phosphorus. However, the concentration of phosphate in most natural habitats is low enough to limit microbial growth. Under phosphate-depleted conditions some bacteria utilise phosphite and hypophosphite as alternative sources of phosphorus, but the molecular basis of reduced phosphorus acquisition from the environment is not fully understood. Here, we present crystal structures and ligand binding affinities of periplasmic binding proteins from bacterial phosphite and hypophosphite ATP-binding cassette transporters. We reveal that phosphite and hypophosphite specificity results from a combination of steric selection and the presence of a P-H…π interaction between the ligand and a conserved aromatic residue in the ligand-binding pocket. The characterisation of high affinity and specific transporters has implications for the marine phosphorus redox cycle, and might aid the use of phosphite as an alternative phosphorus source in biotechnological, industrial and agricultural applications. Some bacteria can use inorganic phosphite and hypophosphite as sources of inorganic phosphorus. Here, the authors report crystal structures of the periplasmic proteins that bind these reduced phosphorus species and show that a P-H…π interaction between the ligand and binding site determines their specificity.
Collapse
|
77
|
Abstract
The standard genetic code is robust to mutations during transcription and translation. Point mutations are likely to be synonymous or to preserve the chemical properties of the original amino acid. Saturation mutagenesis experiments suggest that in some cases the best-performing mutant requires replacement of more than a single nucleotide within a codon. These replacements are essentially inaccessible to common error-based laboratory engineering techniques that alter a single nucleotide per mutation event, due to the extreme rarity of adjacent mutations. In this theoretical study, we suggest a radical reordering of the genetic code that maximizes the mutagenic potential of single nucleotide replacements. We explore several possible genetic codes that allow a greater degree of accessibility to the mutational landscape and may result in a hyperevolvable organism that could serve as an ideal platform for directed evolution experiments. We then conclude by evaluating the challenges of constructing such recoded organisms and their potential applications within the field of synthetic biology. The conservative nature of the genetic code prevents bioengineers from efficiently accessing the full mutational landscape of a gene via common error-prone methods. Here, we present two computational approaches to generate alternative genetic codes with increased accessibility. These new codes allow mutational transitions to a larger pool of amino acids and with a greater extent of chemical differences, based on a single nucleotide replacement within the codon, thus increasing evolvability both at the single-gene and at the genome levels. Given the widespread use of these techniques for strain and protein improvement, along with more fundamental evolutionary biology questions, the use of recoded organisms that maximize evolvability should significantly improve the efficiency of directed evolution, library generation, and fitness maximization.
Collapse
|
78
|
Engineering microbial fatty acid metabolism for biofuels and biochemicals. Curr Opin Biotechnol 2017; 50:39-46. [PMID: 29101852 DOI: 10.1016/j.copbio.2017.10.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/22/2022]
Abstract
Traditional oleochemical industry chemically processes animal fats and plant oils to produce detergents, lubricants, biodiesel, plastics, coatings, and other products. Biotechnology offers an alternative process, where the same oleochemicals can be produced from abundant biomass feedstocks using microbial catalysis. This review summarizes the recent advances in the engineering of microbial metabolism for production of fatty acid-derived products. We highlight the efforts in engineering the central carbon metabolism, redox metabolism, controlling the chain length of the products, and obtaining metabolites with different functionalities. The prospects of commercializing microbial oleochemicals are also discussed.
Collapse
|
79
|
Gong Z, Nielsen J, Zhou YJ. Engineering Robustness of Microbial Cell Factories. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700014] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 08/13/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Zhiwei Gong
- Division of BiotechnologyDalian Institute of Chemical PhysicsCAS457 Zhongshan RoadDalian 116023P.R. China
- College of Chemistry and Chemical EngineeringWuhan University of Science and Technology947 Heping RoadWuhan 430081P.R. China
| | - Jens Nielsen
- Department of Biology and Biological EngineeringChalmers University of TechnologyKemivägen 10 Gothenburg SE‐41296Sweden
| | - Yongjin J. Zhou
- Division of BiotechnologyDalian Institute of Chemical PhysicsCAS457 Zhongshan RoadDalian 116023P.R. China
| |
Collapse
|
80
|
Chen Z, Wan C. Non-sterile fermentations for the economical biochemical conversion of renewable feedstocks. Biotechnol Lett 2017; 39:1765-1777. [PMID: 28905262 DOI: 10.1007/s10529-017-2429-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/31/2017] [Indexed: 01/17/2023]
Abstract
Heavy reliance on petroleum-based products drives continuous exploitation of fossil fuels, and results in serious environmental and climate problems. To address such an issue, there is a shift from petroleum sources to renewable ones. Biochemical conversion via fermentation is a primary platform for converting renewable sources to biofuels and bulk chemicals. In order to provide cost-competitive alternatives, it is imperative to develop efficient, cost-saving, and robust fermentation processes. Non-sterile fermentation offers several benefits compared to sterile fermentation, including elimination of sterility, reduced maintenance requirements, relatively simple bioreactor design, and simplified operation. Thus, cost effectiveness of non-sterile fermentation makes it a practical platform for low cost, large volume production of biofuels and bulk chemicals. Many approaches have been developed to conduct non-sterile fermentation without sacrificing the yields and productivities of fermentation products. This review focuses on the strategies for conducting non-sterile fermentation. The challenges facing non-sterile fermentation are also discussed.
Collapse
Affiliation(s)
- Zhu Chen
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Caixia Wan
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
81
|
Metabolic engineering of Escherichia coli for the synthesis of the quadripolymer poly(glycolate-co-lactate-co-3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose. Metab Eng 2017; 44:38-44. [PMID: 28916461 DOI: 10.1016/j.ymben.2017.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/17/2017] [Accepted: 09/08/2017] [Indexed: 11/22/2022]
Abstract
Escherichia coli was metabolically engineered to effectively produce a series of biopolymers consisted of four types of monomers including glycolate, lactate, 3-hydroxybutyrate and 4-hydroxybutyrate from glucose as the carbon source. The biosynthetic route of novel quadripolymers was achieved by the overexpression of a range of homologous and heterologous enzymes including isocitrate lyase, isocitrate dehydrogenase kinase/phosphatase, glyoxylate/hydroxypyruvate reductase, propionyl-CoA transferase, β-ketothiolase, acetoacetyl-CoA reductase, succinate semialdehyde dehydrogenase, 4-hydroxybutyrate dehydrogenase, CoA transferase and PHA synthase. In shake flask cultures using Luria-Bertani medium supplemented with glucose, the recombinant E. coli reached 7.10g/l cell dry weight with 52.60wt% biopolymer content. In bioreactor study, the final cell dry weight was 19.61g/l, containing 14.29g/l biopolymer. The structure of the produced polymer was chemically characterized by proton NMR analysis. Assessment of thermal and mechanical properties demonstrated that the quadripolymer possessed decreased crystallinity and improved toughness, in comparison to poly-3-hydroxybutyrate homopolymer. This is the first study reporting efficient microbial production of the quadripolymer poly(glycolate-co-lactate-co-3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose.
Collapse
|
82
|
Shabbir Hussain M, Wheeldon I, Blenner MA. A Strong Hybrid Fatty Acid Inducible Transcriptional Sensor Built From Yarrowia lipolytica Upstream Activating and Regulatory Sequences. Biotechnol J 2017; 12. [PMID: 28731568 DOI: 10.1002/biot.201700248] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/21/2017] [Indexed: 01/24/2023]
Abstract
The engineering of Yarrowia lipolytica to accumulate lipids with high titers and productivities has been enabled with a handful of constitutive promoters for pathway engineering. However, the development of promoters that are both strong and lipid responsive could greatly benefit the bioproduction efficiency of lipid-derived oleochemicals in oleaginous yeast. In this study, a fatty acid regulated hybrid promoter for use in Y. lipolytica is engineered. A 200 bp upstream regulatory sequence in the peroxisomal acyl CoA oxidase 2 (POX2) promoter is identified. Further analysis of the promoter sequence reveal a regulatory sequence, that when used in tandem repeats, lead to a 48-fold induction of gene expression relative to glucose and fourfold higher than the native POX2 promoter. To date, this is the strongest inducible promoter reported in Y. lipolytica. Taken together, the results show that it is possible to engineer strong promoters that retain strong inducibility. These types of promoters will be useful in controlling metabolism and as fatty acid sensors.
Collapse
Affiliation(s)
| | - Ian Wheeldon
- Chemical & Environmental Engineering, University of California Riverside, Riverside, CA, USA
| | - Mark A Blenner
- Chemical & Biomolecular Engineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
83
|
Industrial Biotechnology: A Unique Potential for Pollution Prevention. Ind Biotechnol (New Rochelle N Y) 2017. [DOI: 10.1089/ind.2017.29088.bio] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
84
|
Choi SY, Wang JY, Kwak HS, Lee SM, Um Y, Kim Y, Sim SJ, Choi JI, Woo HM. Improvement of Squalene Production from CO 2 in Synechococcus elongatus PCC 7942 by Metabolic Engineering and Scalable Production in a Photobioreactor. ACS Synth Biol 2017; 6:1289-1295. [PMID: 28365988 DOI: 10.1021/acssynbio.7b00083] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The push-and-pull strategy for metabolic engineering was successfully demonstrated in Synechococcus elongatus PCC 7942, a model photosynthetic bacterium, to produce squalene from CO2. Squalene synthase (SQS) was fused to either a key enzyme (farnesyl diphosphate synthase) of the methylerythritol phosphate pathway or the β-subunit of phycocyanin (CpcB1). Engineered cyanobacteria with expression of a fusion CpcB1-SQS protein showed a squalene production level (7.16 ± 0.05 mg/L/OD730) that was increased by 1.8-fold compared to that of the control strain expressing SQS alone. To increase squalene production further, the gene dosage for CpcB1·SQS protein expression was increased and the fusion protein was expressed under a strong promoter, yielding 11.98 ± 0.49 mg/L/OD730 of squalene, representing a 3.1-fold increase compared to the control. Subsequently, the best squalene producer was cultivated in a scalable photobioreactor (6 L) with light optimization, which produced 7.08 ± 0.5 mg/L/OD730 squalene (equivalent to 79.2 mg per g dry cell weight). Further optimization for photobioprocessing and strain development will promote the construction of a solar-to-chemical platform.
Collapse
Affiliation(s)
- Sun Young Choi
- Clean
Energy Research Center, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jin-Young Wang
- Clean
Energy Research Center, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | | | - Sun-Mi Lee
- Clean
Energy Research Center, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Youngsoon Um
- Clean
Energy Research Center, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Yunje Kim
- Clean
Energy Research Center, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | | | - Jong-il Choi
- Department
of Biotechnology and Bioengineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Han Min Woo
- Department
of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066
Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
85
|
Liu X, Ding W, Jiang H. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production. Microb Cell Fact 2017; 16:125. [PMID: 28724386 PMCID: PMC5518134 DOI: 10.1186/s12934-017-0732-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/05/2017] [Indexed: 11/13/2022] Open
Abstract
Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.
Collapse
Affiliation(s)
- Xiaonan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wentao Ding
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
86
|
A Novel Biocontainment Strategy Makes Bacterial Growth and Survival Dependent on Phosphite. Sci Rep 2017; 7:44748. [PMID: 28317852 PMCID: PMC5357788 DOI: 10.1038/srep44748] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/13/2017] [Indexed: 12/26/2022] Open
Abstract
There is a growing demand to develop biocontainment strategies that prevent unintended proliferation of genetically modified organisms in the open environment. We found that the hypophosphite (H3PO2, HPt) transporter HtxBCDE from Pseudomonas stutzeri WM88 was also capable of transporting phosphite (H3PO3, Pt) but not phosphate (H3PO4, Pi), suggesting the potential for engineering a Pt/HPt-dependent bacterial strain as a biocontainment strategy. We disrupted all Pi and organic Pi transporters in an Escherichia coli strain expressing HtxABCDE and a Pt dehydrogenase, leaving Pt/HPt uptake and oxidation as the only means to obtain Pi. Challenge on non-permissive growth medium revealed that no escape mutants appeared for at least 21 days with a detection limit of 1.94 × 10-13 per colony forming unit. This represents, to the best of our knowledge, the lowest escape frequency among reported strategies. Since Pt/HPt are ecologically rare and not available in amounts sufficient for the growth of the Pt/HPt-dependent bacteria, this strategy offers a reliable and practical method for biocontainment.
Collapse
|
87
|
Hansen ASL, Lennen RM, Sonnenschein N, Herrgård MJ. Systems biology solutions for biochemical production challenges. Curr Opin Biotechnol 2017; 45:85-91. [PMID: 28319856 DOI: 10.1016/j.copbio.2016.11.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/20/2016] [Accepted: 11/23/2016] [Indexed: 11/28/2022]
Abstract
There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains for biofuels and -chemicals.
Collapse
Affiliation(s)
- Anne Sofie Lærke Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs., Lyngby, Denmark
| | - Rebecca M Lennen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs., Lyngby, Denmark
| | - Nikolaus Sonnenschein
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs., Lyngby, Denmark
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs., Lyngby, Denmark.
| |
Collapse
|
88
|
Affiliation(s)
- Rebecca M. Lennen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
| |
Collapse
|