51
|
Bowman J, Enard D, Lynch VJ. Phylogenomics reveals an almost perfect polytomy among the almost ungulates ( Paenungulata). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570590. [PMID: 38106080 PMCID: PMC10723481 DOI: 10.1101/2023.12.07.570590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Phylogenetic studies have resolved most relationships among Eutherian Orders. However, the branching order of elephants (Proboscidea), hyraxes (Hyracoidea), and sea cows (Sirenia) (i.e., the Paenungulata) has remained uncertain since at least 1758, when Linnaeus grouped elephants and manatees into a single Order (Bruta) to the exclusion of hyraxes. Subsequent morphological, molecular, and large-scale phylogenomic datasets have reached conflicting conclusions on the branching order within Paenungulates. We use a phylogenomic dataset of alignments from 13,388 protein-coding genes across 261 Eutherian mammals to infer phylogenetic relationships within Paenungulates. We find that gene trees almost equally support the three alternative resolutions of Paenungulate relationships and that despite strong support for a Proboscidea+Hyracoidea split in the multispecies coalescent (MSC) tree, there is significant evidence for gene tree uncertainty, incomplete lineage sorting, and introgression among Proboscidea, Hyracoidea, and Sirenia. Indeed, only 8-10% of genes have statistically significant phylogenetic signal to reject the hypothesis of a Paenungulate polytomy. These data indicate little support for any resolution for the branching order Proboscidea, Hyracoidea, and Sirenia within Paenungulata and suggest that Paenungulata may be as close to a real, or at least unresolvable, polytomy as possible.
Collapse
Affiliation(s)
- Jacob Bowman
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| | - David Enard
- Department of Ecology and Evolutionary Biology. University of Arizona, Tucson, AZ, USA
| | - Vincent J. Lynch
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| |
Collapse
|
52
|
Osozawa S. Geologically calibrated mammalian tree and its correlation with global events, including the emergence of humans. Ecol Evol 2023; 13:e10827. [PMID: 38116126 PMCID: PMC10728886 DOI: 10.1002/ece3.10827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/09/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
A robust timetree for Mammalia was constructed using the time calibration function of BEAST v1.10.4 and MEGA 11. The analysis involved the application of times of the most recent common ancestors, including a total of 19 mammalian fossil calibration ages following Benton et al. (Palaeontologia Electronica, 2015, 1-106) for their minimum ages. Additionally, fossil calibration ages for Gorilla, Pan, and a geologic event calibration age for otters were incorporated. Using these calibration ages, I constructed a geologically calibrated tree that estimates the age of the Homo and Pan splitting to be 5.69 Ma. The tree carries several significant implications. First, after the initial rifting at 120 Ma, the Atlantic Ocean expanded by over 500 km around Chron 34 (84 Ma), and vicariant speciation between Afrotheria (Africa) and Xenarthra (South America) appears to have commenced around 70 Ma. Additionally, ordinal level differentiations began immediately following the K-Pg boundary (66.0 Ma), supporting previous hypothesis that mammalian radiation rapidly filled ecological niches left vacant by non-avian dinosaurs. I constructed a diagram depicting the relationship between base substitution rate and age using an additional function in BEAST v1.10.4. The diagram reveals an exponential increase in the base substitution rate approaching recent times. This increased base substitution rate during the Neogene period may have contributed to the expansion of biodiversity, including the extensive adaptive radiation that led to the evolution of Homo sapiens. One significant driving factor behind this radiation could be attributed to the emergence and proliferation of C4 grasses since 20 Ma. These grasses have played a role in increasing carbon fixation, reducing atmospheric CO2 concentration, inducing global cooling, and initiating Quaternary glacial-interglacial cycles, thereby causing significant climatic changes.
Collapse
Affiliation(s)
- Soichi Osozawa
- Faculty of Science, Institute of Geology and PaleontologyTohoku UniversitySendaiJapan
| |
Collapse
|
53
|
Fernandes AP, OhAinle M, Esteves PJ. Patterns of Evolution of TRIM Genes Highlight the Evolutionary Plasticity of Antiviral Effectors in Mammals. Genome Biol Evol 2023; 15:evad209. [PMID: 37988574 PMCID: PMC10709114 DOI: 10.1093/gbe/evad209] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
The innate immune system of mammals is formed by a complex web of interacting proteins, which together constitute the first barrier of entry for infectious pathogens. Genes from the E3-ubiquitin ligase tripartite motif (TRIM) family have been shown to play an important role in the innate immune system by restricting the activity of different retrovirus species. For example, TRIM5 and TRIM22 have both been associated with HIV restriction and are regarded as crucial parts of the antiretroviral machinery of mammals. Our analyses of positive selection corroborate the great significance of these genes for some groups of mammals. However, we also show that many species lack TRIM5 and TRIM22 altogether. By analyzing a large number of mammalian genomes, here we provide the first comprehensive view of the evolution of these genes in eutherians, showcasing that the pattern of accumulation of TRIM genes has been dissimilar across mammalian orders. Our data suggest that these differences are caused by the evolutionary plasticity of the immune system of eutherians, which have adapted to use different strategies to combat retrovirus infections. Altogether, our results provide insights into the dissimilar evolution of a representative family of restriction factors, highlighting an example of adaptive and idiosyncratic evolution in the innate immune system.
Collapse
Affiliation(s)
- Alexandre P Fernandes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Molly OhAinle
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Pedro J Esteves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| |
Collapse
|
54
|
Liu GM, Pan Q, Du J, Zhu PF, Liu WQ, Li ZH, Wang L, Hu CY, Dai YC, Zhang XX, Zhang Z, Yu Y, Li M, Wang PC, Wang X, Li M, Zhou XM. Improved mammalian family phylogeny using gap-rare multiple sequence alignment: A timetree of extant placentals and marsupials. Zool Res 2023; 44:1064-1079. [PMID: 37914522 PMCID: PMC10802097 DOI: 10.24272/j.issn.2095-8137.2023.189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023] Open
Abstract
The timing of mammalian diversification in relation to the Cretaceous-Paleogene (KPg) mass extinction continues to be a subject of substantial debate. Previous studies have either focused on limited taxonomic samples with available whole-genome data or relied on short sequence alignments coupled with extensive species samples. In the present study, we improved an existing dataset from the landmark study of Meredith et al. (2011) by filling in missing fragments and further generated another dataset containing 120 taxa and 98 exonic markers. Using these two datasets, we then constructed phylogenies for extant mammalian families, providing improved resolution of many conflicting relationships. Moreover, the timetrees generated, which were calibrated using appropriate molecular clock models and multiple fossil records, indicated that the interordinal diversification of placental mammals initiated before the Late Cretaceous period. Additionally, intraordinal diversification of both extant placental and marsupial lineages accelerated after the KPg boundary, supporting the hypothesis that the availability of numerous vacant ecological niches subsequent to the mass extinction event facilitated rapid diversification. Thus, our results support a scenario of placental radiation characterized by both basal cladogenesis and active interordinal divergences spanning from the Late Cretaceous into the Paleogene.
Collapse
Affiliation(s)
- Gao-Ming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping-Fen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Qiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Hao Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Yan Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Chen Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Xiao Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng-Cheng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Xiao Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xu-Ming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. E-mail:
| |
Collapse
|
55
|
Springer MS, Emerling CA, Gatesy J. Three Blind Moles: Molecular Evolutionary Insights on the Tempo and Mode of Convergent Eye Degeneration in Notoryctes typhlops (Southern Marsupial Mole) and Two Chrysochlorids (Golden Moles). Genes (Basel) 2023; 14:2018. [PMID: 38002961 PMCID: PMC10671557 DOI: 10.3390/genes14112018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Golden moles (Chrysochloridae) and marsupial moles (Notoryctidae) are textbook examples of convergent evolution. Both taxa are highly adapted to subterranean lifestyles and have powerful limbs for digging through the soil/sand, ears that are adapted for low-frequency hearing, vestigial eyes that are covered by skin and fur, and the absence of optic nerve connections between the eyes and the brain. The eyes of marsupial moles also lack a lens as well as retinal rods and cones. Two hypotheses have been proposed to account for the greater degeneracy of the eyes of marsupial moles than golden moles. First, marsupial moles may have had more time to adapt to their underground habitat than other moles. Second, the eyes of marsupial moles may have been rapidly and recently vestigialized to (1) reduce the injurious effects of sand getting into the eyes and (2) accommodate the enlargement of lacrimal glands that keep the nasal cavity moist and prevent the entry of sand into the nasal passages during burrowing. Here, we employ molecular evolutionary methods on DNA sequences for 38 eye genes, most of which are eye-specific, to investigate the timing of relaxed selection (=neutral evolution) for different groups of eye-specific genes that serve as proxies for distinct functional components of the eye (rod phototransduction, cone phototransduction, lens/cornea). Our taxon sampling included 12 afrothere species, of which two are golden moles (Amblysomus hottentotus, Chrysochloris asiatica), and 28 marsupial species including two individuals of the southern marsupial mole (Notoryctes typhlops). Most of the sequences were mined from databases, but we also provide new genome data for A. hottentotus and one of the two N. typhlops individuals. Even though the eyes of golden moles are less degenerate than the eyes of marsupial moles, there are more inactivating mutations (e.g., frameshift indels, premature stop codons) in their cone phototransduction and lens/cornea genes than in orthologous genes of the marsupial mole. We estimate that cone phototransduction recovery genes were inactivated first in each group, followed by lens/cornea genes and then cone phototransduction activation genes. All three groups of genes were inactivated earlier in golden moles than in marsupial moles. For the latter, we estimate that lens/cornea genes were inactivated ~17.8 million years ago (MYA) when stem notoryctids were burrowing in the soft soils of Australian rainforests. Selection on phototransduction activation genes was relaxed much later (5.38 MYA), during the early stages of Australia's aridification that produced coastal sand plains and eventually sand dunes. Unlike cone phototransduction activation genes, rod phototransduction activation genes are intact in both golden moles and one of the two individuals of N. typhlops. A second marsupial mole individual has just a single inactivating mutation in one of the rod phototransduction activation genes (PDE6B). One explanation for this result is that some rod phototransduction activation genes are pleiotropic and are expressed in extraocular tissues, possibly in conjunction with sperm thermotaxis.
Collapse
Affiliation(s)
- Mark S. Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | | | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA;
| |
Collapse
|
56
|
Lu XK, Deng T, Rummy P, Zheng XT, Zhang YT. Reproduction of a fossil rhinoceros from 18 mya and origin of litter size in perissodactyls. iScience 2023; 26:107800. [PMID: 37744027 PMCID: PMC10514446 DOI: 10.1016/j.isci.2023.107800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/09/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Reproductive strategy is among the most important characteristics of organism. Here, we report reproductive strategy of singleton pregnancy of a fossil rhinoceros, Plesiaceratherium gracile, from 18 mya of the Shanwang Basin, China. Dental and body development data revealed that after birth, the calf of P. gracile is breastfed for 2-3 years; at approximately 5 years of age, when the M2 tooth is slightly worn, the female has already reached sexual maturity and attained a size close to that of an adult and could give birth to the first calf. Furthermore, given litter size is phylogenetically conservative and closely correlates with body size, we conclude that the litter size of perissodactyls is determined by the singleton pregnancy since the Eocene. By contrast, other reproductive traits are highly variable and have a different pace of evolution, and traits observed in living rhinoceroses have been evolving at least since 18 mya.
Collapse
Affiliation(s)
- Xiao-Kang Lu
- Department of Human Anatomy, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210000, China
| | - Tao Deng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Paul Rummy
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiao-Ting Zheng
- Tianyu Museum of Natural History, Pingyi, Shandong 273300, China
| | - Yuan-Tao Zhang
- Shanwang National Geopark of China, Linqu, Shandong 262600, China
| |
Collapse
|
57
|
Jorstad NL, Song JH, Exposito-Alonso D, Suresh H, Castro-Pacheco N, Krienen FM, Yanny AM, Close J, Gelfand E, Long B, Seeman SC, Travaglini KJ, Basu S, Beaudin M, Bertagnolli D, Crow M, Ding SL, Eggermont J, Glandon A, Goldy J, Kiick K, Kroes T, McMillen D, Pham T, Rimorin C, Siletti K, Somasundaram S, Tieu M, Torkelson A, Feng G, Hopkins WD, Höllt T, Keene CD, Linnarsson S, McCarroll SA, Lelieveldt BP, Sherwood CC, Smith K, Walsh CA, Dobin A, Gillis J, Lein ES, Hodge RD, Bakken TE. Comparative transcriptomics reveals human-specific cortical features. Science 2023; 382:eade9516. [PMID: 37824638 PMCID: PMC10659116 DOI: 10.1126/science.ade9516] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
The cognitive abilities of humans are distinctive among primates, but their molecular and cellular substrates are poorly understood. We used comparative single-nucleus transcriptomics to analyze samples of the middle temporal gyrus (MTG) from adult humans, chimpanzees, gorillas, rhesus macaques, and common marmosets to understand human-specific features of the neocortex. Human, chimpanzee, and gorilla MTG showed highly similar cell-type composition and laminar organization as well as a large shift in proportions of deep-layer intratelencephalic-projecting neurons compared with macaque and marmoset MTG. Microglia, astrocytes, and oligodendrocytes had more-divergent expression across species compared with neurons or oligodendrocyte precursor cells, and neuronal expression diverged more rapidly on the human lineage. Only a few hundred genes showed human-specific patterning, suggesting that relatively few cellular and molecular changes distinctively define adult human cortical structure.
Collapse
Affiliation(s)
| | - Janet H.T. Song
- Allen Discovery Center for Human Brain Evolution, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | - David Exposito-Alonso
- Allen Discovery Center for Human Brain Evolution, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Hamsini Suresh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Fenna M. Krienen
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jennie Close
- Allen Institute for Brain Science; Seattle, WA, 98109, USA
| | - Emily Gelfand
- Allen Institute for Brain Science; Seattle, WA, 98109, USA
| | - Brian Long
- Allen Institute for Brain Science; Seattle, WA, 98109, USA
| | | | | | - Soumyadeep Basu
- LKEB, Dept of Radiology, Leiden University Medical Center; Leiden, The Netherlands
- Computer Graphics and Visualization Group, Delft University of Technology, Delft, Netherlands
| | - Marc Beaudin
- Allen Discovery Center for Human Brain Evolution, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | - Megan Crow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Song-Lin Ding
- Allen Institute for Brain Science; Seattle, WA, 98109, USA
| | - Jeroen Eggermont
- LKEB, Dept of Radiology, Leiden University Medical Center; Leiden, The Netherlands
| | | | - Jeff Goldy
- Allen Institute for Brain Science; Seattle, WA, 98109, USA
| | - Katelyn Kiick
- Allen Institute for Brain Science; Seattle, WA, 98109, USA
| | - Thomas Kroes
- LKEB, Dept of Radiology, Leiden University Medical Center; Leiden, The Netherlands
| | | | | | | | - Kimberly Siletti
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Michael Tieu
- Allen Institute for Brain Science; Seattle, WA, 98109, USA
| | - Amy Torkelson
- Allen Institute for Brain Science; Seattle, WA, 98109, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William D. Hopkins
- Keeling Center for Comparative Medicine and Research, University of Texas, MD Anderson Cancer Center, Houston, TX 78602, USA
| | - Thomas Höllt
- Computer Graphics and Visualization Group, Delft University of Technology, Delft, Netherlands
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 981915, USA
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Steven A. McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Boudewijn P. Lelieveldt
- LKEB, Dept of Radiology, Leiden University Medical Center; Leiden, The Netherlands
- Pattern Recognition and Bioinformatics group, Delft University of Technology, Delft, Netherlands
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC 20037, USA
| | - Kimberly Smith
- Allen Institute for Brain Science; Seattle, WA, 98109, USA
| | - Christopher A. Walsh
- Allen Discovery Center for Human Brain Evolution, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alexander Dobin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jesse Gillis
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Ed S. Lein
- Allen Institute for Brain Science; Seattle, WA, 98109, USA
| | | | | |
Collapse
|
58
|
Carlisle E, Janis CM, Pisani D, Donoghue PCJ, Silvestro D. A timescale for placental mammal diversification based on Bayesian modeling of the fossil record. Curr Biol 2023; 33:3073-3082.e3. [PMID: 37379845 PMCID: PMC7617171 DOI: 10.1016/j.cub.2023.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/21/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
The timing of the placental mammal radiation has been the focus of debate over the efficacy of competing methods for establishing evolutionary timescales. Molecular clock analyses estimate that placental mammals originated before the Cretaceous-Paleogene (K-Pg) mass extinction, anywhere from the Late Cretaceous to the Jurassic. However, the absence of definitive fossils of placentals before the K-Pg boundary is compatible with a post-Cretaceous origin. Nevertheless, lineage divergence must occur before it can be manifest phenotypically in descendent lineages. This, combined with the non-uniformity of the rock and fossil records, requires the fossil record to be interpreted rather than read literally. To achieve this, we introduce an extended Bayesian Brownian bridge model that estimates the age of origination and, where applicable, extinction through a probabilistic interpretation of the fossil record. The model estimates the origination of placentals in the Late Cretaceous, with ordinal crown groups originating at or after the K-Pg boundary. The results reduce the plausible interval for placental mammal origination to the younger range of molecular clock estimates. Our findings support both the Long Fuse and Soft Explosive models of placental mammal diversification, indicating that the placentals originated shortly prior to the K-Pg mass extinction. The origination of many modern mammal lineages overlapped with and followed the K-Pg mass extinction.
Collapse
Affiliation(s)
- Emily Carlisle
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Christine M Janis
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK; Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Daniele Silvestro
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; Swiss Institute of Bioinformatics, 1700 Fribourg, Switzerland; Department of Biological and Environmental Sciences, University of Gothenburg, 413 19 Gothenburg, Sweden; Gothenburg Global Biodiversity Centre, 413 19 Gothenburg, Sweden.
| |
Collapse
|
59
|
Paulat NS, Storer JM, Moreno-Santillán DD, Osmanski AB, Sullivan KAM, Grimshaw JR, Korstian J, Halsey M, Garcia CJ, Crookshanks C, Roberts J, Smit AFA, Hubley R, Rosen J, Teeling EC, Vernes SC, Myers E, Pippel M, Brown T, Hiller M, Rojas D, Dávalos LM, Lindblad-Toh K, Karlsson EK, Ray DA. Chiropterans Are a Hotspot for Horizontal Transfer of DNA Transposons in Mammalia. Mol Biol Evol 2023; 40:msad092. [PMID: 37071810 PMCID: PMC10162687 DOI: 10.1093/molbev/msad092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/20/2023] Open
Abstract
Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats. We found over 200 putative HT elements within bats; 16 transposons were shared across distantly related mammalian clades, and 2 other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats.
Collapse
Affiliation(s)
- Nicole S Paulat
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | | | - Austin B Osmanski
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | - Jenna R Grimshaw
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Jennifer Korstian
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Michaela Halsey
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Carlos J Garcia
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | - Jaquelyn Roberts
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | | | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- School of Biology, The University of St Andrews, Fife, United Kingdom
| | - Eugene Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Danny Rojas
- Department of Natural Sciences and Mathematics, Pontificia Universidad Javeriana Cali, Valle del Cauca, Colombia
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University Stony Brook, NY
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Elinor K Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| |
Collapse
|
60
|
Abstract
Diverse mammal genomes open a new portal to hidden aspects of evolutionary history.
Collapse
Affiliation(s)
- Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Michael J Landis
- Department of Biology, Washington University, St. Louis, MO, USA
| |
Collapse
|
61
|
Osmanski AB, Paulat NS, Korstian J, Grimshaw JR, Halsey M, Sullivan KAM, Moreno-Santillán DD, Crookshanks C, Roberts J, Garcia C, Johnson MG, Densmore LD, Stevens RD, Zoonomia Consortium, Rosen J, Storer JM, Hubley R, Smit AFA, Dávalos LM, Karlsson EK, Lindblad-Toh K, Ray DA. Insights into mammalian TE diversity through the curation of 248 genome assemblies. Science 2023; 380:eabn1430. [PMID: 37104570 PMCID: PMC11103246 DOI: 10.1126/science.abn1430] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 10/28/2022] [Indexed: 04/29/2023]
Abstract
We examined transposable element (TE) content of 248 placental mammal genome assemblies, the largest de novo TE curation effort in eukaryotes to date. We found that although mammals resemble one another in total TE content and diversity, they show substantial differences with regard to recent TE accumulation. This includes multiple recent expansion and quiescence events across the mammalian tree. Young TEs, particularly long interspersed elements, drive increases in genome size, whereas DNA transposons are associated with smaller genomes. Mammals tend to accumulate only a few types of TEs at any given time, with one TE type dominating. We also found association between dietary habit and the presence of DNA transposon invasions. These detailed annotations will serve as a benchmark for future comparative TE analyses among placental mammals.
Collapse
Affiliation(s)
- Austin B. Osmanski
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Nicole S. Paulat
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jenny Korstian
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jenna R. Grimshaw
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Michaela Halsey
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | | | | | | | - Jacquelyn Roberts
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Carlos Garcia
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Matthew G. Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | | | - Richard D. Stevens
- Department of Natural Resources Management and Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, TX, USA
| | | | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | | | - Liliana M. Dávalos
- Department of Ecology & Evolution, Stony Brook University, Stony Brook, NY, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, USA
| | - Elinor K. Karlsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
62
|
Kozlov M. Huge cache of mammal genomes offers fresh insights on human evolution. Nature 2023:10.1038/d41586-023-01446-7. [PMID: 37117692 DOI: 10.1038/d41586-023-01446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
|