51
|
Hallin J, Engstrom LD, Hargis L, Calinisan A, Aranda R, Briere DM, Sudhakar N, Bowcut V, Baer BR, Ballard JA, Burkard MR, Fell JB, Fischer JP, Vigers GP, Xue Y, Gatto S, Fernandez-Banet J, Pavlicek A, Velastagui K, Chao RC, Barton J, Pierobon M, Baldelli E, Patricoin EF, Cassidy DP, Marx MA, Rybkin II, Johnson ML, Ou SHI, Lito P, Papadopoulos KP, Jänne PA, Olson P, Christensen JG. The KRAS G12C Inhibitor MRTX849 Provides Insight toward Therapeutic Susceptibility of KRAS-Mutant Cancers in Mouse Models and Patients. Cancer Discov 2019; 10:54-71. [PMID: 31658955 DOI: 10.1158/2159-8290.cd-19-1167] [Citation(s) in RCA: 872] [Impact Index Per Article: 145.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 11/16/2022]
Abstract
Despite decades of research, efforts to directly target KRAS have been challenging. MRTX849 was identified as a potent, selective, and covalent KRASG12C inhibitor that exhibits favorable drug-like properties, selectively modifies mutant cysteine 12 in GDP-bound KRASG12C, and inhibits KRAS-dependent signaling. MRTX849 demonstrated pronounced tumor regression in 17 of 26 (65%) KRASG12C-positive cell line- and patient-derived xenograft models from multiple tumor types, and objective responses have been observed in patients with KRASG12C-positive lung and colon adenocarcinomas. Comprehensive pharmacodynamic and pharmacogenomic profiling in sensitive and partially resistant nonclinical models identified mechanisms implicated in limiting antitumor activity including KRAS nucleotide cycling and pathways that induce feedback reactivation and/or bypass KRAS dependence. These factors included activation of receptor tyrosine kinases (RTK), bypass of KRAS dependence, and genetic dysregulation of cell cycle. Combinations of MRTX849 with agents that target RTKs, mTOR, or cell cycle demonstrated enhanced response and marked tumor regression in several tumor models, including MRTX849-refractory models. SIGNIFICANCE: The discovery of MRTX849 provides a long-awaited opportunity to selectively target KRASG12C in patients. The in-depth characterization of MRTX849 activity, elucidation of response and resistance mechanisms, and identification of effective combinations provide new insight toward KRAS dependence and the rational development of this class of agents.See related commentary by Klempner and Hata, p. 20.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Jill Hallin
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | | | - Ruth Aranda
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | | | | | | | | | | | | | | | - Yaohua Xue
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sole Gatto
- Monoceros Biosystems LLC, San Diego, California
| | | | | | | | | | | | | | | | | | | | | | | | - Melissa L Johnson
- Sarah Cannon Research Institute Tennessee Oncology, Nashville, Tennessee
| | - Sai-Hong Ignatius Ou
- University of California, Irvine, Chao Family Comprehensive Cancer Center, Orange, California
| | - Piro Lito
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Pasi A Jänne
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Peter Olson
- Mirati Therapeutics, Inc., San Diego, California
| | | |
Collapse
|
52
|
Broman KK, Dossett LA, Sun J, Eroglu Z, Zager JS. Update on BRAF and MEK inhibition for treatment of melanoma in metastatic, unresectable, and adjuvant settings. Expert Opin Drug Saf 2019; 18:381-392. [PMID: 30977681 DOI: 10.1080/14740338.2019.1607289] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Selective inhibition of the MAPK pathway with BRAF and MEK inhibitors has emerged as a key component of the treatment of BRAF-mutant unresectable/locally advanced metastatic melanoma. AREAS COVERED Current data are presented on the efficacy and safety of BRAFi + MEKi combination therapy (dabrafenib/trametinib, vemurafenib/cobimetinib, and encorafenib/binimetinib) from phase I, II, and III trials in the unresectable/locally advanced metastatic setting, as well as neoadjuvant and adjuvant applications. The theoretical basis, pre-clinical findings, clinical trial results and current ongoing clinical studies of combined BRAF/MEK inhibition with immunotherapy, also known as 'triplet therapy,' are also explored. EXPERT OPINION Combination therapy with BRAF and MEK inhibitors dramatically improves response rates, progression-free survival and overall survival in patients with BRAF-mutant metastatic melanoma compared to historical treatments such as chemotherapy. Some serious adverse effects, including cutaneous squamous cell carcinoma, are attenuated with combination therapy, while less severe and reversible effects including pyrexia, left ventricular dysfunction, and ocular events can be more common with combination therapy. Existing data are insufficient to recommend triplet therapy, or a particular treatment sequence, with respect to BRAF and MEK inhibitors and immune therapies, though results from multiple ongoing trials are anticipated.
Collapse
Affiliation(s)
| | - Lesly A Dossett
- b Division of Surgical Oncology , University of Michigan , Ann Arbor , MI , USA
| | - James Sun
- a Department of Cutaneous Oncology , Moffitt Cancer Center , Tampa , FL , USA
| | - Zeynep Eroglu
- a Department of Cutaneous Oncology , Moffitt Cancer Center , Tampa , FL , USA
| | - Jonathan S Zager
- a Department of Cutaneous Oncology , Moffitt Cancer Center , Tampa , FL , USA
| |
Collapse
|
53
|
Abstract
The MAPK pathway is a prominent intracellular signaling pathway regulating various intracellular functions. Components of this pathway are mutated in a related collection of congenital syndromes collectively referred to as neuro-cardio-facio-cutaneous syndromes (NCFC) or Rasopathies. Recently, it has been appreciated that these disorders are associated with autism spectrum disorders (ASD). In addition, idiopathic ASD has also implicated the MAPK signaling cascade as a common pathway that is affected by many of the genetic variants that have been found to be linked to ASDs. This chapter describes the components of the MAPK pathway and how it is regulated. Furthermore, this chapter will highlight the various functions of the MAPK pathway during both embryonic development of the central nervous system (CNS) and its roles in neuronal physiology and ultimately, behavior. Finally, we will summarize the perturbations to MAPK signaling in various models of autism spectrum disorders and Rasopathies to highlight how dysregulation of this pivotal pathway may contribute to the pathogenesis of autism.
Collapse
|
54
|
Sriram K. Bifurcation analysis of insulin regulated mTOR signalling pathway in cancer cells. IET Syst Biol 2018; 12:205-212. [PMID: 30259865 PMCID: PMC8687200 DOI: 10.1049/iet-syb.2018.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/01/2018] [Accepted: 04/12/2018] [Indexed: 11/19/2022] Open
Abstract
Insulin induced mTOR signalling pathway is a complex network implicated in many types of cancers. The molecular mechanism of this pathway is highly complex and the dynamics is tightly regulated by intricate positive and negative feedback loops. In breast cancer cell lines, metformin has been shown to induce phosphorylation at specific serine sites in insulin regulated substrate of mTOR pathway that results in apoptosis over cell proliferation. The author models and performs bifurcation analysis to simulate cell proliferation and apoptosis in mTOR signalling pathway to capture the dynamics both in the presence and absence of metformin in cancer cells. Metformin is shown to negatively regulate PI3K through AMPK induced IRS1 phosphorylation and this brings about a reversal of AKT bistablity in codimension-1 bifurcation diagram from S-shaped, related to cell proliferation in the absence of drug metformin, to Z-shaped, related to apoptosis in the presence of drug metformin. The author hypothesises and explains how this negative regulation acts a circuit breaker, as a result of which mTOR network favours apoptosis of cancer cells over its proliferation. The implication of reversing the shape of bistable dynamics from S to Z or vice-versa in biological networks in general is discussed.
Collapse
Affiliation(s)
- Krishnamachari Sriram
- Centre for Computational Biology, Indraprastha Institute of Information Technology-Delhi, Okhla Phase-III, New Delhi, India.
| |
Collapse
|
55
|
Abstract
One challenge in biology is to make sense of the complexity of biological networks. A good system to approach this is signaling pathways, whose well-characterized molecular details allow us to relate the internal processes of each pathway to their input-output behavior. In this study, we analyzed mathematical models of three metazoan signaling pathways: the canonical Wnt, MAPK/ERK, and Tgfβ pathways. We find an unexpected convergence: the three pathways behave in some physiological contexts as linear signal transmitters. Testing the results experimentally, we present direct measurements of linear input-output behavior in the Wnt and ERK pathways. Analytics from each model further reveal that linearity arises through different means in each pathway, which we tested experimentally in the Wnt and ERK pathways. Linearity is a desired property in engineering where it facilitates fidelity and superposition in signal transmission. Our findings illustrate how cells tune different complex networks to converge on the same behavior.
Collapse
Affiliation(s)
- Harry Nunns
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Lea Goentoro
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| |
Collapse
|
56
|
García-Gómez R, Bustelo XR, Crespo P. Protein-Protein Interactions: Emerging Oncotargets in the RAS-ERK Pathway. Trends Cancer 2018; 4:616-633. [PMID: 30149880 DOI: 10.1016/j.trecan.2018.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/03/2018] [Accepted: 07/08/2018] [Indexed: 12/20/2022]
Abstract
Given the implication of aberrant RAS-extracellular signal-regulated kinase (ERK) signaling in the development of a large number of tumor types, this route is under intense scrutiny to identify new anticancer drugs. Most avenues in that direction have been primarily focused on the inhibition of the catalytic activity of the kinases that participate in this pathway. Although promising, the efficacy of these therapies is short lived due to undesired toxicity and/or drug resistance problems. As an alternative path, new efforts are now being devoted to the targeting of protein-protein interactions (PPIs) involved in the flow of RAS-ERK signals. Many of these efforts have shown promising results in preclinical models. In this review, we summarize recent progress made in this area.
Collapse
Affiliation(s)
- Rocío García-Gómez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
| | - Xosé R Bustelo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain; Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca 37007, Spain; Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca 37007, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain.
| |
Collapse
|
57
|
Dissecting RAF Inhibitor Resistance by Structure-based Modeling Reveals Ways to Overcome Oncogenic RAS Signaling. Cell Syst 2018; 7:161-179.e14. [PMID: 30007540 DOI: 10.1016/j.cels.2018.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022]
Abstract
Clinically used RAF inhibitors are ineffective in RAS mutant tumors because they enhance homo- and heterodimerization of RAF kinases, leading to paradoxical activation of ERK signaling. Overcoming enhanced RAF dimerization and the resulting resistance is a challenge for drug design. Combining multiple inhibitors could be more effective, but it is unclear how the best combinations can be chosen. We built a next-generation mechanistic dynamic model to analyze combinations of structurally different RAF inhibitors, which can efficiently suppress MEK/ERK signaling. This rule-based model of the RAS/ERK pathway integrates thermodynamics and kinetics of drug-protein interactions, structural elements, posttranslational modifications, and cell mutational status as model rules to predict RAF inhibitor combinations for inhibiting ERK activity in oncogenic RAS and/or BRAFV600E backgrounds. Predicted synergistic inhibition of ERK signaling was corroborated by experiments in mutant NRAS, HRAS, and BRAFV600E cells, and inhibition of oncogenic RAS signaling was associated with reduced cell proliferation and colony formation.
Collapse
|
58
|
Kidger AM, Sipthorp J, Cook SJ. ERK1/2 inhibitors: New weapons to inhibit the RAS-regulated RAF-MEK1/2-ERK1/2 pathway. Pharmacol Ther 2018; 187:45-60. [PMID: 29454854 DOI: 10.1016/j.pharmthera.2018.02.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The RAS-regulated RAF-MEK1/2-ERK1/2 signalling pathway is de-regulated in a variety of cancers due to mutations in receptor tyrosine kinases (RTKs), negative regulators of RAS (such as NF1) and core pathway components themselves (RAS, BRAF, CRAF, MEK1 or MEK2). This has driven the development of a variety of pharmaceutical agents to inhibit RAF-MEK1/2-ERK1/2 signalling in cancer and both RAF and MEK inhibitors are now approved and used in the clinic. There is now much interest in targeting at the level of ERK1/2 for a variety of reasons. First, since the pathway is linear from RAF-to-MEK-to-ERK then ERK1/2 are validated as targets per se. Second, innate resistance to RAF or MEK inhibitors involves relief of negative feedback and pathway re-activation with all signalling going through ERK1/2, validating the use of ERK inhibitors with RAF or MEK inhibitors as an up-front combination. Third, long-term acquired resistance to RAF or MEK inhibitors involves a variety of mechanisms (KRAS or BRAF amplification, MEK mutation, etc.) which re-instate ERK activity, validating the use of ERK inhibitors to forestall acquired resistance to RAF or MEK inhibitors. The first potent highly selective ERK1/2 inhibitors have now been developed and are entering clinical trials. They have one of three discrete mechanisms of action - catalytic, "dual mechanism" or covalent - which could have profound consequences for how cells respond and adapt. In this review we describe the validation of ERK1/2 as anti-cancer drug targets, consider the mechanism of action of new ERK1/2 inhibitors and how this may impact on their efficacy, anticipate factors that will determine how tumour cells respond and adapt to ERK1/2 inhibitors and consider ERK1/2 inhibitor drug combinations.
Collapse
Affiliation(s)
- Andrew M Kidger
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, United Kingdom.
| | - James Sipthorp
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, United Kingdom
| | - Simon J Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, United Kingdom.
| |
Collapse
|
59
|
Liu F, Yang X, Geng M, Huang M. Targeting ERK, an Achilles' Heel of the MAPK pathway, in cancer therapy. Acta Pharm Sin B 2018; 8:552-562. [PMID: 30109180 PMCID: PMC6089851 DOI: 10.1016/j.apsb.2018.01.008] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/11/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022] Open
Abstract
The mitogen-activated protein kinases (MAPK) pathway, often known as the RAS-RAF-MEK-ERK signal cascade, functions to transmit upstream signals to its downstream effectors to regulate physiological process such as cell proliferation, differentiation, survival and death. As the most frequently mutated signaling pathway in human cancer, targeting the MAPK pathway has long been considered a promising strategy for cancer therapy. Substantial efforts in the past decades have led to the clinical success of BRAF and MEK inhibitors. However, the clinical benefits of these inhibitors are compromised by the frequently occurring acquired resistance due to cancer heterogeneity and genomic instability. This review briefly introduces the key protein kinases involved in this pathway as well as their activation mechanisms. We also generalize the correlations between mutations of MAPK members and human cancers, followed by a summarization of progress made on the development of small molecule MAPK kinases inhibitors. In particular, this review highlights the potential advantages of ERK inhibitors in overcoming resistance to upstream targets and proposes that targeting ERK kinase may hold a promising prospect for cancer therapy.
Collapse
|
60
|
Kovary KM, Taylor B, Zhao ML, Teruel MN. Expression variation and covariation impair analog and enable binary signaling control. Mol Syst Biol 2018; 14:e7997. [PMID: 29759982 PMCID: PMC5951153 DOI: 10.15252/msb.20177997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 03/26/2018] [Accepted: 04/05/2018] [Indexed: 11/09/2022] Open
Abstract
Due to noise in the synthesis and degradation of proteins, the concentrations of individual vertebrate signaling proteins were estimated to vary with a coefficient of variation (CV) of approximately 25% between cells. Such high variation is beneficial for population-level regulation of cell functions but abolishes accurate single-cell signal transmission. Here, we measure cell-to-cell variability of relative protein abundance using quantitative proteomics of individual Xenopus laevis eggs and cultured human cells and show that variation is typically much lower, in the range of 5-15%, compatible with accurate single-cell transmission. Focusing on bimodal ERK signaling, we show that variation and covariation in MEK and ERK expression improves controllability of the percentage of activated cells, demonstrating how variation and covariation in expression enables population-level control of binary cell-fate decisions. Together, our study argues for a control principle whereby low expression variation enables accurate control of analog single-cell signaling, while increased variation, covariation, and numbers of pathway components are required to widen the stimulus range over which external inputs regulate binary cell activation to enable precise control of the fraction of activated cells in a population.
Collapse
Affiliation(s)
- Kyle M Kovary
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Brooks Taylor
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Michael L Zhao
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Mary N Teruel
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
61
|
Zhou J, Li M, Jin WF, Li XH, Zhang YY. Role of NF-κB on Neurons after Cerebral Ischemia Reperfusion. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.451.459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
62
|
Yi L, Shi T, Gritsenko MA, X'avia Chan CY, Fillmore TL, Hess BM, Swensen AC, Liu T, Smith RD, Wiley HS, Qian WJ. Targeted Quantification of Phosphorylation Dynamics in the Context of EGFR-MAPK Pathway. Anal Chem 2018; 90:5256-5263. [PMID: 29584399 DOI: 10.1021/acs.analchem.8b00071] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Large-scale phosphoproteomics with coverage of over 10,000 sites of phosphorylation have now been routinely achieved with advanced mass spectrometry (MS)-based workflows. However, accurate targeted MS-based quantification of phosphorylation dynamics, an important direction for gaining quantitative understanding of signaling pathways or networks, has been much less investigated. Herein, we report an assessment of the targeted workflow in the context of signal transduction pathways, using the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway as our model. A total of 43 phosphopeptides from the EGFR-MAPK pathway were selected for the study. The recovery and sensitivity of two commonly used enrichment methods, immobilized metal affinity chromatography (IMAC) and titanium oxide (TiO2), combined with selected reaction monitoring (SRM)-MS were evaluated. The recovery of phosphopeptides by IMAC and TiO2 enrichment was quantified to be 38 ± 5% and 58 ± 20%, respectively, based on internal standards. Moreover, both enrichment methods provided comparable sensitivity from 1 to 100 μg starting peptides. Robust quantification was consistently achieved for most targeted phosphopeptides when starting with 25-100 μg peptides. However, the numbers of quantified targets significantly dropped when peptide samples were in the 1-25 μg range. Finally, IMAC-SRM was applied to quantify signaling dynamics of EGFR-MAPK pathway in Hs578T cells following 10 ng/mL EGF treatment. The kinetics of phosphorylation clearly revealed early and late phases of phosphorylation, even for very low abundance proteins. These results demonstrate the feasibility of robust targeted quantification of phosphorylation dynamics for specific pathways, even starting with relatively small amounts of protein.
Collapse
|
63
|
Goedert L, Pereira CG, Roszik J, Plaça JR, Cardoso C, Chen G, Deng W, Yennu-Nanda VG, Silva WA, Davies MA, Espreafico EM. RMEL3, a novel BRAFV600E-associated long noncoding RNA, is required for MAPK and PI3K signaling in melanoma. Oncotarget 2017; 7:36711-36718. [PMID: 27167340 PMCID: PMC5095033 DOI: 10.18632/oncotarget.9164] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 04/16/2016] [Indexed: 11/25/2022] Open
Abstract
Previous work identified RMEL3 as a lncRNA with enriched expression in melanoma. Analysis of The Cancer Genome Atlas (TCGA) data confirmed RMEL3 enriched expression in melanoma and demonstrated its association with the presence of BRAFV600E. RMEL3 siRNA-mediated silencing markedly reduced (95%) colony formation in different BRAFV600E melanoma cell lines. Multiple genes of the MAPK and PI3K pathways found to be correlated with RMEL3 in TCGA samples were experimentally confirmed. RMEL3 knockdown led to downregulation of activators or effectors of these pathways, including FGF2, FGF3, DUSP6, ITGB3 and GNG2. RMEL3 knockdown induces gain of protein levels of tumor suppressor PTEN and the G1/S cyclin-Cdk inhibitors p21 and p27, as well as a decrease of pAKT (T308), BRAF, pRB (S807, S811) and cyclin B1. Consistently, knockdown resulted in an accumulation of cells in G1 phase and subG0/G1 in an asynchronously growing population. Thus, TCGA data and functional experiments demonstrate that RMEL3 is required for MAPK and PI3K signaling, and its knockdown decrease BRAFV600E melanoma cell survival and proliferation.
Collapse
Affiliation(s)
- Lucas Goedert
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell-Based Therapy, Ribeirão Preto, São Paulo, Brazil
| | - Cristiano G Pereira
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jessica R Plaça
- National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell-Based Therapy, Ribeirão Preto, São Paulo, Brazil.,Clinical Oncology, Stem Cell and Cell Therapy Program, Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Cibele Cardoso
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Guo Chen
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Wanleng Deng
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Vashisht Gopal Yennu-Nanda
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Wilson A Silva
- National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell-Based Therapy, Ribeirão Preto, São Paulo, Brazil.,Department of Genetics, Ribeirão Preto Medical School, and Center for Integrative System Biology (CISBi-NAP/USP), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Michael A Davies
- Clinical Oncology, Stem Cell and Cell Therapy Program, Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Enilza M Espreafico
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
64
|
Abstract
The robustness of biological systems is often depicted as a key system-level emergent property that allows uniform phenotypes in fluctuating environments. Yet, analysis of single-cell signaling responses identified multiple examples of cellular responses with high degrees of heterogeneity. Here we discuss the implications of the observed lack of response accuracy in the context of new observations coming from single-cell approaches. Single-cell approaches provide a new way to measure the abundance of thousands of molecular species in a single-cell. Repeatedly, analysis of cell distributions identifies clusters within these distributions where cells can be grouped into specific cell states. If cells in a population occupy distinct cell states, the observed variable response could in fact be accurate for each cell conditioned on its own internal state. In this view, the observed lack of accuracy, i.e. response heterogeneity, could in fact be beneficial and a potentially regulated feature of cell state variability. Therefore, to truly determine whether the observed response heterogeneity is a desired property or a physical limitation, future analysis of signaling heterogeneity must take into account the internal states of cells in the population.
Collapse
|
65
|
Mitchell S, Hoffmann A. Identifying Noise Sources governing cell-to-cell variability. ACTA ACUST UNITED AC 2017; 8:39-45. [PMID: 29623300 DOI: 10.1016/j.coisb.2017.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Phenotypic differences often occur even in clonal cell populations. Many potential sources of such variation have been identified, from biophysical rate variance intrinsic to all chemical processes to asymmetric division of molecular components extrinsic to any particular signaling pathway. Identifying the sources of phenotypic variation and quantifying their contributions to cell fate variation is not possible without accurate single cell data. By combining such data with mathematical models of potential noise sources it is possible to characterize the impact of varying levels of each noise source and identify which sources of variation best explain the experimental observations. The mathematical framework of information theory provides metrics of the impact of noise on the reliability of a cell to sense its environment. While the presence of noise in a single cellular system reduces the reliability of signal transduction its impact on a population of varied single cells remains unclear.
Collapse
Affiliation(s)
- Simon Mitchell
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Alexander Hoffmann
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
| |
Collapse
|
66
|
Cook SJ, Stuart K, Gilley R, Sale MJ. Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signalling. FEBS J 2017; 284:4177-4195. [PMID: 28548464 PMCID: PMC6193418 DOI: 10.1111/febs.14122] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/08/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Abstract
The ERK1/2 signalling pathway is best known for its role in connecting activated growth factor receptors to changes in gene expression due to activated ERK1/2 entering the nucleus and phosphorylating transcription factors. However, active ERK1/2 also translocate to a variety of other organelles including the endoplasmic reticulum, endosomes, golgi and mitochondria to access specific substrates and influence cell physiology. In this article, we review two aspects of ERK1/2 signalling at the mitochondria that are involved in regulating cell fate decisions. First, we describe the prominent role of ERK1/2 in controlling the BCL2-regulated, cell-intrinsic apoptotic pathway. In most cases ERK1/2 signalling promotes cell survival by activating prosurvival BCL2 proteins (BCL2, BCL-xL and MCL1) and repressing prodeath proteins (BAD, BIM, BMF and PUMA). This prosurvival signalling is co-opted by oncogenes to confer cancer cell-specific survival advantages and we describe how this information has been used to develop new drug combinations. However, ERK1/2 can also drive the expression of the prodeath protein NOXA to control 'autophagy or apoptosis' decisions during nutrient starvation. We also describe recent studies demonstrating a link between ERK1/2 signalling, DRP1 and the mitochondrial fission machinery and how this may influence metabolic reprogramming during tumorigenesis and stem cell reprogramming. With advances in subcellular proteomics it is likely that new roles for ERK1/2, and new substrates, remain to be discovered at the mitochondria and other organelles.
Collapse
Affiliation(s)
- Simon J. Cook
- Signalling ProgrammeThe Babraham InstituteCambridgeUK
| | - Kate Stuart
- Signalling ProgrammeThe Babraham InstituteCambridgeUK
| | | | | |
Collapse
|
67
|
Gillies TE, Pargett M, Minguet M, Davies AE, Albeck JG. Linear Integration of ERK Activity Predominates over Persistence Detection in Fra-1 Regulation. Cell Syst 2017; 5:549-563.e5. [PMID: 29199017 DOI: 10.1016/j.cels.2017.10.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/29/2017] [Accepted: 10/27/2017] [Indexed: 12/14/2022]
Abstract
ERK signaling regulates the expression of target genes, but it is unclear how ERK activity dynamics are interpreted. Here, we investigate this question using simultaneous, live, single-cell imaging of two ERK activity reporters and expression of Fra-1, a target gene controlling epithelial cell identity. We find that Fra-1 is expressed in proportion to the amplitude and duration of ERK activity. In contrast to previous "persistence detector" and "selective filter" models in which Fra-1 expression only occurs when ERK activity persists beyond a threshold duration, our observations demonstrate that the network regulating Fra-1 expression integrates total ERK activity and responds to it linearly. However, exploration of a generalized mathematical model of the Fra-1 coherent feedforward loop demonstrates that it can perform either linear integration or persistence detection, depending on the basal mRNA production rate and protein production delays. Our data indicate that significant basal expression and short delays cause Fra-1 to respond linearly to integrated ERK activity.
Collapse
Affiliation(s)
- Taryn E Gillies
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Marta Minguet
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Alex E Davies
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John G Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
68
|
Merchant M, Moffat J, Schaefer G, Chan J, Wang X, Orr C, Cheng J, Hunsaker T, Shao L, Wang SJ, Wagle MC, Lin E, Haverty PM, Shahidi-Latham S, Ngu H, Solon M, Eastham-Anderson J, Koeppen H, Huang SMA, Schwarz J, Belvin M, Kirouac D, Junttila MR. Combined MEK and ERK inhibition overcomes therapy-mediated pathway reactivation in RAS mutant tumors. PLoS One 2017; 12:e0185862. [PMID: 28982154 PMCID: PMC5628883 DOI: 10.1371/journal.pone.0185862] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathway dysregulation is implicated in >30% of all cancers, rationalizing the development of RAF, MEK and ERK inhibitors. While BRAF and MEK inhibitors improve BRAF mutant melanoma patient outcomes, these inhibitors had limited success in other MAPK dysregulated tumors, with insufficient pathway suppression and likely pathway reactivation. In this study we show that inhibition of either MEK or ERK alone only transiently inhibits the MAPK pathway due to feedback reactivation. Simultaneous targeting of both MEK and ERK nodes results in deeper and more durable suppression of MAPK signaling that is not achievable with any dose of single agent, in tumors where feedback reactivation occurs. Strikingly, combined MEK and ERK inhibition is synergistic in RAS mutant models but only additive in BRAF mutant models where the RAF complex is dissociated from RAS and thus feedback productivity is disabled. We discovered that pathway reactivation in RAS mutant models occurs at the level of CRAF with combination treatment resulting in a markedly more active pool of CRAF. However, distinct from single node targeting, combining MEK and ERK inhibitor treatment effectively blocks the downstream signaling as assessed by transcriptional signatures and phospho-p90RSK. Importantly, these data reveal that MAPK pathway inhibitors whose activity is attenuated due to feedback reactivation can be rescued with sufficient inhibition by using a combination of MEK and ERK inhibitors. The MEK and ERK combination significantly suppresses MAPK pathway output and tumor growth in vivo to a greater extent than the maximum tolerated doses of single agents, and results in improved anti-tumor activity in multiple xenografts as well as in two Kras mutant genetically engineered mouse (GEM) models. Collectively, these data demonstrate that combined MEK and ERK inhibition is functionally unique, yielding greater than additive anti-tumor effects and elucidates a highly effective combination strategy in MAPK-dependent cancer, such as KRAS mutant tumors.
Collapse
Affiliation(s)
- Mark Merchant
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - John Moffat
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California, United States of America
| | - Gabriele Schaefer
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Jocelyn Chan
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Xi Wang
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Christine Orr
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Jason Cheng
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Thomas Hunsaker
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Lily Shao
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Stephanie J. Wang
- Department of Biological Engineering, The Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Marie-Claire Wagle
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California, United States of America
| | - Eva Lin
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Peter M. Haverty
- Department of Bioinformatics, Genentech, Inc., South San Francisco, California, United States of America
| | - Sheerin Shahidi-Latham
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, United States of America
| | - Hai Ngu
- Department of Pathology, Genentech, Inc., South San Francisco, California, United States of America
| | - Margaret Solon
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Jeffrey Eastham-Anderson
- Department of Pathology, Genentech, Inc., South San Francisco, California, United States of America
| | - Hartmut Koeppen
- Department of Pathology, Genentech, Inc., South San Francisco, California, United States of America
| | - Shih-Min A. Huang
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California, United States of America
| | - Jacob Schwarz
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Marcia Belvin
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, California, United States of America
| | - Daniel Kirouac
- Department of Pre-clinical & Translational Pharmacokinetics Genentech, Inc., South San Francisco, California, United States of America
| | - Melissa R. Junttila
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, United States of America
| |
Collapse
|
69
|
Kallenberger SM, Unger AL, Legewie S, Lymperopoulos K, Klingmüller U, Eils R, Herten DP. Correlated receptor transport processes buffer single-cell heterogeneity. PLoS Comput Biol 2017; 13:e1005779. [PMID: 28945754 PMCID: PMC5659801 DOI: 10.1371/journal.pcbi.1005779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 10/27/2017] [Accepted: 09/19/2017] [Indexed: 11/25/2022] Open
Abstract
Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR) trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system. Cell surface receptors translate extracellular ligand concentrations to intracellular responses. Receptor transport between the plasma membrane and other cellular compartments regulates the number of accessible receptors at the plasma membrane that determines the strength of downstream pathway activation at a given ligand concentration. In cell populations, pathway activation strength and cellular responses vary between cells. Understanding origins of cell-to-cell variability is highly relevant for cancer research, motivated by the problem of fractional killing by chemotherapies and development of resistance in subpopulations of tumor cells. The erythropoietin receptor (EpoR) is a characteristic example of a receptor system that strongly depends on receptor transport processes. It is involved in several cellular processes, such as differentiation or proliferation, regulates the renewal of erythrocytes, and is expressed in several tumors. To investigate the involvement of receptor transport processes in cell-to-cell variability, we quantitatively characterized trafficking of EpoR in individual cells by combining live-cell imaging with mathematical modeling. Thereby, we found that EpoR dynamics was strongly dependent on rapid receptor transport and turnover. Interestingly, although transport processes largely differed between individual cells, receptor concentrations in cellular compartments were robust to variability in trafficking processes due to the correlated kinetics of opposing transport processes.
Collapse
Affiliation(s)
- Stefan M. Kallenberger
- Department for Bioinformatics and Functional Genomics, Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Anne L. Unger
- Cellnetworks Cluster and Institute of Physical Chemistry, BioQuant, Heidelberg University, Heidelberg, Germany
| | | | - Konstantinos Lymperopoulos
- Cellnetworks Cluster and Institute of Physical Chemistry, BioQuant, Heidelberg University, Heidelberg, Germany
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- * E-mail: (DPH); (RE); (UK)
| | - Roland Eils
- Department for Bioinformatics and Functional Genomics, Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, Heidelberg, Germany
- * E-mail: (DPH); (RE); (UK)
| | - Dirk-Peter Herten
- Cellnetworks Cluster and Institute of Physical Chemistry, BioQuant, Heidelberg University, Heidelberg, Germany
- * E-mail: (DPH); (RE); (UK)
| |
Collapse
|
70
|
Anderson KGV, Hamilton WB, Roske FV, Azad A, Knudsen TE, Canham M, Forrester LM, Brickman JM. Insulin fine-tunes self-renewal pathways governing naive pluripotency and extra-embryonic endoderm. Nat Cell Biol 2017; 19:1164-1177. [DOI: 10.1038/ncb3617] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022]
|
71
|
The spatiotemporal regulation of RAS signalling. Biochem Soc Trans 2017; 44:1517-1522. [PMID: 27911734 DOI: 10.1042/bst20160127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 12/30/2022]
Abstract
Nearly 30% of human tumours harbour mutations in RAS family members. Post-translational modifications and the localisation of RAS within subcellular compartments affect RAS interactions with regulator, effector and scaffolding proteins. New insights into the control of spatiotemporal RAS signalling reveal that activation kinetics and subcellular compartmentalisation are tightly coupled to the generation of specific biological outcomes. Computational modelling can help utilising these insights for the identification of new targets and design of new therapeutic approaches.
Collapse
|
72
|
Kirouac DC, Schaefer G, Chan J, Merchant M, Orr C, Huang SMA, Moffat J, Liu L, Gadkar K, Ramanujan S. Clinical responses to ERK inhibition in BRAFV600E-mutant colorectal cancer predicted using a computational model. NPJ Syst Biol Appl 2017; 3:14. [PMID: 28649441 PMCID: PMC5460205 DOI: 10.1038/s41540-017-0016-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/18/2017] [Accepted: 05/04/2017] [Indexed: 12/11/2022] Open
Abstract
Approximately 10% of colorectal cancers harbor BRAFV600E mutations, which constitutively activate the MAPK signaling pathway. We sought to determine whether ERK inhibitor (GDC-0994)-containing regimens may be of clinical benefit to these patients based on data from in vitro (cell line) and in vivo (cell- and patient-derived xenograft) studies of cetuximab (EGFR), vemurafenib (BRAF), cobimetinib (MEK), and GDC-0994 (ERK) combinations. Preclinical data was used to develop a mechanism-based computational model linking cell surface receptor (EGFR) activation, the MAPK signaling pathway, and tumor growth. Clinical predictions of anti-tumor activity were enabled by the use of tumor response data from three Phase 1 clinical trials testing combinations of EGFR, BRAF, and MEK inhibitors. Simulated responses to GDC-0994 monotherapy (overall response rate = 17%) accurately predicted results from a Phase 1 clinical trial regarding the number of responding patients (2/18) and the distribution of tumor size changes ("waterfall plot"). Prospective simulations were then used to evaluate potential drug combinations and predictive biomarkers for increasing responsiveness to MEK/ERK inhibitors in these patients.
Collapse
Affiliation(s)
- Daniel C. Kirouac
- Genentech Research & Early Development, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Gabriele Schaefer
- Genentech Research & Early Development, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Jocelyn Chan
- Genentech Research & Early Development, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Mark Merchant
- Genentech Research & Early Development, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Christine Orr
- Genentech Research & Early Development, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Shih-Min A. Huang
- Genentech Research & Early Development, 1 DNA Way, South San Francisco, CA 94080 USA
| | - John Moffat
- Genentech Research & Early Development, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Lichuan Liu
- Genentech Research & Early Development, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Kapil Gadkar
- Genentech Research & Early Development, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Saroja Ramanujan
- Genentech Research & Early Development, 1 DNA Way, South San Francisco, CA 94080 USA
| |
Collapse
|
73
|
Cooper S, Bakal C. Accelerating Live Single-Cell Signalling Studies. Trends Biotechnol 2017; 35:422-433. [PMID: 28161141 DOI: 10.1016/j.tibtech.2017.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/24/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022]
Abstract
The dynamics of signalling networks that couple environmental conditions with cellular behaviour can now be characterised in exquisite detail using live single-cell imaging experiments. Recent improvements in our abilities to introduce fluorescent sensors into cells, coupled with advances in pipelines for quantifying and extracting single-cell data, mean that high-throughput systematic analyses of signalling dynamics are becoming possible. In this review, we consider current technologies that are driving progress in the scale and range of such studies. Moreover, we discuss novel approaches that are allowing us to explore how pathways respond to changes in inputs and even predict the fate of a cell based upon its signalling history and state.
Collapse
Affiliation(s)
- Sam Cooper
- The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK; Department of Computational Systems Medicine, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Chris Bakal
- The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| |
Collapse
|
74
|
Saidak Z, Giacobbi AS, Louandre C, Sauzay C, Mammeri Y, Galmiche A. Mathematical modelling unveils the essential role of cellular phosphatases in the inhibition of RAF-MEK-ERK signalling by sorafenib in hepatocellular carcinoma cells. Cancer Lett 2017; 392:1-8. [DOI: 10.1016/j.canlet.2017.01.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
|
75
|
Goyal Y, Jindal GA, Pelliccia JL, Yamaya K, Yeung E, Futran AS, Burdine RD, Schüpbach T, Shvartsman SY. Divergent effects of intrinsically active MEK variants on developmental Ras signaling. Nat Genet 2017; 49:465-469. [PMID: 28166211 PMCID: PMC5621734 DOI: 10.1038/ng.3780] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/30/2016] [Indexed: 12/16/2022]
Abstract
Germline mutations in Ras pathway components are associated with a large class of human developmental abnormalities, known as RASopathies, that are characterized by a range of structural and functional phenotypes, including cardiac defects and neurocognitive delays. Although it is generally believed that RASopathies are caused by altered levels of pathway activation, the signaling changes in developing tissues remain largely unknown. We used assays with spatiotemporal resolution in Drosophila melanogaster (fruit fly) and Danio rerio (zebrafish) to quantify signaling changes caused by mutations in MAP2K1 (encoding MEK), a core component of the Ras pathway that is mutated in both RASopathies and cancers in humans. Surprisingly, we discovered that intrinsically active MEK variants can both increase and reduce the levels of pathway activation in vivo. The sign of the effect depends on cellular context, implying that some of the emerging phenotypes in RASopathies may be caused by increased, as well as attenuated, levels of Ras signaling.
Collapse
Affiliation(s)
- Yogesh Goyal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Granton A. Jindal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - José L. Pelliccia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Kei Yamaya
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Eyan Yeung
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Alan S. Futran
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Rebecca D. Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Stanislav Y. Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
76
|
Diedrich B, Rigbolt KT, Röring M, Herr R, Kaeser-Pebernard S, Gretzmeier C, Murphy RF, Brummer T, Dengjel J. Discrete cytosolic macromolecular BRAF complexes exhibit distinct activities and composition. EMBO J 2017; 36:646-663. [PMID: 28093501 DOI: 10.15252/embj.201694732] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 12/06/2016] [Accepted: 12/09/2016] [Indexed: 12/19/2022] Open
Abstract
As a central element within the RAS/ERK pathway, the serine/threonine kinase BRAF plays a key role in development and homeostasis and represents the most frequently mutated kinase in tumors. Consequently, it has emerged as an important therapeutic target in various malignancies. Nevertheless, the BRAF activation cycle still raises many mechanistic questions as illustrated by the paradoxical action and side effects of RAF inhibitors. By applying SEC-PCP-SILAC, we analyzed protein-protein interactions of hyperactive BRAFV600E and wild-type BRAF (BRAFWT). We identified two macromolecular, cytosolic BRAF complexes of distinct molecular composition and phosphorylation status. Hyperactive BRAFV600E resides in large complexes of higher molecular mass and activity, while BRAFWT is confined to smaller, slightly less active complexes. However, expression of oncogenic K-RasG12V, either by itself or in combination with RAF dimer promoting inhibitors, induces the incorporation of BRAFWT into large, active complexes, whereas pharmacological inhibition of BRAFV600E has the opposite effect. Thus, the quaternary structure of BRAF complexes is shaped by its activation status, the conformation of its kinase domain, and clinically relevant inhibitors.
Collapse
Affiliation(s)
- Britta Diedrich
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany.,ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Kristoffer Tg Rigbolt
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany.,ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Michael Röring
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Freiburg, Germany
| | - Ricarda Herr
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Freiburg, Germany
| | | | - Christine Gretzmeier
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany.,ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - Robert F Murphy
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.,Computational Biology Department and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tilman Brummer
- ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany .,Faculty of Medicine, Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Centre, Freiburg, Germany.,German Cancer Consortium (DKTK), partner site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörn Dengjel
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany .,ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany.,Department of Biology, University of Fribourg, Fribourg, Switzerland.,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
77
|
Dual-specificity phosphatase 5 controls the localized inhibition, propagation, and transforming potential of ERK signaling. Proc Natl Acad Sci U S A 2017; 114:E317-E326. [PMID: 28053233 DOI: 10.1073/pnas.1614684114] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Deregulated extracellular signal-regulated kinase (ERK) signaling drives cancer growth. Normally, ERK activity is self-limiting by the rapid inactivation of upstream kinases and delayed induction of dual-specificity MAP kinase phosphatases (MKPs/DUSPs). However, interactions between these feedback mechanisms are unclear. Here we show that, although the MKP DUSP5 both inactivates and anchors ERK in the nucleus, it paradoxically increases and prolongs cytoplasmic ERK activity. The latter effect is caused, at least in part, by the relief of ERK-mediated RAF inhibition. The importance of this spatiotemporal interaction between these distinct feedback mechanisms is illustrated by the fact that expression of oncogenic BRAFV600E, a feedback-insensitive mutant RAF kinase, reprograms DUSP5 into a cell-wide ERK inhibitor that facilitates cell proliferation and transformation. In contrast, DUSP5 deletion causes BRAFV600E-induced ERK hyperactivation and cellular senescence. Thus, feedback interactions within the ERK pathway can regulate cell proliferation and transformation, and suggest oncogene-specific roles for DUSP5 in controlling ERK signaling and cell fate.
Collapse
|
78
|
Fritsche-Guenther R, Witzel F, Kempa S, Brummer T, Sers C, Blüthgen N. Effects of RAF inhibitors on PI3K/AKT signalling depend on mutational status of the RAS/RAF signalling axis. Oncotarget 2016; 7:7960-9. [PMID: 26799289 PMCID: PMC4884967 DOI: 10.18632/oncotarget.6959] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/25/2015] [Indexed: 01/20/2023] Open
Abstract
Targeted therapies within the RAS/RAF/MEK/ERK signalling axis become increasingly popular, yet cross-talk and feedbacks in the signalling network lead to unexpected effects. Here we look systematically into how inhibiting RAF and MEK with clinically relevant inhibitors result in changes in PI3K/AKT activation. We measure the signalling response using a bead-based ELISA, and use a panel of three cell lines, and isogenic cell lines that express mutant forms of the oncogenes KRAS and BRAF to interrogate the effects of the MEK and RAF inhibitors on signalling. We find that treatment with the RAF inhibitors have opposing effects on AKT phosphorylation depending on the mutational status of two important oncogenes, KRAS and BRAF. If these two genes are in wildtype configuration, RAF inhibitors reduce AKT phosphorylation. In contrast, if BRAF or KRAS are mutant, RAF inhibitors will leave AKT phosphorylation unaffected or lead to an increase of AKT phosphorylation. Down-regulation of phospho-AKT by RAF inhibitors also extends to downstream transcription factors, and correlates with apoptosis induction. Our results show that oncogenes rewire signalling such that targeted therapies can have opposing effects on parallel pathways, which depend on the mutational status of the cell.
Collapse
Affiliation(s)
- Raphaela Fritsche-Guenther
- Max-Delbrück-Center for Molecular Medicin (MDC) Berlin Buch, The Berlin Institute for Medical Systems Biology (BIMSB), 13125 Berlin, Germany
| | - Franziska Witzel
- Institute of Pathology, Molecular Tumor Pathology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.,Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Stefan Kempa
- Max-Delbrück-Center for Molecular Medicin (MDC) Berlin Buch, The Berlin Institute for Medical Systems Biology (BIMSB), 13125 Berlin, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research and Centre for Biological Signalling Studies BIOSS, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Christine Sers
- Institute of Pathology, Molecular Tumor Pathology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Molecular Tumor Pathology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.,Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, 10115 Berlin, Germany.,Integrative Research Institute for the Life Sciences, Humboldt University Berlin, 10099 Berlin, Germany
| |
Collapse
|
79
|
|
80
|
Lake D, Corrêa SAL, Müller J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell Mol Life Sci 2016; 73:4397-4413. [PMID: 27342992 PMCID: PMC5075022 DOI: 10.1007/s00018-016-2297-8] [Citation(s) in RCA: 386] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 01/04/2023]
Abstract
The extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signalling pathway regulates many cellular functions, including proliferation, differentiation, and transformation. To reliably convert external stimuli into specific cellular responses and to adapt to environmental circumstances, the pathway must be integrated into the overall signalling activity of the cell. Multiple mechanisms have evolved to perform this role. In this review, we will focus on negative feedback mechanisms and examine how they shape ERK1/2 MAPK signalling. We will first discuss the extensive number of negative feedback loops targeting the different components of the ERK1/2 MAPK cascade, specifically the direct posttranslational modification of pathway components by downstream protein kinases and the induction of de novo gene synthesis of specific pathway inhibitors. We will then evaluate how negative feedback modulates the spatiotemporal signalling dynamics of the ERK1/2 pathway regarding signalling amplitude and duration as well as subcellular localisation. Aberrant ERK1/2 activation results in deregulated proliferation and malignant transformation in model systems and is commonly observed in human tumours. Inhibition of the ERK1/2 pathway thus represents an attractive target for the treatment of malignant tumours with increased ERK1/2 activity. We will, therefore, discuss the effect of ERK1/2 MAPK feedback regulation on cancer treatment and how it contributes to reduced clinical efficacy of therapeutic agents and the development of drug resistance.
Collapse
Affiliation(s)
- David Lake
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Sonia A L Corrêa
- School of Life Sciences, University of Warwick, Coventry, UK
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Jürgen Müller
- Warwick Medical School, University of Warwick, Coventry, UK.
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
81
|
Weiße AY, Mannan AA, Oyarzún DA. Signaling Tug-of-War Delivers the Whole Message. Cell Syst 2016; 3:414-416. [PMID: 27883887 DOI: 10.1016/j.cels.2016.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
How do cells transmit biochemical signals accurately? It turns out, pushing and pulling can go a long way.
Collapse
Affiliation(s)
- Andrea Y Weiße
- SynthSys - Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Ahmad A Mannan
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
| | - Diego A Oyarzún
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
82
|
Kim YH. Dual inhibition of BRAF and MEK in BRAF-mutated metastatic non-small cell lung cancer. J Thorac Dis 2016; 8:2369-2371. [PMID: 27746978 DOI: 10.21037/jtd.2016.09.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Young Hak Kim
- Department of Respiratory Medicine, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
83
|
Börsch A, Schaber J. How time delay and network design shape response patterns in biochemical negative feedback systems. BMC SYSTEMS BIOLOGY 2016; 10:82. [PMID: 27558510 PMCID: PMC4995745 DOI: 10.1186/s12918-016-0325-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 07/29/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND Negative feedback in combination with time delay can bring about both sustained oscillations and adaptive behaviour in cellular networks. Here, we study which design features of systems with delayed negative feedback shape characteristic response patterns with special emphasis on the role of time delay. To this end, we analyse generic two-dimensional delay differential equations describing the dynamics of biochemical signal-response networks. RESULTS We investigate the influence of several design features on the stability of the model equilibrium, i.e., presence of auto-inhibition and/or mass conservation and the kind and/or strength of the delayed negative feedback. We show that auto-inhibition and mass conservation have a stabilizing effect, whereas increasing abruptness and decreasing feedback threshold have a de-stabilizing effect on the model equilibrium. Moreover, applying our theoretical analysis to the mammalian p53 system we show that an auto-inhibitory feedback can decouple period and amplitude of an oscillatory response, whereas the delayed feedback can not. CONCLUSIONS Our theoretical framework provides insight into how time delay and design features of biochemical networks act together to elicit specific characteristic response patterns. Such insight is useful for constructing synthetic networks and controlling their behaviour in response to external stimulation.
Collapse
Affiliation(s)
- Anastasiya Börsch
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Pfälzer Platz 2, Magdeburg, 39106, Germany.,Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Klingelbergstrasse 50-70, Basel, 4056, Switzerland
| | - Jörg Schaber
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Pfälzer Platz 2, Magdeburg, 39106, Germany.
| |
Collapse
|
84
|
Rauch N, Rukhlenko OS, Kolch W, Kholodenko BN. MAPK kinase signalling dynamics regulate cell fate decisions and drug resistance. Curr Opin Struct Biol 2016; 41:151-158. [PMID: 27521656 DOI: 10.1016/j.sbi.2016.07.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/29/2016] [Indexed: 01/21/2023]
Abstract
The RAS/RAF/MEK/MAPK kinase pathway has been extensively studied for more than 25 years, yet we continue to be puzzled by its intricate dynamic control and plasticity. Different spatiotemporal MAPK dynamics bring about distinct cell fate decisions in normal vs cancer cells and developing organisms. Recent modelling and experimental studies provided novel insights in the versatile MAPK dynamics concerted by a plethora of feedforward/feedback regulations and crosstalk on multiple timescales. Multiple cancer types and various developmental disorders arise from persistent alterations of the MAPK dynamics caused by RAS/RAF/MEK mutations. While a key role of the MAPK pathway in multiple diseases made the development of novel RAF/MEK inhibitors a hot topic of drug development, these drugs have unexpected side-effects and resistance inevitably occurs. We review how RAF dimerization conveys drug resistance and recent breakthroughs to overcome this resistance.
Collapse
Affiliation(s)
- Nora Rauch
- Systems Biology Ireland, University College Dublin, Ireland
| | | | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
85
|
Zhang Y, D'Argenio DZ. Feedback control indirect response models. J Pharmacokinet Pharmacodyn 2016; 43:343-58. [PMID: 27394724 DOI: 10.1007/s10928-016-9479-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 06/13/2016] [Indexed: 11/29/2022]
Abstract
A general framework is introduced for modeling pharmacodynamic processes that are subject to autoregulation, which combines the indirect response (IDR) model approach with methods from classical feedback control of engineered systems. The canonical IDR models are modified to incorporate linear combinations of feedback control terms related to the time course of the difference (the error signal) between the pharmacodynamic response and its basal value. Following the well-established approach of traditional engineering control theory, the proposed feedback control indirect response models incorporate terms proportional to the error signal itself, the integral of the error signal, the derivative of the error signal or combinations thereof. Simulations are presented to illustrate the types of responses produced by the proposed feedback control indirect response model framework, and to illustrate comparisons with other PK/PD modeling approaches incorporating feedback. In addition, four examples from literature are used to illustrate the implementation and applicability of the proposed feedback control framework. The examples reflect each of the four mechanisms of drug action as modeled by each of the four canonical IDR models and include: selective serotonin reuptake inhibitors and extracellular serotonin; histamine H2-receptor antagonists and gastric acid; growth hormone secretagogues and circulating growth hormone; β2-selective adrenergic agonists and potassium. The proposed feedback control indirect response approach may serve as an exploratory modeling tool and may provide a bridge for development of more mechanistic systems pharmacology models.
Collapse
Affiliation(s)
- Yaping Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - David Z D'Argenio
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
86
|
Varusai TM, Kolch W, Kholodenko BN, Nguyen LK. Protein-protein interactions generate hidden feedback and feed-forward loops to trigger bistable switches, oscillations and biphasic dose-responses. MOLECULAR BIOSYSTEMS 2016; 11:2750-62. [PMID: 26266875 DOI: 10.1039/c5mb00385g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein-protein interactions (PPIs) defined as reversible association of two proteins to form a complex, are undoubtedly among the most common interaction motifs featured in cells. Recent large-scale proteomic studies have revealed an enormously complex interactome of the cell, consisting of tens of thousands of PPIs with numerous signalling hubs. PPIs have functional roles in regulating a wide range of cellular processes including signal transduction and post-translational modifications, and de-regulation of PPIs is implicated in many diseases including cancers and neuro-degenerative disorders. Despite the ubiquitous appearance and physiological significance of PPIs, our understanding of the dynamic and functional consequences of these simple motifs remains incomplete, particularly when PPIs occur within large biochemical networks. We employ quantitative, dynamic modelling to computationally analyse salient dynamic features of the PPI motifs and PPI-containing signalling networks varying in topological architecture. Our analyses surprisingly reveal that simple reversible PPI motifs, when being embedded into signalling cascades, could give rise to extremely rich and complex regulatory dynamics in the absence of explicit positive and negative feedback loops. Our work represents a systematic investigation of the dynamic properties of PPIs in signalling networks, and the results shed light on how this simple event may potentiate diverse and intricate behaviours in vivo.
Collapse
Affiliation(s)
- Thawfeek M Varusai
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | |
Collapse
|
87
|
Fey D, Matallanas D, Rauch J, Rukhlenko OS, Kholodenko BN. The complexities and versatility of the RAS-to-ERK signalling system in normal and cancer cells. Semin Cell Dev Biol 2016; 58:96-107. [PMID: 27350026 DOI: 10.1016/j.semcdb.2016.06.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/18/2016] [Indexed: 12/19/2022]
Abstract
The intricate dynamic control and plasticity of RAS to ERK mitogenic, survival and apoptotic signalling has mystified researches for more than 30 years. Therapeutics targeting the oncogenic aberrations within this pathway often yield unsatisfactory, even undesired results, as in the case of paradoxical ERK activation in response to RAF inhibition. A direct approach of inhibiting single oncogenic proteins misses the dynamic network context governing the network signal processing. In this review, we discuss the signalling behaviour of RAS and RAF proteins in normal and in cancer cells, and the emerging systems-level properties of the RAS-to-ERK signalling network. We argue that to understand the dynamic complexities of this control system, mathematical models including mechanistic detail are required. Looking into the future, these dynamic models will build the foundation upon which more effective, rational approaches to cancer therapy will be developed.
Collapse
Affiliation(s)
- Dirk Fey
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - David Matallanas
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jens Rauch
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Oleksii S Rukhlenko
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Boris N Kholodenko
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
88
|
Dernayka L, Rauch N, Jarboui MA, Zebisch A, Texier Y, Horn N, Romano D, Gloeckner CJ, Kriegsheim AV, Ueffing M, Kolch W, Boldt K. Autophosphorylation on S614 inhibits the activity and the transforming potential of BRAF. Cell Signal 2016; 28:1432-1439. [PMID: 27345148 DOI: 10.1016/j.cellsig.2016.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/09/2016] [Accepted: 06/18/2016] [Indexed: 12/25/2022]
Abstract
The BRAF proto-oncogene serine/threonine-protein kinase, known as BRAF, belongs to the RAF kinase family. It regulates the MAPK/ERK signalling pathway affecting several cellular processes such as growth, survival, differentiation, and cellular transformation. BRAF is mutated in ~8% of all human cancers with the V600E mutation constituting ~90% of mutations. Here, we have used quantitative mass spectrometry to map and compare phosphorylation site patterns between BRAF and BRAF V600E. We identified sites that are shared as well as several quantitative differences in phosphorylation abundance. The highest difference is phosphorylation of S614 in the activation loop which is ~5fold enhanced in BRAF V600E. Mutation of S614 increases the kinase activity of both BRAF and BRAF V600E and the transforming ability of BRAF V600E. The phosphorylation of S614 is mitogen inducible and the result of autophosphorylation. These data suggest that phosphorylation at this site is inhibitory, and part of the physiological shut-down mechanism of BRAF signalling.
Collapse
Affiliation(s)
- Layal Dernayka
- Medical Proteome Center, Division for Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Nora Rauch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mohamed-Ali Jarboui
- Medical Proteome Center, Division for Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Armin Zebisch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yves Texier
- Medical Proteome Center, Division for Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Nicola Horn
- Medical Proteome Center, Division for Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - David Romano
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christian Johannes Gloeckner
- Medical Proteome Center, Division for Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen e. V., Otfried-Müller Strasse 23, 72076 Tübingen, Germany
| | - Alex von Kriegsheim
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marius Ueffing
- Medical Proteome Center, Division for Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Karsten Boldt
- Medical Proteome Center, Division for Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
89
|
Lapytsko A, Schaber J. The role of time delay in adaptive cellular negative feedback systems. J Theor Biol 2016; 398:64-73. [PMID: 26995333 DOI: 10.1016/j.jtbi.2016.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/08/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
Adaptation in cellular systems is often mediated by negative feedbacks, which usually come with certain time delays causing several characteristic response patterns including an overdamped response, damped or sustained oscillations. Here, we analyse generic two-dimensional delay differential equations with delayed negative feedback describing the dynamics of biochemical adaptive signal-response networks. We derive explicit thresholds and boundaries showing how time delay determines characteristic response patterns of these networks. Applying our theoretical analyses to concrete data we show that adaptation to osmotic stress in yeast is optimal in the sense of minimizing adaptation time without causing oscillatory behaviour, i.e., a critically damped response. In addition, our framework demonstrates that a slight increase of time delay in the NF-κB system might induce a switch from damped to sustained oscillatory behaviour. Thus, we demonstrate how delay differential equations can be used to explicitly study the delay in biochemical negative feedback systems. Our analysis also provides insight into how time delay may tune biological signal-response patterns and control the systems behaviour.
Collapse
Affiliation(s)
- Anastasiya Lapytsko
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Pfälzer Platz 2, Magdeburg 39106, Germany
| | - Jörg Schaber
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Pfälzer Platz 2, Magdeburg 39106, Germany.
| |
Collapse
|
90
|
Filippi S, Barnes CP, Kirk PDW, Kudo T, Kunida K, McMahon SS, Tsuchiya T, Wada T, Kuroda S, Stumpf MPH. Robustness of MEK-ERK Dynamics and Origins of Cell-to-Cell Variability in MAPK Signaling. Cell Rep 2016; 15:2524-35. [PMID: 27264188 PMCID: PMC4914773 DOI: 10.1016/j.celrep.2016.05.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 12/27/2022] Open
Abstract
Cellular signaling processes can exhibit pronounced cell-to-cell variability in genetically identical cells. This affects how individual cells respond differentially to the same environmental stimulus. However, the origins of cell-to-cell variability in cellular signaling systems remain poorly understood. Here, we measure the dynamics of phosphorylated MEK and ERK across cell populations and quantify the levels of population heterogeneity over time using high-throughput image cytometry. We use a statistical modeling framework to show that extrinsic noise, particularly that from upstream MEK, is the dominant factor causing cell-to-cell variability in ERK phosphorylation, rather than stochasticity in the phosphorylation/dephosphorylation of ERK. We furthermore show that without extrinsic noise in the core module, variable (including noisy) signals would be faithfully reproduced downstream, but the within-module extrinsic variability distorts these signals and leads to a drastic reduction in the mutual information between incoming signal and ERK activity. Active MEK and ERK levels differ profoundly among genetically identical cells A statistical framework is developed to identify the causes of this variability Analysis shows that extrinsic noise upstream MEK-ERK module causes cell variability Within-module extrinsic variability distorts signals
Collapse
Affiliation(s)
- Sarah Filippi
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London SW7 2AZ, UK
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK; Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Paul D W Kirk
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London SW7 2AZ, UK
| | - Takamasa Kudo
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-8654, Japan
| | - Katsuyuki Kunida
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-8654, Japan
| | - Siobhan S McMahon
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London SW7 2AZ, UK
| | - Takaho Tsuchiya
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-8654, Japan
| | - Takumi Wada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-8654, Japan
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-8654, Japan; CREST, Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Michael P H Stumpf
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London SW7 2AZ, UK; Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
91
|
Hathcock D, Sheehy J, Weisenberger C, Ilker E, Hinczewski M. Noise Filtering and Prediction in Biological Signaling Networks. ACTA ACUST UNITED AC 2016. [DOI: 10.1109/tmbmc.2016.2633269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
92
|
Ren J, Cook AA, Bergmeier W, Sondek J. A negative-feedback loop regulating ERK1/2 activation and mediated by RasGPR2 phosphorylation. Biochem Biophys Res Commun 2016; 474:193-198. [PMID: 27107697 DOI: 10.1016/j.bbrc.2016.04.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
Abstract
The dynamic regulation of ERK1 and -2 (ERK1/2) is required for precise signal transduction controlling cell proliferation, differentiation, and survival. However, the underlying mechanisms regulating the activation of ERK1/2 are not completely understood. In this study, we show that phosphorylation of RasGRP2, a guanine nucleotide exchange factor (GEF), inhibits its ability to activate the small GTPase Rap1 that ultimately leads to decreased activation of ERK1/2 in cells. ERK2 phosphorylates RasGRP2 at Ser394 located in the linker region implicated in its autoinhibition. These studies identify RasGRP2 as a novel substrate of ERK1/2 and define a negative-feedback loop that regulates the BRaf-MEK-ERK signaling cascade. This negative-feedback loop determines the amplitude and duration of active ERK1/2.
Collapse
Affiliation(s)
- Jinqi Ren
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Aaron A Cook
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - John Sondek
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599.,Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| |
Collapse
|
93
|
Maya-Bernal JL, Ramírez-Santiago G. Spatio-temporal dynamics of a cell signal pathway with negative feedbacks: the MAPK/ERK pathway. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:28. [PMID: 26987732 DOI: 10.1140/epje/i2016-16028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
We studied the spatio-temporal dynamics of a cell signal cascade with negative feedback that quantitatively emulates the regulative process that occurs in the Mitogen Activated Protein Kinase/Extracellular Regulated Kinase (MAPK/ERK) pathway. The model consists of a set of six coupled reaction-diffusion equations that describes the dynamics of the six-module pathway. In the basic module the active form of the protein transmits the signal to the next pathway’s module. As suggested by experiments, the model considers that the fifth module's kinase down-regulates the first and third modules. The feedback parameter is defined as, μ(r)( j)= k(kin)5/k(kin)(j), (j = 1, 3). We analysed the pathway's dynamics for μ(r)( j) = 0.10, 1.0, and 10 in the kinetic regimes: i) saturation of both kinases and phosphatases, ii) saturation of the phosphatases and iii) saturation of the kinases. For a regulated pathway the Total Activated Protein Profiles (TAPPs) as a function of time develop a maximum during the transient stage in the three kinetic regimes. These maxima become higher and their positions shift to longer times downstream. This scenario also applies to the TAPP's regulatory kinase that sums up its inhibitory action to that of the phosphatases leading to a maximum. Nevertheless, when μ(r)(j)= 1.0 , the TAPPs develop two maxima, with the second maximum being almost imperceptible. These results are in qualitative agreement with experimental data obtained from NIH 3T3 mouse fibroblasts. In addition, analyses of the stationary states as a function of position indicate that in the kinetic regime i) which is of physiological interest, signal transduction occurs with a relatively large propagation length for the three values of the regulative parameter. However, for μ(r)(j)= 0.10 , the sixth module concentration profile is transmitted with approximately 45% of its full value. The results obtained for μ(r)(j) = 10 , indicate that the first five concentration profiles are small with a short propagation length; nonetheless, the last concentration profile, c6, attains more than 90% of its full value with a relatively large propagation length as an indication of signal transduction. Signal transduction also occurred favourably in the kinetic regimes ii) and iii), but the signal was longer-ranged in the regime ii).
Collapse
Affiliation(s)
- José Luis Maya-Bernal
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Coyoacán D.F., Mexico
| | - Guillermo Ramírez-Santiago
- Instituto de Matemáticas, Universidad Nacional Autónoma de México, C.P. 76230, Juriquilla Querétaro, Mexico.
| |
Collapse
|
94
|
Iwamoto N, D'Alessandro LA, Depner S, Hahn B, Kramer BA, Lucarelli P, Vlasov A, Stepath M, Böhm ME, Deharde D, Damm G, Seehofer D, Lehmann WD, Klingmüller U, Schilling M. Context-specific flow through the MEK/ERK module produces cell- and ligand-specific patterns of ERK single and double phosphorylation. Sci Signal 2016; 9:ra13. [PMID: 26838549 DOI: 10.1126/scisignal.aab1967] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The same pathway, such as the mitogen-activated protein kinase (MAPK) pathway, can produce different cellular responses, depending on stimulus or cell type. We examined the phosphorylation dynamics of the MAPK kinase MEK and its targets extracellular signal-regulated kinase 1 and 2 (ERK1/2) in primary hepatocytes and the transformed keratinocyte cell line HaCaT A5 exposed to either hepatocyte growth factor or interleukin-6. By combining quantitative mass spectrometry with dynamic modeling, we elucidated network structures for the reversible threonine and tyrosine phosphorylation of ERK in both cell types. In addition to differences in the phosphorylation and dephosphorylation reactions, the HaCaT network model required two feedback mechanisms, which, as the experimental data suggested, involved the induction of the dual-specificity phosphatase DUSP6 and the scaffold paxillin. We assayed and modeled the accumulation of the double-phosphorylated and active form of ERK1/2, as well as the dynamics of the changes in the monophosphorylated forms of ERK1/2. Modeling the differences in the dynamics of the changes in the distributions of the phosphorylated forms of ERK1/2 suggested that different amounts of MEK activity triggered context-specific responses, with primary hepatocytes favoring the formation of double-phosphorylated ERK1/2 and HaCaT A5 cells that produce both the threonine-phosphorylated and the double-phosphorylated form. These differences in phosphorylation distributions explained the threshold, sensitivity, and saturation of the ERK response. We extended the findings of differential ERK phosphorylation profiles to five additional cultured cell systems and matched liver tumor and normal tissue, which revealed context-specific patterns of the various forms of phosphorylated ERK.
Collapse
Affiliation(s)
- Nao Iwamoto
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lorenza A D'Alessandro
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sofia Depner
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Bettina Hahn
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Bernhard A Kramer
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Philippe Lucarelli
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Artyom Vlasov
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Markus Stepath
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Martin E Böhm
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Daniela Deharde
- Department of General, Visceral and Transplantation Surgery, Campus Virchow Clinic, Charité-University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Georg Damm
- Department of General, Visceral and Transplantation Surgery, Campus Virchow Clinic, Charité-University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Daniel Seehofer
- Department of General, Visceral and Transplantation Surgery, Campus Virchow Clinic, Charité-University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Wolf D Lehmann
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Marcel Schilling
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
95
|
Jensen KJ, Moyer CB, Janes KA. Network Architecture Predisposes an Enzyme to Either Pharmacologic or Genetic Targeting. Cell Syst 2016; 2:112-121. [PMID: 26942229 DOI: 10.1016/j.cels.2016.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chemical inhibition and genetic knockdown of enzymes are not equivalent in cells, but network-level mechanisms that cause discrepancies between knockdown and inhibitor perturbations are not understood. Here we report that enzymes regulated by negative feedback are robust to knockdown but susceptible to inhibition. Using the Raf-MEK-ERK kinase cascade as a model system, we find that ERK activation is resistant to genetic knockdown of MEK but susceptible to a comparable degree of chemical MEK inhibition. We demonstrate that negative feedback from ERK to Raf causes this knockdown-versus-inhibitor discrepancy in vivo. Exhaustive mathematical modeling of three-tiered enzyme cascades suggests that this result is general: negative autoregulation or feedback favors inhibitor potency, whereas positive autoregulation or feedback favors knockdown potency. Our findings provide a rationale for selecting pharmacologic versus genetic perturbations in vivo and point out the dangers of using knockdown approaches in search of drug targets.
Collapse
Affiliation(s)
- Karin J Jensen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Sanofi Oncology, Cambridge, MA 02139, USA
| | - Christian B Moyer
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
96
|
Nguyen LK, Kholodenko BN. Feedback regulation in cell signalling: Lessons for cancer therapeutics. Semin Cell Dev Biol 2016; 50:85-94. [DOI: 10.1016/j.semcdb.2015.09.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 02/06/2023]
|
97
|
Mutational and network level mechanisms underlying resistance to anti-cancer kinase inhibitors. Semin Cell Dev Biol 2016; 50:164-76. [DOI: 10.1016/j.semcdb.2015.09.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 12/21/2022]
|
98
|
Ma X, Chen H, Chen L. A dual role of Erk signaling in embryonic stem cells. Exp Hematol 2016; 44:151-6. [PMID: 26751246 DOI: 10.1016/j.exphem.2015.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/25/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
Abstract
Erk signaling plays a critical role in maintaining the pluripotency of mouse embryonic stem cells (ESCs). Inhibition of Mek/Erk signaling by pharmacologic Mek inhibitor promotes self-renewal and pluripotency of mouse ESCs. However, knockout of Erk1/2 genes compromises the self-renewal and genomic stability of mouse ESCs. In this review, we summarize recent progress in understanding the role of Erk signaling in pluripotency maintenance, discuss the dual role of Erk in mouse ESCs, and provide explanations for the conflicting data regarding Mek inhibition and Erk knockout. Remaining questions and the prospects of Erk signaling in pluripotency maintenance are also discussed.
Collapse
Affiliation(s)
- Xinwei Ma
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences and College of Life Sciences, Nankai University, Tianjin, China
| | - Haixia Chen
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences and College of Life Sciences, Nankai University, Tianjin, China
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences and College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
99
|
Fey D, Halasz M, Dreidax D, Kennedy SP, Hastings JF, Rauch N, Munoz AG, Pilkington R, Fischer M, Westermann F, Kolch W, Kholodenko BN, Croucher DR. Signaling pathway models as biomarkers: Patient-specific simulations of JNK activity predict the survival of neuroblastoma patients. Sci Signal 2015; 8:ra130. [DOI: 10.1126/scisignal.aab0990] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
100
|
Adjusting for confounding effects of treatment switching in a randomized phase II study of dabrafenib plus trametinib in BRAF V600+ metastatic melanoma. Melanoma Res 2015; 25:528-36. [DOI: 10.1097/cmr.0000000000000193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|