51
|
de Reuver R, Maelfait J. Novel insights into double-stranded RNA-mediated immunopathology. Nat Rev Immunol 2024; 24:235-249. [PMID: 37752355 DOI: 10.1038/s41577-023-00940-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
Recent progress in human and mouse genetics has transformed our understanding of the molecular mechanisms by which recognition of self double-stranded RNA (self-dsRNA) causes immunopathology. Novel mouse models recapitulate loss-of-function mutations in the RNA editing enzyme ADAR1 that are found in patients with Aicardi-Goutières syndrome (AGS) - a monogenic inflammatory disease associated with increased levels of type I interferon. Extensive analyses of the genotype-phenotype relationships in these mice have now firmly established a causal relationship between increased intracellular concentrations of endogenous immunostimulatory dsRNA and type I interferon-driven immunopathology. Activation of the dsRNA-specific immune sensor MDA5 perpetuates the overproduction of type I interferons, and chronic engagement of the interferon-inducible innate immune receptors PKR and ZBP1 by dsRNA drives immunopathology by activating an integrated stress response or by inducing excessive cell death. Biochemical and genetic data support a role for the p150 isoform of ADAR1 in the cytosol in suppressing the spontaneous, pathological response to self-dsRNA.
Collapse
Affiliation(s)
- Richard de Reuver
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jonathan Maelfait
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
52
|
Li W, Wang J, Tang C, Lv X, Zhu S. A Prospective Cohort Study of Elevated Serum NLRP1 Levels to Prognosticate Neurological Outcome After Acute Intracerebral Hemorrhage at a Single Academic Institution. Neuropsychiatr Dis Treat 2024; 20:737-753. [PMID: 38566883 PMCID: PMC10986417 DOI: 10.2147/ndt.s455049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Background Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 1 (NLRP1) participates in neuroinflammation. This study aimed to identify serum NLRP as a potential prognostic biomarker of acute intracerebral hemorrhage (ICH). Methods This prospective cohort study enrolled 145 patients with supratentorial ICH and 51 healthy controls. Serum NLRP1 levels were quantified on admission of all 145 patients, on days 1, 3, 5, 7, and 10 after stroke in 51 of 145 patients and at entry into the study of controls. Poststroke 6-month modified Rankin Scale (mRS) scores of 3-6 signified a poor prognosis. Results Compared to controls, patients had prominently increased serum NLRP1 levels until day 10 after ICH, with the highest levels at days 1 and 3. Serum NLRP1 levels were independently correlated with National Institutes of Health Stroke Scale (NIHSS) scores, hematoma volume and six-month mRS scores, and independently predicted six-month bad prognosis. A linear relationship was observed between serum NLRP1 levels and the risk of poor prognosis in a restricted cubic spline. Under the receiver operating characteristic (ROC) curve, serum NLRP levels efficiently discriminated poor prognosis. Serum NLRP1, NIHSS, and hematoma volume were merged into a prognosis prediction model, which was portrayed using a nomogram. Good performance of the model was verified using calibration curve, decision curve, and ROC curve. Conclusion Serum NLRP1 levels are elevated during the early period following ICH and are independently related to hemorrhagic severity and poor prognosis, suggesting that serum NLRP1 may represent a promising prognostic biomarker of ICH.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurosurgery, First People’s Hospital of Linping District, Hangzhou, People’s Republic of China
- Department of Neurosurgery, Linping Campus, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jun Wang
- Department of Neurosurgery, First People’s Hospital of Linping District, Hangzhou, People’s Republic of China
- Department of Neurosurgery, Linping Campus, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Chao Tang
- Department of Neurosurgery, First People’s Hospital of Linping District, Hangzhou, People’s Republic of China
- Department of Neurosurgery, Linping Campus, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xuan Lv
- Department of Neurosurgery, First People’s Hospital of Linping District, Hangzhou, People’s Republic of China
- Department of Neurosurgery, Linping Campus, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Suijun Zhu
- Department of Neurosurgery, First People’s Hospital of Linping District, Hangzhou, People’s Republic of China
- Department of Neurosurgery, Linping Campus, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
53
|
Chen H, Jian Z, Xu T, Xu L, Deng L, Shao L, Zhang L, He L, Li Y, Zhu L. Advances in the mechanism of inflammasomes activation in herpes virus infection. Front Immunol 2024; 15:1346878. [PMID: 38590522 PMCID: PMC10999540 DOI: 10.3389/fimmu.2024.1346878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Herpesviruses, prevalent DNA viruses with a double-stranded structure, establish enduring infections and play a part in various diseases. Despite their deployment of multiple tactics to evade the immune system, both localized and systemic inflammatory responses are triggered by the innate immune system's recognition of them. Recent progress has offered more profound understandings of the mechanisms behind the activation of the innate immune system by herpesviruses, specifically through inflammatory signaling. This process encompasses the initiation of an intracellular nucleoprotein complex, the inflammasome associated with inflammation.Following activation, proinflammatory cytokines such as IL-1β and IL-18 are released by the inflammasome, concurrently instigating a programmed pathway for cell death. Despite the structural resemblances between herpesviruses, the distinctive methods of inflammatory activation and the ensuing outcomes in diseases linked to the virus exhibit variations.The objective of this review is to emphasize both the similarities and differences in the mechanisms of inflammatory activation among herpesviruses, elucidating their significance in diseases resulting from these viral infections.Additionally, it identifies areas requiring further research to comprehensively grasp the impact of this crucial innate immune signaling pathway on the pathogenesis of these prevalent viruses.
Collapse
Affiliation(s)
- Hourui Chen
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lina Shao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leyi Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Youyou Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
54
|
He H, Li Y, Chen Y, Chen J, Li Z, Li L, Shi D, Zhang X, Shi H, Xue M, Feng L. NLRP1 restricts porcine deltacoronavirus infection via IL-11 inhibiting the phosphorylation of the ERK signaling pathway. J Virol 2024; 98:e0198223. [PMID: 38411106 PMCID: PMC10949457 DOI: 10.1128/jvi.01982-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
Continuously emerging highly pathogenic coronaviruses remain a major threat to human and animal health. Porcine deltacoronavirus (PDCoV) is a newly emerging enterotropic swine coronavirus that causes large-scale outbreaks of severe diarrhea disease in piglets. Unlike other porcine coronaviruses, PDCoV has a wide range of species tissue tropism, including primary human cells, which poses a significant risk of cross-species transmission. Nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain-containing 1 (NLRP1) has a key role in linking host innate immunity to microbes and the regulation of inflammatory pathways. We now report a role for NLRP1 in the control of PDCoV infection. Overexpression of NLRP1 remarkably suppressed PDCoV infection, whereas knockout of NLRP1 led to a significant increase in PDCoV replication. A mechanistic study revealed that NLRP1 suppressed PDCoV replication in cells by upregulating IL-11 expression, which in turn inhibited the phosphorylation of the ERK signaling pathway. Furthermore, the ERK phosphorylation inhibitor U0126 effectively hindered PDCoV replication in pigs. Together, our results demonstrated that NLRP1 exerted an anti-PDCoV effect by IL-11-mediated inhibition of the phosphorylation of the ERK signaling pathway, providing a novel antiviral signal axis of NLRP1-IL-11-ERK. This study expands our understanding of the regulatory network of NLRP1 in the host defense against virus infection and provides a new insight into the treatment of coronaviruses and the development of corresponding drugs.IMPORTANCECoronavirus, which mainly infects gastrointestinal and respiratory epithelial cells in vivo, poses a huge threat to both humans and animals. Although porcine deltacoronavirus (PDCoV) is known to primarily cause fatal diarrhea in piglets, reports detected in plasma samples from Haitian children emphasize the potential risk of animal-to-human spillover. Finding effective therapeutics against coronaviruses is crucial for controlling viral infection. Nucleotide-binding oligomerization-like receptor (NLR) family pyrin domain-containing 1 (NLRP1), a key regulatory factor in the innate immune system, is highly expressed in epithelial cells and associated with the pathogenesis of viruses. We demonstrate here that NLRP1 inhibits the infection of the intestinal coronavirus PDCoV through IL-11-mediated phosphorylation inhibition of the ERK signaling pathway. Furthermore, the ERK phosphorylation inhibitor can control the infection of PDCoV in pigs. Our study emphasizes the importance of NLRP1 as an immune regulatory factor and may open up new avenues for the treatment of coronavirus infection.
Collapse
Affiliation(s)
- Haojie He
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yunyan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jianfei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Zhongyuan Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Liang Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Da Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Hongyan Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Mei Xue
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
55
|
Shao S, Sun Z, Chu M, Chen J, Cao T, Swindell WR, Bai Y, Li Q, Ma J, Zhu Z, Schuler A, Helfrich Y, Billi AC, Li Z, Hao J, Xiao C, Dang E, Gudjonsson JE, Wang G. Formylpeptide receptor 1 contributes to epidermal barrier dysfunction-induced skin inflammation through NOD-like receptor C4-dependent keratinocyte activation. Br J Dermatol 2024; 190:536-548. [PMID: 37979162 DOI: 10.1093/bjd/ljad455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/17/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Skin barrier dysfunction may both initiate and aggravate skin inflammation. However, the mechanisms involved in the inflammation process remain largely unknown. OBJECTIVES We sought to determine how skin barrier dysfunction enhances skin inflammation and molecular mechanisms. METHODS Skin barrier defect mice were established by tape stripping or topical use of acetone on wildtype mice, or filaggrin deficiency. RNA-Seq was employed to analyse the differentially expressed genes in mice with skin barrier defects. Primary human keratinocytes were transfected with formylpeptide receptor (FPR)1 or protein kinase R-like endoplasmic reticulum (ER) kinase (PERK) small interfering RNA to examine the effects of these gene targets. The expressions of inflammasome NOD-like receptor (NLR)C4, epidermal barrier genes and inflammatory mediators were evaluated. RESULTS Mechanical (tape stripping), chemical (acetone) or genetic (filaggrin deficiency) barrier disruption in mice amplified the expression of proinflammatory genes, with transcriptomic profiling revealing overexpression of formylpeptide receptor (Fpr1) in the epidermis. Treatment with the FPR1 agonist fMLP in keratinocytes upregulated the expression of the NLRC4 inflammasome and increased interleukin-1β secretion through modulation of ER stress via the PERK-eIF2α-C/EBP homologous protein pathway. The activation of the FPR1-NLRC4 axis was also observed in skin specimens from old healthy individuals with skin barrier defect or elderly mice. Conversely, topical administration with a FPR1 antagonist, or Nlrc4 silencing, led to the normalization of barrier dysfunction and alleviation of inflammatory skin responses in vivo. CONCLUSIONS In summary, our findings show that the FPR1-NLRC4 inflammasome axis is activated upon skin barrier disruption and may explain exaggerated inflammatory responses that are observed in disease states characterized by epidermal dysfunction. Pharmacological inhibition of FPR1 or NLRC4 represents a potential therapeutic target.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Dermatology, Xijing Hospital
| | | | | | | | - Tianyu Cao
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shannxi, 710032, China
| | - William R Swindell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yaxing Bai
- Department of Dermatology, Xijing Hospital
| | | | - Jingyi Ma
- Department of Dermatology, Xijing Hospital
| | | | - Andrew Schuler
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yolanda Helfrich
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhiguo Li
- Department of Dermatology, Xijing Hospital
| | | | | | - Erle Dang
- Department of Dermatology, Xijing Hospital
| | | | - Gang Wang
- Department of Dermatology, Xijing Hospital
| |
Collapse
|
56
|
Singh R, Wu Y, Herrero Del Valle A, Leigh KE, Mong S, Cheng MTK, Ferguson BJ, Modis Y. Contrasting functions of ATP hydrolysis by MDA5 and LGP2 in viral RNA sensing. J Biol Chem 2024; 300:105711. [PMID: 38309507 PMCID: PMC10909783 DOI: 10.1016/j.jbc.2024.105711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
Cytosolic long dsRNA, among the most potent proinflammatory signals, is recognized by melanoma differentiation-associated protein 5 (MDA5). MDA5 binds dsRNA cooperatively forming helical filaments. ATP hydrolysis by MDA5 fulfills a proofreading function by promoting dissociation of shorter endogenous dsRNs from MDA5 while allowing longer viral dsRNAs to remain bound leading to activation of interferon-β responses. Here, we show that adjacent MDA5 subunits in MDA5-dsRNA filaments hydrolyze ATP cooperatively, inducing cooperative filament disassembly. Consecutive rounds of ATP hydrolysis amplify the filament footprint, displacing tightly bound proteins from dsRNA. Our electron microscopy and biochemical assays show that LGP2 binds to dsRNA at internal binding sites through noncooperative ATP hydrolysis. Unlike MDA5, LGP2 has low nucleic acid selectivity and can hydrolyze GTP and CTP as well as ATP. Binding of LGP2 to dsRNA promotes nucleation of MDA5 filament assembly resulting in shorter filaments. Molecular modeling identifies an internally bound MDA5-LGP2-RNA complex, with the LGP2 C-terminal tail forming the key contacts with MDA5. These contacts are specifically required for NTP-dependent internal RNA binding. We conclude that NTPase-dependent binding of LGP2 to internal dsRNA sites complements NTPase-independent binding to dsRNA ends, via distinct binding modes, to increase the number and signaling output of MDA5-dsRNA complexes.
Collapse
Affiliation(s)
- Rahul Singh
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Yuan Wu
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Alba Herrero Del Valle
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kendra E Leigh
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sai Mong
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Mark T K Cheng
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Brian J Ferguson
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
57
|
Que X, Zheng S, Song Q, Pei H, Zhang P. Fantastic voyage: The journey of NLRP3 inflammasome activation. Genes Dis 2024; 11:819-829. [PMID: 37692521 PMCID: PMC10491867 DOI: 10.1016/j.gendis.2023.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/07/2023] [Indexed: 09/12/2023] Open
Abstract
NLRP3 inflammasome, an intracellular multiprotein complex, can be activated by a range of pathogenic microbes or endogenous hazardous chemicals. Its activation results in the release of cytokines such as IL-1β and IL-18, as well as Gasdermin D which eventually causes pyroptosis. The activation of NLRP3 inflammasome is under strict control and regulation by numerous pathways and mechanisms. Its excessive activation can lead to a persistent inflammatory response, which is linked to the onset and progression of severe illnesses. Recent studies have revealed that the subcellular localization of NLRP3 changes significantly during the activation process. In this review, we review the current understanding of the molecular mechanism of NLRP3 inflammasome activation, focusing on the subcellular localization of NLRP3 and the associated regulatory mechanisms. We aim to provide a comprehensive understanding of the dynamic transportation, activation, and degradation processes of NLRP3.
Collapse
Affiliation(s)
- Xiangyong Que
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
58
|
Zhang C, Huang W, Niu W, Yang H, Zheng Y, Gao X, Qiu X. Five genes identified as prognostic markers for colorectal cancer through the integration of genome-wide association study and expression quantitative trait loci data. Per Med 2024; 21:103-116. [PMID: 38380524 DOI: 10.2217/pme-2023-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Background: Colorectal cancer (CRC) is a prominent form of cancer globally, ranking second in terms of prevalence and serving as a leading cause of cancer-related deaths, but the underlying biological interpretation remains largely unknown. Methods: We used the summary data-based Mendelian randomization method to integrate CRC genome-wide association studies (ncase = 7062; ncontrol = 195,745) and expression quantitative trait loci summary data in peripheral whole blood (Consortium for Architecture of Gene Expression: n = 2765; Genotype-Tissue Expression [v8]: n = 755) and colon tissue (colon-transverse: n = 406; colon-sigmoid: n = 373) and identified related genes. Results: Genes ABTB1, CYP21A2, NLRP1, PHKG1 and PIP5K1C have emerged as significant prognostic markers for CRC patient survival. Functional analysis revealed their involvement in cancer cell migration and invasion mechanisms, providing valuable insights for the development of future anti-CRC drugs. Conclusion: We successfully identified five CRC risk genes, providing new insights and research directions for the effective mechanisms of CRC.
Collapse
Affiliation(s)
- Cuizhen Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wenjie Huang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wanjie Niu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Huiying Yang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yingyi Zheng
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xuan Gao
- Outpatient and Emergency Management Office, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
59
|
Stergiou IE, Tsironis C, Papadakos SP, Tsitsilonis OE, Dimopoulos MA, Theocharis S. Unraveling the Role of the NLRP3 Inflammasome in Lymphoma: Implications in Pathogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:2369. [PMID: 38397043 PMCID: PMC10889189 DOI: 10.3390/ijms25042369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammasomes are multimeric protein complexes, sensors of intracellular danger signals, and crucial components of the innate immune system, with the NLRP3 inflammasome being the best characterized among them. The increasing scientific interest in the mechanisms interconnecting inflammation and tumorigenesis has led to the study of the NLRP3 inflammasome in the setting of various neoplasms. Despite a plethora of data regarding solid tumors, NLRP3 inflammasome's implication in the pathogenesis of hematological malignancies only recently gained attention. In this review, we investigate its role in normal lymphopoiesis and lymphomagenesis. Considering that lymphomas comprise a heterogeneous group of hematologic neoplasms, both tumor-promoting and tumor-suppressing properties were attributed to the NLRP3 inflammasome, affecting neoplastic cells and immune cells in the tumor microenvironment. NLRP3 inflammasome-related proteins were associated with disease characteristics, response to treatment, and prognosis. Few studies assess the efficacy of NLRP3 inflammasome therapeutic targeting with encouraging results, though most are still at the preclinical level. Further understanding of the mechanisms regulating NLRP3 inflammasome activation during lymphoma development and progression can contribute to the investigation of novel treatment approaches to cover unmet needs in lymphoma therapeutics.
Collapse
Affiliation(s)
- Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (C.T.)
| | - Christos Tsironis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (C.T.)
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| | - Ourania E. Tsitsilonis
- Flow Cytometry Unit, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Meletios Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 11528 Athens, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| |
Collapse
|
60
|
Calabrese L, Fiocco Z, Mellett M, Aoki R, Rubegni P, French LE, Satoh TK. Role of the NLRP1 inflammasome in skin cancer and inflammatory skin diseases. Br J Dermatol 2024; 190:305-315. [PMID: 37889986 DOI: 10.1093/bjd/ljad421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Inflammasomes are cytoplasmic protein complexes that play a crucial role in protecting the host against pathogenic and sterile stressors by initiating inflammation. Upon activation, these complexes directly regulate the proteolytic processing and activation of proinflammatory cytokines interleukin (IL)-1β and IL-18 to induce a potent inflammatory response, and induce a programmed form of cell death called pyroptosis to expose intracellular pathogens to the surveillance of the immune system, thus perpetuating inflammation. There are various types of inflammasome complexes, with the NLRP1 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-1) inflammasome being the first one identified and currently recognized as the predominant inflammasome sensor protein in human keratinocytes. Human NLRP1 exhibits a unique domain structure, containing both an N-terminal pyrin (PYD) domain and an effector C-terminal caspase recruitment domain (CARD). It can be activated by diverse stimuli, such as viruses, ultraviolet B radiation and ribotoxic stress responses. Specific mutations in NLRP1 or related genes have been associated with rare monogenic skin disorders, such as multiple self-healing palmoplantar carcinoma; familial keratosis lichenoides chronica; autoinflammation with arthritis and dyskeratosis; and dipeptidyl peptidase 9 deficiency. Recent research breakthroughs have also highlighted the involvement of dysfunctions in the NLRP1 pathway in a handful of seemingly unrelated dermatological conditions. These range from monogenic autoinflammatory diseases to polygenic autoimmune diseases such as vitiligo, psoriasis, atopic dermatitis and skin cancer, including squamous cell carcinoma, melanoma and Kaposi sarcoma. Additionally, emerging evidence implicates NLRP1 in systemic lupus erythematosus, pemphigus vulgaris, Addison disease, Papillon-Lefèvre syndrome and leprosy. The aim of this review is to shed light on the implications of pathological dysregulation of the NLRP1 inflammasome in skin diseases and investigate the potential rationale for targeting this pathway as a future therapeutic approach.
Collapse
Affiliation(s)
- Laura Calabrese
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
- Institute of Dermatology, Catholic University of the Sacred Heart, Rome, Italy
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Zeno Fiocco
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Rui Aoki
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Pietro Rubegni
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Takashi K Satoh
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| |
Collapse
|
61
|
Liu S, He M, Jiang J, Duan X, Chai B, Zhang J, Tao Q, Chen H. Triggers for the onset and recurrence of psoriasis: a review and update. Cell Commun Signal 2024; 22:108. [PMID: 38347543 PMCID: PMC10860266 DOI: 10.1186/s12964-023-01381-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/02/2023] [Indexed: 02/15/2024] Open
Abstract
Psoriasis is an immune-mediated inflammatory skin disease, involving a complex interplay between genetic and environmental factors. Previous studies have demonstrated that genetic factors play a major role in the pathogenesis of psoriasis. However, non-genetic factors are also necessary to trigger the onset and recurrence of psoriasis in genetically predisposed individuals, which include infections, microbiota dysbiosis of the skin and gut, dysregulated lipid metabolism, dysregulated sex hormones, and mental illness. Psoriasis can also be induced by other environmental triggers, such as skin trauma, unhealthy lifestyles, and medications. Understanding how these triggers play a role in the onset and recurrence of psoriasis provides insights into psoriasis pathogenesis, as well as better clinical administration. In this review, we summarize the triggers for the onset and recurrence of psoriasis and update the current evidence on the underlying mechanism of how these factors elicit the disease. Video Abstract.
Collapse
Grants
- No.82173423, No.81974475, No.82103731 the National Natural Science Foundation of China
- No.82173423, No.81974475, No.82103731 the National Natural Science Foundation of China
- No.82173423, No.81974475, No.82103731 the National Natural Science Foundation of China
- Basic Research Project, No. JCYJ20190809103805589 Shenzhen Natural Science Foundation
- Basic Research Project, No. JCYJ20190809103805589 Shenzhen Natural Science Foundation
- Basic Research Project, No. JCYJ20190809103805589 Shenzhen Natural Science Foundation
- Key Project, No.2019003 Shenzhen Nanshan District Science and Technology Project
- Key Project, No.2019003 Shenzhen Nanshan District Science and Technology Project
- Key Project, No.2019003 Shenzhen Nanshan District Science and Technology Project
Collapse
Affiliation(s)
- Suwen Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengwen He
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Jian Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoru Duan
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bao Chai
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Jingyu Zhang
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Qingxiao Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| |
Collapse
|
62
|
Sievers BL, Cheng MTK, Csiba K, Meng B, Gupta RK. SARS-CoV-2 and innate immunity: the good, the bad, and the "goldilocks". Cell Mol Immunol 2024; 21:171-183. [PMID: 37985854 PMCID: PMC10805730 DOI: 10.1038/s41423-023-01104-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
An ancient conflict between hosts and pathogens has driven the innate and adaptive arms of immunity. Knowledge about this interplay can not only help us identify biological mechanisms but also reveal pathogen vulnerabilities that can be leveraged therapeutically. The humoral response to SARS-CoV-2 infection has been the focus of intense research, and the role of the innate immune system has received significantly less attention. Here, we review current knowledge of the innate immune response to SARS-CoV-2 infection and the various means SARS-CoV-2 employs to evade innate defense systems. We also consider the role of innate immunity in SARS-CoV-2 vaccines and in the phenomenon of long COVID.
Collapse
Affiliation(s)
| | - Mark T K Cheng
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kata Csiba
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bo Meng
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
63
|
Sharma P, Hoorn D, Aitha A, Breier D, Peer D. The immunostimulatory nature of mRNA lipid nanoparticles. Adv Drug Deliv Rev 2024; 205:115175. [PMID: 38218350 DOI: 10.1016/j.addr.2023.115175] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024]
Abstract
mRNA-Lipid nanoparticles (LNPs) are at the forefront of global medical research. With the development of mRNA-LNP vaccines to combat the COVID-19 pandemic, the clinical potential of this platform was unleashed. Upon administering 16 billion doses that protected billions of people, it became clear that a fraction of them witnessed mild and in some cases even severe adverse effects. Therefore, it is paramount to define the safety along with the therapeutic efficacy of the mRNA-LNP platform for the successful translation of new genetic medicines based on this technology. While mRNA was the effector molecule of this platform, the ionizable lipid component of the LNPs played an indispensable role in its success. However, both of these components possess the ability to induce undesired immunostimulation, which is an area that needs to be addressed systematically. The immune cell agitation caused by this platform is a two-edged sword as it may prove beneficial for vaccination but detrimental to other applications. Therefore, a key challenge in advancing the mRNA-LNP drug delivery platform from bench to bedside is understanding the immunostimulatory behavior of these components. Herein, we provide a detailed overview of the structural modifications and immunogenicity of synthetic mRNA. We discuss the effect of ionizable lipid structure on LNP functionality and offer a mechanistic overview of the ability of LNPs to elicit an immune response. Finally, we shed some light on the current status of this technology in clinical trials and discuss a few challenges to be addressed to advance the field.
Collapse
Affiliation(s)
- Preeti Sharma
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Daniek Hoorn
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Anjaiah Aitha
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dor Breier
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
64
|
Luan X, Wang L, Song G, Zhou W. Innate immune responses to RNA: sensing and signaling. Front Immunol 2024; 15:1287940. [PMID: 38343534 PMCID: PMC10854198 DOI: 10.3389/fimmu.2024.1287940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Nucleic acids are among the most essential PAMPs (pathogen-associated molecular patterns). Animals have evolved numerous sensors to recognize nucleic acids and trigger immune signaling against pathogen replication, cellular stress and cancer. Many sensor proteins (e.g., cGAS, AIM2, and TLR9) recognize the molecular signature of infection or stress and are responsible for the innate immune response to DNA. Remarkably, recent evidence demonstrates that cGAS-like receptors acquire the ability to sense RNA in some forms of life. Compared with the nucleic-acid sensing by cGAS, innate immune responses to RNA are based on various RNA sensors, including RIG-I, MDA5, ADAR1, TLR3/7/8, OAS1, PKR, NLRP1/6, and ZBP1, via a broad-spectrum signaling axis. Importantly, new advances have brought to light the potential clinical application of targeting these signaling pathways. Here, we highlight the latest discoveries in the field. We also summarize the activation and regulatory mechanisms of RNA-sensing signaling. In addition, we discuss how RNA sensing is tightly controlled in cells and why the disruption of immune homeostasis is linked to disease.
Collapse
Affiliation(s)
- Xiaohan Luan
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Guangji Song
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wen Zhou
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
65
|
Zaidi AK, Singh RB, A A Rizvi S, Dehgani-Mobaraki P, Palladino N. COVID-19 pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 202:67-112. [PMID: 38237991 DOI: 10.1016/bs.pmbts.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The pathogenesis of COVID-19 involves a complex interplay between host factors and the SARS-CoV-2 virus, leading to a multitude of clinical manifestations beyond the respiratory system. This chapter provides an overview of the risk factors, genetic predisposition, and multisystem manifestations of COVID-19, shedding light on the underlying mechanisms that contribute to extrapulmonary manifestations. The chapter discusses the direct invasion of SARS-CoV-2 into various organs as well as the indirect mechanisms such as dysregulation of the renin-angiotensin-aldosterone system (RAAS), immune response dysfunctions within the innate and adaptive immune systems, endothelial damage, and immunothrombosis. Furthermore, the multisystem manifestations of COVID-19 across different organ systems, including the cardiovascular, renal, gastrointestinal, hepatobiliary, nervous, endocrine and metabolic, ophthalmic, ear-nose-throat, reproductive, hematopoietic, and immune systems are discussed in detail. Each system exhibits unique manifestations that contribute to the complexity of the disease.
Collapse
Affiliation(s)
| | - Rohan Bir Singh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States; Department of Population, Policy and Practice, Greater Ormond Street Institute of Child Health, University College London, United Kingdom; Discipline of Ophthalmology and Visual Sciences, Adelaide Medical School, University of Adelaide, Australia
| | - Syed A A Rizvi
- College of Biomedical Sciences, Larkin University, Miami, Florida, United States.
| | - Puya Dehgani-Mobaraki
- Founder and President, Associazione Naso Sano, Ringgold Institution ID 567754, San Mariano, Italy.
| | | |
Collapse
|
66
|
Matico RE, Yu X, Miller R, Somani S, Ricketts MD, Kumar N, Steele RA, Medley Q, Berger S, Faustin B, Sharma S. Structural basis of the human NAIP/NLRC4 inflammasome assembly and pathogen sensing. Nat Struct Mol Biol 2024; 31:82-91. [PMID: 38177670 PMCID: PMC10803261 DOI: 10.1038/s41594-023-01143-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/28/2023] [Indexed: 01/06/2024]
Abstract
The NLR family caspase activation and recruitment domain-containing 4 (NLRC4) inflammasome is a critical cytosolic innate immune machine formed upon the direct sensing of bacterial infection and in response to cell stress during sterile chronic inflammation. Despite its major role in instigating the subsequent host immune response, a more complete understanding of the molecular events in the formation of the NLRC4 inflammasome in humans is lacking. Here we identify Bacillus thailandensis type III secretion system needle protein (Needle) as a potent trigger of the human NLR family apoptosis inhibitory protein (NAIP)/NLRC4 inflammasome complex formation and determine its structural features by cryogenic electron microscopy. We also provide a detailed understanding of how type III secretion system pathogen components are sensed by human NAIP to form a cascade of NLRC4 protomer through a critical lasso-like motif, a 'lock-key' activation model and large structural rearrangement, ultimately forming the full human NLRC4 inflammasome. These results shed light on key regulatory mechanisms specific to the NLRC4 inflammasome assembly, and the innate immune modalities of pathogen sensing in humans.
Collapse
Affiliation(s)
- Rosalie E Matico
- Structural and Protein Sciences, Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| | - Xiaodi Yu
- Structural and Protein Sciences, Johnson & Johnson Innovative Medicine, Spring House, PA, USA.
| | - Robyn Miller
- Structural and Protein Sciences, Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| | - Sandeep Somani
- In Silico Discovery Sciences, Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| | - M Daniel Ricketts
- Structural and Protein Sciences, Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| | - Nikit Kumar
- Structural and Protein Sciences, Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| | - Ruth A Steele
- Structural and Protein Sciences, Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| | - Quintus Medley
- Discovery Immunology, Johnson & Johnson Innovative Medicine, Cambridge, MA, USA
| | - Scott Berger
- Discovery Immunology, Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| | - Benjamin Faustin
- Discovery Immunology, Johnson & Johnson Innovative Medicine, San Diego, CA, USA
| | - Sujata Sharma
- Structural and Protein Sciences, Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| |
Collapse
|
67
|
Church KA, Cardona AE, Hopp SC. Roles in Innate Immunity. ADVANCES IN NEUROBIOLOGY 2024; 37:263-286. [PMID: 39207697 DOI: 10.1007/978-3-031-55529-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are best known as the resident phagocytes of the central nervous system (CNS). As a resident brain immune cell population, microglia play key roles during the initiation, propagation, and resolution of inflammation. The discovery of resident adaptive immune cells in the CNS has unveiled a relationship between microglia and adaptive immune cells for CNS immune-surveillance during health and disease. The interaction of microglia with elements of the peripheral immune system and other CNS resident cells mediates a fine balance between neuroprotection and tissue damage. In this chapter, we highlight the innate immune properties of microglia, with a focus on how pattern recognition receptors, inflammatory signaling cascades, phagocytosis, and the interaction between microglia and adaptive immune cells regulate events that initiate an inflammatory or neuroprotective response within the CNS that modulates immune-mediated disease exacerbation or resolution.
Collapse
Affiliation(s)
- Kaira A Church
- Department of Molecular Microbiology & Immunology, The University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Astrid E Cardona
- Department of Molecular Microbiology & Immunology, The University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Sarah C Hopp
- Department of Pharmacology, Biggs Institute for Alzheimer's and Neurodegenerative Disease, The University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
68
|
Guo Z, Su Z, Wei Y, Zhang X, Hong X. Pyroptosis in glioma: Current management and future application. Immunol Rev 2024; 321:152-168. [PMID: 38063042 DOI: 10.1111/imr.13294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Glioma, the predominant form of central nervous system (CNS) malignancies, presents a significant challenge due to its high prevalence and low 5-year survival rate. The efficacy of current treatment methods is limited by the presence of the blood-brain barrier, the immunosuppressive microenvironment, and other factors. Immunotherapy has emerged as a promising approach, as it can overcome the blood-brain barrier. A tumor's immune privilege, which is induced by an immunosuppressive environment, constricts immunotherapy's clinical impact in glioma. Pyroptosis, a programmed cell death mechanism facilitated by gasdermins, plays a significant role in the management of glioma. Its ability to initiate and regulate tumor occurrence, progression, and metastasis is well-established. However, it is crucial to note that uncontrolled or excessive cell death can result in tissue damage, acute inflammation, and cytokine release syndrome, thereby potentially promoting tumor advancement or recurrence. This paper aims to elucidate the molecular pathways involved in pyroptosis and subsequently discuss its induction in cancer therapy. In addition, the current treatment methods of glioma and the use of pyroptosis in these treatments are introduced. It is hoped to provide more ideas for the treatment of glioma.
Collapse
Affiliation(s)
- Zeshang Guo
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhenjin Su
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Ying Wei
- Department of Radiology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Xingmei Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Hong
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| |
Collapse
|
69
|
Barry K, Murphy C, Mansell A. NLRP1- A CINDERELLA STORY: a perspective of recent advances in NLRP1 and the questions they raise. Commun Biol 2023; 6:1274. [PMID: 38104185 PMCID: PMC10725483 DOI: 10.1038/s42003-023-05684-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023] Open
Abstract
NLRP1, while the first inflammasome described, has only recently begun to gain significant attention in disease pathology, inflammation research, and potentially, as a therapeutic target. Recently identified human variants provide key insights into NLRP1 biology while its unique expression in barrier cells such as keratinocytes and airway epithelial cells has aligned with new, human specific agonists. This differentiates NLRP1 from other inflammasomes such as NLRP3 and identifies it as a key therapeutic target in inflammatory diseases. Indeed, recent discoveries highlight that NLRP1 may be the predominant inflammasome in human barrier cells, its primary role akin to NLRP3, to respond to cellular stress. This review focuses on recent studies identifying new human-specific NLRP1 mechanisms of activation of, gain-of-function human variants and disease, its role in responding to cellular stress, and discuss potential advances and the therapeutic potential for NLRP1.
Collapse
Affiliation(s)
- Kristian Barry
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | | | - Ashley Mansell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
70
|
Rusetskaya NY, Loginova NY, Pokrovskaya EP, Chesovskikh YS, Titova LE. Redox regulation of the NLRP3-mediated inflammation and pyroptosis. BIOMEDITSINSKAIA KHIMIIA 2023; 69:333-352. [PMID: 38153050 DOI: 10.18097/pbmc20236906333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The review considers modern data on the mechanisms of activation and redox regulation of the NLRP3 inflammasome and gasdermins, as well as the role of selenium in these processes. Activation of the inflammasome and pyroptosis represent an evolutionarily conserved mechanism of the defense against pathogens, described for various types of cells and tissues (macrophages and monocytes, microglial cells and astrocytes, podocytes and parenchymal cells of the kidneys, periodontal tissues, osteoclasts and osteoblasts, as well as cells of the digestive and urogenital systems, etc.). Depending on the characteristics of redox regulation, the participants of NLRP3 inflammation and pyroptosis can be subdivided into 2 groups. Members of the first group block the mitochondrial electron transport chain, promote the formation of reactive oxygen species and the development of oxidative stress. This group includes granzymes, the mitochondrial antiviral signaling protein MAVS, and others. The second group includes thioredoxin interacting protein (TXNIP), erythroid-derived nuclear factor-2 (NRF2), Kelch-like ECH-associated protein 1 (Keap1), ninjurin (Ninj1), scramblase (TMEM16), inflammasome regulatory protein kinase NLRP3 (NEK7), caspase-1, gasdermins GSDM B, D and others. They have redox-sensitive domains and/or cysteine residues subjected to redox regulation, glutathionylation/deglutathionylation or other types of regulation. Suppression of oxidative stress and redox regulation of participants in NLRP3 inflammation and pyroptosis depends on the activity of the antioxidant enzymes glutathione peroxidase (GPX) and thioredoxin reductase (TRXR), containing a selenocysteine residue Sec in the active site. The expression of GPX and TRXR is regulated by NRF2 and depends on the concentration of selenium in the blood. Selenium deficiency causes ineffective translation of the Sec UGA codon, translation termination, and, consequently, synthesis of inactive selenoproteins, which can cause various types of programmed cell death: apoptosis of nerve cells and sperm, necroptosis of erythrocyte precursors, pyroptosis of infected myeloid cells, ferroptosis of T- and B-lymphocytes, kidney and pancreatic cells. In addition, suboptimal selenium concentrations in the blood (0.86 μM or 68 μg/l or less) have a significant impact on expression of more than two hundred and fifty genes as compared to the optimal selenium concentration (1.43 μM or 113 μg/l). Based on the above, we propose to consider blood selenium concentrations as an important parameter of redox homeostasis in the cell. Suboptimal blood selenium concentrations (or selenium deficiency states) should be used for assessment of the risk of developing inflammatory processes.
Collapse
Affiliation(s)
- N Yu Rusetskaya
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| | - N Yu Loginova
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| | - E P Pokrovskaya
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| | - Yu S Chesovskikh
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| | - L E Titova
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| |
Collapse
|
71
|
Oh S, Lee J, Oh J, Yu G, Ryu H, Kim D, Lee S. Integrated NLRP3, AIM2, NLRC4, Pyrin inflammasome activation and assembly drive PANoptosis. Cell Mol Immunol 2023; 20:1513-1526. [PMID: 38008850 PMCID: PMC10687226 DOI: 10.1038/s41423-023-01107-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/31/2023] [Indexed: 11/28/2023] Open
Abstract
Inflammasomes are important sentinels of innate immune defense; they sense pathogens and induce the cell death of infected cells, playing key roles in inflammation, development, and cancer. Several inflammasome sensors detect and respond to specific pathogen- and damage-associated molecular patterns (PAMPs and DAMPs, respectively) by forming a multiprotein complex with the adapters ASC and caspase-1. During disease, cells are exposed to several PAMPs and DAMPs, leading to the concerted activation of multiple inflammasomes. However, the molecular mechanisms that integrate multiple inflammasome sensors to facilitate optimal host defense remain unknown. Here, we discovered that simultaneous inflammasome activation by multiple ligands triggered multiple types of programmed inflammatory cell death, and these effects could not be mimicked by treatment with a pure ligand of any single inflammasome. Furthermore, NLRP3, AIM2, NLRC4, and Pyrin were determined to be members of a large multiprotein complex, along with ASC, caspase-1, caspase-8, and RIPK3, and this complex drove PANoptosis. Furthermore, this multiprotein complex was released into the extracellular space and retained as multiple inflammasomes. Multiple extracellular inflammasome particles could induce inflammation after their engulfment by neighboring macrophages. Collectively, our findings define a previously unknown regulatory connection and molecular interaction between inflammasome sensors, which drives the assembly of a multiprotein complex that includes multiple inflammasome sensors and cell death regulators. The discovery of critical interactions among NLRP3, AIM2, NLRC4, and Pyrin represents a new paradigm in understanding the functions of these molecules in innate immunity and inflammasome biology as well as identifying new therapeutic targets for NLRP3-, AIM2-, NLRC4- and Pyrin-mediated diseases.
Collapse
Affiliation(s)
- SuHyeon Oh
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jihye Lee
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jueun Oh
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Gyoengju Yu
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Haesun Ryu
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - SangJoon Lee
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
| |
Collapse
|
72
|
Tsukidate T, Hespen CW, Hang HC. Small molecule modulators of immune pattern recognition receptors. RSC Chem Biol 2023; 4:1014-1036. [PMID: 38033733 PMCID: PMC10685800 DOI: 10.1039/d3cb00096f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/03/2023] [Indexed: 12/02/2023] Open
Abstract
Pattern recognition receptors (PRRs) represent a re-emerging class of therapeutic targets for vaccine adjuvants, inflammatory diseases and cancer. In this review article, we summarize exciting developments in discovery and characterization of small molecule PRR modulators, focusing on Toll-like receptors (TLRs), NOD-like receptors (NLRs) and the cGAS-STING pathway. We also highlight PRRs that are currently lacking small molecule modulators and opportunities for chemical biology and therapeutic discovery.
Collapse
Affiliation(s)
- Taku Tsukidate
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
| | - Charles W Hespen
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
- Department of Immunology and Microbiology and Department of Chemistry, Scripps Research, La Jolla California 92037 USA
| |
Collapse
|
73
|
Rodriguez SMY, Petrilli V. [The NLRP1 inflammasome is a cytosolic sensor of virus]. Med Sci (Paris) 2023; 39:893-895. [PMID: 38018936 DOI: 10.1051/medsci/2023127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Affiliation(s)
| | - Virginie Petrilli
- Cancer Research Centre of Lyon, Inserm 1052, CNRS 5286, centre Léon Bérard, université de Lyon, université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
74
|
Peng T, Zhang C, Chen WJ, Zhao XF, Wu WB, Yang WJ, Liang RJ. Pyroptosis: the dawn of a new era in endometrial cancer treatment. Front Oncol 2023; 13:1277639. [PMID: 37965452 PMCID: PMC10642841 DOI: 10.3389/fonc.2023.1277639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Endometrial cancer (EC) is a malignancy of the inner epithelial lining of the uterus. While early-stage EC is often curable through surgery, the management of advanced, recurrent and metastatic EC poses significant challenges and is associated with a poor prognosis. Pyroptosis, an emerging form of programmed cell death, is characterized by the cleavage of gasdermin proteins, inducing the formation of extensive gasdermin pores in the cell membrane and the leakage of interleukin-1β (IL-1β) and interleukin-18 (IL-18), consequently causing cell swelling, lysis and death. It has been found to be implicated in the occurrence and progression of almost all tumors. Recent studies have demonstrated that regulating tumor cells pyroptosis can exploit synergies function with traditional tumor treatments. This paper provides an overview of the research progress made in molecular mechanisms of pyroptosis. It then discusses the role of pyroptosis and its components in initiation and progression of endometrial cancer, emphasizing recent insights into the underlying mechanisms and highlighting unresolved questions. Furthermore, it explores the potential value of pyroptosis in the treatment of endometrial cancer, considering its current application in tumor radiotherapy, chemotherapy, targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Tian Peng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wen-Jun Chen
- School of Nursing, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xue-Fei Zhao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Bo Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Ji Yang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruo-Jia Liang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
75
|
Kroken AR, Klein KA, Mitchell PS, Nieto V, Jedel EJ, Evans DJ, Fleiszig SMJ. Intracellular replication of Pseudomonas aeruginosa in epithelial cells requires suppression of the caspase-4 inflammasome. mSphere 2023; 8:e0035123. [PMID: 37589460 PMCID: PMC10597407 DOI: 10.1128/msphere.00351-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 08/18/2023] Open
Abstract
Pathogenesis of Pseudomonas aeruginosa infections can include bacterial survival inside epithelial cells. Previously, we showed that this involves multiple roles played by the type three secretion system (T3SS), and specifically the effector ExoS. This includes ExoS-dependent inhibition of a lytic host cell response that subsequently enables intracellular replication. Here, we studied the underlying cell death response to intracellular P. aeruginosa, comparing wild-type to T3SS mutants varying in capacity to induce cell death and that localize to different intracellular compartments. Results showed that corneal epithelial cell death induced by intracellular P. aeruginosa lacking the T3SS, which remains in vacuoles, correlated with the activation of nuclear factor-κB as measured by p65 relocalization and tumor necrosis factor alpha transcription and secretion. Deletion of caspase-4 through CRISPR-Cas9 mutagenesis delayed cell death caused by these intracellular T3SS mutants. Caspase-4 deletion also countered more rapid cell death caused by T3SS effector-null mutants still expressing the T3SS apparatus that traffic to the host cell cytoplasm, and in doing so rescued intracellular replication normally dependent on ExoS. While HeLa cells lacked a lytic death response to T3SS mutants, it was found to be enabled by interferon gamma treatment. Together, these results show that epithelial cells can activate the noncanonical inflammasome pathway to limit proliferation of intracellular P. aeruginosa, not fully dependent on bacterially driven vacuole escape. Since ExoS inhibits the lytic response, the data implicate targeting of caspase-4, an intracellular pattern recognition receptor, as another contributor to the role of ExoS in the intracellular lifestyle of P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa can exhibit an intracellular lifestyle within epithelial cells in vivo and in vitro. The type three secretion system (T3SS) effector ExoS contributes via multiple mechanisms, including extending the life of invaded host cells. Here, we aimed to understand the underlying cell death inhibited by ExoS when P. aeruginosa is intracellular. Results showed that intracellular P. aeruginosa lacking T3SS effectors could elicit rapid cell lysis via the noncanonical inflammasome pathway. Caspase-4 contributed to cell lysis even when the intracellular bacteria lacked the entire T33S and were consequently unable to escape vacuoles, representing a naturally occurring subpopulation during wild-type infection. Together, the data show the caspase-4 inflammasome as an epithelial cell defense against intracellular P. aeruginosa, and implicate its targeting as another mechanism by which ExoS preserves the host cell replicative niche.
Collapse
Affiliation(s)
- Abby R. Kroken
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
| | - Keith A. Klein
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Patrick S. Mitchell
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Vincent Nieto
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
| | - Eric J. Jedel
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
| | - David J. Evans
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
- College of Pharmacy, Touro University California, Vallejo, California, USA
| | - Suzanne M. J. Fleiszig
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
- Graduate Groups in Vision Sciences, Microbiology, and Infectious Diseases & Immunity, University of California, Berkeley, California, USA
| |
Collapse
|
76
|
Rodríguez‐Ruiz L, Lozano‐Gil JM, Naranjo‐Sánchez E, Martínez‐Balsalobre E, Martínez‐López A, Lachaud C, Blanquer M, Phung TK, García‐Moreno D, Cayuela ML, Tyrkalska SD, Pérez‐Oliva AB, Mulero V. ZAKα/P38 kinase signaling pathway regulates hematopoiesis by activating the NLRP1 inflammasome. EMBO Mol Med 2023; 15:e18142. [PMID: 37675820 PMCID: PMC10565642 DOI: 10.15252/emmm.202318142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Chronic inflammatory diseases are associated with hematopoietic lineage bias, including neutrophilia and anemia. We have recently identified that the canonical inflammasome mediates the cleavage of the master erythroid transcription factor GATA1 in hematopoietic stem and progenitor cells (HSPCs). We report here that genetic inhibition of Nlrp1 resulted in reduced number of neutrophils and increased erythrocyte counts in zebrafish larvae. We also found that the NLRP1 inflammasome in human cells was inhibited by LRRFIP1 and FLII, independently of DPP9, and both inhibitors regulated hematopoiesis. Mechanistically, erythroid differentiation resulted in ribosomal stress-induced activation of the ZAKα/P38 kinase axis which, in turn, phosphorylated and promoted the assembly of NLRP1 in both zebrafish and human. Finally, inhibition of Zaka with the FDA/EMA-approved drug Nilotinib alleviated neutrophilia in a zebrafish model of neutrophilic inflammation and promoted erythroid differentiation and GATA1 accumulation in K562 cells. In conclusion, our results reveal that the NLRP1 inflammasome regulates hematopoiesis and pave the way to develop novel therapeutic strategies for the treatment of hematopoietic alterations associated with chronic inflammatory and rare diseases.
Collapse
Affiliation(s)
- Lola Rodríguez‐Ruiz
- Departmento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
| | - Juan M Lozano‐Gil
- Departmento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
| | - Elena Naranjo‐Sánchez
- Departmento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
- Hospital Clínico Universitario Virgen de la ArrixacaMurciaSpain
| | - Elena Martínez‐Balsalobre
- Departmento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
- Hospital Clínico Universitario Virgen de la ArrixacaMurciaSpain
| | - Alicia Martínez‐López
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
| | - Christophe Lachaud
- Aix‐Marseille University, Inserm, CNRS, Institut Paoli‐Calmettes, CRCMMarseilleFrance
| | - Miguel Blanquer
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Hospital Clínico Universitario Virgen de la ArrixacaMurciaSpain
- Departamento de Medicina y Unidad de Terapia Celular y Trasplante Hematopoyético, Facultad de MedicinaUniversidad de MurciaMurciaSpain
| | - Toan K Phung
- MRC PPU, Sir James Black Centre, School of Life SciencesUniversity of DundeeDundeeUK
| | - Diana García‐Moreno
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
| | - María L Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
- Hospital Clínico Universitario Virgen de la ArrixacaMurciaSpain
| | - Sylwia D Tyrkalska
- Departmento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
| | - Ana B Pérez‐Oliva
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
77
|
Pinilla M, Mazars R, Vergé R, Gorse L, Paradis M, Suire B, Santoni K, Robinson KS, Toh GA, Prouvensier L, Leon-Icaza SA, Hessel A, Péricat D, Murris M, Guet-Revillet H, Henras A, Buyck J, Ravet E, Zhong FL, Cougoule C, Planès R, Meunier E. EEF2-inactivating toxins engage the NLRP1 inflammasome and promote epithelial barrier disruption. J Exp Med 2023; 220:e20230104. [PMID: 37642996 PMCID: PMC10465324 DOI: 10.1084/jem.20230104] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/02/2023] [Accepted: 07/14/2023] [Indexed: 08/31/2023] Open
Abstract
Human airway and corneal epithelial cells, which are critically altered during chronic infections mediated by Pseudomonas aeruginosa, specifically express the inflammasome sensor NLRP1. Here, together with a companion study, we report that the NLRP1 inflammasome detects exotoxin A (EXOA), a ribotoxin released by P. aeruginosa type 2 secretion system (T2SS), during chronic infection. Mechanistically, EXOA-driven eukaryotic elongation factor 2 (EEF2) ribosylation and covalent inactivation promote ribotoxic stress and subsequent NLRP1 inflammasome activation, a process shared with other EEF2-inactivating toxins, diphtheria toxin and cholix toxin. Biochemically, irreversible EEF2 inactivation triggers ribosome stress-associated kinases ZAKα- and P38-dependent NLRP1 phosphorylation and subsequent proteasome-driven functional degradation. Finally, cystic fibrosis cells from patients exhibit exacerbated P38 activity and hypersensitivity to EXOA-induced ribotoxic stress-dependent NLRP1 inflammasome activation, a process inhibited by the use of ZAKα inhibitors. Altogether, our results show the importance of P. aeruginosa virulence factor EXOA at promoting NLRP1-dependent epithelial damage and identify ZAKα as a critical sensor of virulence-inactivated EEF2.
Collapse
Affiliation(s)
- Miriam Pinilla
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - Raoul Mazars
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - Romain Vergé
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - Leana Gorse
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - Margaux Paradis
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - Bastien Suire
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - Karin Santoni
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - Kim Samirah Robinson
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Skin Research Institute of Singapore, Singapore, Singapore
| | - Gee Ann Toh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Skin Research Institute of Singapore, Singapore, Singapore
| | - Laure Prouvensier
- UFR Medicine and Pharmacy, INSERM U1070, University of Poitiers, Poitiers, France
| | | | - Audrey Hessel
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - David Péricat
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - Marlène Murris
- Department of Pneumology, Hospital Larrey, Toulouse, France
- University Hospital of Toulouse, Toulouse, France
| | | | - Anthony Henras
- Center of Integrative Biology, University of Toulouse, CNRS, Toulouse, France
| | - Julien Buyck
- UFR Medicine and Pharmacy, INSERM U1070, University of Poitiers, Poitiers, France
| | | | - Franklin L. Zhong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Skin Research Institute of Singapore, Singapore, Singapore
| | - Céline Cougoule
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - Rémi Planès
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
- Invivogen, Toulouse, France
| | - Etienne Meunier
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| |
Collapse
|
78
|
Zhang Z, Shibata T, Fujimura A, Kitaura J, Miyake K, Ohto U, Shimizu T. Structural basis for thioredoxin-mediated suppression of NLRP1 inflammasome. Nature 2023; 622:188-194. [PMID: 37704723 DOI: 10.1038/s41586-023-06532-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/11/2023] [Indexed: 09/15/2023]
Abstract
Inflammasome sensors detect pathogen- and danger-associated molecular patterns and promote inflammation and pyroptosis1. NLRP1 was the first inflammasome sensor to be described, and its hyperactivation is linked to autoinflammatory disease and cancer2-6. However, the mechanism underlying the activation and regulation of NLRP1 has not been clearly elucidated4,7,8. Here we identify ubiquitously expressed endogenous thioredoxin (TRX) as a binder of NLRP1 and a suppressor of the NLRP1 inflammasome. The cryo-electron microscopy structure of human NLRP1 shows NLRP1 bound to Spodoptera frugiperda TRX. Mutagenesis studies of NLRP1 and human TRX show that TRX in the oxidized form binds to the nucleotide-binding domain subdomain of NLRP1. This observation highlights the crucial role of redox-active cysteines of TRX in NLRP1 binding. Cellular assays reveal that TRX suppresses NLRP1 inflammasome activation and thus negatively regulates NLRP1. Our data identify the TRX system as an intrinsic checkpoint for innate immunity and provide opportunities for future therapeutic intervention in NLRP1 inflammasome activation targeting this system.
Collapse
Affiliation(s)
- Zhikuan Zhang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuma Shibata
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akiko Fujimura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Jiro Kitaura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
79
|
Chou WC, Jha S, Linhoff MW, Ting JPY. The NLR gene family: from discovery to present day. Nat Rev Immunol 2023; 23:635-654. [PMID: 36973360 PMCID: PMC11171412 DOI: 10.1038/s41577-023-00849-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/29/2023]
Abstract
The mammalian NLR gene family was first reported over 20 years ago, although several genes that were later grouped into the family were already known at that time. Although it is widely known that NLRs include inflammasome receptors and/or sensors that promote the maturation of caspase 1, IL-1β, IL-18 and gasdermin D to drive inflammation and cell death, the other functions of NLR family members are less well appreciated by the scientific community. Examples include MHC class II transactivator (CIITA), a master transcriptional activator of MHC class II genes, which was the first mammalian NBD-LRR-containing protein to be identified, and NLRC5, which regulates the expression of MHC class I genes. Other NLRs govern key inflammatory signalling pathways or interferon responses, and several NLR family members serve as negative regulators of innate immune responses. Multiple NLRs regulate the balance of cell death, cell survival, autophagy, mitophagy and even cellular metabolism. Perhaps the least discussed group of NLRs are those with functions in the mammalian reproductive system. The focus of this Review is to provide a synopsis of the NLR family, including both the intensively studied and the underappreciated members. We focus on the function, structure and disease relevance of NLRs and highlight issues that have received less attention in the NLR field. We hope this may serve as an impetus for future research on the conventional and non-conventional roles of NLRs within and beyond the immune system.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Michael W Linhoff
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
80
|
Wang J, Hua S, Bao H, Yuan J, Zhao Y, Chen S. Pyroptosis and inflammasomes in cancer and inflammation. MedComm (Beijing) 2023; 4:e374. [PMID: 37752941 PMCID: PMC10518439 DOI: 10.1002/mco2.374] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Nonprogrammed cell death (NPCD) and programmed cell death (PCD) are two types of cell death. Cell death is significantly linked to tumor development, medication resistance, cancer recurrence, and metastatic dissemination. Therefore, a comprehensive understanding of cell death is essential for the treatment of cancer. Pyroptosis is a kind of PCD distinct from autophagy and apoptosis in terms of the structure and function of cells. The defining features of pyroptosis include the release of an inflammatory cascade reaction and the expulsion of lysosomes, inflammatory mediators, and other cellular substances from within the cell. Additionally, it displays variations in osmotic pressure both within and outside the cell. Pyroptosis, as evidenced by a growing body of research, is critical for controlling the development of inflammatory diseases and cancer. In this paper, we reviewed the current level of knowledge on the mechanism of pyroptosis and inflammasomes and their connection to cancer and inflammatory diseases. This article presents a theoretical framework for investigating the potential of therapeutic targets in cancer and inflammatory diseases, overcoming medication resistance, establishing nanomedicines associated with pyroptosis, and developing risk prediction models in refractory cancer. Given the link between pyroptosis and the emergence of cancer and inflammatory diseases, pyroptosis-targeted treatments may be a cutting-edge treatment strategy.
Collapse
Affiliation(s)
- Jie‐Lin Wang
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Sheng‐Ni Hua
- Department of Radiation OncologyZhuhai Peoples HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Hai‐Juan Bao
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jing Yuan
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yang Zhao
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Shuo Chen
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
81
|
Guy C, Baran M, Ribó-Molina P, van den Hoogen BG, Bowie AG. Viral sensing by epithelial cells involves PKR- and caspase-3-dependent generation of gasdermin E pores. iScience 2023; 26:107698. [PMID: 37680489 PMCID: PMC10480325 DOI: 10.1016/j.isci.2023.107698] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
Viral sensing in myeloid cells involves inflammasome activation leading to gasdermin pore formation, cytokine release, and cell death. However, less is known about viral sensing in barrier epithelial cells, which are critical to the innate immune response to RNA viruses. Here, we show that poly(I:C), a mimic of viral dsRNA, is sensed by NLRP1 in human bronchial epithelial cells, leading to inflammasome-dependent gasdermin D (GSDMD) pore formation via caspase-1. DsRNA also stimulated a parallel sensing pathway via PKR which activated caspase-3 to cleave gasdermin E (GSDME) to form active pores. Influenza A virus (IAV) infection of cells caused GSDME activation, cytokine release, and cell death, in a PKR-dependent but NLRP1-independent manner, involving caspase-8 and caspase-3. Suppression of GSDMD and GSDME expression increased IAV replication. These data clarify mechanisms of gasdermin cleavage in response to viral sensing and reveal that gasdermin pore formation is intrinsically antiviral in human epithelial cells.
Collapse
Affiliation(s)
- Coralie Guy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Marcin Baran
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Pau Ribó-Molina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Andrew G. Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
82
|
Abstract
The immune system of multicellular organisms protects them from harmful microbes. To establish an infection in the face of host immune responses, pathogens must evolve specific strategies to target immune defense mechanisms. One such defense is the formation of intracellular protein complexes, termed inflammasomes, that are triggered by the detection of microbial components and the disruption of homeostatic processes that occur during bacterial infection. Formation of active inflammasomes initiates programmed cell death pathways via activation of inflammatory caspases and cleavage of target proteins. Inflammasome-activated cell death pathways such as pyroptosis lead to proinflammatory responses that protect the host. Bacterial infection has the capacity to influence inflammasomes in two distinct ways: activation and perturbation. In this review, we discuss how bacterial activities influence inflammasomes, and we discuss the consequences of inflammasome activation or evasion for both the host and pathogen.
Collapse
Affiliation(s)
- Beatrice I Herrmann
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James P Grayczyk
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Current affiliation: Oncology Discovery, Abbvie, Inc., Chicago, Illinois, USA;
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
83
|
Slaufova M, Karakaya T, Di Filippo M, Hennig P, Beer HD. The gasdermins: a pore-forming protein family expressed in the epidermis. Front Immunol 2023; 14:1254150. [PMID: 37771587 PMCID: PMC10523161 DOI: 10.3389/fimmu.2023.1254150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/24/2023] [Indexed: 09/30/2023] Open
Abstract
Gasdermins comprise a family of pore-forming proteins, which play critical roles in (auto)inflammatory diseases and cancer. They are expressed as self-inhibited precursor proteins consisting of an aminoterminal cytotoxic effector domain (NT-GSDM) and a carboxyterminal inhibitor domain (GSDM-CT) separated by an unstructured linker region. Proteolytic processing in the linker region liberates NT-GSDM, which translocates to membranes, forms oligomers, and induces membrane permeabilization, which can disturb the cellular equilibrium that can lead to cell death. Gasdermin activation and pore formation are associated with inflammation, particularly when induced by the inflammatory protease caspase-1 upon inflammasome activation. These gasdermin pores allow the release of the pro-inflammatory cytokines interleukin(IL)-1β and IL-18 and induce a lytic type of cell death, termed pyroptosis that supports inflammation, immunity, and tissue repair. However, even at the cellular level, the consequences of gasdermin activation are diverse and range from induction of programmed cell death - pyroptosis or apoptosis - to poorly characterized protective mechanisms. The specific effects of gasdermin activation can vary between species, cell types, the membrane that is being permeabilized (plasma membrane, mitochondrial membrane, etc.), and the overall biological state of the local tissue/cells. In epithelia, gasdermins seem to play crucial roles. Keratinocytes represent the main cell type of the epidermis, which is the outermost skin layer with an essential barrier function. Compared to other tissues, keratinocytes express all members of the gasdermin family, in part in a differentiation-specific manner. That raises questions regarding the specific roles of individual GSDM family members in the skin, the mechanisms and consequences of their activation, and the potential crosstalk between them. In this review, we summarize the current knowledge about gasdermins with a focus on keratinocytes and the skin and discuss the possible roles of the different family members in immunity and disease.
Collapse
Affiliation(s)
- Marta Slaufova
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Tugay Karakaya
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Michela Di Filippo
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Paulina Hennig
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
84
|
Kunze R, Fischer S, Marti HH, Preissner KT. Brain alarm by self-extracellular nucleic acids: from neuroinflammation to neurodegeneration. J Biomed Sci 2023; 30:64. [PMID: 37550658 PMCID: PMC10405513 DOI: 10.1186/s12929-023-00954-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023] Open
Abstract
Neurological disorders such as stroke, multiple sclerosis, as well as the neurodegenerative diseases Parkinson's or Alzheimer's disease are accompanied or even powered by danger associated molecular patterns (DAMPs), defined as endogenous molecules released from stressed or damaged tissue. Besides protein-related DAMPs or "alarmins", numerous nucleic acid DAMPs exist in body fluids, such as cell-free nuclear and mitochondrial DNA as well as different species of extracellular RNA, collectively termed as self-extracellular nucleic acids (SENAs). Among these, microRNA, long non-coding RNAs, circular RNAs and extracellular ribosomal RNA constitute the majority of RNA-based DAMPs. Upon tissue injury, necrosis or apoptosis, such SENAs are released from neuronal, immune and other cells predominantly in association with extracellular vesicles and may be translocated to target cells where they can induce intracellular regulatory pathways in gene transcription and translation. The majority of SENA-induced signaling reactions in the brain appear to be related to neuroinflammatory processes, often causally associated with the onset or progression of the respective disease. In this review, the impact of the diverse types of SENAs on neuroinflammatory and neurodegenerative diseases will be discussed. Based on the accumulating knowledge in this field, several specific antagonistic approaches are presented that could serve as therapeutic interventions to lower the pathological outcome of the indicated brain disorders.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Hugo H. Marti
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
85
|
Shi W, Jin M, Chen H, Wu Z, Yuan L, Liang S, Wang X, Memon FU, Eldemery F, Si H, Ou C. Inflammasome activation by viral infection: mechanisms of activation and regulation. Front Microbiol 2023; 14:1247377. [PMID: 37608944 PMCID: PMC10440708 DOI: 10.3389/fmicb.2023.1247377] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 08/24/2023] Open
Abstract
Viral diseases are the most common problems threatening human health, livestock, and poultry industries worldwide. Viral infection is a complex and competitive dynamic biological process between a virus and a host/target cell. During viral infection, inflammasomes play important roles in the host and confer defense mechanisms against the virus. Inflammasomes are polymeric protein complexes and are considered important components of the innate immune system. These immune factors recognize the signals of cell damage or pathogenic microbial infection after activation by the canonical pathway or non-canonical pathway and transmit signals to the immune system to initiate the inflammatory responses. However, some viruses inhibit the activation of the inflammasomes in order to replicate and proliferate in the host. In recent years, the role of inflammasome activation and/or inhibition during viral infection has been increasingly recognized. Therefore, in this review, we describe the biological properties of the inflammasome associated with viral infection, discuss the potential mechanisms that activate and/or inhibit NLRP1, NLRP3, and AIM2 inflammasomes by different viruses, and summarize the reciprocal regulatory effects of viral infection on the NLRP3 inflammasome in order to explore the relationship between viral infection and inflammasomes. This review will pave the way for future studies on the activation mechanisms of inflammasomes and provide novel insights for the development of antiviral therapies.
Collapse
Affiliation(s)
- Wen Shi
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mengyun Jin
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hao Chen
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | | | - Liuyang Yuan
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Si Liang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaohan Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Fareed Uddin Memon
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Changbo Ou
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| |
Collapse
|
86
|
Castro LK, Daugherty MD. Tripping the wire: sensing of viral protease activity by CARD8 and NLRP1 inflammasomes. Curr Opin Immunol 2023; 83:102354. [PMID: 37311351 PMCID: PMC10528193 DOI: 10.1016/j.coi.2023.102354] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 06/15/2023]
Abstract
Host innate immune sensors are vital for the initial detection of pathogen infection. Such sensors thus need to constantly adapt in escalating evolutionary arms races with pathogens. Recently, two inflammasome-forming proteins, CARD8 and NLRP1, have emerged as innate immune sensors for the enzymatic activity of virus-encoded proteases. When cleaved within a rapidly evolving 'tripwire' region, CARD8 and NLRP1 assemble into inflammasomes that initiate pyroptotic cell death and pro-inflammatory cytokine release as a form of effector-triggered immunity. Short motifs in the CARD8 and NLRP1 tripwires mimic the protease-specific cleavage sites of picornaviruses, coronaviruses, and HIV-1, providing virus-specific sensing that can rapidly change between closely related hosts and within the human population. Recent work highlights the evolutionary arms races between viral proteases and NLRP1 and CARD8, including insights into the mechanisms of inflammasome activation, host diversity of viral sensing, and means that viruses have evolved to avoid tripping the wire.
Collapse
Affiliation(s)
- Lennice K Castro
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Matthew D Daugherty
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
87
|
Zou Z, Zhao M, Yang Y, Xie Y, Li Z, Zhou L, Shang R, Zhou P. The role of pyroptosis in hepatocellular carcinoma. Cell Oncol (Dordr) 2023; 46:811-823. [PMID: 36864264 DOI: 10.1007/s13402-023-00787-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the main histologic type of liver cancer. It accounts for the majority of all diagnoses and deaths due to liver cancer. The induction of tumor cell death is an effective strategy to control tumor development. Pyroptosis is an inflammatory programmed cell death caused by microbial infection, accompanied by activation of inflammasomes and release of pro-inflammatory cytokines, interleukin-1β (IL-1β), and interleukin-18 (IL-18). The cleavage of gasdermins (GSDMs) promotes the occurrence of pyroptosis leading to cell swelling, lysis, and death. Accumulating evidence has indicated that pyroptosis influences the progression of HCC by regulating immune-mediated tumor cell death. Currently, some researchers hold the view that inhibition of pyroptosis-related components may prevent the incidence of HCC, but more researchers have the view that activation of pyroptosis exerts a tumor-inhibitory effect. Growing evidence indicates that pyroptosis can prevent or promote tumor development depending on the type of tumor. In this review, pyroptosis pathways and pyroptosis-related components were discussed. Next, the role of pyroptosis and its components in HCC was described. Finally, the therapeutic significance of pyroptosis in HCC was discussed.
Collapse
Affiliation(s)
- Zhimiao Zou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Minghui Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Yang Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Yalong Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Zeyang Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Liang Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Runshi Shang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Ping Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
88
|
Deng Z, Lu L, Li B, Shi X, Jin H, Hu W. The roles of inflammasomes in cancer. Front Immunol 2023; 14:1195572. [PMID: 37497237 PMCID: PMC10366604 DOI: 10.3389/fimmu.2023.1195572] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Inflammation is a key characteristic of all stages of tumor development, including tumor initiation, progression, malignant transformation, invasion, and metastasis. Inflammasomes are an important component of the inflammatory response and an indispensable part of the innate immune system. Inflammasomes regulate the nature of infiltrating immune cells by signaling the secretion of different cytokines and chemokines, thus regulating the anti-tumor immunity of the body. Inflammasome expression patterns vary across different tumor types and stages, playing different roles during tumor progression. The complex diversity of the inflammasomes is determined by both internal and external factors relating to tumor establishment and progression. Therefore, elucidating the specific effects of different inflammasomes in anti-tumor immunity is critical for promoting the discovery of inflammasome-targeting drugs. This review focuses on the structure, activation pathway, and identification methods of the NLRP3, NLRC4, NLRP1 and AIM2 inflammasomes. Herein, we also explore the role of inflammasomes in different cancers and their complex regulatory mechanisms, and discuss current and future directions for targeting inflammasomes in cancer therapy. A detailed knowledge of inflammasome function and regulation may lead to novel therapies that target the activation of inflammasomes as well as the discovery of new drug targets.
Collapse
Affiliation(s)
- Zihan Deng
- Department of Thoracic Surgery, ZhongNan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lisen Lu
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Binghui Li
- Department of Thoracic Surgery, ZhongNan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weidong Hu
- Department of Thoracic Surgery, ZhongNan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
89
|
He H, Wang W, Li L, Zhang X, Shi H, Chen J, Shi D, Xue M, Feng L. Activation of the NLRP1 Inflammasome and Its Role in Transmissible Gastroenteritis Coronavirus Infection. J Virol 2023; 97:e0058923. [PMID: 37255428 PMCID: PMC10308917 DOI: 10.1128/jvi.00589-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
The inflammasome pathway is a critical early response mechanism of the host that detects pathogens, initiates the production of inflammatory cytokines, and recruits effector cells to the infection site. Nonetheless, the mechanism of inflammasome activation in coronavirus infection and its biological functions in host defense remain unclear. Transmissible gastroenteritis virus (TGEV), a member of the genus Alphacoronavirus, is a significant pathogen that mainly infects piglets and causes intestinal inflammation and inflammatory cell infiltration. Here, we investigated the mechanism of inflammasome activation in intestinal epithelial cells (IECs) infected with TGEV. We observed a substantial increase in interleukin 1β (IL-1β) and IL-18 levels in both IECs and TGEV-infected porcine intestinal tissues. Furthermore, TGEV infection resulted in increased activation of caspase-1 and the NLRP1 (NOD-like receptor [NLR]-containing pyrin domain [PYD]) inflammasome. Our findings revealed that TGEV infection impeded the interaction between porcine NLRP1 (pNLRP1) and porcine dipeptidyl peptidases 9 (pDPP9), yet it did not reduce the expression of pDPP9. Importantly, the ZU5 domain, not the function-to-find domain (FIIND) reported in human NLRP1, was identified as the minimal domain of pNLRP1 for pDPP9 binding. In addition, the robust type I IFN expression induced by TGEV infection also upregulated pNLRP1 expression and pNLRP1 itself acts as an interferon-stimulated gene to counteract TGEV infection. Our data demonstrate that pNLRP1 has antiviral capabilities against coronavirus infection, which highlights its potential as a novel therapeutic target for coronavirus antiviral therapy. IMPORTANCE Coronavirus primarily targets the epithelial cells of the respiratory and gastrointestinal tracts, leading to damage in both humans and animals. NLRP1 is a direct sensor for RNA virus infection which is highly expressed in epithelial barrier tissues. However, until recently, the precise molecular mechanisms underlying its activation in coronavirus infection and subsequent downstream events remained unclear. In this study, we demonstrate that the alphacoronavirus TGEV induces the production of IL-1β and IL-18 and upregulates the expression of pNLRP1. Furthermore, we found that pNLRP1 can serve as an interferon-stimulated gene (ISG) to inhibit the infection of enterovirus TGEV. Our research highlights the crucial role of NLRP1 as a regulator of innate immunity in TGEV infection and shows that it may serve as a potential therapeutic target for the treatment of coronavirus infection.
Collapse
Affiliation(s)
- Haojie He
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Wenzhe Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Liang Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Hongyan Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jianfei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Da Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Mei Xue
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
90
|
Deng CH, Li TQ, Zhang W, Zhao Q, Wang Y. Targeting Inflammasome Activation in Viral Infection: A Therapeutic Solution? Viruses 2023; 15:1451. [PMID: 37515138 PMCID: PMC10384481 DOI: 10.3390/v15071451] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Inflammasome activation is exclusively involved in sensing activation of innate immunity and inflammatory response during viral infection. Accumulating evidence suggests that the manipulation of inflammasome assembly or its interaction with viral proteins are critical factors in viral pathogenesis. Results from pilot clinical trials show encouraging results of NLRP3 inflammasome suppression in reducing mortality and morbidity in SARS-CoV-2-infected patients. In this article, we summarize the up-to-date understanding of inflammasomes, including NLRP3, AIM2, NLRP1, NLRP6, and NLRC4 in various viral infections, with particular focus on RNA viruses such as SARS-CoV-2, HIV, IAV, and Zika virus and DNA viruses such as herpes simplex virus 1. We also discuss the current achievement of the mechanisms involved in viral infection-induced inflammatory response, host defense, and possible therapeutic solutions.
Collapse
Affiliation(s)
- Chuan-Han Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| | - Tian-Qi Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Av. Wai Long, Taipa, Macao 999078, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
- Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
91
|
Diarimalala RO, Wei Y, Hu D, Hu K. Inflammasomes during SARS-CoV-2 infection and development of their corresponding inhibitors. Front Cell Infect Microbiol 2023; 13:1218039. [PMID: 37360532 PMCID: PMC10288989 DOI: 10.3389/fcimb.2023.1218039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Corona Virus Disease 2019 (COVID-19) continues to be a burden for human health since its outbreak in Wuhan, China in December 2019. Recently, the emergence of new variants of concerns (VOCs) is challenging for vaccines and drugs efficiency. In severe cases, SARS-CoV-2 provokes inappropriate hyperinflammatory immune responses leading to acute respiratory distress syndrome (ARDS) and even death. This process is regulated by inflammasomes which are activated after binding of the viral spike (S) protein to cellular angiotensin-converting enzyme 2 (ACE2) receptor and triggers innate immune responses. Therefore, the formation of "cytokines storm" leads to tissue damage and organ failure. NOD-like receptor family pyrin domain containing 3 (NLRP3) is the best studied inflammasome known to be activated during SARS-CoV-2 infection. However, some studies suggest that SARS-CoV-2 infection is associated with other inflammasomes as well; such as NLRP1, absent in melanoma-2 (AIM-2), caspase-4 and -8 which were mostly found during dsRNA virus or bacteria infection. Multiple inflammasome inhibitors that exist for other non-infectious diseases have the potential to be used to treat severe SARS-CoV-2 complications. Some of them have showed quite encouraging results during pre- and clinical trials. Nevertheless, further studies are in need for the understanding and targeting of SARS-Cov-2-induced inflammasomes; mostly an update of its role during the new VOCs infection is necessary. Hence, this review highlights all reported inflammasomes involved in SARS-CoV-2 infection and their potential inhibitors including NLRP3- and Gasdermin D (GSDMD)-inhibitors. Further strategies such as immunomodulators and siRNA are also discussed. As highly related to COVID-19 severe cases, developing inflammasome inhibitors holds a promise to treat severe COVID-19 syndrome effectively and reduce mortality.
Collapse
|
92
|
Fetter T, de Graaf DM, Claus I, Wenzel J. Aberrant inflammasome activation as a driving force of human autoimmune skin disease. Front Immunol 2023; 14:1190388. [PMID: 37325658 PMCID: PMC10266227 DOI: 10.3389/fimmu.2023.1190388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Autoimmune skin diseases are understood as conditions in which the adaptive immune system with autoantigen-specific T cells and autoantibody-producing B cells reacting against self-tissues plays a crucial pathogenic role. However, there is increasing evidence that inflammasomes, which are large multiprotein complexes that were first described 20 years ago, contribute to autoimmune disease progression. The inflammasome and its contribution to the bioactivation of interleukins IL-1β and IL-18 play an essential role in combating foreign pathogens or tissue damage, but may also act as a pathogenic driver of myriad chronic inflammatory diseases when dysfunctionally regulated. Inflammasomes containing the NOD-like receptor family members NLRP1 and NLRP3 as well as the AIM2-like receptor family member AIM2 have been increasingly investigated in inflammatory skin conditions. In addition to autoinflammatory diseases, which are often associated with skin involvement, the aberrant activation of the inflammasome has also been implied in autoimmune diseases that can either affect the skin besides other organs such as systemic lupus erythematosus and systemic sclerosis or are isolated to the skin in humans. The latter include, among others, the T-cell mediated disorders vitiligo, alopecia areata, lichen planus and cutaneous lupus erythematosus as well as the autoantibody-driven blistering skin disease bullous pemphigoid. Some diseases are characterized by both autoinflammatory and autoimmune responses such as the chronic inflammatory skin disease psoriasis. Further insights into inflammasome dysregulation and associated pathways as well as their role in forming adaptive immune responses in human autoimmune skin pathology could potentially offer a new field of therapeutic options in the future.
Collapse
Affiliation(s)
- Tanja Fetter
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | | | - Isabelle Claus
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Joerg Wenzel
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
93
|
Barnett KC, Li S, Liang K, Ting JPY. A 360° view of the inflammasome: Mechanisms of activation, cell death, and diseases. Cell 2023; 186:2288-2312. [PMID: 37236155 PMCID: PMC10228754 DOI: 10.1016/j.cell.2023.04.025] [Citation(s) in RCA: 201] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Inflammasomes are critical sentinels of the innate immune system that respond to threats to the host through recognition of distinct molecules, known as pathogen- or damage-associated molecular patterns (PAMPs/DAMPs), or disruptions of cellular homeostasis, referred to as homeostasis-altering molecular processes (HAMPs) or effector-triggered immunity (ETI). Several distinct proteins nucleate inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRC4/NAIP, AIM2, pyrin, and caspases-4/-5/-11. This diverse array of sensors strengthens the inflammasome response through redundancy and plasticity. Here, we present an overview of these pathways, outlining the mechanisms of inflammasome formation, subcellular regulation, and pyroptosis, and discuss the wide-reaching effects of inflammasomes in human disease.
Collapse
Affiliation(s)
- Katherine C Barnett
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Sirui Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kaixin Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
94
|
Wang M, Yu F, Chang W, Zhang Y, Zhang L, Li P. Inflammasomes: a rising star on the horizon of COVID-19 pathophysiology. Front Immunol 2023; 14:1185233. [PMID: 37251383 PMCID: PMC10213254 DOI: 10.3389/fimmu.2023.1185233] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a contagious respiratory virus that is the cause of the coronavirus disease 2019 (COVID-19) pandemic which has posed a serious threat to public health. COVID-19 is characterized by a wide spectrum of clinical manifestations, ranging from asymptomatic infection to mild cold-like symptoms, severe pneumonia or even death. Inflammasomes are supramolecular signaling platforms that assemble in response to danger or microbial signals. Upon activation, inflammasomes mediate innate immune defense by favoring the release of proinflammatory cytokines and triggering pyroptotic cell death. Nevertheless, abnormalities in inflammasome functioning can result in a variety of human diseases such as autoimmune disorders and cancer. A growing body of evidence has showed that SARS-CoV-2 infection can induce inflammasome assembly. Dysregulated inflammasome activation and consequent cytokine burst have been associated with COVID-19 severity, alluding to the implication of inflammasomes in COVID-19 pathophysiology. Accordingly, an improved understanding of inflammasome-mediated inflammatory cascades in COVID-19 is essential to uncover the immunological mechanisms of COVID-19 pathology and identify effective therapeutic approaches for this devastating disease. In this review, we summarize the most recent findings on the interplay between SARS-CoV-2 and inflammasomes and the contribution of activated inflammasomes to COVID-19 progression. We dissect the mechanisms involving the inflammasome machinery in COVID-19 immunopathogenesis. In addition, we provide an overview of inflammasome-targeted therapies or antagonists that have potential clinical utility in COVID-19 treatment.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | | | | | | | | | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
95
|
Bharadwaj R, Lusi CF, Mashayekh S, Nagar A, Subbarao M, Kane GI, Wodzanowski KA, Brown AR, Okuda K, Monahan A, Paik D, Nandy A, Anonick MV, Goldman WE, Kanneganti TD, Orzalli MH, Grimes CL, Atukorale PU, Silverman N. Methotrexate suppresses psoriatic skin inflammation by inhibiting muropeptide transporter SLC46A2 activity. Immunity 2023; 56:998-1012.e8. [PMID: 37116499 PMCID: PMC10195032 DOI: 10.1016/j.immuni.2023.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/04/2023] [Accepted: 04/03/2023] [Indexed: 04/30/2023]
Abstract
Cytosolic innate immune sensing is critical for protecting barrier tissues. NOD1 and NOD2 are cytosolic sensors of small peptidoglycan fragments (muropeptides) derived from the bacterial cell wall. These muropeptides enter cells, especially epithelial cells, through unclear mechanisms. We previously implicated SLC46 transporters in muropeptide transport in Drosophila immunity. Here, we focused on Slc46a2, which was highly expressed in mammalian epidermal keratinocytes, and showed that it was critical for the delivery of diaminopimelic acid (DAP)-muropeptides and activation of NOD1 in keratinocytes, whereas the related transporter Slc46a3 was critical for delivering the NOD2 ligand MDP to keratinocytes. In a mouse model, Slc46a2 and Nod1 deficiency strongly suppressed psoriatic inflammation, whereas methotrexate, a commonly used psoriasis therapeutic, inhibited Slc46a2-dependent transport of DAP-muropeptides. Collectively, these studies define SLC46A2 as a transporter of NOD1-activating muropeptides, with critical roles in the skin barrier, and identify this transporter as an important target for anti-inflammatory intervention.
Collapse
Affiliation(s)
- Ravi Bharadwaj
- Program in Innate Immunity and Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Christina F Lusi
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | - Abhinit Nagar
- Program in Innate Immunity and Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Malireddi Subbarao
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Griffin I Kane
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | - Ashley R Brown
- Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Kendi Okuda
- Program in Innate Immunity and Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Amanda Monahan
- Program in Innate Immunity and Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Donggi Paik
- Program in Innate Immunity and Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Anubhab Nandy
- Program in Innate Immunity and Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - William E Goldman
- Department of Microbiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | - Megan H Orzalli
- Program in Innate Immunity and Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Prabhani U Atukorale
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Neal Silverman
- Program in Innate Immunity and Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
96
|
Kroken AR, Klein KA, Mitchell PS, Nieto V, Jedel EJ, Evans DJ, Fleiszig SMJ. Intracellular replication of Pseudomonas aeruginosa in epithelial cells requires suppression of the caspase-4 inflammasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528260. [PMID: 36824932 PMCID: PMC9948977 DOI: 10.1101/2023.02.13.528260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Pathogenesis of Pseudomonas aeruginosa infections can include bacterial survival inside epithelial cells. Previously, we showed this involves multiple roles played by the type three-secretion system (T3SS), and specifically the effector ExoS. This includes ExoS-dependent inhibition of a lytic host cell response that subsequently enables intracellular replication. Here, we studied the underlying cell death response to intracellular P. aeruginosa, comparing wild-type to T3SS mutants varying in capacity to induce cell death and that localize to different intracellular compartments. Results showed that corneal epithelial cell death induced by intracellular P. aeruginosa lacking the T3SS, which remains in vacuoles, correlated with activation of NF-κB as measured by p65 relocalization and TNFα transcription and secretion. Deletion of caspase-4 through CRISPR-Cas9 mutagenesis delayed cell death caused by these intracellular T3SS mutants. Caspase-4 deletion also countered more rapid cell death caused by T3SS effector-null mutants still expressing the TSSS apparatus that traffic to the host cell cytoplasm, and in doing so rescued intracellular replication normally dependent on ExoS. While HeLa cells lacked a lytic death response to T3SS mutants, it was found to be enabled by interferon gamma treatment. Together, these results show that epithelial cells can activate the noncanonical inflammasome pathway to limit proliferation of intracellular P. aeruginosa, not fully dependent on bacterially-driven vacuole escape. Since ExoS inhibits the lytic response, the data implicate targeting of caspase-4, an intracellular pattern recognition receptor, as another contributor to the role of ExoS in the intracellular lifestyle of P. aeruginosa.
Collapse
Affiliation(s)
- Abby R Kroken
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL USA
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - Keith A Klein
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL USA
| | | | - Vincent Nieto
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - Eric J Jedel
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - David J Evans
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
- College of Pharmacy, Touro University California, Vallejo, CA USA
| | - Suzanne M J Fleiszig
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
- Graduate Groups in Vision Sciences, Microbiology, and Infectious Diseases & Immunity, University of California, Berkeley, CA USA
| |
Collapse
|
97
|
Łasut-Szyszka B, Rusin M. The Wheel of p53 Helps to Drive the Immune System. Int J Mol Sci 2023; 24:ijms24087645. [PMID: 37108808 PMCID: PMC10143509 DOI: 10.3390/ijms24087645] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The p53 tumor suppressor protein is best known as an inhibitor of the cell cycle and an inducer of apoptosis. Unexpectedly, these functions of p53 are not required for its tumor suppressive activity in animal models. High-throughput transcriptomic investigations as well as individual studies have demonstrated that p53 stimulates expression of many genes involved in immunity. Probably to interfere with its immunostimulatory role, many viruses code for proteins that inactivate p53. Judging by the activities of immunity-related p53-regulated genes it can be concluded that p53 is involved in detection of danger signals, inflammasome formation and activation, antigen presentation, activation of natural killer cells and other effectors of immunity, stimulation of interferon production, direct inhibition of virus replication, secretion of extracellular signaling molecules, production of antibacterial proteins, negative feedback loops in immunity-related signaling pathways, and immunologic tolerance. Many of these p53 functions have barely been studied and require further, more detailed investigations. Some of them appear to be cell-type specific. The results of transcriptomic studies have generated many new hypotheses on the mechanisms utilized by p53 to impact on the immune system. In the future, these mechanisms may be harnessed to fight cancer and infectious diseases.
Collapse
Affiliation(s)
- Barbara Łasut-Szyszka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland
| | - Marek Rusin
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland
| |
Collapse
|
98
|
Alijagic A, Hedbrant A, Persson A, Larsson M, Engwall M, Särndahl E. NLRP3 inflammasome as a sensor of micro- and nanoplastics immunotoxicity. Front Immunol 2023; 14:1178434. [PMID: 37143682 PMCID: PMC10151538 DOI: 10.3389/fimmu.2023.1178434] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Micro- and nanoplastics (MNPs) are emerging pollutants with scarcely investigated effects on human innate immunity. If they follow a similar course of action as other, more thoroughly investigated particulates, MNPs may penetrate epithelial barriers, potentially triggering a cascade of signaling events leading to cell damage and inflammation. Inflammasomes are intracellular multiprotein complexes and stimulus-induced sensors critical for mounting inflammatory responses upon recognition of pathogen- or damage-associated molecular patterns. Among these, the NLRP3 inflammasome is the most studied in terms of activation via particulates. However, studies delineating the ability of MNPs to affect NLRP3 inflammasome activation are still rare. In this review, we address the issue of MNPs source and fate, highlight the main concepts of inflammasome activation via particulates, and explore recent advances in using inflammasome activation for assessment of MNP immunotoxicity. We also discuss the impact of co-exposure and MNP complex chemistry in potential inflammasome activation. Development of robust biological sensors is crucial in order to maximize global efforts to effectively address and mitigate risks that MNPs pose for human health.
Collapse
Affiliation(s)
- Andi Alijagic
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Alexander Hedbrant
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Alexander Persson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Maria Larsson
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
99
|
Ke Q, Greenawalt AN, Manukonda V, Ji X, Tisch RM. The regulation of self-tolerance and the role of inflammasome molecules. Front Immunol 2023; 14:1154552. [PMID: 37081890 PMCID: PMC10110889 DOI: 10.3389/fimmu.2023.1154552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Inflammasome molecules make up a family of receptors that typically function to initiate a proinflammatory response upon infection by microbial pathogens. Dysregulation of inflammasome activity has been linked to unwanted chronic inflammation, which has also been implicated in certain autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, type 1 diabetes, systemic lupus erythematosus, and related animal models. Classical inflammasome activation-dependent events have intrinsic and extrinsic effects on both innate and adaptive immune effectors, as well as resident cells in the target tissue, which all can contribute to an autoimmune response. Recently, inflammasome molecules have also been found to regulate the differentiation and function of immune effector cells independent of classical inflammasome-activated inflammation. These alternative functions for inflammasome molecules shape the nature of the adaptive immune response, that in turn can either promote or suppress the progression of autoimmunity. In this review we will summarize the roles of inflammasome molecules in regulating self-tolerance and the development of autoimmunity.
Collapse
Affiliation(s)
- Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ashley Nicole Greenawalt
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Veera Manukonda
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xingqi Ji
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland Michael Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
100
|
Muela-Zarzuela I, Suarez-Rivero JM, Gallardo-Orihuela A, Wang C, Izawa K, de Gregorio-Procopio M, Couillin I, Ryffel B, Kitaura J, Sanz A, von Zglinicki T, Mbalaviele G, Cordero MD. NLRP1 inflammasome modulates senescence and senescence-associated secretory phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527254. [PMID: 36798300 PMCID: PMC9934543 DOI: 10.1101/2023.02.06.527254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Senescence is a cellular aging-related process triggered by different stresses and characterized by the secretion of various inflammatory factors referred to as the senescence-associated secretory phenotype (SASP). Here, we present evidence that the inflammasome sensor, NLRP1, is a key mediator of senescence induced by irradiation both in vitro and in vivo. The NLRP1 inflammasome promotes senescence by regulating the expression of p16, p21, p53, and SASP in Gasdermin D (GSDMD)-dependent manner as these responses are reduced in conditions of NLRP1 insufficiency or GSDMD inhibition. Mechanistically, the NLRP1 inflammasome is activated downstream of the cytosolic DNA sensor cGMP-AMP (cGAMP) synthase (cGAS) in response to genomic damage. These findings provide a rationale for inhibiting the NLRP1 inflammasome-GSDMD axis to treat senescence-driven disorders.
Collapse
|