51
|
Lin CK, Lee W, Wu CF, Shih FY. Recyclable and reusable ionic liquid-supported azo precursors in Mitsunobu reactions. Org Biomol Chem 2022; 20:2217-2221. [PMID: 35230380 DOI: 10.1039/d2ob00039c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new type of azo precursor, ionic liquid-supported hydrazidecarboxylate, was synthesized and applied in Mitsunobu reactions. The developed reagent is recyclable during the reaction and reusable after recovery by the ionic liquids. The ionic liquid-based azo precursor in conjugation with PhI(OAc)2 has been proved to be useful in the formation of carbon-oxygen, carbon-nitrogen, and carbon-sulfur bonds.
Collapse
Affiliation(s)
- Cheng-Kun Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Wei Lee
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Chun-Fu Wu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Fang-Yi Shih
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
52
|
Phenolic 3° Phosphine Oxides as a Class of Metal-Free Catalysts for the Activation of C–O Bonds in Aliphatic Alcohols: Direct Synthesis of Catalyst Candidates, and Kinetic Studies. INORGANICS 2022. [DOI: 10.3390/inorganics10030035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It was recently reported that a (2-hydroxybenzyl)phosphine oxide (2-HOBPO) can serve as a phosphorus-centered catalyst for the stereo-invertive coupling of aliphatic alcohols and acidic pronucleophiles (akin to a Mitsunobu reaction, but without additional reagents). Herein, we report an improved synthesis, which provides direct access to systematically varied 2-HOBPOs in a single step from commercially available precursors (salicylaldehydes and secondary phosphines). The efficiency and generality of the synthetic method enabled limited structure–activity relationship (SAR) studies, from which it was determined that substituents on both the phenolic and phosphine oxide portions can exert significant influence on the turnover frequency (TOF) of each catalyst. Importantly, for all catalytically active 2-HOBPOs examined, the molecularity of catalyst in the rate law of the alcohol coupling was determined to be <1. Thus, for high catalyst loadings, differences in catalytic activity between 2-HOBPOs appear to be dominated by differences in catalytic auto-inhibition, while for low catalyst loadings, differences are attributed to inherent differences in the energetic span of the catalytic cycle, ignoring off-cycle species, in good agreement with density functional theory (DFT) modeling at the ωB97X-D/6-311G(d,p) level.
Collapse
|
53
|
Yamashita K, Hirokawa R, Ichikawa M, Hisanaga T, Nagao Y, Takita R, Watanabe K, Kawato Y, Hamashima Y. Mechanistic Details of Asymmetric Bromocyclization with BINAP Monoxide: Identification of Chiral Proton-Bridged Bisphosphine Oxide Complex and Its Application to Parallel Kinetic Resolution. J Am Chem Soc 2022; 144:3913-3924. [PMID: 35226811 DOI: 10.1021/jacs.1c11816] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mechanism of our previously reported catalytic asymmetric bromocyclization reactions using 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP) monoxide was examined in detail by the means of control experiments, NMR studies, X-ray structure analysis, and CryoSpray electrospray ionization mass spectrometry (ESI-MS) analysis. The chiral BINAP monoxide was transformed to a key catalyst precursor, proton-bridged bisphosphine oxide complex (POHOP·Br), in the presence of N-bromosuccinimide (NBS) and contaminating water. The thus-formed POHOP further reacts with NBS to afford BINAP dioxide and molecular bromine (Br2) simultaneously in equimolar amounts. While the resulting Br2 is activated by NBS to form a more reactive brominating reagent (Br2─NBS), BINAP dioxide serves as a bifunctional catalyst, acting as both a Lewis base that reacts with Br2─NBS to form a chiral brominating agent (P═O+─Br) and also as a Brønsted base for the activation of the substrate. By taking advantage of this novel concerted Lewis/Brønsted base catalysis by BINAP dioxide, we achieved the first regio- and chemodivergent parallel kinetic resolutions (PKRs) of racemic unsymmetrical bisallylic amides via bromocyclization.
Collapse
Affiliation(s)
- Kenji Yamashita
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryo Hirokawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mamoru Ichikawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tatsunari Hisanaga
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshihiro Nagao
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryo Takita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kohei Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Kawato
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
54
|
Kelly JC, Bloomfield AJ. High-spin, tetrahedral cobalt( ii) and nickel( ii) complexes supported by monoprotic aminophosphine ligands, and attempted extension to copper( ii) complexes: synthesis, characterization, and unexpected reactivity. NEW J CHEM 2022. [DOI: 10.1039/d2nj02651a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis and characterization of two bidentate ligands containing an aliphatic monoprotic aminophosphine moiety, as well as novel complexes with Co(ii), Ni(ii), and Cu(ii).
Collapse
Affiliation(s)
- Jordan C. Kelly
- Department of Chemistry & Biochemistry, Duquesne University, 600 Forbes Ave. Pittsburgh, PA 15282, USA
| | - Aaron J. Bloomfield
- Department of Chemistry & Biochemistry, Duquesne University, 600 Forbes Ave. Pittsburgh, PA 15282, USA
| |
Collapse
|
55
|
Su J, Mo J, Chen X, Umanzor A, Zhang Z, Houk KN, Zhao J. Generation of Oxyphosphonium Ions by Photoredox/Cobaloxime Catalysis for Scalable Amide and Peptide Synthesis in Batch and Continuous‐Flow. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junqi Su
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 P. R. China
| | - Jia‐Nan Mo
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 P. R. China
| | - Xiangyang Chen
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Alexander Umanzor
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Zheng Zhang
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 P. R. China
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Jiannan Zhao
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
56
|
Glueck DS. Intramolecular attack on coordinated nitriles: metallacycle intermediates in catalytic hydration and beyond. Dalton Trans 2021; 50:15953-15960. [PMID: 34643205 DOI: 10.1039/d1dt02795f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydration of nitriles is catalyzed by the enzyme nitrile hydratase, with iron or cobalt active sites, and by a variety of synthetic metal complexes. This Perspective focuses on parallels between the reaction mechanism of the enzyme and a class of particularly active catalysts bearing secondary phosphine oxide (SPO) ligands. In both cases, the key catalytic step was proposed to be intramolecular attack on a coordinated nitrile, with either an S-OH or S-O- (enzyme) or a P-OH (synthetic) nucleophile. Attack of water on the heteroatom (S or P) in the resulting metallacycle and proton transfer yields the amide and regenerates the catalyst. Evidence for this mechanism, its relevance to the formation of related metallacycles, and its potential for design of more active catalysts for nitrile hydration is summarized.
Collapse
Affiliation(s)
- David S Glueck
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire, 03755, USA.
| |
Collapse
|
57
|
Su J, Mo JN, Chen X, Umanzor A, Zhang Z, Houk KN, Zhao J. Generation of Oxyphosphonium Ions by Photoredox/Cobaloxime Catalysis for Scalable Amide and Peptide Synthesis in Batch and Continuous-Flow. Angew Chem Int Ed Engl 2021; 61:e202112668. [PMID: 34783121 DOI: 10.1002/anie.202112668] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/30/2021] [Indexed: 01/15/2023]
Abstract
Phosphine-mediated deoxygenative nucleophilic substitutions, such as the Mitsunobu reaction, are of great importance in organic synthesis. However, the conventional protocols require stoichiometric oxidants to trigger the formation of the oxyphosphonium intermediates for the subsequent nucleophilic additions. Through dual catalysis of photoredox and cobaloxime, we realized a radical strategy for the catalytic formation of acyloxyphosphonium ions that enables direct amidation. The deoxygenative protocol exhibits a broad scope and has been used in the late-stage amidation of drug molecules. In addition to batch reactions, a continuous-flow reactor was developed, enabling rapid peptide synthesis on gram scale. The successful assembly of a tetrapeptide on the solid support further demonstrated the versatility of this photocatalytic system. Moreover, experimental and computational studies are consistent with the hypothesis of acyloxyphosphonium ions being formed as the key intermediates.
Collapse
Affiliation(s)
- Junqi Su
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jia-Nan Mo
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiangyang Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Alexander Umanzor
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zheng Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jiannan Zhao
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
58
|
Lin Q, Ma G, Gong H. Ni-Catalyzed Formal Cross-Electrophile Coupling of Alcohols with Aryl Halides. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04239] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Quan Lin
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Guobin Ma
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Hegui Gong
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| |
Collapse
|
59
|
Arp FF, Ashirov R, Bhuvanesh N, Blümel J. Di(hydroperoxy)adamantane adducts: synthesis, characterization and application as oxidizers for the direct esterification of aldehydes. Dalton Trans 2021; 50:15296-15309. [PMID: 34636381 DOI: 10.1039/d1dt03243g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The di(hydroperoxy)adamantane adducts of water (1) and phosphine oxides p-Tol3PO·(HOO)2C(C9H14) (2), o-Tol3PO·(HOO)2C(C9H14) (3), and Cy3PO·(HOO)2C(C9H14) (4), as well as a CH2Cl2 adduct of a phosphole oxide dimer (8), have been created and investigated by multinuclear NMR spectroscopy, and by Raman and IR spectroscopy. The single crystal X-ray structures for 1-4 and 8 are reported. The IR and 31P NMR data are in accordance with strong hydrogen bonding of the di(hydroperoxy)adamantane adducts. The Raman ν(O-O) stretching bands of 1-4 prove that the peroxo groups are present in the solids. Selected di(hydroperoxy)alkane adducts, in combination with AlCl3 as catalyst, have been applied for the direct oxidative esterification of n-nonyl aldehyde, benzaldehyde, p-methylbenzaldehyde, p-bromobenzaldehyde, and o-hydroxybenzaldehyde to the corresponding methyl esters. The esterification takes place in an inert atmosphere, under anhydrous and oxygen-free conditions, within a time frame of 45 minutes to 5 hours at room temperature. Hereby, two oxygen atoms per adduct assembly are active with respect to the quantitative transformation of the aldehyde into the ester.
Collapse
Affiliation(s)
- Fabian F Arp
- Department of Chemistry, Texas A&M University, College Station, TX, 77842-3012, USA.
| | - Rahym Ashirov
- Department of Chemistry, Texas A&M University, College Station, TX, 77842-3012, USA.
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, TX, 77842-3012, USA.
| | - Janet Blümel
- Department of Chemistry, Texas A&M University, College Station, TX, 77842-3012, USA.
| |
Collapse
|
60
|
Lipshultz JM, Radosevich AT. Uniting Amide Synthesis and Activation by P III/P V-Catalyzed Serial Condensation: Three-Component Assembly of 2-Amidopyridines. J Am Chem Soc 2021; 143:14487-14494. [PMID: 34478308 DOI: 10.1021/jacs.1c07608] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An organophosphorus (PIII/PV redox) catalyzed method for the three-component condensation of amines, carboxylic acids, and pyridine N-oxides to generate 2-amidopyridines via serial dehydration is reported. Whereas amide synthesis and functionalization usually occur under divergent reaction conditions, here a phosphetane catalyst (together with a mild bromenium oxidant and terminal hydrosilane reductant) is shown to drive both steps chemoselectively in an auto-tandem catalytic cascade. The ability to both prepare and functionalize amides under the action of a single organocatalytic reactive intermediate enables new possibilities for the efficient and modular preparation of medicinal targets.
Collapse
Affiliation(s)
- Jeffrey M Lipshultz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
61
|
Irving CD, Floreancig JT, Gasonoo M, Kelley AS, Laulhé S. Synthesis of Imide and Amine Derivatives via Deoxyamination of Alcohols Using
N
‐Haloimides and Triphenylphosphine. ChemistrySelect 2021; 6:8874-8878. [DOI: 10.1002/slct.202102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Charles D. Irving
- Department of Chemistry and Chemical Biology Indiana University-Purdue University Indianapolis Indianapolis IN 46202 United States
| | - Jack T. Floreancig
- Department of Chemistry and Chemical Biology Indiana University-Purdue University Indianapolis Indianapolis IN 46202 United States
| | - Makafui Gasonoo
- Department of Chemistry and Chemical Biology Indiana University-Purdue University Indianapolis Indianapolis IN 46202 United States
| | - Alexandra S. Kelley
- Department of Chemistry and Chemical Biology Indiana University-Purdue University Indianapolis Indianapolis IN 46202 United States
| | - Sébastien Laulhé
- Department of Chemistry and Chemical Biology Indiana University-Purdue University Indianapolis Indianapolis IN 46202 United States
| |
Collapse
|
62
|
Rech JJ, Neu J, Qin Y, Samson S, Shanahan J, Josey RF, Ade H, You W. Designing Simple Conjugated Polymers for Scalable and Efficient Organic Solar Cells. CHEMSUSCHEM 2021; 14:3561-3568. [PMID: 34008311 DOI: 10.1002/cssc.202100910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Conjugated polymers have a long history of exploration and use in organic solar cells, and over the last twenty-five years, marked increases in the solar cell efficiency have been achieved. However, the synthetic complexity of these materials has also drastically increased, which makes the scalability of the highest-efficiency materials difficult. If conjugated polymers could be designed to exhibit both high efficiency and straightforward synthesis, the road to commercial reality would be more achievable. For that reason, a new synthetic approach was designed towards PTQ10 (=poly[(thiophene)-alt-(6,7-difluoro-2-(2-hexyldecyloxy)quinoxaline)]). The new synthetic approach to make PTQ10 brought a significant reduction in cost (1/7th the original) and could also easily accommodate different side chains to move towards green processing solvents. Furthermore, high-efficiency organic solar cells were demonstrated with a PTQ10:Y6 blend exhibiting approximately 15 % efficiency.
Collapse
Affiliation(s)
- Jeromy James Rech
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27510, USA
| | - Justin Neu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27510, USA
| | - Yunpeng Qin
- Department of Physics and Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Stephanie Samson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27510, USA
| | - Jordan Shanahan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27510, USA
| | - Richard F Josey
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27510, USA
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27510, USA
| |
Collapse
|
63
|
Mastropasqua Talamo M, Pop F, Avarvari N. Straightforward N-alkylation of diketopyrrolopyrroles through the Mitsunobu reaction with benzyl, α-branched, and chiral alcohols. Chem Commun (Camb) 2021; 57:6514-6517. [PMID: 34105540 DOI: 10.1039/d1cc02472h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The N-alkylation of diketopyrrolopyrroles (DPPs) represents a fundamental step to ensure solubility and further processability. Commonly used nucleophilic substitution in halogenated derivatives is replaced in this work by the Mitsunobu reaction affording unprecedented DPPs with α-branched and chiral chains.
Collapse
Affiliation(s)
| | - Flavia Pop
- Univ. Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France.
| | - Narcis Avarvari
- Univ. Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France.
| |
Collapse
|
64
|
Phosphine‐Catalyzed Synthesis of Chiral
N
‐Heterocycles through (Asymmetric) P(III)/P(V) Redox Cycling. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
65
|
Munyemana F, Patiny L, Ghosez L. A mild method for the replacement of a hydroxyl group by halogen: 3. the dichotomous behavior of α-haloenamines towards allylic and propargylic alcohols. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
66
|
Merad J, Matyašovský J, Stopka T, Brutiu BR, Pinto A, Drescher M, Maulide N. Stable and easily available sulfide surrogates allow a stereoselective activation of alcohols. Chem Sci 2021; 12:7770-7774. [PMID: 34168830 PMCID: PMC8188487 DOI: 10.1039/d1sc01602d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Isothiouronium salts are easily accessible and stable compounds. Herein, we report their use as versatile deoxasulfenylating agents enabling a stereoselective, thiol-free protocol for synthesis of thioethers from alcohols. The method is simple, scalable and tolerates a broad range of functional groups otherwise incompatible with other methods. Late-stage modification of several pharmaceuticals provides access to multiple analogues of biologically relevant molecules. Performed experiments give insight into the reaction mechanism. A simple and scalable method for stereoselective synthesis of thioethers directly from alcohols using isothiouronium salts is presented. The utility of this thiol-free reaction was exemplified by late-stage modification of complex molecules.![]()
Collapse
Affiliation(s)
- Jérémy Merad
- Department of Organic Chemistry, University of Vienna Währinger Straße 38 1090 Vienna Austria http://maulide.univie.ac.at.,Univ. Lyon, Université Claude Bernard Lyon 1, CNRS CPE Lyon, INSA Lyon, ICBMS, UMR 5246 Bât. Lederer 1 rue Victor Grignard 69622 Villeurbanne France
| | - Ján Matyašovský
- Department of Organic Chemistry, University of Vienna Währinger Straße 38 1090 Vienna Austria http://maulide.univie.ac.at
| | - Tobias Stopka
- Department of Organic Chemistry, University of Vienna Währinger Straße 38 1090 Vienna Austria http://maulide.univie.ac.at
| | - Bogdan R Brutiu
- Department of Organic Chemistry, University of Vienna Währinger Straße 38 1090 Vienna Austria http://maulide.univie.ac.at
| | - Alexandre Pinto
- Department of Organic Chemistry, University of Vienna Währinger Straße 38 1090 Vienna Austria http://maulide.univie.ac.at
| | - Martina Drescher
- Department of Organic Chemistry, University of Vienna Währinger Straße 38 1090 Vienna Austria http://maulide.univie.ac.at
| | - Nuno Maulide
- Department of Organic Chemistry, University of Vienna Währinger Straße 38 1090 Vienna Austria http://maulide.univie.ac.at
| |
Collapse
|
67
|
Wang H, Zhao Y, Zhang F, Ke Z, Han B, Xiang J, Wang Z, Liu Z. Hydrogen-bond donor and acceptor cooperative catalysis strategy for cyclic dehydration of diols to access O-heterocycles. SCIENCE ADVANCES 2021; 7:7/22/eabg0396. [PMID: 34039607 PMCID: PMC8153714 DOI: 10.1126/sciadv.abg0396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Dehydrative cyclization of diols to O-heterocycles is attractive, but acid and/or metal-based catalysts are generally required. Here, we present a hydrogen-bond donor and acceptor cooperative catalysis strategy for the synthesis of O-heterocycles from diols in ionic liquids [ILs; e.g., 1-hydroxyethyl-3-methyl imidazolium trifluoromethanesulfonate ([HO-EtMIm][OTf])] under metal-free, acid-free, and mild conditions. [HO-EtMIm][OTf] is tolerant to a wide diol scope, shows performance even better than H2SO4, and affords a series of O-heterocycles including tetrahydrofurans, tetrahydropyrans, morpholines, dioxanes, and thioxane in high yields. Mechanism investigation indicates that the IL cation and anion serve as hydrogen-bond donor and acceptor, respectively, to activate the C─O and O─H bonds of alcohol via hydrogen bonds, which synergistically catalyze dehydrative cyclization of diols to O-heterocycles. Notably, the products could be spontaneously separated after reaction because of their immiscibility with the IL, and the IL could be recycled. This green strategy has great potential for application in industry.
Collapse
Affiliation(s)
- Huan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanfei Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fengtao Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhengang Ke
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, P. R. China
| | - Junfeng Xiang
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhenpeng Wang
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, P. R. China
| |
Collapse
|
68
|
Li H, Peng M, Lai Z, Ning L, Chen X, Zhang X, Wang P, Szostak R, Szostak M, An J. Acyl fluorides as direct precursors to fluoride ketyl radicals: reductive deuteration using SmI 2 and D 2O. Chem Commun (Camb) 2021; 57:5195-5198. [PMID: 33908475 DOI: 10.1039/d1cc01381e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly chemoselective reductive deuteration of acyl fluorides to provide α,α-dideuterio alcohols with exquisite levels of deuterium incorporation was developed using SmI2 and D2O as the deuterium source. This method introduces acyl fluorides as attractive radical precursors for the generation of reactive acyl-type fluoride ketyls that should find widespread application in many synthetic strategies involving single electron transfer processes.
Collapse
Affiliation(s)
- Hengzhao Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. and Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China
| | - Mengqi Peng
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China
| | - Zemin Lai
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China
| | - Lei Ning
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China
| | - Xingyue Chen
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China
| | - Xiaoxu Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, USA.
| | - Jie An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
69
|
Xie C, Smaligo AJ, Song XR, Kwon O. Phosphorus-Based Catalysis. ACS CENTRAL SCIENCE 2021; 7:536-558. [PMID: 34056085 PMCID: PMC8155461 DOI: 10.1021/acscentsci.0c01493] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 05/08/2023]
Abstract
Phosphorus-based organocatalysis encompasses several subfields that have undergone rapid growth in recent years. This Outlook gives an overview of its various aspects. In particular, we highlight key advances in three topics: nucleophilic phosphine catalysis, organophosphorus catalysis to bypass phosphine oxide waste, and organophosphorus compound-mediated single electron transfer processes. We briefly summarize five additional topics: chiral phosphoric acid catalysis, phosphine oxide Lewis base catalysis, iminophosphorane super base catalysis, phosphonium salt phase transfer catalysis, and frustrated Lewis pair catalysis. Although it is not catalytic in nature, we also discuss novel discoveries that are emerging in phosphorus(V) ligand coupling. We conclude with some ideas about the future of organophosphorus catalysis.
Collapse
Affiliation(s)
- Changmin Xie
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Andrew J. Smaligo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | | | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
70
|
Taniguchi T. Strategy for the Use of Molecular Oxygen in Organic Synthesis. Synlett 2021. [DOI: 10.1055/s-0040-1707240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Our recent studies on the development of new synthetic methods using molecular oxygen (O2), which is an environmentally friendly oxidant, are described in this Account. The character of O2 as an electron acceptor can be utilized for activation of simple organic molecules to generate reactive species. Such reactive species are applicable to advanced molecular transformation, such as C–C and C–X (X = heteroatom) bond formation, functionalization of inactivated C(sp3)–H, and catalytic Mitsunobu reaction, by avoiding direct quenching of the reactive species by O2.1 Introduction2 Reactions with Iron Catalysts and Oxygen2.1 Reactions Using Redox Hydration of Alkenes2.2 Reactions Using Oxidation of Heteroatoms3 Reactions with tert-Butyl Nitrite and Oxygen4 Conclusion
Collapse
|
71
|
Kasama K. Redox-neutral Mitsunobu Reaction. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kengo Kasama
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
72
|
Cui C, Dwyer BG, Liu C, Abegg D, Cai ZJ, Hoch DG, Yin X, Qiu N, Liu JQ, Adibekian A, Dai M. Total Synthesis and Target Identification of the Curcusone Diterpenes. J Am Chem Soc 2021; 143:4379-4386. [PMID: 33705657 DOI: 10.1021/jacs.1c00557] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The curcusone natural products are complex diterpenes featuring a characteristic [6-7-5] tricyclic carbon skeleton similar to the daphnane and tigliane diterpenes. Among them, curcusones A-D demonstrated potent anticancer activity against a broad spectrum of human cancer cell lines. Prior to this study, no total synthesis of the curcusones was achieved and their anticancer mode of action remained unknown. Herein, we report our synthetic and chemoproteomics studies of the curcusone diterpenes which culminate in the first total synthesis of several curcusone natural products and identification of BRCA1-associated ATM activator 1 (BRAT1) as a cellular target. Our efficient synthesis is highly convergent, builds upon cheap and abundant starting materials, features a thermal [3,3]-sigmatropic rearrangement and a novel FeCl3-promoted cascade reaction to rapidly construct the critical cycloheptadienone core of the curcusones, and led us to complete the first total synthesis of curcusones A and B in only 9 steps, C and D in 10 steps, and dimericursone A in 12 steps. The chemical synthesis of dimericursone A from curcusones C and D provided direct evidence to support the proposed Diels-Alder dimerization and cheletropic elimination biosynthetic pathway. Using an alkyne-tagged probe molecule, BRAT1, an important but previously "undruggable" oncoprotein, was identified as a key cellular target via chemoproteomics. We further demonstrate for the first time that BRAT1 can be inhibited by curcusone D, resulting in impaired DNA damage response, reduced cancer cell migration, potentiated activity of the DNA damaging drug etoposide, and other phenotypes similar to BRAT1 knockdown.
Collapse
Affiliation(s)
- Chengsen Cui
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brendan G Dwyer
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Chang Liu
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Zhong-Jian Cai
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dominic G Hoch
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Xianglin Yin
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nan Qiu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jie-Qing Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Mingji Dai
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
73
|
Epifanov M, Mo JY, Dubois R, Yu H, Sammis GM. One-Pot Deoxygenation and Substitution of Alcohols Mediated by Sulfuryl Fluoride. J Org Chem 2021; 86:3768-3777. [PMID: 33567820 DOI: 10.1021/acs.joc.0c02557] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sulfuryl fluoride is a valuable reagent for the one-pot activation and derivatization of aliphatic alcohols, but the highly reactive alkyl fluorosulfate intermediates limit both the types of reactions that can be accessed as well as the scope. Herein, we report the SO2F2-mediated alcohol substitution and deoxygenation method that relies on the conversion of fluorosulfates to alkyl halide intermediates. This strategy allows the expansion of SO2F2-mediated one-pot processes to include radical reactions, where the alkyl halides can also be exploited in the one-pot deoxygenation of primary alcohols under mild conditions (52-95% yield). This strategy can also enhance the scope of substitutions to nucleophiles that are previously incompatible with one-pot SO2F2-mediated alcohol activation and enables substitution of primary and secondary alcohols in 54-95% yield. Chiral secondary alcohols undergo a highly stereospecific (90-98% ee) double nucleophilic displacement with an overall retention of configuration.
Collapse
Affiliation(s)
- Maxim Epifanov
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jia Yi Mo
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Rudy Dubois
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hao Yu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Glenn M Sammis
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
74
|
DFT investigation of the triphenylphosphine-assisted electrochemical dehydroxylative transformations. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
75
|
Chen Y, He R, Song H, Yu G, Li C, Liu Y, Wang Q. Two‐Step Protocol for Iodotrimethylsilane‐Mediated Deoxy‐Functionalization of Alcohols. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuming Chen
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University 300071 Tianjin People's Republic of China
| | - Ru He
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University 300071 Tianjin People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University 300071 Tianjin People's Republic of China
| | - Guoqing Yu
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University 300071 Tianjin People's Republic of China
- Shandong Boyuan Pharmaceutical & Chemical Co., Ltd 262725 Shouguang People's Republic of China
| | - Chenglin Li
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University 300071 Tianjin People's Republic of China
- Shandong Boyuan Pharmaceutical & Chemical Co., Ltd 262725 Shouguang People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University 300071 Tianjin People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University 300071 Tianjin People's Republic of China
| |
Collapse
|
76
|
Lipshultz JM, Li G, Radosevich AT. Main Group Redox Catalysis of Organopnictogens: Vertical Periodic Trends and Emerging Opportunities in Group 15. J Am Chem Soc 2021; 143:1699-1721. [PMID: 33464903 PMCID: PMC7934640 DOI: 10.1021/jacs.0c12816] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A growing number of organopnictogen redox catalytic methods have emerged-especially within the past 10 years-that leverage the plentiful reversible two-electron redox chemistry within Group 15. The goal of this Perspective is to provide readers the context to understand the dramatic developments in organopnictogen catalysis over the past decade with an eye toward future development. An exposition of the fundamental differences in the atomic structure and bonding of the pnictogens, and thus the molecular electronic structure of organopnictogen compounds, is presented to establish the backdrop against which organopnictogen redox reactivity-and ultimately catalysis-is framed. A deep appreciation of these underlying periodic principles informs an understanding of the differing modes of organopnictogen redox catalysis and evokes the key challenges to the field moving forward. We close by addressing forward-looking directions likely to animate this area in the years to come. What new catalytic manifolds can be developed through creative catalyst and reaction design that take advantage of the intrinsic redox reactivity of the pnictogens to drive new discoveries in catalysis?
Collapse
Affiliation(s)
- Jeffrey M Lipshultz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gen Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
77
|
Zheng L, Sun C, Xu W, Dushkin AV, Polyakov N, Su W, Yu J. Mechanically induced solvent-free esterification method at room temperature. RSC Adv 2021; 11:5080-5085. [PMID: 35424454 PMCID: PMC8694552 DOI: 10.1039/d0ra09437d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/12/2021] [Indexed: 01/23/2023] Open
Abstract
Herein, we describe two novel strategies for the synthesis of esters, as achieved under high-speed ball-milling (HSBM) conditions at room temperature. In the presence of I2 and KH2PO2, the reactions afford the desired esterification derivatives in 45% to 91% yields within 20 min of grinding. Meanwhile, using KI and P(OEt)3, esterification products can be obtained in 24% to 85% yields after 60 min of grinding. In addition, the I2/KH2PO2 protocol was successfully extended to the late-stage diversification of natural products showing the robustness of this useful approach. Further application of this method in the synthesis of inositol nicotinate was also discussed.
Collapse
Affiliation(s)
- Lei Zheng
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Chen Sun
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Wenhao Xu
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 P. R. China
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Alexandr V Dushkin
- Institute of Solid State Chemistry and Mechanochemistry Novosibirsk Russia
| | - Nikolay Polyakov
- Institute of Solid State Chemistry and Mechanochemistry Novosibirsk Russia
| | - Weike Su
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 P. R. China
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Jingbo Yu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
78
|
Huke CD, Kays DL. Hydrofunctionalization reactions of heterocumulenes: Formation of C–X (X = B, N, O, P, S and Si) bonds by homogeneous metal catalysts. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
79
|
Li S, Qiu J, Li B, Sun Z, Xie P, Loh TP. Practical allylation with unactivated allylic alcohols under mild conditions. Org Chem Front 2021. [DOI: 10.1039/d1qo00490e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A practical palladium/calcium catalytic system was developed for dehydrative allylation with unactivated allylic alcohols.
Collapse
Affiliation(s)
- Shuangshuang Li
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Ju Qiu
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Bowen Li
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Zuolian Sun
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- Division of Chemistry and Biological Chemistry
| |
Collapse
|
80
|
Koenig SG, Green KL, Müller B, Sowell CG, Askin D, Gosselin F. Development of a practical synthesis to PI3K α-selective inhibitor GDC-0326. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
81
|
|
82
|
Margarita C, Villo P, Tuñon H, Dalla-Santa O, Camaj D, Carlsson R, Lill M, Ramström A, Lundberg H. Zirconium-catalysed direct substitution of alcohols: enhancing the selectivity by kinetic analysis. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01219c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kinetic analysis was used as a tool for rational optimization of catalytic direct substitution of alcohols to enable selective formation of ethers, thioethers, and Friedel–Crafts alkylation products using a moisture-tolerant and commercially available Zr complex.
Collapse
Affiliation(s)
- Cristiana Margarita
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Piret Villo
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Hernando Tuñon
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Oscar Dalla-Santa
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - David Camaj
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Robin Carlsson
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Malin Lill
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Anja Ramström
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Helena Lundberg
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| |
Collapse
|
83
|
Zhang J, Xu Q, Fan J, Zhou L, Liu N, Zhu L, Wu J, Xie M. Pd(ii)-Catalyzed enantioconvergent twofold C–H annulation to access atropisomeric aldehydes: a platform for diversity-oriented-synthesis. Org Chem Front 2021. [DOI: 10.1039/d1qo00183c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The first Pd(ii)-catalyzed atroposelective dual C–H annulative strategy for diverse synthesis of functionalized axially chiral biaryls was developed.
Collapse
Affiliation(s)
- Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Qiaoqiao Xu
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Jian Fan
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Lan Zhou
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Nannan Liu
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Li Zhu
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Jiaping Wu
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| |
Collapse
|
84
|
Jordan A, Stoy P, Sneddon HF. Chlorinated Solvents: Their Advantages, Disadvantages, and Alternatives in Organic and Medicinal Chemistry. Chem Rev 2020; 121:1582-1622. [DOI: 10.1021/acs.chemrev.0c00709] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andrew Jordan
- GlaxoSmithKline Carbon Neutral Laboratory for Sustainable Chemistry, Jubilee Campus, University of Nottingham, 6 Triumph Road, Nottingham NG7 2GA, U.K
| | - Patrick Stoy
- Drug Design and Selection, Platform and Technology Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Helen F. Sneddon
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
85
|
Zhang C, Amar Y, Cao L, Lapkin AA. Solvent Selection for Mitsunobu Reaction Driven by an Active Learning Surrogate Model. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Chonghuan Zhang
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Yehia Amar
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Liwei Cao
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
- Cambridge Centre for Advanced Research and Education in Singapore, CARES Ltd., 1 CREATE Way, CREATE Tower #05-05, 138602 Singapore
| | - Alexei A. Lapkin
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
- Cambridge Centre for Advanced Research and Education in Singapore, CARES Ltd., 1 CREATE Way, CREATE Tower #05-05, 138602 Singapore
| |
Collapse
|
86
|
Zhang D, Du P, Liu J, Zhang R, Zhang Z, Han Z, Chen J, Lu X. Encapsulation of Porphyrin-Fe/Cu Complexes into Coordination Space for Enhanced Selective Oxidative Dehydrogenation of Aromatic Hydrazides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004679. [PMID: 33206474 DOI: 10.1002/smll.202004679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/03/2020] [Indexed: 06/11/2023]
Abstract
The encapsulation of specific nanoentities into hollow nanomaterials derived from metal organic frameworks has attracted continuous and growing research attentions owing to their unique structural properties and unusual synergistic functions. Herein, using the phase transformation of uniform rhombi dodecahedron ZIF-67, hollow nano-shell with a well-defined morphology is successfully prepared. Particularly, the iron-oxygen complex, that is formed by the interaction between TCPP-Fe/Cu (TCPP = tetrakis(4-carboxyphenyl)-porphyrin) and oxygen, can be acted as an ideal proton acceptor for practical organic reactions. Considering the unique adaptability of hollow ZIFs (named HZ) to the transformation of encapsulated TCPP-Fe/Cu bimetallic catalytic active sites, a heterogeneous catalyst (defined as HZ@TCPP-Fe/Cu) through morphology-controlled thermal transformation and rear assemble processes is designed and constructed. Under heterogeneous conditions, HZ@TCPP-Fe/Cu serves as a multifunctional molecular selector to promote the oxidative dehydrogenation of different aromatic hydrazide derivatives with high selectivity toward primary carbon among primary, secondary, and tertiary carbons that are unachievable by other traditional homogeneous catalysts. The high catalytic activity, selectivity, and recyclability of the catalyst proposed here are attractive advantages for an alternative route to the environmentally benign transformation of aromatic hydrazides to aromatic azobenzene.
Collapse
Affiliation(s)
- Dongxu Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhengang Han
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Jing Chen
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
87
|
Lipshultz JM, Fu Y, Liu P, Radosevich AT. Organophosphorus-catalyzed relay oxidation of H-Bpin: electrophilic C-H borylation of heteroarenes. Chem Sci 2020; 12:1031-1037. [PMID: 34163869 PMCID: PMC8179051 DOI: 10.1039/d0sc05620k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A nontrigonal phosphorus triamide (1, P{N[o-NMe-C6H4]2}) is shown to catalyze C–H borylation of electron-rich heteroarenes with pinacolborane (HBpin) in the presence of a mild chloroalkane reagent. C–H borylation proceeds for a range of electron-rich heterocycles including pyrroles, indoles, and thiophenes of varied substitution. Mechanistic studies implicate an initial P–N cooperative activation of HBpin by 1 to give P-hydrido diazaphospholene 2, which is diverted by Atherton–Todd oxidation with chloroalkane to generate P-chloro diazaphospholene 3. DFT calculations suggest subsequent oxidation of pinacolborane by 3 generates chloropinacolborane (ClBpin) as a transient electrophilic borylating species, consistent with observed substituent effects and regiochemical outcomes. These results illustrate the targeted diversion of established reaction pathways in organophosphorus catalysis to enable a new mode of main group-catalyzed C–H borylation. A nontrigonal phosphorus triamide (1, P{N[o-NMe-C6H4]2}) is shown to catalyze C–H borylation of electron-rich heteroarenes with pinacolborane (HBpin) in the presence of a mild chloroalkane reagent.![]()
Collapse
Affiliation(s)
- Jeffrey M Lipshultz
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Yue Fu
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
88
|
Zhang JQ, Ikawa E, Fujino H, Naganawa Y, Nakajima Y, Han LB. Selective C-P(O) Bond Cleavage of Organophosphine Oxides by Sodium. J Org Chem 2020; 85:14166-14173. [PMID: 33118346 DOI: 10.1021/acs.joc.0c01642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sodium exhibits better efficacy and selectivity than Li and K for converting Ph3P(O) to Ph2P(OM). The destiny of PhNa co-generated is disclosed. A series of alkyl halides R4X and aryl halides ArX all react with Ph2P(ONa) to produce the corresponding phosphine oxides in good to excellent yields.
Collapse
Affiliation(s)
- Jian-Qiu Zhang
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.,Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Eiichi Ikawa
- Katayama Chemical Industries Co., Ltd., 26-22, 3-Chome, Higasinaniwa-cho, Amagasaki, Hyogo 660-0892, Japan
| | - Hiroyoshi Fujino
- Katayama Chemical Industries Co., Ltd., 26-22, 3-Chome, Higasinaniwa-cho, Amagasaki, Hyogo 660-0892, Japan
| | - Yuki Naganawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Yumiko Nakajima
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Li-Biao Han
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.,Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
89
|
Cicco L, Fombona-Pascual A, Sánchez-Condado A, Carriedo GA, Perna FM, Capriati V, Presa Soto A, García-Álvarez J. Fast and Chemoselective Addition of Highly Polarized Lithium Phosphides Generated in Deep Eutectic Solvents to Aldehydes and Epoxides. CHEMSUSCHEM 2020; 13:4967-4973. [PMID: 32666628 DOI: 10.1002/cssc.202001449] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Highly polarized lithium phosphides (LiPR2 ) were synthesized, for the first time, in deep eutectic solvents as sustainable reaction media, at room temperature and in the absence of protecting atmosphere, through direct deprotonation of both aliphatic and aromatic secondary phosphines (HPR2 ) by n-BuLi. The subsequent addition of in-situ generated LiPR2 to aldehydes or epoxides proceeded quickly and chemoselectively, thereby allowing the straightforward access to the corresponding α- or β-hydroxy phosphine oxides, respectively, under air and at room temperature (bench conditions), which are traditionally considered as textbook-prohibited conditions in the field of polar organometallic chemistry of s-block elements.
Collapse
Affiliation(s)
- Luciana Cicco
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona, 4, 70125, Bari, Italy
| | - Alba Fombona-Pascual
- Departamento de Química Orgánica e Inorgánica, IUQOEM) Facultad de Química, Universidad de Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica, (IUQOEM), Facultad de Química, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Julián Clavería, 8, 33006, Oviedo, Spain
| | - Alba Sánchez-Condado
- Departamento de Química Orgánica e Inorgánica, IUQOEM) Facultad de Química, Universidad de Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain
| | - Gabino A Carriedo
- Departamento de Química Orgánica e Inorgánica, IUQOEM) Facultad de Química, Universidad de Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain
| | - Filippo M Perna
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona, 4, 70125, Bari, Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona, 4, 70125, Bari, Italy
| | - Alejandro Presa Soto
- Departamento de Química Orgánica e Inorgánica, IUQOEM) Facultad de Química, Universidad de Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain
| | - Joaquín García-Álvarez
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica, (IUQOEM), Facultad de Química, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Julián Clavería, 8, 33006, Oviedo, Spain
| |
Collapse
|
90
|
Mohite AR, Phatake RS, Dubey P, Agbaria M, Shames AI, Lemcoff NG, Reany O. Thiourea-Mediated Halogenation of Alcohols. J Org Chem 2020; 85:12901-12911. [DOI: 10.1021/acs.joc.0c01431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amar R. Mohite
- Department of Natural Sciences, The Open University of Israel, Ra’anana 4353701, Israel
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ravindra S. Phatake
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Pooja Dubey
- Department of Natural Sciences, The Open University of Israel, Ra’anana 4353701, Israel
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Mohamed Agbaria
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Alexander I. Shames
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - N. Gabriel Lemcoff
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ofer Reany
- Department of Natural Sciences, The Open University of Israel, Ra’anana 4353701, Israel
| |
Collapse
|
91
|
Zoller B, Stach T, Huy PH. Lewis Base Catalysis Enables the Activation of Alcohols by means of Chloroformates as Phosgene Substitutes. ChemCatChem 2020. [DOI: 10.1002/cctc.202001175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ben Zoller
- Saarland University Organic Chemistry P. O. Box 151150 66041 Saarbrücken Germany
- Current address Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) University Campus E8.1, room 2.29 66123 Saarbrücken Germany
| | - Tanja Stach
- Saarland University Organic Chemistry P. O. Box 151150 66041 Saarbrücken Germany
- Current address: Endotherm GmbH Science Park 2 66123 Saarbrücken Germany
| | - Peter H. Huy
- Saarland University Organic Chemistry P. O. Box 151150 66041 Saarbrücken Germany
- Rostock University Institute for Chemistry Albert-Einstein-Str. 3A 18059 Rostock Germany
| |
Collapse
|
92
|
Kohlmeyer C, Schäfer A, Huy PH, Hilt G. Formamide-Catalyzed Nucleophilic Substitutions: Mechanistic Insight and Rationalization of Catalytic Activity. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Corinna Kohlmeyer
- Oldenburg University, Institute of Chemistry, Carl-von-Ossietzky-Str. 9-11, 26111 Oldenburg, Germany
| | - André Schäfer
- Saarland University, Faculty of Natural Sciences and Technology, Department of Chemistry, 66123 Saarbruecken, Germany
| | - Peter H. Huy
- Rostock University, Institute for Chemistry, Albert-Einstein-Straße 3A, 18059 Rostock, Germany
| | - Gerhard Hilt
- Oldenburg University, Institute of Chemistry, Carl-von-Ossietzky-Str. 9-11, 26111 Oldenburg, Germany
| |
Collapse
|
93
|
Dai Q, Liu L, Qian Y, Li W, Zhang J. Construction of P-Chiral Alkenylphosphine Oxides through Highly Chemo-, Regio-, and Enantioselective Hydrophosphinylation of Alkynes. Angew Chem Int Ed Engl 2020; 59:20645-20650. [PMID: 32757382 DOI: 10.1002/anie.202009358] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/29/2020] [Indexed: 12/14/2022]
Abstract
Alkenylphosphine oxides have a wide spectrum of practical applications. However, chemo-, regio-, and enantiocontrolled construction of this structural motif still constitutes a significant synthetic challenge. Here we show that these compounds can be efficiently accessed by using a palladium/Xiao-Phos catalytic system, which leads to the highly regioselective formation of the anti-Markovnikov adducts through addition of a secondary phosphine oxide to an alkyne. Diverse (hetero)aryl and alkyl alkynes, as well as both terminal and internal alkynes can be employed as substrates. The kinetic resolution process makes it possible to produce alkenylphosphine oxide and recovered secondary phosphine oxides with high ee values. Further transformations of these two P-chiral scaffolds confirm the high practicability and application prospect of our synthetic strategies. Initial mechanistic studies strongly suggested that hydropalladation is likely responsible for the conversion process.
Collapse
Affiliation(s)
- Qiang Dai
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, East China Normal University, P. R. China
| | - Lu Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, East China Normal University, P. R. China
| | - Yanyan Qian
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, East China Normal University, P. R. China
| | - Wenbo Li
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, East China Normal University, P. R. China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, East China Normal University, P. R. China.,Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, P. R. China
| |
Collapse
|
94
|
Dai Q, Liu L, Qian Y, Li W, Zhang J. Construction of P‐Chiral Alkenylphosphine Oxides through Highly Chemo‐, Regio‐, and Enantioselective Hydrophosphinylation of Alkynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qiang Dai
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes East China Normal University P. R. China
| | - Lu Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes East China Normal University P. R. China
| | - Yanyan Qian
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes East China Normal University P. R. China
| | - Wenbo Li
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes East China Normal University P. R. China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes East China Normal University P. R. China
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS P. R. China
| |
Collapse
|
95
|
Zou Y, Wong JJ, Houk KN. Computational Exploration of a Redox-Neutral Organocatalytic Mitsunobu Reaction. J Am Chem Soc 2020; 142:16403-16408. [DOI: 10.1021/jacs.0c07487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yike Zou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Jonathan J. Wong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
96
|
Qiu H, Dai Q, He J, Li W, Zhang J. Access to P-chiral sec- and tert-phosphine oxides enabled by Le-Phos-catalyzed asymmetric kinetic resolution. Chem Sci 2020; 11:9983-9988. [PMID: 34094261 PMCID: PMC8162192 DOI: 10.1039/d0sc04041j] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The synthesis of P-stereogenic building blocks is extremely difficult. Herein we report an efficient kinetic resolution of secondary phosphine oxides via a Le-Phos-catalyzed asymmetric allylation reaction with Morita-Baylis-Hillman carbonates. This method provides facile access to enantioenriched secondary and tertiary P-chiral phosphine oxides with broad substrate scope, both of which could serve as P-stereogenic synthons, and can be rapidly incorporated into a given scaffold bearing a P-stereocenter. The highly desirable late stage modifications demonstrate the practicability of our method and can be a critical contribution to obtaining optimal P-chiral catalysts and ligands.
Collapse
Affiliation(s)
- Haile Qiu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai P. R. China
| | - Qiang Dai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai P. R. China
| | - Jiafeng He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai P. R. China
| | - Wenbo Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai P. R. China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai P. R. China .,Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| |
Collapse
|
97
|
Arp FF, Bhuvanesh N, Blümel J. Di(hydroperoxy)cycloalkane Adducts of Triarylphosphine Oxides: A Comprehensive Study Including Solid-State Structures and Association in Solution. Inorg Chem 2020; 59:13719-13732. [PMID: 32866378 DOI: 10.1021/acs.inorgchem.0c02087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Four new di(hydroperoxy)cycloalkane adducts (Ahn adducts) of p-Tol3PO (1) and o-Tol3PO (2), namely, p-Tol3PO·(HOO)2C(CH2)5 (3), o-Tol3PO·(HOO)2C(CH2)5 (4), p-Tol3PO·(HOO)2C(CH2)6 (5), and o-Tol3PO·(HOO)2C(CH2)6 (6), have been synthesized and fully characterized. Their single crystal X-ray structures have been determined and analyzed. The 31P NMR data are in accordance with hydrogen bonding of the di(hydroperoxy)alkanes to the P═O groups of the phosphine oxides. Due to their high solubility in organic solvents, natural abundance 17O NMR spectra of 1-6 could be recorded, providing the signals for the P═O groups and additionally the two different oxygen nuclei in the O-OH groups in the adducts 3-6. The association and mobility of 3-6 were explored by 1H DOSY (diffusion ordered spectroscopy) NMR, which indicated persistent hydrogen bonding of the adducts in solution. Competition experiments with phosphine oxides allowed ranking of the affinities of the di(hydroperoxy)cycloalkanes for the different phosphine oxide carriers. On the basis of variable temperature 31P NMR investigations, the Gibbs energies of activation ΔG‡ for the adduct dissociation processes of 3-6 at different temperatures, as well as the enthalpy ΔH‡ and entropy ΔS‡ of activation, have been determined. IR spectroscopy of 3-6 corroborated the hydrogen bonding, and in the Raman spectra, the ν(O-O) stretching bands have been identified, confirming the presence of peroxy groups in the solid materials. The high solubilities in selected organic solvents have been quantified.
Collapse
Affiliation(s)
- Fabian F Arp
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Janet Blümel
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| |
Collapse
|
98
|
Shao X, Zheng Y, Ramadoss V, Tian L, Wang Y. Recent advances in P III-assisted deoxygenative reactions under photochemical or electrochemical conditions. Org Biomol Chem 2020; 18:5994-6005. [PMID: 32692327 DOI: 10.1039/d0ob01083a] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nucleophilic substitution reactions of hydroxyl groups are one of the most fundamental and widely spread transformations in organic chemistry. Among them, PIII-mediated deoxygenative nucleophilic substitution reactions, such as the Mitsunobu reaction, are frequently used strategies and often require stoichiometric oxidants to activate PIII reagents to induce the desired reactions. It has been illustrated that PIII reagents can be oxidized into the corresponding radical cations through single-electron oxidation by photocatalysis or electro-oxidation. These phosphine radical cations can react with alcohols or carboxylic acids to form the corresponding alkoxyphosphonium or acyloxyphosphonium intermediates, which are very reactive and easily get decomposed. The release of tri-substituted phosphine oxides as a driving force triggers the following nucleophilic substitution. This strategy does not require the use of stoichiometric oxidants and it eludes safety and stability problems. In this review, we summarise the recent advances and discoveries in PIII-assisted direct deoxygenative reactions under photochemical or electrochemical conditions.
Collapse
Affiliation(s)
- Xiaoqing Shao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yue Zheng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Velayudham Ramadoss
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
99
|
Lassaletta JM. Spotting trends in organocatalysis for the next decade. Nat Commun 2020; 11:3787. [PMID: 32728081 PMCID: PMC7391751 DOI: 10.1038/s41467-020-17600-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/07/2020] [Indexed: 01/15/2023] Open
Abstract
After two decades of steady growing, symbiotic merger of organocatalysis with emerging electrochemical and photochemical tools are envisioned as hot topics in the coming decade. Here, these trends are discussed in parallel to the implementation of artificial intelligence-based technologies, which anticipate a paradigm shift in catalyst design.
Collapse
Affiliation(s)
- José M Lassaletta
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Américo Vespucio 49, 41092, Sevilla, Spain.
| |
Collapse
|
100
|
Rossi-Ashton JA, Clarke AK, Unsworth WP, Taylor RJK. Phosphoranyl Radical Fragmentation Reactions Driven by Photoredox Catalysis. ACS Catal 2020; 10:7250-7261. [PMID: 32905246 PMCID: PMC7469205 DOI: 10.1021/acscatal.0c01923] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Photocatalytic generation of phosphoranyl radicals is fast emerging as an essential method for the generation of diverse and valuable radicals, typically via deoxygenation or desulfurization processes. This Perspective is a comprehensive evaluation of all studies using phosphoranyl radicals as tunable mediators in photoredox catalysis, highlighting how two distinct methods for phosphoranyl radical formation (radical addition and nucleophilic addition) can be used to generate versatile radical intermediates with diverse reactivity profiles.
Collapse
Affiliation(s)
| | - Aimee K. Clarke
- Department of Chemistry, University of York, Heslington,
York YO10 5DD, U.K.
| | - William P. Unsworth
- Department of Chemistry, University of York, Heslington,
York YO10 5DD, U.K.
| | | |
Collapse
|