51
|
Identifying the Most Probable Mammal Reservoir Hosts for Monkeypox Virus Based on Ecological Niche Comparisons. Viruses 2023; 15:v15030727. [PMID: 36992436 PMCID: PMC10057484 DOI: 10.3390/v15030727] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Previous human cases or epidemics have suggested that Monkeypox virus (MPXV) can be transmitted through contact with animals of African rainforests. Although MPXV has been identified in many mammal species, most are likely secondary hosts, and the reservoir host has yet to be discovered. In this study, we provide the full list of African mammal genera (and species) in which MPXV was previously detected, and predict the geographic distributions of all species of these genera based on museum specimens and an ecological niche modelling (ENM) method. Then, we reconstruct the ecological niche of MPXV using georeferenced data on animal MPXV sequences and human index cases, and conduct overlap analyses with the ecological niches inferred for 99 mammal species, in order to identify the most probable animal reservoir. Our results show that the MPXV niche covers three African rainforests: the Congo Basin, and Upper and Lower Guinean forests. The four mammal species showing the best niche overlap with MPXV are all arboreal rodents, including three squirrels: Funisciurus anerythrus, Funisciurus pyrropus, Heliosciurus rufobrachium, and Graphiurus lorraineus. We conclude that the most probable MPXV reservoir is F. anerythrus based on two niche overlap metrics, the areas of higher probabilities of occurrence, and available data on MPXV detection.
Collapse
|
52
|
Cazenave M, Kivell TL. Challenges and perspectives on functional interpretations of australopith postcrania and the reconstruction of hominin locomotion. J Hum Evol 2023; 175:103304. [PMID: 36563461 DOI: 10.1016/j.jhevol.2022.103304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
In 1994, Hunt published the 'postural feeding hypothesis'-a seminal paper on the origins of hominin bipedalism-founded on the detailed study of chimpanzee positional behavior and the functional inferences derived from the upper and lower limb morphology of the Australopithecus afarensis A.L. 288-1 partial skeleton. Hunt proposed a model for understanding the potential selective pressures on hominins, made robust, testable predictions based on Au. afarensis functional morphology, and presented a hypothesis that aimed to explain the dual functional signals of the Au. afarensis and, more generally, early hominin postcranium. Here we synthesize what we have learned about Au. afarensis functional morphology and the dual functional signals of two new australopith discoveries with relatively complete skeletons (Australopithecus sediba and StW 573 'Australopithecus prometheus'). We follow this with a discussion of three research approaches that have been developed for the purpose of drawing behavioral inferences in early hominins: (1) developments in the study of extant apes as models for understanding hominin origins; (2) novel and continued developments to quantify bipedal gait and locomotor economy in extant primates to infer the locomotor costs from the anatomy of fossil taxa; and (3) novel developments in the study of internal bone structure to extract functional signals from fossil remains. In conclusion of this review, we discuss some of the inherent challenges of the approaches and methodologies adopted to reconstruct the locomotor modes and behavioral repertoires in extinct primate taxa, and notably the assessment of habitual terrestrial bipedalism in early hominins.
Collapse
Affiliation(s)
- Marine Cazenave
- Division of Anthropology, American Museum of Natural History, New York, USA; Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Department of Anatomy, Faculty of Health Sciences, University of Pretoria, South Africa.
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
53
|
Urciuoli A, Alba DM. Systematics of Miocene apes: State of the art of a neverending controversy. J Hum Evol 2023; 175:103309. [PMID: 36716680 DOI: 10.1016/j.jhevol.2022.103309] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/29/2023]
Abstract
Hominoids diverged from cercopithecoids during the Oligocene in Afro-Arabia, initially radiating in that continent and subsequently dispersing into Eurasia. From the Late Miocene onward, the geographic range of hominoids progressively shrank, except for hominins, which dispersed out of Africa during the Pleistocene. Although the overall picture of hominoid evolution is clear based on available fossil evidence, many uncertainties persist regarding the phylogeny and paleobiogeography of Miocene apes (nonhominin hominoids), owing to their sparse record, pervasive homoplasy, and the decimated current diversity of this group. We review Miocene ape systematics and evolution by focusing on the most parsimonious cladograms published during the last decade. First, we provide a historical account of the progress made in Miocene ape phylogeny and paleobiogeography, report an updated classification of Miocene apes, and provide a list of Miocene ape species-locality occurrences together with an analysis of their paleobiodiversity dynamics. Second, we discuss various critical issues of Miocene ape phylogeny and paleobiogeography (hylobatid and crown hominid origins, plus the relationships of Oreopithecus) in the light of the highly divergent results obtained from cladistic analyses of craniodental and postcranial characters separately. We conclude that cladistic efforts to disentangle Miocene ape phylogeny are potentially biased by a long-branch attraction problem caused by the numerous postcranial similarities shared between hylobatids and hominids-despite the increasingly held view that they are likely homoplastic to a large extent, as illustrated by Sivapithecus and Pierolapithecus-and further aggravated by abundant missing data owing to incomplete preservation. Finally, we argue that-besides the recovery of additional fossils, the retrieval of paleoproteomic data, and a better integration between cladistics and geometric morphometrics-Miocene ape phylogenetics should take advantage of total-evidence (tip-dating) Bayesian methods of phylogenetic inference combining morphologic, molecular, and chronostratigraphic data. This would hopefully help ascertain whether hylobatid divergence was more basal than currently supported.
Collapse
Affiliation(s)
- Alessandro Urciuoli
- Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
54
|
Abstract
While some species have affiliative and even cooperative interactions between individuals of different social groups, humans are alone in having durable, positive-sum, interdependent relationships across unrelated social groups. Our capacity to have harmonious relationships that cross group boundaries is an important aspect of our species' success, allowing for the exchange of ideas, materials, and ultimately enabling cumulative cultural evolution. Knowledge about the conditions required for peaceful intergroup relationships is critical for understanding the success of our species and building a more peaceful world. How do humans create harmonious relationships across group boundaries and when did this capacity emerge in the human lineage? Answering these questions involves considering the costs and benefits of intergroup cooperation and aggression, for oneself, one's group, and one's neighbor. Taking a game theoretical perspective provides new insights into the difficulties of removing the threat of war and reveals an ironic logic to peace - the factors that enable peace also facilitate the increased scale and destructiveness of conflict. In what follows, I explore the conditions required for peace, why they are so difficult to achieve, and when we expect peace to have emerged in the human lineage. I argue that intergroup cooperation was an important component of human relationships and a selective force in our species history beginning at least 300 thousand years. But the preconditions for peace only emerged in the past 100 thousand years and likely coexisted with intermittent intergroup violence which would have also been an important and selective force in our species' history.
Collapse
Affiliation(s)
- Luke Glowacki
- Department of Anthropology, Boston University, Boston, MA, USA ://www.hsb-lab.org/
| |
Collapse
|
55
|
Sarringhaus L, Lewton KL, Iqbal S, Carlson KJ. Ape femoral-humeral rigidities and arboreal locomotion. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 179:624-639. [PMID: 36790629 PMCID: PMC9828227 DOI: 10.1002/ajpa.24632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/29/2022] [Accepted: 09/13/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES This study investigates patterns of bone functional adaptations in extant apes through comparing hindlimb to forelimb bone rigidity ratios in groups with varying levels of arboreality. MATERIALS AND METHODS Using CT scans, bone rigidity (J) was calculated at three regions of interest (ROI) along femoral and humeral diaphyses in Homo, Pongo, Pan, and Gorilla with further comparisons made between species and subspecies divisions within Pan and Gorilla. RESULTS Consistent with previous work on extant hominoids, species exhibited differences in midshaft femoral to humeral (F/H) rigidity ratios. Results of the present study confirm that these midshaft differences extend to 35% and 65% diaphyseal ROIs. Modern humans, exhibiting larger ratios, and orangutans, exhibiting smaller ratios, bracketed the intermediate African apes in comparisons. Within some African apes, limb rigidity ratios varied significantly between taxonomic groups. Eastern gorillas exhibited the highest mean ratios and chimpanzees the lowest at all three ROIs. In posthoc comparisons, chimpanzees and bonobos did not differ in relative limb rigidity ratios at any of the three ROIs. However, western gorillas were more similar to bonobos than eastern gorillas at 50% and 35% ROIs, but not at the 65% ROI. CONCLUSION Species, and to a lesser extent subspecies, can be distinguished by F/H limb rigidity ratios according to broad positional behavior patterns at multiple regions of interest along the diaphyses. Similarity of bonobos and western gorillas is in line with behavioral data of bonobos being the most terrestrial of Pan species, and western gorillas the most arboreal of the Gorilla groups.
Collapse
Affiliation(s)
- Lauren Sarringhaus
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biology, James Madison University, Harrisonburg, Virginia, USA
| | - Kristi L Lewton
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Safiyyah Iqbal
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristian J Carlson
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
56
|
King GE. Baboon perspectives on the ecology and behavior of early human ancestors. Proc Natl Acad Sci U S A 2022; 119:e2116182119. [PMID: 36279425 PMCID: PMC9659385 DOI: 10.1073/pnas.2116182119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For more than 70 y researchers have looked to baboons (monkeys of the genus Papio) as a source of hypotheses about the ecology and behavior of early hominins (early human ancestors and their close relatives). This approach has undergone a resurgence in the last decade as a result of rapidly increasing knowledge from experimental and field studies of baboons and from archeological and paleontological studies of hominins. The result is a rich array of analogies, scenarios, and other stimuli to thought about the ecology and behavior of early hominins. The main intent here is to illustrate baboon perspectives on early hominins, with emphasis on recent developments. This begins with a discussion of baboons and hominins as we know them currently and explains the reasons for drawing comparisons between them. These include occupation of diverse environments, combination of arboreal and terrestrial capabilities, relatively large body size, and sexual dimorphism. The remainder of the paper illustrates the main points with a small number of examples drawn from diverse areas of interest: diet (grasses and fish), danger (leopards and crocodiles), social organization (troops and multilevel societies), social relationships (male-male, male-female, female-female), communication (possible foundations of language), cognition (use of social information, comparison of self to others), and bipedalism (a speculative developmental hypothesis about the neurological basis). The conclusion is optimistic about the future of baboon perspectives on early hominins.
Collapse
Affiliation(s)
- Glenn E. King
- Department of History and Anthropology, Monmouth University, West Long Branch, NJ 07764
| |
Collapse
|
57
|
de Diego M, Casado A, Gómez M, Ciurana N, Rodríguez P, Avià Y, Cuesta-Torralvo E, García N, San José I, Barbosa M, de Paz F, Pastor JF, Potau JM. Elbow Extensor Muscles in Humans and Chimpanzees: Adaptations to Different Uses of the Upper Extremity in Hominoid Primates. Animals (Basel) 2022; 12:ani12212987. [PMID: 36359111 PMCID: PMC9655010 DOI: 10.3390/ani12212987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Chimpanzees and humans are both species of hominoid primates that are closely related phylogenetically. One of the key differences between these two species is their use of their upper extremities. Humans use this limb mainly in manipulative tasks, while chimpanzees also use it during locomotion. In this study, we have analyzed the muscle architecture and the expression of the myosin heavy chain isoforms in the two elbow extensor muscles, the triceps brachii and the anconeus, in humans and chimpanzees, in order to find differences that could be related to the different uses of the upper extremities in these species. We have found that the triceps brachii of chimpanzees is more prepared for strength and power as an adaptation to locomotion, while the same muscle in humans is more prepared for speed and resistance to fatigue as an adaptation to manipulative activities. Our results increase the knowledge we have of the musculoskeletal system of chimpanzees and can be applied in various fields, such as comparative anatomy, evolutionary anatomy or anthropology. Abstract The anatomical and functional characteristics of the elbow extensor muscles (triceps brachii and anconeus) have not been widely studied in non-human hominoid primates, despite their great functional importance. In the present study, we have analyzed the muscle architecture and the expression of the myosin heavy chain (MHC) isoforms in the elbow extensors in humans and chimpanzees. Our main objective was to identify differences in these muscles that could be related to the different uses of the upper extremity in the two species. In five humans and five chimpanzees, we have analyzed muscle mass (MM), muscle fascicle length (MFL), and the physiological cross-sectional area (PCSA). In addition, we have assessed the expression of the MHC isoforms by RT-PCR. We have found high MM and PCSA values and higher expression of the MHC-IIx isoform in the triceps brachii of chimpanzees, while in humans, the triceps brachii has high MFL values and a higher expression of the MHC-I and MHC-IIa isoforms. In contrast, there were no significant differences between humans and chimpanzees in any of the values for the anconeus. These findings could be related to the participation of the triceps brachii in the locomotion of chimpanzees and to the use of the upper extremity in manipulative functions in humans. The results obtained in the anconeus support its primary function as a stabilizer of the elbow joint in the two species.
Collapse
Affiliation(s)
- Marina de Diego
- Unit of Human Anatomy and Embryology, University of Barcelona, 08036 Barcelona, Spain
| | - Aroa Casado
- Unit of Human Anatomy and Embryology, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Arqueologia de la Universitat de Barcelona (IAUB), Faculty of Geography and History, University of Barcelona (UB), 08001 Barcelona, Spain
| | - Mónica Gómez
- Unit of Human Anatomy and Embryology, University of Barcelona, 08036 Barcelona, Spain
| | - Neus Ciurana
- Unit of Human Anatomy and Embryology, University of Barcelona, 08036 Barcelona, Spain
| | - Patrícia Rodríguez
- Unit of Human Anatomy and Embryology, University of Barcelona, 08036 Barcelona, Spain
| | - Yasmina Avià
- Institut d’Arqueologia de la Universitat de Barcelona (IAUB), Faculty of Geography and History, University of Barcelona (UB), 08001 Barcelona, Spain
- Biological Anthropology Unit, Department of Animal Biology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Elisabeth Cuesta-Torralvo
- Institut d’Arqueologia de la Universitat de Barcelona (IAUB), Faculty of Geography and History, University of Barcelona (UB), 08001 Barcelona, Spain
- Biological Anthropology Unit, Department of Animal Biology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Natividad García
- Department of Anatomy and Radiology, University of Valladolid, 47005 Valladolid, Spain
| | - Isabel San José
- Department of Anatomy and Radiology, University of Valladolid, 47005 Valladolid, Spain
| | - Mercedes Barbosa
- Department of Anatomy and Radiology, University of Valladolid, 47005 Valladolid, Spain
| | - Félix de Paz
- Department of Anatomy and Radiology, University of Valladolid, 47005 Valladolid, Spain
| | - Juan Francisco Pastor
- Department of Anatomy and Radiology, University of Valladolid, 47005 Valladolid, Spain
| | - Josep Maria Potau
- Unit of Human Anatomy and Embryology, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Arqueologia de la Universitat de Barcelona (IAUB), Faculty of Geography and History, University of Barcelona (UB), 08001 Barcelona, Spain
- Correspondence: ; Tel.: +34-9-3402-1906
| |
Collapse
|
58
|
Hagen EH. The Biological Roots of Music and Dance : Extending the Credible Signaling Hypothesis to Predator Deterrence. HUMAN NATURE (HAWTHORNE, N.Y.) 2022; 33:261-279. [PMID: 35986877 DOI: 10.1007/s12110-022-09429-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 12/14/2022]
Abstract
After they diverged from panins, hominins evolved an increasingly committed terrestrial lifestyle in open habitats that exposed them to increased predation pressure from Africa's formidable predator guild. In the Pleistocene, Homo transitioned to a more carnivorous lifestyle that would have further increased predation pressure. An effective defense against predators would have required a high degree of cooperation by the smaller and slower hominins. It is in the interest of predator and potential prey to avoid encounters that will be costly for both. A wide variety of species, including carnivores and apes and other primates, have therefore evolved visual and auditory signals that deter predators by credibly signaling detection and/or the ability to effectively defend themselves. In some cooperative species, these predator deterrent signals involve highly synchronized visual and auditory displays among group members. Hagen and Bryant (Human Nature, 14(1), 21-51, 2003) proposed that synchronized visual and auditory displays credibly signal coalition quality. Here, this hypothesis is extended to include credible signals to predators that they have been detected and would be met with a highly coordinated defensive response, thereby deterring an attack. Within-group signaling functions are also proposed. The evolved cognitive abilities underlying these behaviors were foundations for the evolution of fully human music and dance.
Collapse
Affiliation(s)
- Edward H Hagen
- Department of Anthropology, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA, 98686, USA.
| |
Collapse
|
59
|
Foecke KK, Hammond AS, Kelley J. Portable x-ray fluorescence spectroscopy geochemical sourcing of Miocene primate fossils from Kenya. J Hum Evol 2022; 170:103234. [PMID: 36001899 DOI: 10.1016/j.jhevol.2022.103234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 10/15/2022]
Abstract
Understanding the biogeography and evolution of Miocene catarrhines relies on accurate specimen provenience. It has long been speculated that some catarrhine specimens among the early collections from Miocene sites in Kenya have incorrect provenience data. The provenience of one of these, the holotype of Equatorius africanus (NHM M16649), was previously revised based on x-ray fluorescence spectroscopy. Here we use nondestructive portable x-ray fluorescence spectroscopy to test the provenience of additional catarrhine specimens that, based hat two specimens purportedly from the Early Miocene site of Rusinga (KNM-RU 1681 and KNM-RU 1999) are instead from Maboko, three specimens purportedly from the Middle Miocene site of Fort Ternan (KNM-FT 8, KNM-FT 41, and KNM-FT 3318) are instead from Songhor, and one specimen accessioned as being from Songhor (KNM-SO 5352) is from that site. Elemental data reveal that two of the specimens (KNM-FT 3318 and KNM-RU 1681) are likely to have been collected at sites other than their museum-accessioned provenience, while two others (KNM-RU 1999, and KNM-FT 41) were confirmed to have correct provenience. Results for both KNM-FT 8 and KNM-SO 5352, while somewhat equivocal, are best interpreted as supporting their accessioned provenience. Our results have implications for the distribution of certain catarrhine species during the Miocene in Kenya. Confirmation of the provenience of the specimens also facilitates taxonomic attribution, and resulted in additions to the morphological characterizations of some species. The protocol presented here has potential for wider application to assessing questions of provenience for fossils from other locations and periods.
Collapse
Affiliation(s)
- Kimberly K Foecke
- Center for Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA.
| | - Ashley S Hammond
- Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA; New York Consortium of Evolutionary Primatology (NYCEP), New York, NY, USA
| | - Jay Kelley
- Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
60
|
Alba DM, Robles JM, Casanovas-Vilar I, Beamud E, Bernor RL, Cirilli O, DeMiguel D, Galindo J, Llopart I, Pons-Monjo G, Sánchez IM, Vinuesa V, Garcés M. A revised (earliest Vallesian) age for the hominoid-bearing locality of Can Mata 1 based on new magnetostratigraphic and biostratigraphic data from Abocador de Can Mata (Vallès-Penedès Basin, NE Iberian Peninsula). J Hum Evol 2022; 170:103237. [PMID: 35988385 DOI: 10.1016/j.jhevol.2022.103237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
The Abocador de Can Mata (ACM) composite stratigraphic sequence (els Hostalets de Pierola, Vallès-Penedès Basin, NE Iberian Peninsula) has yielded a diverse primate assemblage from the late Aragonian (Middle to Late Miocene). Detailed litho-, bio-, and magnetostratigraphic control has enabled an accurate dating of these fossil remains. Comparable data, however, were lacking for the nearby locality of Can Mata 1 (CM1), which yielded a dryopithecine canine of a female individual. Given the lack of hipparionin equids and giraffids, CM1 has been correlated to the latest Aragonian (Mammal Neogene [MN] zone MN7+8). Here we revise the age of CM1 based on fieldwork and associated paleomagnetic samplings undertaken in 2018-2021. Our results extend the ACM composite sequence upward and indicate that CM1 correlates to the earliest Vallesian (MN9). The updated ACM sequence has a thickness of ∼300 m and comprises 12 magnetozones correlated to subchrons C5Ar.1r to C5n.2n (∼12.6-11.1 Ma; latest MN6 to earliest MN9, late Aragonian to earliest Vallesian). CM1 is correlated to C5r.1r (11.146-11.056 Ma), with an interpolated age of 11.11 Ma, thus postdating the dispersal of hipparionin horses into the Vallès-Penedès Basin-which is correlated to the previous subchron C5r.1n, with an interpolated age of 11.18 Ma, and by definition marks the beginning of the Vallesian. CM1 also minimally postdates the earliest record of giraffids at ACM-representing their earliest well-dated occurrence in the basin-being correlated to C5r.1n with an interpolated age of 11.11 Ma. We conclude that CM1 has an earliest Vallesian (MN9) age of ∼11.1 Ma, intermediate between the Aragonian dryopithecins and the Vallesian hispanopithecins. Ongoing paleontological surveillance at ACM thus offers the prospect to yield additional earliest Vallesian ape remains, which are essential to clarify their taxonomic allocation as well as to confirm whether hispanopithecins evolved locally from dryopithecins rather than immigrating from elsewhere during MN9.
Collapse
Affiliation(s)
- David M Alba
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Josep M Robles
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Isaac Casanovas-Vilar
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Elisabet Beamud
- Paleomagnetic Laboratory CCiTUB-Geo3Bcn CSIC, c/ Lluís Solé i Sabarís s/n, 08028 Barcelona, Spain; Institut Geomodels, Grup de Recerca Consolidat de Geodinàmica i Anàlisi de Conques, Universitat de Barcelona, c/ Martí i Franquès s/n, 08028, Barcelona, Spain
| | - Raymond L Bernor
- College of Medicine, Department of Anatomy, Laboratory of Evolutionary Biology, 520 W St. N.W., 20059, Washington, DC, USA; Human Origins Program, Department of Anthropology, Smithsonian Institution, 20560, Washington, DC, USA
| | - Omar Cirilli
- College of Medicine, Department of Anatomy, Laboratory of Evolutionary Biology, 520 W St. N.W., 20059, Washington, DC, USA; Dipartimento di Scienze della Terra, Paleo[Fab]Lab, Università degli Studi di Firenze, Via G. La Pira 4, 50121, Firenze, Italy
| | - Daniel DeMiguel
- ARAID Foundation/Universidad de Zaragoza, Departamento de Ciencias de la Tierra, and Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Pedro Cerbuna 12, 50009 Zaragoza, Spain; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Jordi Galindo
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Itziar Llopart
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Guillem Pons-Monjo
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Israel M Sánchez
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Víctor Vinuesa
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Miguel Garcés
- Institut Geomodels, Grup de Recerca Consolidat de Geodinàmica i Anàlisi de Conques, Universitat de Barcelona, c/ Martí i Franquès s/n, 08028, Barcelona, Spain; Departament de Dinàmica de la Terra i de l'Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, c/ Martí i Franquès s/n, 08028, Barcelona, Spain
| |
Collapse
|
61
|
Aguilar LK, Collins CE, Ward CV, Hammond AS. Pathways to primate hip function. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211762. [PMID: 35845850 PMCID: PMC9277236 DOI: 10.1098/rsos.211762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Understanding how diverse locomotor repertoires evolved in anthropoid primates is key to reconstructing the clade's evolution. Locomotor behaviour is often inferred from proximal femur morphology, yet the relationship of femoral variation to locomotor diversity is poorly understood. Extant acrobatic primates have greater ranges of hip joint mobility-particularly abduction-than those using more stereotyped locomotion, but how bony morphologies of the femur and pelvis interact to produce different locomotor abilities is unknown. We conducted hypothesis-driven path analyses via regularized structural equation modelling (SEM) to determine which morphological traits are the strongest predictors of hip abduction in anthropoid primates. Seven femoral morphological traits and two hip abduction measures were obtained from 25 primate species, split into broad locomotor and taxonomic groups. Through variable selection and fit testing techniques, insignificant predictors were removed to create the most parsimonious final models. Some morphological predictors, such as femur shaft length and neck-shaft angle, were important across models. Different trait combinations best predicted hip abduction by locomotor or taxonomic group, demonstrating group-specific linkages among morphology, mobility and behaviour. Our study illustrates the strength of SEM for identifying biologically important relationships between morphology and performance, which will have future applications for palaeobiological and biomechanical studies.
Collapse
Affiliation(s)
- Lucrecia K. Aguilar
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA
| | - Clint E. Collins
- Department of Biological Sciences, California State University – Sacramento, Sacramento, CA 95819, USA
| | - Carol V. Ward
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65212, USA
| | - Ashley S. Hammond
- Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA
- New York Consortium of Evolutionary Primatology (NYCEP), New York, NY 10024, USA
| |
Collapse
|
62
|
Crespi BJ, Flinn MV, Summers K. Runaway Social Selection in Human Evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.894506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Darwin posited that social competition among conspecifics could be a powerful selective pressure. Alexander proposed a model of human evolution involving a runaway process of social competition based on Darwin’s insight. Here we briefly review Alexander’s logic, and then expand upon his model by elucidating six core arenas of social selection that involve runaway, positive-feedback processes, and that were likely involved in the evolution of the remarkable combination of adaptations in humans. We discuss how these ideas fit with the hypothesis that a key life history innovation that opened the door to runaway social selection, and cumulative culture, during hominin evolution was increased cooperation among individuals in small fission-fusion groups.
Collapse
|
63
|
Calcar femorale variation in extant and fossil hominids: Implications for identifying bipedal locomotion in fossil hominins. J Hum Evol 2022; 167:103183. [DOI: 10.1016/j.jhevol.2022.103183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
|
64
|
Gómez M, Casado A, de Diego M, Pastor JF, Potau JM. Anatomical and molecular analyses of the deltoid muscle in chimpanzees (Pan troglodytes) and modern humans (Homo sapiens): Similarities and differences due to the uses of the upper extremity. Am J Primatol 2022; 84:e23390. [PMID: 35561001 DOI: 10.1002/ajp.23390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/22/2022] [Accepted: 04/25/2022] [Indexed: 11/12/2022]
Abstract
In the deltoid muscles of Pan troglodytes and Homo sapiens, we have analyzed the muscle architecture and the expression of the myosin heavy chain (MHC) isoforms. Our aim was to identify differences between the two species that could be related to their different uses of the upper limb. The deltoid muscle of six adult Pan troglodytes and six adult Homo sapiens were dissected. The muscle fascicle length (MFL) and the physiological cross-sectional area (PCSA) of each muscle were calculated in absolute and normalized values. The expression pattern of the MHC-I, MHC-IIa and MHC-IIx isoforms was analyzed in the same muscles by real-time polymerase chain reaction. Only the acromial deltoid (AD) presented significant architectural differences between the two species, with higher MFL values in humans and higher PCSA values in chimpanzees. No significant differences in the expression pattern of the MHC isoforms were identified. The higher PCSA values in the AD of Pan troglodytes indicate a greater capacity of force generation in chimpanzees than in humans, which may be related to a greater use of the upper limb in locomotion, specifically in arboreal locomotion like vertical climbing. The functional differences between chimpanzees and humans in the deltoid muscle are more related to muscle architecture than to a differential expression of MHC isoforms.
Collapse
Affiliation(s)
- Mónica Gómez
- Department of Surgery and Surgical Specializations, Unit of Human Anatomy and Embryology, University of Barcelona, Barcelona, Spain
| | - Aroa Casado
- Department of Surgery and Surgical Specializations, Unit of Human Anatomy and Embryology, University of Barcelona, Barcelona, Spain.,Institut d'Arqueologia de la Universitat de Barcelona (IAUB), Faculty of Geography and History, University of Barcelona, Barcelona, Spain
| | - Marina de Diego
- Department of Surgery and Surgical Specializations, Unit of Human Anatomy and Embryology, University of Barcelona, Barcelona, Spain
| | | | - Josep Maria Potau
- Department of Surgery and Surgical Specializations, Unit of Human Anatomy and Embryology, University of Barcelona, Barcelona, Spain.,Institut d'Arqueologia de la Universitat de Barcelona (IAUB), Faculty of Geography and History, University of Barcelona, Barcelona, Spain
| |
Collapse
|
65
|
Rosas A. In memoriam, Emiliano Aguirre Enríquez (1925-2021). J Hum Evol 2022; 167:103194. [PMID: 35461055 DOI: 10.1016/j.jhevol.2022.103194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Antonio Rosas
- Department of Paleobiology, Museo Nacional de Ciencias Naturales, CSIC, Calle José Gutierrez Abascal 2, 28006 Madrid, Spain.
| |
Collapse
|
66
|
Haslam M. Insights from orangutans into the evolution of tool use. Nature 2022; 604:427-428. [PMID: 35413997 DOI: 10.1038/d41586-022-00872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
67
|
A fistful of fossils: The rise and fall of the Orce Man and the politics of paleoanthropological science. J Hum Evol 2022. [PMID: 35276489 DOI: 10.1016/j.jhevol.2022.103166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
68
|
Schmidt ERE, Polleux F. Genetic Mechanisms Underlying the Evolution of Connectivity in the Human Cortex. Front Neural Circuits 2022; 15:787164. [PMID: 35069126 PMCID: PMC8777274 DOI: 10.3389/fncir.2021.787164] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
One of the most salient features defining modern humans is our remarkable cognitive capacity, which is unrivaled by any other species. Although we still lack a complete understanding of how the human brain gives rise to these unique abilities, the past several decades have witnessed significant progress in uncovering some of the genetic, cellular, and molecular mechanisms shaping the development and function of the human brain. These features include an expansion of brain size and in particular cortical expansion, distinct physiological properties of human neurons, and modified synaptic development. Together they specify the human brain as a large primate brain with a unique underlying neuronal circuit architecture. Here, we review some of the known human-specific features of neuronal connectivity, and we outline how novel insights into the human genome led to the identification of human-specific genetic modifiers that played a role in the evolution of human brain development and function. Novel experimental paradigms are starting to provide a framework for understanding how the emergence of these human-specific genomic innovations shaped the structure and function of neuronal circuits in the human brain.
Collapse
Affiliation(s)
- Ewoud R. E. Schmidt
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- *Correspondence: Ewoud R. E. Schmidt
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Kavli Institute for Brain Science, Columbia University, New York, NY, United States
- Franck Polleux
| |
Collapse
|
69
|
Girodengo M, Ultanir SK, Bateman JM. Mechanistic target of rapamycin signaling in human nervous system development and disease. Front Mol Neurosci 2022; 15:1005631. [PMID: 36226315 PMCID: PMC9549271 DOI: 10.3389/fnmol.2022.1005631] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that regulates fundamental cellular processes including growth control, autophagy and metabolism. mTOR has key functions in nervous system development and mis-regulation of mTOR signaling causes aberrant neurodevelopment and neurological diseases, collectively called mTORopathies. In this mini review we discuss recent studies that have deepened our understanding of the key roles of the mTOR pathway in human nervous system development and disease. Recent advances in single-cell transcriptomics have been exploited to reveal specific roles for mTOR signaling in human cortical development that may have contributed to the evolutionary divergence from our primate ancestors. Cerebral organoid technology has been utilized to show that mTOR signaling is active in and regulates outer radial glial cells (RGCs), a population of neural stem cells that distinguish the human developing cortex. mTOR signaling has a well-established role in hamartoma syndromes such as tuberous sclerosis complex (TSC) and other mTORopathies. New ultra-sensitive techniques for identification of somatic mTOR pathway mutations have shed light on the neurodevelopmental origin and phenotypic heterogeneity seen in mTORopathy patients. These emerging studies suggest that mTOR signaling may facilitate developmental processes specific to human cortical development but also, when mis-regulated, cause cortical malformations and neurological disease.
Collapse
Affiliation(s)
- Marie Girodengo
- Kinases and Brain Development Lab, The Francis Crick Institute, London, United Kingdom.,King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Sila K Ultanir
- Kinases and Brain Development Lab, The Francis Crick Institute, London, United Kingdom
| | - Joseph M Bateman
- King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| |
Collapse
|
70
|
Anaya A, Patel BA, Orr CM, Ward CV, Almécija S. Evolutionary trends of the lateral foot in catarrhine primates: Contextualizing the fourth metatarsal of Australopithecus afarensis. J Hum Evol 2021; 161:103078. [PMID: 34749002 DOI: 10.1016/j.jhevol.2021.103078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
In 2000, a complete fourth metatarsal (Mt4) of the ∼3- to 4-Million-year-old hominin Australopithecus afarensis was recovered in Hadar, Ethiopia. This metatarsal presented a mostly human-like morphology, suggesting that a rigid lateral foot may have evolved as early as ∼3.2 Ma. The lateral foot is integral in providing stability during the push off phase of gait and is key in understanding the transition to upright, striding bipedalism. Previous comparisons of this fossil were limited to Pan troglodytes, Gorilla gorilla, and modern humans. This study builds on previous studies by contextualizing the Mt4 morphology of A. afarensis (A.L. 333-160) within a diverse comparative sample of nonhuman hominoids (n = 144) and cercopithecids (n = 138) and incorporates other early hominins (n = 3) and fossil hominoids that precede the Pan-Homo split (n = 4) to better assess the polarity of changes in lateral foot morphology surrounding this divergence. We investigate seven morphological features argued to be functionally linked to human-like bipedalism. Our results show that some human-like characters used to assess midfoot and lateral foot stiffness in the hominin fossil record are present in our Miocene ape sample as well as in living cercopithecids. Furthermore, modern nonhuman hominoids can be generally distinguished from other species in most metrics. These results suggest that the possession of a rigid foot in hominins could represent a conserved trait, whereas the specialized pedal grasping mechanics of extant apes may be more derived, in which case some traits often used to infer bipedal locomotion in early hominins may, instead, reflect a lower reliance on pedal grasping. Another possibility is that early hominins reverted from modern ape Mt4 morphology into a more plesiomorphic condition when terrestrial bipedality became a dominant behavior. More fossils dating around the Pan-Homo divergence time are necessary to test these competing hypotheses.
Collapse
Affiliation(s)
- Alisha Anaya
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27705, USA; Division of Anthropology, American Museum of Natural History, New York, NY, 10024, USA.
| | - Biren A Patel
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA; Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Caley M Orr
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, 80045, USA; Department of Anthropology, University of Colorado Denver, Denver, CO, 80045, USA
| | - Carol V Ward
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, 65212, USA
| | - Sergio Almécija
- Division of Anthropology, American Museum of Natural History, New York, NY, 10024, USA; New York Consortium of Evolutionary Primatology, New York, NY, 10024, USA; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
71
|
Thompson NE, Rubinstein D, Parrella-O'Donnell W, Brett MA, Demes B, Larson SG, O'Neill MC. The loss of the 'pelvic step' in human evolution. J Exp Biol 2021; 224:271233. [PMID: 34412111 DOI: 10.1242/jeb.240440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Human bipedalism entails relatively short strides compared with facultatively bipedal primates. Unique non-sagittal-plane motions associated with bipedalism may account for part of this discrepancy. Pelvic rotation anteriorly translates the hip, contributing to bipedal stride length (i.e. the 'pelvic step'). Facultative bipedalism in non-human primates entails much larger pelvic rotation than in humans, suggesting that a larger pelvic step may contribute to their relatively longer strides. We collected data on the pelvic step in bipedal chimpanzees and over a wide speed range of human walking. At matched dimensionless speeds, humans have 26.7% shorter dimensionless strides, and a pelvic step 5.4 times smaller than bipedal chimpanzees. Differences in pelvic rotation explain 31.8% of the difference in dimensionless stride length between the two species. We suggest that relative stride lengths and the pelvic step have been significantly reduced throughout the course of hominin evolution.
Collapse
Affiliation(s)
- Nathan E Thompson
- Department of Anatomy, NYIT College of Osteopathic Medicine, Old Westbury, NY 11568,USA
| | | | | | - Matthew A Brett
- NYIT College of Osteopathic Medicine, Old Westbury, NY 11568,USA
| | - Brigitte Demes
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794,USA
| | - Susan G Larson
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794,USA
| | - Matthew C O'Neill
- Department of Anatomy, Midwestern University, Glendale, AZ 85308,USA
| |
Collapse
|
72
|
Williams SA, Pilbeam D. Homeotic change in segment identity derives the human vertebral formula from a chimpanzee-like one. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:283-294. [PMID: 34227681 DOI: 10.1002/ajpa.24356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/12/2021] [Accepted: 06/07/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES One of the most contentious issues in paleoanthropology is the nature of the last common ancestor of humans and our closest living relatives, chimpanzees and bonobos (panins). The numerical composition of the vertebral column has featured prominently, with multiple models predicting distinct patterns of evolution and contexts from which bipedalism evolved. Here, we study total numbers of vertebrae from a large sample of hominoids to quantify variation in and patterns of regional and total numbers of vertebrae in hominoids. MATERIALS AND METHODS We compile and study a large sample (N = 893) of hominoid vertebral formulae (numbers of cervical, thoracic, lumbar, sacral, caudal segments in each specimen) and analyze full vertebral formulae, total numbers of vertebrae, and super-regional numbers of vertebrae: presacral (cervical, thoracic, lumbar) vertebrae and sacrococcygeal vertebrae. We quantify within- and between-taxon variation using heterogeneity and similarity measures derived from population genetics. RESULTS We find that humans are most similar to African apes in total and super-regional numbers of vertebrae. Additionally, our analyses demonstrate that selection for bipedalism reduced variation in numbers of vertebrae relative to other hominoids. DISCUSSION The only proposed ancestral vertebral configuration for the last common ancestor of hominins and panins that is consistent with our results is the modal formula demonstrated by chimpanzees and bonobos (7 cervical-13 thoracic-4 lumbar-6 sacral-3 coccygeal). Hox gene expression boundaries suggest that a rostral shift in Hox10/Hox11-mediated complexes could produce the human modal formula from the proposal ancestral and panin modal formula.
Collapse
Affiliation(s)
- Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, USA.,New York Consortium in Evolutionary Primatology, New York, USA
| | - David Pilbeam
- Department of Human Evolutionary Biology, Harvard University, Cambridge, USA
| |
Collapse
|