51
|
Time for Some Group Therapy: Update on Identification, Antimicrobial Resistance, Taxonomy, and Clinical Significance of the Bacteroides fragilis Group. J Clin Microbiol 2022; 60:e0236120. [PMID: 35700139 DOI: 10.1128/jcm.02361-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteroides fragilis group (BFG) species are common members of the human microbiota that provide several benefits to healthy hosts, yet BFG are also the most common anaerobes isolated from human infections, including intra-abdominal infections, abscesses, and bloodstream infection. Compared to many other anaerobes associated with disease, members of the BFG are more likely to be resistant to commonly used antimicrobials, including penicillin (>90% resistant), carbapenems (2 to 20% resistant), and metronidazole (0.2 to 4% resistant). As a result, infection with BFG bacteria can be associated with poor clinical outcomes. Here, we discuss the role of BFG in human health and disease, proposed taxonomic reclassifications within the BFG, and updates in methods for species-level identification. The increasing availability of whole-genome sequencing (WGS) supports recent proposals that the BFG now span two families (Bacteroidaceae and "Tannerellaceae") and multiple genera (Bacteroides, Parabacteroides, and Phocaeicola) within the phylum Bacteroidota. While members of the BFG are often reported to "group" rather than "species" level in many clinical settings, new reports of species-specific trends in antimicrobial resistance profiles and improved resolution of identification tools support routine species-level reporting in clinical practice. Empirical therapy may not be adequate for treatment of serious infections with BFG, warranting susceptibility testing for serious infections. We summarize methods for antimicrobial susceptibility testing and resistance prediction for BFG, including broth microdilution, agar dilution, WGS, and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). We examine global trends in BFG antimicrobial resistance and review genomics of BFG, revealing insights into rapid activation and dissemination of numerous antimicrobial resistance mechanisms.
Collapse
|
52
|
Wang Y, Dong Q, Hu S, Zou H, Wu T, Shi J, Zhang H, Sheng Y, Sun W, Kong X, Chen L. Decoding microbial genomes to understand their functional roles in human complex diseases. IMETA 2022; 1:e14. [PMID: 38868571 PMCID: PMC10989872 DOI: 10.1002/imt2.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2024]
Abstract
Complex diseases such as cardiovascular disease (CVD), obesity, inflammatory bowel disease (IBD), kidney disease, type 2 diabetes (T2D), and cancer have become a major burden to public health and affect more than 20% of the population worldwide. The etiology of complex diseases is not yet clear, but they are traditionally thought to be caused by genetics and environmental factors (e.g., dietary habits), and by their interactions. Besides this, increasing pieces of evidence now highlight that the intestinal microbiota may contribute substantially to the health and disease of the human host via their metabolic molecules. Therefore, decoding the microbial genomes has been an important strategy to shed light on their functional potential. In this review, we summarize the roles of the gut microbiome in complex diseases from its functional perspective. We further introduce artificial tools in decoding microbial genomes to profile their functionalities. Finally, state-of-the-art techniques have been highlighted which may contribute to a mechanistic understanding of the gut microbiome in human complex diseases and promote the development of the gut microbiome-based personalized medicine.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsuChina
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouJiangsuChina
| | - Quanbin Dong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsuChina
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouJiangsuChina
| | - Shixian Hu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Huayiyang Zou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsuChina
| | - Tingting Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsuChina
| | - Jing Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsuChina
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsuChina
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouJiangsuChina
| | - Yanhui Sheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsuChina
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouJiangsuChina
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsuChina
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouJiangsuChina
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsuChina
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouJiangsuChina
| | - Lianmin Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsuChina
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouJiangsuChina
- Department of Genetics, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
53
|
Chen DW, Garud NR. Rapid evolution and strain turnover in the infant gut microbiome. Genome Res 2022; 32:1124-1136. [PMID: 35545448 PMCID: PMC9248880 DOI: 10.1101/gr.276306.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
Abstract
Although the ecological dynamics of the infant gut microbiome have been intensely studied, relatively little is known about evolutionary dynamics in the infant gut microbiome. Here we analyze longitudinal fecal metagenomic data from more than 700 infants and their mothers over the first year of life and find that the evolutionary dynamics in infant gut microbiomes are distinct from those of adults. We find evidence for more than a 10-fold increase in the rate of evolution and strain turnover in the infant gut compared with healthy adults, with the mother-infant transition at delivery being a particularly dynamic period in which gene loss dominates. Within a few months after birth, these dynamics stabilize, and gene gains become increasingly frequent as the microbiome matures. We furthermore find that evolutionary changes in infants show signatures of being seeded by a mixture of de novo mutations and transmissions of pre-evolved lineages from the broader family. Several of these evolutionary changes occur in parallel across infants, highlighting candidate genes that may play important roles in the development of the infant gut microbiome. Our results point to a picture of a volatile infant gut microbiome characterized by rapid evolutionary and ecological change in the early days of life.
Collapse
Affiliation(s)
- Daisy W Chen
- Computational and Systems Biology, University of California, Los Angeles, California 90095-1606, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, California 92093, USA
| | - Nandita R Garud
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095-1606, USA
- Department of Human Genetics, University of California, Los Angeles, California 90095-1606, USA
| |
Collapse
|
54
|
Benler S, Koonin EV. Recruitment of Mobile Genetic Elements for Diverse Cellular Functions in Prokaryotes. Front Mol Biosci 2022; 9:821197. [PMID: 35402511 PMCID: PMC8987985 DOI: 10.3389/fmolb.2022.821197] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
Prokaryotic genomes are replete with mobile genetic elements (MGE) that span a continuum of replication autonomy. On numerous occasions during microbial evolution, diverse MGE lose their autonomy altogether but, rather than being quickly purged from the host genome, assume a new function that benefits the host, rendering the immobilized MGE subject to purifying selection, and resulting in its vertical inheritance. This mini-review highlights the diversity of the repurposed (exapted) MGE as well as the plethora of cellular functions that they perform. The principal contribution of the exaptation of MGE and their components is to the prokaryotic functional systems involved in biological conflicts, and in particular, defense against viruses and other MGE. This evolutionary entanglement between MGE and defense systems appears to stem both from mechanistic similarities and from similar evolutionary predicaments whereby both MGEs and defense systems tend to incur fitness costs to the hosts and thereby evolve mechanisms for survival including horizontal mobility, causing host addiction, and exaptation for functions beneficial to the host. The examples discussed demonstrate that the identity of an MGE, overall mobility and relationship with the host cell (mutualistic, symbiotic, commensal, or parasitic) are all factors that affect exaptation.
Collapse
Affiliation(s)
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
55
|
Zheng F, An XL, Zhou GW, Zhu D, Neilson R, Chen B, Yang XR. Mite gut microbiome and resistome exhibited species-specific and dose-dependent effect in response to oxytetracycline exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150802. [PMID: 34626628 DOI: 10.1016/j.scitotenv.2021.150802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The importance of the gut microbiome to host health is well recognized, but the effects of environmental pressures on the gut microbiome of soil fauna are poorly understood. Here, Illumina sequencing and high-throughput qPCR were applied to characterize the gut microbiomes and resistomes of two mites, Nenteria moseri and Chiropturopoda sp. AL5866, exposed to different concentrations of oxytetracycline (0, 0.01, 0.1 and 1 μg mg-1). Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the dominant phyla in the gut microbiomes of both studied mite species, but the relative abundance of them was different between mites. After exposure to oxytetracycline, there was no variation in the gut microbiome and resistome of C. sp. AL5866, whereas the gut microbiome and resistome of N. moseri were altered significantly. The relative abundance of Proteobacteria significantly decreased, and those of Bacteroidetes and Firmicutes significantly increased at the high-concentration antibiotic treatments. Excepting the 0.01 μg mg-1 treatment, gut microbial diversity increased with ascending concentrations. A significant resistome enrichment of relative abundance in N. moseri gut microbiome at low-dose antibiotic treatment was noted. These results indicated that the gut microbiome in N. moseri was potentially more sensitive to antibiotics than C. sp. AL5866, which was supported by the greater relative abundance of key tetracycline-resistant genes in the gut microbiome of C. sp. AL5866 compared to N. moseri. Mite gut microbiomes were correlated with their associated resistomes, demonstrating the consistent changes between microbiome and resistome. Thus, this study showed that oxytetracycline amendment resulted in a dose-dependent and species-specific effect on the gut microbiomes and resistomes of two mite species. It will contribute to understanding the relationship between the soil mite gut microbiome and resistome under antibiotic exposure, and extend our knowledge regarding the emergence and transfer of resistomes in soil food webs.
Collapse
Affiliation(s)
- Fei Zheng
- School of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Guo-Wei Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Dong Zhu
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, DD2 5DA, Scotland, UK
| | - Bing Chen
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
56
|
Multiscale X-ray study of Bacillus subtilis biofilms reveals interlinked structural hierarchy and elemental heterogeneity. Proc Natl Acad Sci U S A 2022; 119:2118107119. [PMID: 35042817 PMCID: PMC8794879 DOI: 10.1073/pnas.2118107119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
Biofilms are multicellular, soft microbial communities that are able to colonize synthetic surfaces as well as living organisms. To survive sudden environmental changes and efficiently share their common resources, cells in a biofilm divide into subgroups with distinct functions, leading to phenotypic heterogeneity. Here, by studying intact biofilms by synchrotron X-ray diffraction and fluorescence, we revealed correlations between biofilm macroscopic, architectural heterogeneity and the spatiotemporal distribution of extracellular matrix, spores, water, and metal ions. Our findings demonstrate that biofilm heterogeneity is not only affected by local genetic expression and cellular differentiation but also by passive effects resulting from the physicochemical properties of the molecules secreted by the cells, leading to differential distribution of nutrients that propagate through macroscopic length scales. Biofilms are multicellular microbial communities that encase themselves in an extracellular matrix (ECM) of secreted biopolymers and attach to surfaces and interfaces. Bacterial biofilms are detrimental in hospital and industrial settings, but they can be beneficial, for example, in agricultural as well as in food technology contexts. An essential property of biofilms that grants them with increased survival relative to planktonic cells is phenotypic heterogeneity, the division of the biofilm population into functionally distinct subgroups of cells. Phenotypic heterogeneity in biofilms can be traced to the cellular level; however, the molecular structures and elemental distribution across whole biofilms, as well as possible linkages between them, remain unexplored. Mapping X-ray diffraction across intact biofilms in time and space, we revealed the dominant structural features in Bacillus subtilis biofilms, stemming from matrix components, spores, and water. By simultaneously following the X-ray fluorescence signal of biofilms and isolated matrix components, we discovered that the ECM preferentially binds calcium ions over other metal ions, specifically, zinc, manganese, and iron. These ions, remaining free to flow below macroscopic wrinkles that act as water channels, eventually accumulate and may possibly lead to sporulation. The possible link between ECM properties, regulation of metal ion distribution, and sporulation across whole, intact biofilms unravels the importance of molecular-level heterogeneity in shaping biofilm physiology and development.
Collapse
|
57
|
Yan W, Hall AB, Jiang X. Bacteroidales species in the human gut are a reservoir of antibiotic resistance genes regulated by invertible promoters. NPJ Biofilms Microbiomes 2022; 8:1. [PMID: 35013297 PMCID: PMC8748976 DOI: 10.1038/s41522-021-00260-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
Antibiotic-resistance genes (ARGs) regulated by invertible promoters can mitigate the fitness cost of maintaining ARGs in the absence of antibiotics and could potentially prolong the persistence of ARGs in bacterial populations. However, the origin, prevalence, and distribution of these ARGs regulated by invertible promoters remains poorly understood. Here, we sought to assess the threat posed by ARGs regulated by invertible promoters by systematically searching for ARGs regulated by invertible promoters in the human gut microbiome and examining their origin, prevalence, and distribution. Through metagenomic assembly of 2227 human gut metagenomes and genomic analysis of the Unified Human Gastrointestinal Genome (UHGG) collection, we identified ARGs regulated by invertible promoters and categorized them into three classes based on the invertase-regulating phase variation. In the human gut microbiome, ARGs regulated by invertible promoters are exclusively found in Bacteroidales species. Through genomic analysis, we observed that ARGs regulated by invertible promoters have convergently originated from ARG insertions into glycan-synthesis loci that were regulated by invertible promoters at least three times. Moreover, all three classes of invertible promoters regulating ARGs are located within integrative conjugative elements (ICEs). Therefore, horizontal transfer via ICEs could explain the wide taxonomic distribution of ARGs regulated by invertible promoters. Overall, these findings reveal that glycan-synthesis loci regulated by invertible promoters in Bacteroidales species are an important hotspot for the emergence of clinically-relevant ARGs regulated by invertible promoters.
Collapse
Affiliation(s)
- Wei Yan
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - A Brantley Hall
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
58
|
Kim K, Choe D, Song Y, Kang M, Lee SG, Lee DH, Cho BK. Engineering Bacteroides thetaiotaomicron to produce non-native butyrate based on a genome-scale metabolic model-guided design. Metab Eng 2021; 68:174-186. [PMID: 34655791 DOI: 10.1016/j.ymben.2021.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/29/2022]
Abstract
Bacteroides thetaiotaomicron represents a major symbiont of the human gut microbiome that is increasingly viewed as a promising candidate strain for microbial therapeutics. Here, we engineer B. thetaiotaomicron for heterologous production of non-native butyrate as a proof-of-concept biochemical at therapeutically relevant concentrations. Since B. thetaiotaomicron is not a natural producer of butyrate, we heterologously expressed a butyrate biosynthetic pathway in the strain, which led to the production of butyrate at the final concentration of 12 mg/L in a rich medium. Further optimization of butyrate production was achieved by a round of metabolic engineering guided by an expanded genome-scale metabolic model (GEM) of B. thetaiotaomicron. The in silico knock-out simulation of the expanded model showed that pta and ldhD were the potent knock-out targets to enhance butyrate production. The maximum titer and specific productivity of butyrate in the pta-ldhD double knockout mutant increased by nearly 3.4 and 4.8 folds, respectively. To our knowledge, this is the first engineering attempt that enabled butyrate production from a non-butyrate producing commensal B. thetaiotaomicron. The study also highlights that B. thetaiotaomicron can serve as an effective strain for live microbial therapeutics in human.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Donghui Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yoseb Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Minjeong Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
59
|
Dhungel BA, Govind R. Phase-variable expression of pdcB, a phosphodiesterase, influences sporulation in Clostridioides difficile. Mol Microbiol 2021; 116:1347-1360. [PMID: 34606654 DOI: 10.1111/mmi.14828] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
Clostridioides difficile is the causative agent of antibiotic-associated diarrhea and is the leading cause of nosocomial infection in developed countries. An increasing number of C. difficile infections are attributed to epidemic strains that produce more toxins and spores. C. difficile spores are the major factor for the transmission and persistence of the organism. Previous studies have identified global regulators that influence sporulation in C. difficile. This study discovers that PdcB, a phosphodiesterase, enhances sporulation in C. difficile strain UK1. Through genetic and biochemical assays, we show that phase-variable expression of pdcB results in hypo- and hyper-sporulation phenotypes. In the "ON" orientation, the identified promotor is in the right orientation to drive the expression of pdcB. Production of the PdcB phosphodiesterase reduces the intracellular cyclic-di-GMP (c-di-GMP) concentration, resulting in a hyper-sporulation phenotype. Loss of PdcB due to the pdcB promoter being in the OFF orientation or mutation of pdcB results in increased c-di-GMP levels and a hypo-sporulation phenotype. Additionally, we demonstrate that CodY binds to the upstream region of pdcB. DNA inversion reorients the CodY binding site so that in the OFF orientation, CodY binds a site that is upstream of the pdcB promoter and can further repress gene expression.
Collapse
Affiliation(s)
| | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
60
|
Shkoporov AN, Khokhlova EV, Stephens N, Hueston C, Seymour S, Hryckowian AJ, Scholz D, Ross RP, Hill C. Long-term persistence of crAss-like phage crAss001 is associated with phase variation in Bacteroides intestinalis. BMC Biol 2021; 19:163. [PMID: 34407825 PMCID: PMC8375218 DOI: 10.1186/s12915-021-01084-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The crAss-like phages are ubiquitous and highly abundant members of the human gut virome that infect commensal bacteria of the order Bacteroidales. Although incapable of lysogeny, these viruses demonstrate long-term persistence in the human gut microbiome, dominating the virome in some individuals. RESULTS Here we show that rapid phase variation of alternate capsular polysaccharides in Bacteroides intestinalis cultures plays an important role in a dynamic equilibrium between phage sensitivity and resistance, allowing phage and bacteria to multiply in parallel. The data also suggests the role of a concomitant phage persistence mechanism associated with delayed lysis of infected cells, similar to carrier state infection. From an ecological and evolutionary standpoint, this type of phage-host interaction is consistent with the Piggyback-the-Winner model, which suggests a preference towards lysogenic or other "benign" forms of phage infection when the host is stably present at high abundance. CONCLUSION Long-term persistence of bacteriophage and host could result from mutually beneficial mechanisms driving bacterial strain-level diversity and phage survival in complex environments.
Collapse
Affiliation(s)
- Andrey N Shkoporov
- School of Microbiology, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | | | - Niamh Stephens
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cara Hueston
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Samuel Seymour
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Andrew J Hryckowian
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Dimitri Scholz
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
61
|
Roodgar M, Good BH, Garud NR, Martis S, Avula M, Zhou W, Lancaster SM, Lee H, Babveyh A, Nesamoney S, Pollard KS, Snyder MP. Longitudinal linked-read sequencing reveals ecological and evolutionary responses of a human gut microbiome during antibiotic treatment. Genome Res 2021; 31:1433-1446. [PMID: 34301627 PMCID: PMC8327913 DOI: 10.1101/gr.265058.120] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/25/2021] [Indexed: 01/01/2023]
Abstract
Gut microbial communities can respond to antibiotic perturbations by rapidly altering their taxonomic and functional composition. However, little is known about the strain-level processes that drive this collective response. Here, we characterize the gut microbiome of a single individual at high temporal and genetic resolution through a period of health, disease, antibiotic treatment, and recovery. We used deep, linked-read metagenomic sequencing to track the longitudinal trajectories of thousands of single nucleotide variants within 36 species, which allowed us to contrast these genetic dynamics with the ecological fluctuations at the species level. We found that antibiotics can drive rapid shifts in the genetic composition of individual species, often involving incomplete genome-wide sweeps of pre-existing variants. These genetic changes were frequently observed in species without obvious changes in species abundance, emphasizing the importance of monitoring diversity below the species level. We also found that many sweeping variants quickly reverted to their baseline levels once antibiotic treatment had concluded, demonstrating that the ecological resilience of the microbiota can sometimes extend all the way down to the genetic level. Our results provide new insights into the population genetic forces that shape individual microbiomes on therapeutically relevant timescales, with potential implications for personalized health and disease.
Collapse
Affiliation(s)
- Morteza Roodgar
- Department of Genetics, Stanford University, Stanford, California 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Nandita R Garud
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Stephen Martis
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Mohan Avula
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Wenyu Zhou
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Samuel M Lancaster
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Hayan Lee
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Afshin Babveyh
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Sophia Nesamoney
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, California 94158, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, California 94158, USA.,Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
62
|
Karcher N, Nigro E, Punčochář M, Blanco-Míguez A, Ciciani M, Manghi P, Zolfo M, Cumbo F, Manara S, Golzato D, Cereseto A, Arumugam M, Bui TPN, Tytgat HLP, Valles-Colomer M, de Vos WM, Segata N. Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly. Genome Biol 2021; 22:209. [PMID: 34261503 PMCID: PMC8278651 DOI: 10.1186/s13059-021-02427-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Akkermansia muciniphila is a human gut microbe with a key role in the physiology of the intestinal mucus layer and reported associations with decreased body mass and increased gut barrier function and health. Despite its biomedical relevance, the genomic diversity of A. muciniphila remains understudied and that of closely related species, except for A. glycaniphila, unexplored. RESULTS We present a large-scale population genomics analysis of the Akkermansia genus using 188 isolate genomes and 2226 genomes assembled from 18,600 metagenomes from humans and other animals. While we do not detect A. glycaniphila, the Akkermansia strains in the human gut can be grouped into five distinct candidate species, including A. muciniphila, that show remarkable whole-genome divergence despite surprisingly similar 16S rRNA gene sequences. These candidate species are likely human-specific, as they are detected in mice and non-human primates almost exclusively when kept in captivity. In humans, Akkermansia candidate species display ecological co-exclusion, diversified functional capabilities, and distinct patterns of associations with host body mass. Analysis of CRISPR-Cas loci reveals new variants and spacers targeting newly discovered putative bacteriophages. Remarkably, we observe an increased relative abundance of Akkermansia when cognate predicted bacteriophages are present, suggesting ecological interactions. A. muciniphila further exhibits subspecies-level genetic stratification with associated functional differences such as a putative exo/lipopolysaccharide operon. CONCLUSIONS We uncover a large phylogenetic and functional diversity of the Akkermansia genus in humans. This variability should be considered in the ongoing experimental and metagenomic efforts to characterize the health-associated properties of A. muciniphila and related bacteria.
Collapse
Affiliation(s)
| | - Eleonora Nigro
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | - Moreno Zolfo
- Department CIBIO, University of Trento, Trento, Italy
| | - Fabio Cumbo
- Department CIBIO, University of Trento, Trento, Italy
| | - Serena Manara
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Anna Cereseto
- Department CIBIO, University of Trento, Trento, Italy
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thi Phuong Nam Bui
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Hanne L P Tytgat
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Current address: Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | | | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
63
|
Genomic evolution of antibiotic resistance is contingent on genetic background following a long-term experiment with Escherichia coli. Proc Natl Acad Sci U S A 2021; 118:2016886118. [PMID: 33441451 DOI: 10.1073/pnas.2016886118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance is a growing health concern. Efforts to control resistance would benefit from an improved ability to forecast when and how it will evolve. Epistatic interactions between mutations can promote divergent evolutionary trajectories, which complicates our ability to predict evolution. We recently showed that differences between genetic backgrounds can lead to idiosyncratic responses in the evolvability of phenotypic resistance, even among closely related Escherichia coli strains. In this study, we examined whether a strain's genetic background also influences the genotypic evolution of resistance. Do lineages founded by different genotypes take parallel or divergent mutational paths to achieve their evolved resistance states? We addressed this question by sequencing the complete genomes of antibiotic-resistant clones that evolved from several different genetic starting points during our earlier experiments. We first validated our statistical approach by quantifying the specificity of genomic evolution with respect to antibiotic treatment. As expected, mutations in particular genes were strongly associated with each drug. Then, we determined that replicate lines evolved from the same founding genotypes had more parallel mutations at the gene level than lines evolved from different founding genotypes, although these effects were more subtle than those showing antibiotic specificity. Taken together with our previous work, we conclude that historical contingency can alter both genotypic and phenotypic pathways to antibiotic resistance.
Collapse
|
64
|
Sørensen MCH, Vitt A, Neve H, Soverini M, Ahern SJ, Klumpp J, Brøndsted L. Campylobacter phages use hypermutable polyG tracts to create phenotypic diversity and evade bacterial resistance. Cell Rep 2021; 35:109214. [PMID: 34107245 DOI: 10.1016/j.celrep.2021.109214] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/15/2020] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
Phase variation is a common mechanism for creating phenotypic heterogeneity of surface structures in bacteria important for niche adaptation. In Campylobacter, phase variation occurs by random variation in hypermutable homonucleotide 7-11 G (polyG) tracts. To elucidate how phages adapt to phase-variable hosts, we study Fletchervirus phages infecting Campylobacter dependent on a phase-variable receptor. Our data demonstrate that Fletcherviruses mimic their host and encode hypermutable polyG tracts, leading to phase-variable expression of two of four receptor-binding proteins. This creates phenotypically diverse phage populations, including a sub-population that infects the bacterial host when the phase-variable receptor is not expressed. Such population dynamics of both phage and host promote co-existence in a shared niche. Strikingly, we identify polyG tracts in more than 100 phage genera, infecting more than 70 bacterial species. Future experimental work may confirm phase variation as a widespread strategy for creating phenotypically diverse phage populations.
Collapse
Affiliation(s)
- Martine C Holst Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| | - Amira Vitt
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max-Rubner Institut, 24103 Kiel, Germany
| | - Matteo Soverini
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Stephen James Ahern
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Jochen Klumpp
- Institute for Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| |
Collapse
|
65
|
Guerin E, Shkoporov AN, Stockdale SR, Comas JC, Khokhlova EV, Clooney AG, Daly KM, Draper LA, Stephens N, Scholz D, Ross RP, Hill C. Isolation and characterisation of ΦcrAss002, a crAss-like phage from the human gut that infects Bacteroides xylanisolvens. MICROBIOME 2021; 9:89. [PMID: 33845877 PMCID: PMC8042965 DOI: 10.1186/s40168-021-01036-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/12/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND The gut phageome comprises a complex phage community of thousands of individual strains, with a few highly abundant bacteriophages. CrAss-like phages, which infect bacteria of the order Bacteroidales, are the most abundant bacteriophage family in the human gut and make an important contribution to an individual's core virome. Based on metagenomic data, crAss-like phages form a family, with four sub-families and ten candidate genera. To date, only three representatives isolated in pure culture have been reported: ΦcrAss001 and two closely related phages DAC15 and DAC17; all are members of the less abundant candidate genus VI. The persistence at high levels of both crAss-like phage and their Bacteroidales hosts in the human gut has not been explained mechanistically, and this phage-host relationship can only be properly studied with isolated phage-host pairs from as many genera as possible. RESULTS Faeces from a healthy donor with high levels of crAss-like phage was used to initiate a faecal fermentation in a chemostat, with selected antibiotics chosen to inhibit rapidly growing bacteria and selectively enrich for Gram-negative Bacteroidales. This had the objective of promoting the simultaneous expansion of crAss-like phages on their native hosts. The levels of seven different crAss-like phages expanded during the fermentation, indicating that their hosts were also present in the fermenter. The enriched supernatant was then tested against individual Bacteroidales strains isolated from the same faecal sample. This resulted in the isolation of a previously uncharacterised crAss-like phage of candidate genus IV of the proposed Alphacrassvirinae sub-family, ΦcrAss002, that infects the gut commensal Bacteroides xylanisolvens. ΦcrAss002 does not form plaques or spots on lawns of sensitive cells, nor does it lyse liquid cultures, even at high titres. In keeping with the co-abundance of phage and host in the human gut, ΦcrAss002 and Bacteroides xylanisolvens can also co-exist at high levels when co-cultured in laboratory media. CONCLUSIONS We report the isolation and characterisation of ΦcrAss002, the first representative of the proposed Alphacrassvirinae sub-family of crAss-like phages. ΦcrAss002 cannot form plaques or spots on bacterial lawns but can co-exist with its host, Bacteroides xylanisolvens, at very high levels in liquid culture without impacting on bacterial numbers. Video abstract.
Collapse
Affiliation(s)
- Emma Guerin
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | | - Adam G Clooney
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Karen M Daly
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Niamh Stephens
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dimitri Scholz
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
66
|
Singh M, Hardin SJ, George AK, Eyob W, Stanisic D, Pushpakumar S, Tyagi SC. Epigenetics, 1-Carbon Metabolism, and Homocysteine During Dysbiosis. Front Physiol 2021; 11:617953. [PMID: 33708132 PMCID: PMC7940193 DOI: 10.3389/fphys.2020.617953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/22/2020] [Indexed: 01/04/2023] Open
Abstract
Although a high-fat diet (HFD) induces gut dysbiosis and cardiovascular system remodeling, the precise mechanism is unclear. We hypothesize that HFD instigates dysbiosis and cardiac muscle remodeling by inducing matrix metalloproteinases (MMPs), which leads to an increase in white adipose tissue, and treatment with lactobacillus (a ketone body donor from lactate; the substrate for the mitochondria) reverses dysbiosis-induced cardiac injury, in part, by increasing lipolysis (PGC-1α, and UCP1) and adipose tissue browning and decreasing lipogenesis. To test this hypothesis, we used wild type (WT) mice fed with HFD for 16 weeks with/without a probiotic (PB) in water. Cardiac injury was measured by CKMB activity which was found to be robust in HFD-fed mice. Interestingly, CKMB activity was normalized post PB treatment. Levels of free fatty acids (FFAs) and methylation were increased but butyrate was decreased in HFD mice, suggesting an epigenetically governed 1-carbon metabolism along with dysbiosis. Levels of PGC-1α and UCP1 were measured by Western blot analysis, and MMP activity was scored via zymography. Collagen histology was also performed. Contraction of the isolated myocytes was measured employing the ion-optic system, and functions of the heart were estimated by echocardiography. Our results suggest that mice on HFD gained weight and exhibited an increase in blood pressure. These effects were normalized by PB. Levels of fibrosis and MMP-2 activity were robust in HFD mice, and treatment with PB mitigated the fibrosis. Myocyte calcium-dependent contraction was disrupted by HFD, and treatment with PB could restore its function. We conclude that HFD induces dysbiosis, and treatment with PB creates eubiosis and browning of the adipose tissue.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Shanna J Hardin
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Akash K George
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Wintana Eyob
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Dragana Stanisic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
67
|
Garrett EM, Mehra A, Sekulovic O, Tamayo R. Multiple Regulatory Mechanisms Control the Production of CmrRST, an Atypical Signal Transduction System in Clostridioides difficile. mBio 2021; 13:e0296921. [PMID: 35164558 PMCID: PMC8844915 DOI: 10.1128/mbio.02969-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Clostridioides difficile, an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase variation. The signal transduction system CmrRST, which encodes two response regulators (CmrR and CmrT) and a sensor kinase (CmrS), impacts C. difficile cell and colony morphology, surface and swimming motility, biofilm formation, and virulence in an animal model. CmrRST is subject to phase variation through site-specific recombination and reversible inversion of the "cmr switch," and expression of cmrRST is also regulated by cyclic diguanylate (c-di-GMP) through a riboswitch. The goal of this study was to determine how the cmr switch and c-di-GMP work together to regulate cmrRST expression. We generated "phase-locked" strains by mutating key residues in the right inverted repeat flanking the cmr switch. Phenotypic characterization of these phase-locked cmr-ON and -OFF strains demonstrates that they cannot switch between rough and smooth colony morphologies, respectively, or other CmrRST-associated phenotypes. Manipulation of c-di-GMP levels in these mutants showed that c-di-GMP promotes cmrRST expression and associated phenotypes independently of cmr switch orientation. We identified multiple promoters controlling cmrRST transcription, including one within the ON orientation of the cmr switch and another that is positively autoregulated by CmrR. Overall, this work reveals a complex regulatory network that governs cmrRST expression and a unique intersection of phase variation and c-di-GMP signaling. These findings suggest that multiple environmental signals impact the production of this signaling transduction system. IMPORTANCE Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile, including cell and colony morphology, motility, biofilm formation, and virulence. Here, we define the complex, multilevel regulation of cmrRST expression, including stochastic control through phase variation, modulation by the second messenger c-di-GMP, and positive autoregulation by CmrR. The results of this study suggest that multiple, distinct environmental stimuli and selective pressures must be integrated to appropriately control cmrRST expression.
Collapse
Affiliation(s)
- Elizabeth M. Garrett
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anchal Mehra
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ognjen Sekulovic
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
68
|
Gor V, Ohniwa RL, Morikawa K. No Change, No Life? What We Know about Phase Variation in Staphylococcus aureus. Microorganisms 2021; 9:microorganisms9020244. [PMID: 33503998 PMCID: PMC7911514 DOI: 10.3390/microorganisms9020244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022] Open
Abstract
Phase variation (PV) is a well-known phenomenon of high-frequency reversible gene-expression switching. PV arises from genetic and epigenetic mechanisms and confers a range of benefits to bacteria, constituting both an innate immune strategy to infection from bacteriophages as well as an adaptation strategy within an infected host. PV has been well-characterized in numerous bacterial species; however, there is limited direct evidence of PV in the human opportunistic pathogen Staphylococcus aureus. This review provides an overview of the mechanisms that generate PV and focuses on earlier and recent findings of PV in S. aureus, with a brief look at the future of the field.
Collapse
Affiliation(s)
- Vishal Gor
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Correspondence: (V.G.); (K.M.)
| | - Ryosuke L. Ohniwa
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan;
| | - Kazuya Morikawa
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan;
- Correspondence: (V.G.); (K.M.)
| |
Collapse
|
69
|
Short and long-read ultra-deep sequencing profiles emerging heterogeneity across five platform Escherichia coli strains. Metab Eng 2020; 65:197-206. [PMID: 33242648 DOI: 10.1016/j.ymben.2020.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 11/24/2022]
Abstract
Reprogramming organisms for large-scale bioproduction counters their evolutionary objectives of fast growth and often leads to mutational collapse of the engineered production pathways during cultivation. Yet, the mutational susceptibility of academic and industrial Escherichia coli bioproduction host strains are poorly understood. In this study, we apply 2nd and 3rd generation deep sequencing to profile simultaneous modes of genetic heterogeneity that decimate engineered biosynthetic production in five popular E. coli hosts BL21(DE3), TOP10, MG1655, W, and W3110 producing 2,3-butanediol and mevalonic acid. Combining short-read and long-read sequencing, we detect strain and sequence-specific mutational modes including single nucleotide polymorphism, inversion, and mobile element transposition, as well as complex structural variations that disrupt the integrity of the engineered biosynthetic pathway. Our analysis suggests that organism engineers should avoid chassis strains hosting active insertion sequence (IS) subfamilies such as IS1 and IS10 present in popular E. coli TOP10. We also recommend monitoring for increased mutagenicity in the pathway transcription initiation regions and recombinogenic repeats. Together, short and long sequencing reads identified latent low-frequency mutation events such as a short detrimental inversion within a pathway gene, driven by 8-bp short inverted repeats. This demonstrates the power of combining ultra-deep DNA sequencing technologies to profile genetic heterogeneities of engineered constructs and explore the markedly different mutational landscapes of common E. coli host strains. The observed multitude of evolving variants underlines the usefulness of early mutational profiling for new synthetic pathways designed to sustain in organisms over long cultivation scales.
Collapse
|
70
|
De Ste Croix M, Holmes J, Wanford JJ, Moxon ER, Oggioni MR, Bayliss CD. Selective and non-selective bottlenecks as drivers of the evolution of hypermutable bacterial loci. Mol Microbiol 2020; 113:672-681. [PMID: 32185830 PMCID: PMC7154626 DOI: 10.1111/mmi.14453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 12/28/2022]
Abstract
Bottlenecks reduce the size of the gene pool within populations of all life forms with implications for their subsequent survival. Here, we examine the effects of bottlenecks on bacterial commensal-pathogens during transmission between, and dissemination within, hosts. By reducing genetic diversity, bottlenecks may alter individual or population-wide adaptive potential. A diverse range of hypermutable mechanisms have evolved in infectious agents that allow for rapid generation of genetic diversity in specific genomic loci as opposed to the variability arising from increased genome-wide mutation rates. These localised hypermutable mechanisms include multi-gene phase variation (PV) of outer membrane components, multi-allele PV of restriction systems and recombination-driven antigenic variation. We review selected experimental and theoretical (mathematical) models pertaining to the hypothesis that localised hypermutation (LH) compensates for fitness losses caused by bottlenecks and discuss whether bottlenecks have driven the evolution of hypermutable loci.
Collapse
Affiliation(s)
- Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Jonathan Holmes
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Joseph J Wanford
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - E Richard Moxon
- Department of Paediatrics, University of Oxford Medical Sciences Division, John Radcliffe Hospital, Oxford, UK
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | |
Collapse
|
71
|
Huang X, Wang J, Li J, Liu Y, Liu X, Li Z, Kurniyati K, Deng Y, Wang G, Ralph JD, De Ste Croix M, Escobar-Gonzalez S, Roberts RJ, Veening JW, Lan X, Oggioni MR, Li C, Zhang JR. Prevalence of phase variable epigenetic invertons among host-associated bacteria. Nucleic Acids Res 2020; 48:11468-11485. [PMID: 33119758 PMCID: PMC7672463 DOI: 10.1093/nar/gkaa907] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/28/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Type I restriction-modification (R-M) systems consist of a DNA endonuclease (HsdR, HsdM and HsdS subunits) and methyltransferase (HsdM and HsdS subunits). The hsdS sequences flanked by inverted repeats (referred to as epigenetic invertons) in certain Type I R-M systems undergo invertase-catalyzed inversions. Previous studies in Streptococcus pneumoniae have shown that hsdS inversions within clonal populations produce subpopulations with profound differences in the methylome, cellular physiology and virulence. In this study, we bioinformatically identified six major clades of the tyrosine and serine family invertases homologs from 16 bacterial phyla, which potentially catalyze hsdS inversions in the epigenetic invertons. In particular, the epigenetic invertons are highly enriched in host-associated bacteria. We further verified hsdS inversions in the Type I R-M systems of four representative host-associated bacteria and found that each of the resultant hsdS allelic variants specifies methylation of a unique DNA sequence. In addition, transcriptome analysis revealed that hsdS allelic variations in Enterococcus faecalis exert significant impact on gene expression. These findings indicate that epigenetic switches driven by invertases in the epigenetic invertons broadly operate in the host-associated bacteria, which may broadly contribute to bacterial host adaptation and virulence beyond the role of the Type I R-M systems against phage infection.
Collapse
Affiliation(s)
- Xueting Huang
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Juanjuan Wang
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing Li
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yanni Liu
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xue Liu
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, CH 1015, Switzerland
| | - Zeyao Li
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kurni Kurniyati
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yijie Deng
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Guilin Wang
- W. M. Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT 06520, USA
| | - Joseph D Ralph
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Sara Escobar-Gonzalez
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | | | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, CH 1015, Switzerland
| | - Xun Lan
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Chunhao Li
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jing-Ren Zhang
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
72
|
Wallace MJ, Fishbein SRS, Dantas G. Antimicrobial resistance in enteric bacteria: current state and next-generation solutions. Gut Microbes 2020; 12:1799654. [PMID: 32772817 PMCID: PMC7524338 DOI: 10.1080/19490976.2020.1799654] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 02/03/2023] Open
Abstract
Antimicrobial resistance is one of the largest threats to global health and imposes substantial burdens in terms of morbidity, mortality, and economic costs. The gut is a key conduit for the genesis and spread of antimicrobial resistance in enteric bacterial pathogens. Distinct bacterial species that cause enteric disease can exist as invasive enteropathogens that immediately evoke gastrointestinal distress, or pathobionts that can arise from established bacterial commensals to inflict dysbiosis and disease. Furthermore, various environmental reservoirs and stressors facilitate the evolution and transmission of resistance. In this review, we present a comprehensive discussion on circulating resistance profiles and gene mobilization strategies of the most problematic species of enteric bacterial pathogens. Importantly, we present emerging approaches toward surveillance of pathogens and their resistance elements as well as promising treatment strategies that can circumvent common resistance mechanisms.
Collapse
Affiliation(s)
- M. J. Wallace
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - S. R. S. Fishbein
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - G. Dantas
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
73
|
Trzilova D, Tamayo R. Site-Specific Recombination - How Simple DNA Inversions Produce Complex Phenotypic Heterogeneity in Bacterial Populations. Trends Genet 2020; 37:59-72. [PMID: 33008627 DOI: 10.1016/j.tig.2020.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Many bacterial species generate phenotypically heterogeneous subpopulations as a strategy for ensuring the survival of the population as a whole - an environmental stress that eradicates one subpopulation may leave other phenotypic groups unharmed, allowing the lineage to continue. Phase variation, a process that functions as an ON/OFF switch for gene expression, is one way that bacteria achieve phenotypic heterogeneity. Phase variation occurs stochastically and reversibly, and in the presence of a selective pressure the advantageous phenotype(s) predominates in the population. Phase variation can occur through multiple genetic and epigenetic mechanisms. This review focuses on conservative site-specific recombination that generates reversible DNA inversions as a genetic mechanism mediating phase variation. Recent studies have sparked a renewed interest in phase variation mediated through DNA inversion, revealing a high level of complexity beyond simple ON/OFF switching, including unusual modes of gene regulation, and highlighting an underappreciation of the use of these mechanisms by bacteria.
Collapse
Affiliation(s)
- Dominika Trzilova
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
74
|
Kojic M, Jovcic B, Miljkovic M, Novovic K, Begovic J, Studholme DJ. Large-scale chromosome flip-flop reversible inversion mediates phenotypic switching of expression of antibiotic resistance in lactococci. Microbiol Res 2020; 241:126583. [PMID: 32919223 DOI: 10.1016/j.micres.2020.126583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 11/26/2022]
Abstract
Bacteria can gain resistance to antimicrobials by acquiring and expressing genetic elements that encode resistance determinants such as efflux pumps and drug-modifying enzymes, thus hampering treatment of infection. Previously we showed that acquisition of spectinomycin resistance in a lactococcal strain was correlated with a reversible genomic inversion, but the precise location and the genes affected were unknown. Here we use long-read whole-genome sequencing to precisely define the genomic inversion and we use quantitative PCR to identify associated changes in gene expression levels. The boundaries of the inversion fall within two identical copies of a prophage-like sequence, located on the left and right replichores; this suggests possible mechanisms for inversion through homologous recombination or prophage activity. The inversion is asymmetrical in respect of the axis between the origin and terminus of the replication and modulates the expression of a SAM-dependent methyltransferase, whose heterologous expression confers resistance to spectinomycin in lactococci and that is up-regulated on exposure to spectinomycin. This study provides one of the first examples of phase variation via large-scale chromosomal inversions that confers a switch in antimicrobial resistance in bacteria and the first outside of Staphylococcus aureus.
Collapse
Affiliation(s)
- Milan Kojic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| | - Branko Jovcic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia; Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Miljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Katarina Novovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Begovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - David J Studholme
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
75
|
Guerin E, Hill C. Shining Light on Human Gut Bacteriophages. Front Cell Infect Microbiol 2020; 10:481. [PMID: 33014897 PMCID: PMC7511551 DOI: 10.3389/fcimb.2020.00481] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
The human gut is a complex environment that contains a multitude of microorganisms that are collectively termed the microbiome. Multiple factors have a role to play in driving the composition of human gut bacterial communities either toward homeostasis or the instability that is associated with many disease states. One of the most important forces are likely to be bacteriophages, bacteria-infecting viruses that constitute by far the largest portion of the human gut virome. Despite this, bacteriophages (phages) are the one of the least studied residents of the gut. This is largely due to the challenges associated with studying these difficult to culture entities. Modern high throughput sequencing technologies have played an important role in improving our understanding of the human gut phageome but much of the generated sequencing data remains uncharacterised. Overcoming this requires database-independent bioinformatic pipelines and even those phages that are successfully characterized only provide limited insight into their associated biological properties, and thus most viral sequences have been characterized as “viral dark matter.” Fundamental to understanding the role of phages in shaping the human gut microbiome, and in turn perhaps influencing human health, is how they interact with their bacterial hosts. An essential aspect is the isolation of novel phage-bacteria host pairs by direct isolation through various screening methods, which can transform in silico phages into a biological reality. However, this is also beset with multiple challenges including culturing difficulties and the use of traditional methods, such as plaquing, which may bias which phage-host pairs that can be successfully isolated. Phage-bacteria interactions may be influenced by many aspects of complex human gut biology which can be difficult to reproduce under laboratory conditions. Here we discuss some of the main findings associated with the human gut phageome to date including composition, our understanding of phage-host interactions, particularly the observed persistence of virulent phages and their hosts, as well as factors that may influence these highly intricate relationships. We also discuss current methodologies and bottlenecks hindering progression in this field and identify potential steps that may be useful in overcoming these hurdles.
Collapse
Affiliation(s)
- Emma Guerin
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
76
|
A high-resolution transcriptome map identifies small RNA regulation of metabolism in the gut microbe Bacteroides thetaiotaomicron. Nat Commun 2020; 11:3557. [PMID: 32678091 PMCID: PMC7366714 DOI: 10.1038/s41467-020-17348-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
Bacteria of the genus Bacteroides are common members of the human intestinal microbiota and important degraders of polysaccharides in the gut. Among them, the species Bacteroides thetaiotaomicron has emerged as the model organism for functional microbiota research. Here, we use differential RNA sequencing (dRNA-seq) to generate a single-nucleotide resolution transcriptome map of B. thetaiotaomicron grown under defined laboratory conditions. An online browser, called ‘Theta-Base’ (www.helmholtz-hiri.de/en/datasets/bacteroides), is launched to interrogate the obtained gene expression data and annotations of ~4500 transcription start sites, untranslated regions, operon structures, and 269 noncoding RNA elements. Among the latter is GibS, a conserved, 145 nt-long small RNA that is highly expressed in the presence of N-acetyl-D-glucosamine as sole carbon source. We use computational predictions and experimental data to determine the secondary structure of GibS and identify its target genes. Our results indicate that sensing of N-acetyl-D-glucosamine induces GibS expression, which in turn modifies the transcript levels of metabolic enzymes. Bacteroides thetaiotaomicron is a human gut microbe and an emergent model organism. Here, Ryan et al. generate single-nucleotide resolution RNA-seq data for this bacterium and map transcription start sites and noncoding RNAs, one of which modulates expression of metabolic enzymes.
Collapse
|
77
|
Gut Bacteria Selectively Altered by Sennoside A Alleviate Type 2 Diabetes and Obesity Traits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2375676. [PMID: 32685087 PMCID: PMC7334780 DOI: 10.1155/2020/2375676] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/17/2020] [Accepted: 02/04/2020] [Indexed: 01/30/2023]
Abstract
Accumulating evidences implicate that gut microbiota play an important role in the onset and prolongation of fat inflammation and diabetes. Sennoside A, the main active ingredient of Rhizoma Rhei (rhubarb), is widely used for constipation as a kind of anthranoid laxative (e.g., senna). Here, we put forward the hypothesis that the structural alteration of gut microbiota in obesity mice may be involved in the pathogenesis of type 2 diabetes (T2D) which may be ameliorated by Sennoside A. We investigated the appearance of obesity, insulin resistance, host inflammation, and leaky gut phenotype with or without Sennoside A in db/db mice. Horizontal fecal microbiota transplantation (FMT) was used to confirm the critical roles of gut microbiota in the amelioration of the indices in T2D mice after Sennoside A treatment. As a result, we found that Sennoside A administration markedly improved the indices in T2D mice and obesity-related traits including blood glucose level, body weight, lipid metabolism disorder, and insulin resistance. The gut microbiota changed quickly during the onset of T2D in db/db mice, which confirmed the hypothesis that gut microbiota was involved in the pathogenesis of T2D. Sennoside A altered gut microbial composition which might mediate the antiobesogenic effects in T2D remission. Sennoside A also reduced inflammation and increased tight junction proteins in the ileum in gene-deficient mice via gut microbiota alteration. FMT lowered the blood glucose level and improved insulin resistance, corroborating that Sennoside A perhaps exerted its antiobesogenic effects through gut microbiota alteration. Chemical Compounds Studied in This Article. Compounds studied in this article include Sennoside A (PubChem CID: 73111) and metformin hydrochloride (PubChem CID: 14219).
Collapse
|
78
|
Botelho J, Schulenburg H. The Role of Integrative and Conjugative Elements in Antibiotic Resistance Evolution. Trends Microbiol 2020; 29:8-18. [PMID: 32536522 DOI: 10.1016/j.tim.2020.05.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
Mobile genetic elements (MGEs), such as plasmids and integrative and conjugative elements (ICEs), are main drivers for the spread of antibiotic resistance (AR). Coevolution between bacteria and plasmids shapes the transfer and stability of plasmids across bacteria. Although ICEs outnumber conjugative plasmids, the dynamics of ICE-bacterium coevolution, ICE transfer rates, and fitness costs are as yet largely unexplored. Conjugative plasmids and ICEs are both transferred by type IV secretion systems, but ICEs are typically immune to segregational loss, suggesting that the evolution of ICE-bacterium associations varies from that of plasmid-bacterium associations. Considering the high abundance of ICEs among bacteria, ICE-bacterium dynamics represent a promising challenge for future research that will enhance our understanding of AR spread in human pathogens.
Collapse
Affiliation(s)
- João Botelho
- Antibiotic Resistance Evolution Group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany; Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany.
| | - Hinrich Schulenburg
- Antibiotic Resistance Evolution Group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany; Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| |
Collapse
|
79
|
Affiliation(s)
- Leila M. Reyes Ruiz
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Caitlin L. Williams
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
80
|
Lejars M, Hajnsdorf E. The world of asRNAs in Gram-negative and Gram-positive bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194489. [PMID: 31935527 DOI: 10.1016/j.bbagrm.2020.194489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022]
Abstract
Bacteria exhibit an amazing diversity of mechanisms controlling gene expression to both maintain essential functions and modulate accessory functions in response to environmental cues. Over the years, it has become clear that bacterial regulation of gene expression is still far from fully understood. This review focuses on antisense RNAs (asRNAs), a class of RNA regulators defined by their location in cis and their perfect complementarity with their targets, as opposed to small RNAs (sRNAs) which act in trans with only short regions of complementarity. For a long time, only few functional asRNAs in bacteria were known and were almost exclusively found on mobile genetic elements (MGEs), thus, their importance among the other regulators was underestimated. However, the extensive application of transcriptomic approaches has revealed the ubiquity of asRNAs in bacteria. This review aims to present the landscape of studied asRNAs in bacteria by comparing 67 characterized asRNAs from both Gram-positive and Gram-negative bacteria. First we describe the inherent ambiguity in the existence of asRNAs in bacteria, second, we highlight their diversity and their involvement in all aspects of bacterial life. Finally we compare their location and potential mode of action toward their target between Gram-negative and Gram-positive bacteria and present tendencies and exceptions that could lead to a better understanding of asRNA functions.
Collapse
Affiliation(s)
- Maxence Lejars
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| | - Eliane Hajnsdorf
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| |
Collapse
|
81
|
Comparative Genomics Analysis of Lactobacillus ruminis from Different Niches. Genes (Basel) 2020; 11:genes11010070. [PMID: 31936280 PMCID: PMC7016997 DOI: 10.3390/genes11010070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 01/14/2023] Open
Abstract
Lactobacillus ruminis is a commensal motile lactic acid bacterium living in the intestinal tract of humans and animals. Although a few genomes of L. ruminis were published, most of them were animal derived. To explore the genetic diversity and potential niche-specific adaptation changes of L. ruminis, in the current work, draft genomes of 81 L. ruminis strains isolated from human, bovine, piglet, and other animals were sequenced, and comparative genomic analysis was performed. The genome size and GC content of L. ruminis on average were 2.16 Mb and 43.65%, respectively. Both the origin and the sampling distance of these strains had a great influence on the phylogenetic relationship. For carbohydrate utilization, the human-derived L. ruminis strains had a higher consistency in the utilization of carbon source compared to the animal-derived strains. L. ruminis mainly increased the competitiveness of niches by producing class II bacteriocins. The type of clustered regularly interspaced short palindromic repeats /CRISPR-associated (CRISPR/Cas) system presented in L. ruminis was mainly subtype IIA. The diversity of CRISPR/Cas locus depended on the high denaturation of spacer number and sequence, although cas1 protein was relatively conservative. The genetic differences in those newly sequenced L. ruminis strains highlighted the gene gains and losses attributed to niche adaptations.
Collapse
|
82
|
Gao S, Pan L, Zhang M, Huang F, Zhang M, He Z. Screening of bacterial strains from the gut of Pacific White Shrimp (Litopenaeus vannamei) and their efficiencies in improving the fermentation of soybean meal. FEMS Microbiol Lett 2020; 367:fnaa017. [PMID: 32009156 DOI: 10.1093/femsle/fnaa017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/29/2020] [Indexed: 12/25/2022] Open
Abstract
Microbial fermentation is an efficient, economical and eco-friendly approach to overcome the limitations in soybean meal replacement of fish meal in aquaculture. However, little research focused on the development of shrimp-derived strains for fermentation of SBM. In this study, Bacillus sanfensis (SQVG18) and Bacillus stratosphericus (SQVG22) were screened from shrimp intestine for fermentation according to the activities of protease, cellulase and phytase. The optimized fermentation conditions of SQVG18 and SQVG22 were as follow: fermentation temperature (40°C vs 35°C), fermentation time (48h both), inoculation amount [4% both (v/m)], solid-liquid ratio [1:1.2 vs 1:1 (g/ml)]. After 48 h fermentation, SQVG18 and SQVG22 increased crude protein content by 6.93% and 5.95%, respectively; degraded most of macromolecular proteins to micromolecular proteins (< 20 kDa); improved amino acids profiles, like lysine and methionine in particular; significantly decreased the anti-nutritional factors such as trypsin inhibitor, glycinin and β-conglycinin (P < 0.05). In addition, both strains were observed no hemolytic activity, less antibiotic resistance genes and definite inhibition to common shrimp pathogens of Vibrio alginolyticus sp. and Vibrio parahaemolyticus sp. These results indicated that both strains could improve nutrition values of soybean meal effectively and have potential applications in shrimp culture.
Collapse
Affiliation(s)
- Shuo Gao
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| | - Luqing Pan
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| | - Mingzhu Zhang
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| | - Fei Huang
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| | - Mengyu Zhang
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| | - Ziyan He
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| |
Collapse
|
83
|
Yam ELY, Hsu LY, Yap EPH, Yeo TW, Lee V, Schlundt J, Lwin MO, Limmathurotsakul D, Jit M, Dedon P, Turner P, Wilder-Smith A. Antimicrobial Resistance in the Asia Pacific region: a meeting report. Antimicrob Resist Infect Control 2019; 8:202. [PMID: 31890158 PMCID: PMC6921568 DOI: 10.1186/s13756-019-0654-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/14/2019] [Indexed: 01/01/2023] Open
Abstract
The Asia Pacific region, home to two-thirds of the world's population and ten of the least developed countries, is considered a regional hot-spot for the emergence and spread of antimicrobial resistance (AMR). Despite this, there is a dearth of high-quality regional data on the extent of AMR. Recognising the urgency to close this gap, Singapore organised a meeting to discuss the problems in the region and frame a call for action. Representatives from across the region and beyond attended the meeting on the "Antimicrobial Resistance in the Asia Pacific & its impact on Singapore" held in November 2018. This meeting report is a summary of the discussions on the challenges and progress in surveillance, drivers and levers of AMR emergence, and the promising innovations and technologies that could be used to combat the increasing threat of AMR in the region. Enhanced surveillance and research to provide improved evidence-based strategies and policies are needed. The major themes that emerged for an action plan are working towards a tailored solution for the region by harnessing the One Health approach, enhancing inter-country collaborations, and collaboratively leverage upon new emerging technologies. A regionally coordinated effort that is target-driven, sustainable and builds on a framework facilitating communication and governance will strengthen the fight against AMR in the Asia Pacific region.
Collapse
Affiliation(s)
- Esabelle Lo Yan Yam
- 1Centre for Global Health, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232 Singapore
| | - Li Yang Hsu
- 2Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Eric Peng-Huat Yap
- 1Centre for Global Health, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232 Singapore
| | - Tsin Wen Yeo
- 1Centre for Global Health, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232 Singapore
| | - Vernon Lee
- 2Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,3Public Health Group, Ministry of Health, Singapore, Singapore
| | - Joergen Schlundt
- 4Nanyang Technological University Food Technology Centre and School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - May O Lwin
- 5Wee Kim Wee School of Communication and Information and Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Direk Limmathurotsakul
- 6Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,7Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mark Jit
- 8Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK.,9Modelling and Economics Unit, Public Health England, London, UK.,10School of Public Health, University of Hong Kong, Hong Kong, SAR China
| | - Peter Dedon
- 11Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,12Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Paul Turner
- 13Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia.,14Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Annelies Wilder-Smith
- 1Centre for Global Health, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232 Singapore.,15Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.,16Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
84
|
Research and Technological Advances Regarding the Study of the Spread of Antimicrobial Resistance Genes and Antimicrobial-Resistant Bacteria Related to Animal Husbandry. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16244896. [PMID: 31817253 PMCID: PMC6950033 DOI: 10.3390/ijerph16244896] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/30/2019] [Accepted: 12/01/2019] [Indexed: 01/08/2023]
Abstract
The extensive use of antimicrobials in animal farms poses serious safety hazards to both the environment and public health, and this trend is likely to continue. Antimicrobial resistance genes (ARGs) are a class of emerging pollutants that are difficult to remove once introduced. Understanding the environmental transfer of antimicrobial-resistant bacteria (ARB) and ARGs is pivotal for creating control measures. In this review, we summarize the research progress on the spread and detection of ARB and ARG pollution related to animal husbandry. Molecular methods such as high-throughput sequencing have greatly enriched the information about ARB communities. However, it remains challenging to delineate mechanisms regarding ARG induction, transmission, and tempo-spatial changes in the whole process, from animal husbandry to multiple ecosystems. As a result, future research should be more focused on the mechanisms of ARG induction, transmission, and control. We also expect that future research will rely more heavily on metagenomic -analysis, metatranscriptomic sequencing, and multi-omics technologies
Collapse
|
85
|
George AK, Singh M, Pushpakumar S, Homme RP, Hardin SJ, Tyagi SC. Dysbiotic 1-carbon metabolism in cardiac muscle remodeling. J Cell Physiol 2019; 235:2590-2598. [PMID: 31489638 DOI: 10.1002/jcp.29163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022]
Abstract
Unless there is a genetic defect/mutation/deletion in a gene, the causation of a given disease is chronic dysregulation of gut metabolism. Most of the time, if not always, starts within the gut; that is what we eat. Recent research shows that the imbalance between good versus bad microbial population, especially in the gut, causes systemic diseases. Thus, an appropriate balance of the gut microbiota (eubiosis over dysbiosis) needs to be maintained for normal health (Veeranki and Tyagi, 2017, Journal of Cellular Physiology, 232, 2929-2930). However, during various diseases such as metabolic syndrome, inflammatory bowel disease, diabetes, obesity, and hypertension the dysbiotic gut environment tends to prevail. Our research focuses on homocysteine (Hcy) metabolism that occupies a center-stage in many biochemically relevant epigenetic mechanisms. For example, dysbiotic bacteria methylate promoters to inhibit gene activities. Interestingly, the product of the 1-carbon metabolism is Hcy, unequivocally. Emerging studies show that host resistance to various antibiotics occurs due to inverton promoter inhibition, presumably because of promoter methylation. This results from modification of host promoters by bacterial products leading to loss of host's ability to drug compatibility and system sensitivity. In this study, we focus on the role of high methionine diet (HMD), an ingredient rich in red meat and measure the effects of a probiotic on cardiac muscle remodeling and its functions. We employed wild type (WT) and cystathionine beta-synthase heterozygote knockout (CBS+/- ) mice with and without HMD and with and without a probiotic; PB (Lactobacillus) in drinking water for 16 weeks. Results indicate that matrix metalloproteinase-2 (MMP-2) activity was robust in CBS+/- fed with HMD and that it was successfully attenuated by the PB treatment. Cardiomyocyte contractility and ECHO data revealed mitigation of the cardiac dysfunction in CBS+/- + HMD mice treated with PB. In conclusion, our data suggest that probiotics can potentially reverse the Hcy-meditated cardiac dysfunction.
Collapse
Affiliation(s)
- Akash K George
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - S Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Rubens P Homme
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Shanna J Hardin
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
86
|
Phase-variable bacterial loci: how bacteria gamble to maximise fitness in changing environments. Biochem Soc Trans 2019; 47:1131-1141. [PMID: 31341035 DOI: 10.1042/bst20180633] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022]
Abstract
Phase-variation of genes is defined as the rapid and reversible switching of expression - either ON-OFF switching or the expression of multiple allelic variants. Switching of expression can be achieved by a number of different mechanisms. Phase-variable genes typically encode bacterial surface structures, such as adhesins, pili, and lipooligosaccharide, and provide an extra contingency strategy in small-genome pathogens that may lack the plethora of 'sense-and-respond' gene regulation systems found in other organisms. Many bacterial pathogens also encode phase-variable DNA methyltransferases that control the expression of multiple genes in systems called phasevarions (phase-variable regulons). The presence of phase-variable genes allows a population of bacteria to generate a number of phenotypic variants, some of which may be better suited to either colonising certain host niches, surviving a particular environmental condition and/or evading an immune response. The presence of phase-variable genes complicates the determination of an organism's stably expressed antigenic repertoire; many phase-variable genes are highly immunogenic, and so would be ideal vaccine candidates, but unstable expression due to phase-variation may allow vaccine escape. This review will summarise our current understanding of phase-variable genes that switch expression by a variety of mechanisms, and describe their role in disease and pathobiology.
Collapse
|
87
|
Sekulovic O, Bourgeois J, Shen A, Camilli A. Expanding the repertoire of conservative site-specific recombination in Clostridioides difficile. Anaerobe 2019; 60:102073. [PMID: 31323290 DOI: 10.1016/j.anaerobe.2019.102073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/13/2019] [Accepted: 07/15/2019] [Indexed: 01/20/2023]
Abstract
Recent genomic analysis of an epidemic ribotype 027 (RT027) Clostridioides difficile strain revealed the presence of several chromosomal site-specific invertible sites hypothesized to control the expression of adjacent genes in a bimodal on-off mode. This process, named phase variation, is thought to enhance phenotypic variability under homogeneous conditions ultimately increasing population fitness in unpredictable environmental fluctuations. The full extent of phase variation mediated by DNA-inversions in C. difficile is currently unknown. Here, we sought to expand our previous analysis by screening for site-specific inversions in isolates that belong to the rapidly emerging ribotypes RT017 and RT078. We report the finding of one novel inversion site for which we demonstrate the inversion potential and quantify inversion proportions during exponential and stationary growth in both historic and modern isolates of the same ribotype. We then employ a computational approach to assess the prevalence of all sites identified so far in a large collection of sequenced C. difficile isolates. We show that phase-variable loci are widespread with some sites being present in virtually all analyzed strains. Furthermore, in our small subset of RT017 and RT078 strains, we detect no evidence of gain or loss of invertible sites in historic versus modern isolates demonstrating the relative stability of those genomic elements. Overall, our results support the idea that C. difficile has adopted phase variation mediated by DNA inversions as its major generator of diversity which could be beneficial during the pathogenesis process.
Collapse
Affiliation(s)
- Ognjen Sekulovic
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| | - Jacob Bourgeois
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
88
|
When We Stop Thinking about Microbes as Cells. J Mol Biol 2019; 431:2487-2492. [DOI: 10.1016/j.jmb.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/19/2019] [Accepted: 05/04/2019] [Indexed: 12/21/2022]
|
89
|
Uhr GT, Dohnalová L, Thaiss CA. The Dimension of Time in Host-Microbiome Interactions. mSystems 2019; 4:e00216-18. [PMID: 30801030 PMCID: PMC6381226 DOI: 10.1128/msystems.00216-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
The intestinal microbiota contains trillions of commensal microorganisms that shape multiple aspects of host physiology and disease. In contrast to the host's genome, the microbiome is amenable to change over the course of an organism's lifetime, providing an opportunity to therapeutically modulate the microbiome's impact on human pathophysiology. In this Perspective, we highlight environmental factors that regulate the temporal dynamics of the intestinal microbiome, with a particular focus on the different time scales at which they act. We propose that the identification of transient and intermediate states of microbiome responses to perturbations is essential for understanding the rules that govern the behavior of this ecosystem. The delineation of microbiome dynamics is also helpful for distinguishing cause and effect in microbiome responses to environmental stimuli. Understanding the dimension of time in host-microbiome interactions is therefore critical for therapeutic strategies that aim at short-term or long-term engineering of the intestinal microbial community.
Collapse
Affiliation(s)
- Giulia T. Uhr
- Microbiology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lenka Dohnalová
- Microbiology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christoph A. Thaiss
- Microbiology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|