51
|
Richard P, Vethantham V, Manley JL. Roles of Sumoylation in mRNA Processing and Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:15-33. [PMID: 28197904 DOI: 10.1007/978-3-319-50044-7_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SUMO has gained prominence as a regulator in a number of cellular processes. The roles of sumoylation in RNA metabolism, however, while considerable, remain less well understood. In this chapter we have assembled data from proteomic analyses, localization studies and key functional studies to extend SUMO's role to the area of mRNA processing and metabolism. Proteomic analyses have identified multiple putative sumoylation targets in complexes functioning in almost all aspects of mRNA metabolism, including capping, splicing and polyadenylation of mRNA precursors. Possible regulatory roles for SUMO have emerged in pre-mRNA 3' processing, where SUMO influences the functions of polyadenylation factors and activity of the entire complex. SUMO is also involved in regulating RNA editing and RNA binding by hnRNP proteins, and recent reports have suggested the involvement of the SUMO pathway in mRNA export. Together, these reports suggest that SUMO is involved in regulation of many aspects of mRNA metabolism and hold the promise for exciting future studies.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | | | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
52
|
Yang W, Sheng H, Wang H. Targeting the SUMO pathway for neuroprotection in brain ischaemia. Stroke Vasc Neurol 2016; 1:101-107. [PMID: 28959470 PMCID: PMC5435206 DOI: 10.1136/svn-2016-000031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 12/20/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) conjugation (SUMOylation) is a post-translational protein modification that modulates almost all major cellular processes, and has been implicated in many human diseases. A growing body of evidence from in vitro and in vivo studies demonstrates that increasing global levels of SUMO conjugated proteins (global SUMOylation) protects cells against ischaemia-induced damage, while suppressing global SUMOylation promotes cell injury after ischaemia. Indeed, SUMOylation has emerged as a potential therapeutic target for neuroprotection in brain ischaemia, including global brain ischaemia and focal brain ischaemia (ischaemic stroke). Here, we summarise findings on the role of SUMOylation in human diseases, brain ischaemia in particular, and review recent developments in drug discovery targeting SUMOylation with a major focus on its neuroprotective applications.
Collapse
Affiliation(s)
- Wei Yang
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Huaxin Sheng
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Haichen Wang
- Multidisciplinary Neuroprotection Laboratories, Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
53
|
Lecona E, Fernandez-Capetillo O. A SUMO and ubiquitin code coordinates protein traffic at replication factories. Bioessays 2016; 38:1209-1217. [DOI: 10.1002/bies.201600129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Emilio Lecona
- Spanish National Cancer Research Centre; CNIO; Madrid Spain
| | - Oscar Fernandez-Capetillo
- Spanish National Cancer Research Centre; CNIO; Madrid Spain
- Science for Life Laboratory; Division of Translational Medicine and Chemical Biology; Department of Medical Biochemistry and Biophysics; Karolinska Institute; Stockholm Sweden
| |
Collapse
|
54
|
Xiao Y, Pollack D, Andrusier M, Levy A, Callaway M, Nieves E, Reddi P, Vigodner M. Identification of cell-specific targets of sumoylation during mouse spermatogenesis. Reproduction 2016; 151:149-66. [PMID: 26701181 DOI: 10.1530/rep-15-0239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent findings suggest diverse and potentially multiple roles of small ubiquitin-like modifier (SUMO) in testicular function and spermatogenesis. However, SUMO targets remain uncharacterized in the testis due to the complex multicellular nature of testicular tissue, the inability to maintain and manipulate spermatogenesis in vitro, and the technical challenges involved in identifying low-abundance endogenous SUMO targets. In this study, we performed cell-specific identification of sumoylated proteins using concentrated cell lysates prepared with de-sumoylation inhibitors from freshly purified spermatocytes and spermatids. One-hundred and twenty proteins were uniquely identified in the spermatocyte and/or spermatid fractions. The identified proteins are involved in the regulation of transcription, stress response, microRNA biogenesis, regulation of major enzymatic pathways, nuclear-cytoplasmic transport, cell-cycle control, acrosome biogenesis, and other processes. Several proteins with important roles during spermatogenesis were chosen for further characterization by co-immunoprecipitation, co-localization, and in vitro sumoylation studies. GPS-SUMO Software was used to identify consensus and non-consensus sumoylation sites within the amino acid sequences of the proteins. The analyses confirmed the cell-specific sumoylation and/or SUMO interaction of several novel, previously uncharacterized SUMO targets such as CDK1, RNAP II, CDC5, MILI, DDX4, TDP-43, and STK31. Furthermore, several proteins that were previously identified as SUMO targets in somatic cells (KAP1 and MDC1) were identified as SUMO targets in germ cells. Many of these proteins have a unique role in spermatogenesis and during meiotic progression. This research opens a novel avenue for further studies of SUMO at the level of individual targets.
Collapse
Affiliation(s)
| | | | | | | | - Myrasol Callaway
- Department of BiologyStern College, Yeshiva University, New York, New York, USALaboratory for Macromolecular Analysis and ProteomicsAlbert Einstein College of Medicine, Bronx, New York, USADepartment of BiologyStern College, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USADepartment of Developmental and Molecular BiologyAlbert Einstein College of Medicine, Bronx, New York, USADepartment of PathologyUniversity of Virginia, Charlottesville, Virginia, USA
| | - Edward Nieves
- Department of BiologyStern College, Yeshiva University, New York, New York, USALaboratory for Macromolecular Analysis and ProteomicsAlbert Einstein College of Medicine, Bronx, New York, USADepartment of BiologyStern College, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USADepartment of Developmental and Molecular BiologyAlbert Einstein College of Medicine, Bronx, New York, USADepartment of PathologyUniversity of Virginia, Charlottesville, Virginia, USA
| | - Prabhakara Reddi
- Department of BiologyStern College, Yeshiva University, New York, New York, USALaboratory for Macromolecular Analysis and ProteomicsAlbert Einstein College of Medicine, Bronx, New York, USADepartment of BiologyStern College, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USADepartment of Developmental and Molecular BiologyAlbert Einstein College of Medicine, Bronx, New York, USADepartment of PathologyUniversity of Virginia, Charlottesville, Virginia, USA
| | - Margarita Vigodner
- Department of BiologyStern College, Yeshiva University, New York, New York, USALaboratory for Macromolecular Analysis and ProteomicsAlbert Einstein College of Medicine, Bronx, New York, USADepartment of BiologyStern College, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USADepartment of Developmental and Molecular BiologyAlbert Einstein College of Medicine, Bronx, New York, USADepartment of PathologyUniversity of Virginia, Charlottesville, Virginia, USA Department of BiologyStern College, Yeshiva University, New York, New York, USALaboratory for Macromolecular Analysis and ProteomicsAlbert Einstein College of Medicine, Bronx, New York, USADepartment of BiologyStern College, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USADepartment of Developmental and Molecular BiologyAlbert Einstein College of Medicine, Bronx, New York, USADepartment of PathologyUniversity of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
55
|
Abstract
Small ubiquitin-like modifiers (SUMOs) are essential for the regulation of several cellular processes and are potential therapeutic targets owing to their involvement in diseases such as cancer and Alzheimer disease. In the past decade, we have witnessed a rapid expansion of proteomic approaches for identifying sumoylated proteins, with recent advances in detecting site-specific sumoylation. In this Analysis, we combined all human SUMO proteomics data currently available into one cohesive database. We provide proteomic evidence for sumoylation of 3,617 proteins at 7,327 sumoylation sites, and insight into SUMO group modification by clustering the sumoylated proteins into functional networks. The data support sumoylation being a frequent protein modification (on par with other major protein modifications) with multiple nuclear functions, including in transcription, mRNA processing, DNA replication and the DNA-damage response.
Collapse
|
56
|
Liebelt F, Vertegaal ACO. Ubiquitin-dependent and independent roles of SUMO in proteostasis. Am J Physiol Cell Physiol 2016; 311:C284-96. [PMID: 27335169 PMCID: PMC5129774 DOI: 10.1152/ajpcell.00091.2016] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/15/2016] [Indexed: 01/04/2023]
Abstract
Cellular proteomes are continuously undergoing alterations as a result of new production of proteins, protein folding, and degradation of proteins. The proper equilibrium of these processes is known as proteostasis, implying that proteomes are in homeostasis. Stress conditions can affect proteostasis due to the accumulation of misfolded proteins as a result of overloading the degradation machinery. Proteostasis is affected in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and multiple polyglutamine disorders including Huntington's disease. Owing to a lack of proteostasis, neuronal cells build up toxic protein aggregates in these diseases. Here, we review the role of the ubiquitin-like posttranslational modification SUMO in proteostasis. SUMO alone contributes to protein homeostasis by influencing protein signaling or solubility. However, the main contribution of SUMO to proteostasis is the ability to cooperate with, complement, and balance the ubiquitin-proteasome system at multiple levels. We discuss the identification of enzymes involved in the interplay between SUMO and ubiquitin, exploring the complexity of this crosstalk which regulates proteostasis. These enzymes include SUMO-targeted ubiquitin ligases and ubiquitin proteases counteracting these ligases. Additionally, we review the role of SUMO in brain-related diseases, where SUMO is primarily investigated because of its role during formation of aggregates, either independently or in cooperation with ubiquitin. Detailed understanding of the role of SUMO in these diseases could lead to novel treatment options.
Collapse
Affiliation(s)
- Frauke Liebelt
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
57
|
Abstract
SUMOylation is a ubiquitin-related transient posttranslational modification pathway catalyzing the conjugation of small ubiquitin-like modifier (SUMO) proteins (SUMO1, SUMO2, and SUMO3) to lysine residues of proteins. SUMOylation targets a wide variety of cellular regulators and thereby affects a multitude of different cellular processes. SUMO/sentrin-specific proteases are able to remove SUMOs from targets, contributing to a tight control of SUMOylated proteins. Genetic and cell biological experiments indicate a critical role of balanced SUMOylation/deSUMOylation for proper cardiac development, metabolism, and stress adaptation. Here, we review the current knowledge about SUMOylation/deSUMOylation in the heart and provide an integrated picture of cardiac functions of the SUMO system under physiologic or pathologic conditions. We also describe potential therapeutic approaches targeting the SUMO machinery to combat heart disease.
Collapse
Affiliation(s)
- Luca Mendler
- From the Institute of Biochemistry II, Goethe University, Medical School, Frankfurt, Germany (L.M., S.M.); Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary (L.M.); and Department I - Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.)
| | - Thomas Braun
- From the Institute of Biochemistry II, Goethe University, Medical School, Frankfurt, Germany (L.M., S.M.); Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary (L.M.); and Department I - Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.).
| | - Stefan Müller
- From the Institute of Biochemistry II, Goethe University, Medical School, Frankfurt, Germany (L.M., S.M.); Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary (L.M.); and Department I - Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.).
| |
Collapse
|
58
|
Gupta MK, McLendon PM, Gulick J, James J, Khalili K, Robbins J. UBC9-Mediated Sumoylation Favorably Impacts Cardiac Function in Compromised Hearts. Circ Res 2016; 118:1894-905. [PMID: 27142163 DOI: 10.1161/circresaha.115.308268] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/03/2016] [Indexed: 12/25/2022]
Abstract
RATIONALE SUMOylation plays an important role in cardiac function and can be protective against cardiac stress. Recent studies show that SUMOylation is an integral part of the ubiquitin proteasome system, and expression of the small ubiquitin-like modifier (SUMO) E2 enzyme UBC9 improves cardiac protein quality control. However, the precise role of SUMOylation on other protein degradation pathways, particularly autophagy, remains undefined in the heart. OBJECTIVE To determine whether SUMOylation affects cardiac autophagy and whether this effect is protective in a mouse model of proteotoxic cardiac stress. METHODS AND RESULTS We modulated expression of UBC9, a SUMO E2 ligase, using gain- and loss-of-function in neonatal rat ventricular cardiomyocytes. UBC9 expression seemed to directly alter autophagic flux. To confirm this effect in vivo, we generated transgenic mice overexpressing UBC9 in cardiomyocytes. These mice have an increased level of SUMOylation at baseline and, in confirmation of the data obtained from neonatal rat ventricular cardiomyocytes, demonstrated increased autophagy, suggesting that increased UBC9-mediated SUMOylation is sufficient to upregulate cardiac autophagy. Finally, we tested the protective role of SUMOylation-mediated autophagy by expressing UBC9 in a model of cardiac proteotoxicity, induced by cardiomyocyte-specific expression of a mutant α-B-crystallin, mutant CryAB (CryAB(R120G)), which shows impaired autophagy. UBC9 overexpression reduced aggregate formation, decreased fibrosis, reduced hypertrophy, and improved cardiac function and survival. CONCLUSIONS The data showed that increased UBC9-mediated SUMOylation is sufficient to induce relatively high levels of autophagy and may represent a novel strategy for increasing autophagic flux and ameliorating morbidity in proteotoxic cardiac disease.
Collapse
Affiliation(s)
- Manish K Gupta
- From the Department of Neuroscience, Temple University, Philadelphia, PA (M.K.G., K.K.); and Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, Cincinnati, OH (P.M.M., J.G., J.J, J.R.)
| | - Patrick M McLendon
- From the Department of Neuroscience, Temple University, Philadelphia, PA (M.K.G., K.K.); and Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, Cincinnati, OH (P.M.M., J.G., J.J, J.R.)
| | - James Gulick
- From the Department of Neuroscience, Temple University, Philadelphia, PA (M.K.G., K.K.); and Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, Cincinnati, OH (P.M.M., J.G., J.J, J.R.)
| | - Jeanne James
- From the Department of Neuroscience, Temple University, Philadelphia, PA (M.K.G., K.K.); and Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, Cincinnati, OH (P.M.M., J.G., J.J, J.R.)
| | - Kamel Khalili
- From the Department of Neuroscience, Temple University, Philadelphia, PA (M.K.G., K.K.); and Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, Cincinnati, OH (P.M.M., J.G., J.J, J.R.)
| | - Jeffrey Robbins
- From the Department of Neuroscience, Temple University, Philadelphia, PA (M.K.G., K.K.); and Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, Cincinnati, OH (P.M.M., J.G., J.J, J.R.).
| |
Collapse
|
59
|
USP7 is a SUMO deubiquitinase essential for DNA replication. Nat Struct Mol Biol 2016; 23:270-7. [PMID: 26950370 DOI: 10.1038/nsmb.3185] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/04/2016] [Indexed: 12/15/2022]
Abstract
Post-translational modification of proteins by ubiquitin (Ub) and Ub-like modifiers regulates DNA replication. We have previously shown that chromatin around replisomes is rich in SUMO and poor in Ub, whereas mature chromatin exhibits an opposite pattern. How this SUMO-rich, Ub-poor environment is maintained at sites of DNA replication in mammalian cells remains unexplored. Here we identify USP7 as a replisome-enriched SUMO deubiquitinase that is essential for DNA replication. By acting on SUMO and SUMOylated proteins, USP7 counteracts their ubiquitination. Inhibition or genetic deletion of USP7 leads to the accumulation of Ub on SUMOylated proteins, which are displaced away from replisomes. Our findings provide a model explaining the differential accumulation of SUMO and Ub at replication forks and identify an essential role of USP7 in DNA replication that should be considered in the development of USP7 inhibitors as anticancer agents.
Collapse
|
60
|
Boomsma W, Nielsen SV, Lindorff-Larsen K, Hartmann-Petersen R, Ellgaard L. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases. PeerJ 2016; 4:e1725. [PMID: 26966660 PMCID: PMC4782732 DOI: 10.7717/peerj.1725] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/02/2016] [Indexed: 12/28/2022] Open
Abstract
The ubiquitin-proteasome system targets misfolded proteins for degradation. Since the accumulation of such proteins is potentially harmful for the cell, their prompt removal is important. E3 ubiquitin-protein ligases mediate substrate ubiquitination by bringing together the substrate with an E2 ubiquitin-conjugating enzyme, which transfers ubiquitin to the substrate. For misfolded proteins, substrate recognition is generally delegated to molecular chaperones that subsequently interact with specific E3 ligases. An important exception is San1, a yeast E3 ligase. San1 harbors extensive regions of intrinsic disorder, which provide both conformational flexibility and sites for direct recognition of misfolded targets of vastly different conformations. So far, no mammalian ortholog of San1 is known, nor is it clear whether other E3 ligases utilize disordered regions for substrate recognition. Here, we conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology of their ordered regions, and did not capture the unique disorder patterns that encode the functional mechanism of San1. However, by searching specifically for key features of the San1 sequence, such as long regions of intrinsic disorder embedded with short stretches predicted to be suitable for substrate interaction, we identified several E3 ligases with these characteristics. Our initial analysis revealed that another remarkable trait of San1 is shared with several candidate E3 ligases: long stretches of complete lysine suppression, which in San1 limits auto-ubiquitination. We encode these characteristic features into a San1 similarity-score, and present a set of proteins that are plausible candidates as San1 counterparts in humans. In conclusion, our work indicates that San1 is not a unique case, and that several other yeast and human E3 ligases have sequence properties that may allow them to recognize substrates by a similar mechanism as San1.
Collapse
Affiliation(s)
- Wouter Boomsma
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Sofie V Nielsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Rasmus Hartmann-Petersen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Lars Ellgaard
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
61
|
Nie M, Boddy MN. Cooperativity of the SUMO and Ubiquitin Pathways in Genome Stability. Biomolecules 2016; 6:14. [PMID: 26927199 PMCID: PMC4808808 DOI: 10.3390/biom6010014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 01/27/2023] Open
Abstract
Covalent attachment of ubiquitin (Ub) or SUMO to DNA repair proteins plays critical roles in maintaining genome stability. These structurally related polypeptides can be viewed as distinct road signs, with each being read by specific protein interaction motifs. Therefore, via their interactions with selective readers in the proteome, ubiquitin and SUMO can elicit distinct cellular responses, such as directing DNA lesions into different repair pathways. On the other hand, through the action of the SUMO-targeted ubiquitin ligase (STUbL) family proteins, ubiquitin and SUMO can cooperate in the form of a hybrid signal. These mixed SUMO-ubiquitin chains recruit “effector” proteins such as the AAA+ ATPase Cdc48/p97-Ufd1-Npl4 complex that contain both ubiquitin and SUMO interaction motifs. This review will summarize recent key findings on collaborative and distinct roles that ubiquitin and SUMO play in orchestrating DNA damage responses.
Collapse
Affiliation(s)
- Minghua Nie
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Michael N Boddy
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
62
|
The language-related transcription factor FOXP2 is post-translationally modified with small ubiquitin-like modifiers. Sci Rep 2016; 6:20911. [PMID: 26867680 PMCID: PMC4751435 DOI: 10.1038/srep20911] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/13/2016] [Indexed: 11/08/2022] Open
Abstract
Mutations affecting the transcription factor FOXP2 cause a rare form of severe speech and language disorder. Although it is clear that sufficient FOXP2 expression is crucial for normal brain development, little is known about how this transcription factor is regulated. To investigate post-translational mechanisms for FOXP2 regulation, we searched for protein interaction partners of FOXP2, and identified members of the PIAS family as novel FOXP2 interactors. PIAS proteins mediate post-translational modification of a range of target proteins with small ubiquitin-like modifiers (SUMOs). We found that FOXP2 can be modified with all three human SUMO proteins and that PIAS1 promotes this process. An aetiological FOXP2 mutation found in a family with speech and language disorder markedly reduced FOXP2 SUMOylation. We demonstrate that FOXP2 is SUMOylated at a single major site, which is conserved in all FOXP2 vertebrate orthologues and in the paralogues FOXP1 and FOXP4. Abolishing this site did not lead to detectable changes in FOXP2 subcellular localization, stability, dimerization or transcriptional repression in cellular assays, but the conservation of this site suggests a potential role for SUMOylation in regulating FOXP2 activity in vivo.
Collapse
|
63
|
Shire K, Wong AI, Tatham MH, Anderson OF, Ripsman D, Gulstene S, Moffat J, Hay RT, Frappier L. Identification of RNF168 as a PML nuclear body regulator. J Cell Sci 2016; 129:580-91. [PMID: 26675234 PMCID: PMC4760303 DOI: 10.1242/jcs.176446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/12/2015] [Indexed: 12/15/2022] Open
Abstract
Promyelocytic leukemia (PML) protein forms the basis of PML nuclear bodies (PML NBs), which control many important processes. We have screened an shRNA library targeting ubiquitin pathway proteins for effects on PML NBs, and identified RNF8 and RNF168 DNA-damage response proteins as negative regulators of PML NBs. Additional studies confirmed that depletion of either RNF8 or RNF168 increased the levels of PML NBs and proteins, whereas overexpression induced loss of PML NBs. RNF168 partially localized to PML NBs through its UMI/MIU1 ubiquitin-interacting region and associated with NBs formed by any PML isoform. The association of RNF168 with PML NBs resulted in increased ubiquitylation and SUMO2 modification of PML. In addition, RNF168 was found to associate with proteins modified by SUMO2 and/or SUMO3 in a manner dependent on its ubiquitin-binding sequences, suggesting that hybrid SUMO-ubiquitin chains can be bound. In vitro assays confirmed that RNF168, preferentially, binds hybrid SUMO2-K63 ubiquitin chains compared with K63-ubiquitin chains or individual SUMO2. Our study identified previously unrecognized roles for RNF8 and RNF168 in the regulation of PML, and a so far unknown preference of RNF168 for hybrid SUMO-ubiquitin chains.
Collapse
Affiliation(s)
- Kathy Shire
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Andrew I Wong
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Michael H Tatham
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee
| | - Oliver F Anderson
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee
| | - David Ripsman
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Stephanie Gulstene
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
64
|
Abstract
Protein SUMOylation regulates the activity of a wide range of cellular substrates, and the identification of small ubiquitin-related modifier (SUMO)-modified sites is often required to understand how this modification affects protein function. However, the site-specific identification of modified lysine residues by mass spectrometry (MS) remains challenging because of the dynamic nature of this modification, its low stoichiometry and the relatively large SUMO remnant left on peptide backbones after tryptic digestion. Here we report a versatile method to identify sites and to profile the extent of modification on recombinant proteins from in vitro SUMOylation assays. We define the steps required for sample preparation, and we describe how to perform proper controls and conduct the liquid chromatography-MS (LC-MS) and bioinformatics analyses. Native protein substrates can be used for the assay, although we recommend the use of His-tagged proteins to facilitate removal of contaminants. The procedure was developed for human SUMO paralogs, and it requires <2 d for completion.
Collapse
|
65
|
Oeser ML, Amen T, Nadel CM, Bradley AI, Reed BJ, Jones RD, Gopalan J, Kaganovich D, Gardner RG. Dynamic Sumoylation of a Conserved Transcription Corepressor Prevents Persistent Inclusion Formation during Hyperosmotic Stress. PLoS Genet 2016; 12:e1005809. [PMID: 26800527 PMCID: PMC4723248 DOI: 10.1371/journal.pgen.1005809] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 12/22/2015] [Indexed: 11/29/2022] Open
Abstract
Cells are often exposed to physical or chemical stresses that can damage the structures of essential biomolecules. Stress-induced cellular damage can become deleterious if not managed appropriately. Rapid and adaptive responses to stresses are therefore crucial for cell survival. In eukaryotic cells, different stresses trigger post-translational modification of proteins with the small ubiquitin-like modifier SUMO. However, the specific regulatory roles of sumoylation in each stress response are not well understood. Here, we examined the sumoylation events that occur in budding yeast after exposure to hyperosmotic stress. We discovered by proteomic and biochemical analyses that hyperosmotic stress incurs the rapid and transient sumoylation of Cyc8 and Tup1, which together form a conserved transcription corepressor complex that regulates hundreds of genes. Gene expression and cell biological analyses revealed that sumoylation of each protein directs distinct outcomes. In particular, we discovered that Cyc8 sumoylation prevents the persistence of hyperosmotic stress-induced Cyc8-Tup1 inclusions, which involves a glutamine-rich prion domain in Cyc8. We propose that sumoylation protects against persistent inclusion formation during hyperosmotic stress, allowing optimal transcriptional function of the Cyc8-Tup1 complex. Cells have evolved complex stress responses to cope with environmental challenges that could otherwise inflict severe damage on the molecules essential for life. Stress responses must ameliorate the immediate damage caused by stress exposure and also adjust metabolic capacity, gene expression output, and other cellular functions to protect against further damage that could be incurred by prolonged exposure to stress. Posttranslational protein modifications are a major means by which cells respond to changing environmental conditions. These modifications can alter the function, localization, and molecular interactions of their target proteins. In addition, evidence is emerging that some posttranslational modifications may also change the physical characteristics of target proteins. In this study, we present evidence that during hyperosmotic stress, a condition known to induce protein misfolding, cells rapidly but transiently use the small ubiquitin-modifier SUMO to protect against persistent inclusion formation of a conserved transcriptional repressor complex. We propose that this rapid protective action via posttranslational modification enables optimal gene regulation during the cellular response to hyperosmotic stress.
Collapse
Affiliation(s)
- Michelle L. Oeser
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Triana Amen
- Alexander Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Cory M. Nadel
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Amanda I. Bradley
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Benjamin J. Reed
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Ramon D. Jones
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Janani Gopalan
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Daniel Kaganovich
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Richard G. Gardner
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
66
|
Abstract
Mass spectrometry-based approaches are utilized with increasing frequency to facilitate identification of novel SUMO target proteins and to elucidate the dynamics of SUMOylation in response to cellular stresses. Here, we describe a robust method for the identification of SUMO target proteins, and the relative quantification of SUMOylation dynamics, using a label-free approach. The method relies on a decahistidine (His10)-tagged SUMO, which is expressed at a low level in a mammalian cell line or model organism. The His10-tag allows for a single-step, high-yield, and high-purity enrichment of SUMOylated proteins, which are then digested and analyzed by high-resolution mass spectrometry. Matching between runs and label-free quantification integrated in the freely available MaxQuant software allow for a high rate and accuracy of quantification, providing a strong alternative to laborious sample or cell labeling techniques. The method described here allows for identification of >1000 SUMO target proteins, and characterization of their SUMOylation dynamics, without requiring sample fractionation. The purification procedure, starting from total lysate, can be performed in ~4 days.
Collapse
Affiliation(s)
- Ivo A Hendriks
- Department of Molecular Cell Biology, Leiden University medical Center, Albinusdreef 2, 2300, Leiden, Netherlands
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University medical Center, Albinusdreef 2, 2300, Leiden, Netherlands.
| |
Collapse
|
67
|
Tirard M, Brose N. Systematic Localization and Identification of SUMOylation Substrates in Knock-In Mice Expressing Affinity-Tagged SUMO1. Methods Mol Biol 2016; 1475:291-301. [PMID: 27631813 DOI: 10.1007/978-1-4939-6358-4_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein SUMOylation is a posttranslational protein modification that is emerging as a key regulatory process in neurobiology. To date, however, SUMOylation in vivo has only been studied cursorily. Knock-in mice expressing His6-HA-SUMO1 from the Sumo1 locus allow for the highly specific localization and identification of endogenous SUMO1 substrates under physiological and pathophysiological conditions. By making use of the HA-tag and using wild-type mice for highly stringent negative control samples, SUMO1 targets can be specifically localized in and purified from cultured mouse nerve cells and mouse tissues.
Collapse
Affiliation(s)
- Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Straße 3, 37075, Göttingen, Germany.
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Straße 3, 37075, Göttingen, Germany
| |
Collapse
|
68
|
Hirano H, Kimura Y, Kimura A. Biological significance of co- and post-translational modifications of the yeast 26S proteasome. J Proteomics 2015; 134:37-46. [PMID: 26642761 DOI: 10.1016/j.jprot.2015.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/04/2015] [Accepted: 11/16/2015] [Indexed: 02/05/2023]
Abstract
UNLABELLED In yeast (Saccharomyces cerevisiae), co- and post-translational modifications of the 26S proteasome, a large protein complex, were comprehensively detected by proteomic techniques, and their functions were investigated. The presence, number, site, and state of co- and post-translational modifications of the 26S proteasome differ considerably among yeast, human, and mouse. The roles of phosphorylation, N(α)-acetylation, N(α)-myristoylation, N(α)-methylation, and N-terminal truncation in the yeast 26S proteasome were investigated. Although there is only one modification site for either N(α)-acetylation, N(α)-myristoylation, or N(α)-methylation, these modifications play an important role in the functions of the yeast proteasome. In contrast, there are many phosphorylation sites in the yeast 26S proteasome. However, the phosphorylation patterns might be a few, suggesting that tiny modifications exert considerable effects on the function of the proteasome. BIOLOGICAL SIGNIFICANCE Protein co- and post-translational modifications produce different protein species which often have different functions. The yeast 26S proteasome, a large protein complex, consisting of many subunits has a number of co- and post-translational modification sites. This review describes the effects of the modifications on the function of the protein complex. This article is part of a Special Issue entitled: Protein species. Guest Editors: Peter Jungblut, Hartmut Schlüter and Bernd Thiede.
Collapse
Affiliation(s)
- Hisashi Hirano
- Yokohama City University, Advanced Medical Research Center, Japan.
| | - Yayoi Kimura
- Yokohama City University, Advanced Medical Research Center, Japan
| | - Ayuko Kimura
- Yokohama City University, Advanced Medical Research Center, Japan
| |
Collapse
|
69
|
Domingues P, Golebiowski F, Tatham MH, Lopes AM, Taggart A, Hay RT, Hale BG. Global Reprogramming of Host SUMOylation during Influenza Virus Infection. Cell Rep 2015; 13:1467-1480. [PMID: 26549460 PMCID: PMC4660286 DOI: 10.1016/j.celrep.2015.10.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/24/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022] Open
Abstract
Dynamic nuclear SUMO modifications play essential roles in orchestrating cellular responses to proteotoxic stress, DNA damage, and DNA virus infection. Here, we describe a non-canonical host SUMOylation response to the nuclear-replicating RNA pathogen, influenza virus, and identify viral RNA polymerase activity as a major contributor to SUMO proteome remodeling. Using quantitative proteomics to compare stress-induced SUMOylation responses, we reveal that influenza virus infection triggers unique re-targeting of SUMO to 63 host proteins involved in transcription, mRNA processing, RNA quality control, and DNA damage repair. This is paralleled by widespread host deSUMOylation. Depletion screening identified ten virus-induced SUMO targets as potential antiviral factors, including C18orf25 and the SMC5/6 and PAF1 complexes. Mechanistic studies further uncovered a role for SUMOylation of the PAF1 complex component, parafibromin (CDC73), in potentiating antiviral gene expression. Our global characterization of influenza virus-triggered SUMO redistribution provides a proteomic resource to understand host nuclear SUMOylation responses to infection.
Collapse
Affiliation(s)
- Patricia Domingues
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Filip Golebiowski
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Michael H Tatham
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Antonio M Lopes
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Aislynn Taggart
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Benjamin G Hale
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK.
| |
Collapse
|
70
|
Køhler JB, Tammsalu T, Jørgensen MM, Steen N, Hay RT, Thon G. Targeting of SUMO substrates to a Cdc48-Ufd1-Npl4 segregase and STUbL pathway in fission yeast. Nat Commun 2015; 6:8827. [PMID: 26537787 PMCID: PMC4667616 DOI: 10.1038/ncomms9827] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/08/2015] [Indexed: 12/26/2022] Open
Abstract
In eukaryotes, the conjugation of proteins to the small ubiquitin-like modifier (SUMO) regulates numerous cellular functions. A proportion of SUMO conjugates are targeted for degradation by SUMO-targeted ubiquitin ligases (STUbLs) and it has been proposed that the ubiquitin-selective chaperone Cdc48/p97-Ufd1-Npl4 facilitates this process. However, the extent to which the two pathways overlap, and how substrates are selected, remains unknown. Here we address these questions in fission yeast through proteome-wide analyses of SUMO modification sites. We identify over a thousand sumoylated lysines in a total of 468 proteins and quantify changes occurring in the SUMO modification status when the STUbL or Ufd1 pathways are compromised by mutations. The data suggest the coordinated processing of several classes of SUMO conjugates, many dynamically associated with centromeres or telomeres. They provide new insights into subnuclear organization and chromosome biology, and, altogether, constitute an extensive resource for the molecular characterization of SUMO function and dynamics.
Collapse
Affiliation(s)
- Julie Bonne Køhler
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, Copenhagen DK-2200, Denmark
| | - Triin Tammsalu
- Centre for Gene Regulation and Expression, Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Maria Mønster Jørgensen
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, Copenhagen DK-2200, Denmark
| | - Nana Steen
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, Copenhagen DK-2200, Denmark
| | - Ronald Thomas Hay
- Centre for Gene Regulation and Expression, Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Geneviève Thon
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, Copenhagen DK-2200, Denmark
| |
Collapse
|
71
|
Eisenhardt N, Chaugule VK, Koidl S, Droescher M, Dogan E, Rettich J, Sutinen P, Imanishi SY, Hofmann K, Palvimo JJ, Pichler A. A new vertebrate SUMO enzyme family reveals insights into SUMO-chain assembly. Nat Struct Mol Biol 2015; 22:959-67. [PMID: 26524493 DOI: 10.1038/nsmb.3114] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/22/2015] [Indexed: 12/25/2022]
Abstract
SUMO chains act as stress-induced degradation tags or repair factor-recruiting signals at DNA lesions. Although E1 activating, E2 conjugating and E3 ligating enzymes efficiently assemble SUMO chains, specific chain-elongation mechanisms are unknown. E4 elongases are specialized E3 ligases that extend a chain but are inefficient in the initial conjugation of the modifier. We identified ZNF451, a representative member of a new class of SUMO2 and SUMO3 (SUMO2/3)-specific enzymes that execute catalysis via a tandem SUMO-interaction motif (SIM) region. One SIM positions the donor SUMO while a second SIM binds SUMO on the back side of the E2 enzyme. This tandem-SIM region is sufficient to extend a back side-anchored SUMO chain (E4 elongase activity), whereas efficient chain initiation also requires a zinc-finger region to recruit the initial acceptor SUMO (E3 ligase activity). Finally, we describe four human proteins sharing E4 elongase activities and their function in stress-induced SUMO2/3 conjugation.
Collapse
Affiliation(s)
- Nathalie Eisenhardt
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Viduth K Chaugule
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Stefanie Koidl
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Mathias Droescher
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Esen Dogan
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jan Rettich
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Päivi Sutinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
72
|
Sahin U, de Thé H, Lallemand-Breitenbach V. PML nuclear bodies: assembly and oxidative stress-sensitive sumoylation. Nucleus 2015; 5:499-507. [PMID: 25482067 DOI: 10.4161/19491034.2014.970104] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PML Nuclear Bodies (NBs) have fascinated cell biologists due to their exquisitely dynamic nature and their involvement in human diseases, notably acute promyelocytic leukemia. NBs, as well as their master organizer--the PML protein--exhibit multiple connections with stress responses. Initially viewed as a tumor suppressor, PML recently re-emerged as a multifaceted protein, capable of controlling numerous aspects of cellular homeostasis. NBs recruit many functionally diverse proteins and function as stress-regulated sumoylation factories. SUMO-initiated partner retention can subsequently facilitate a variety of other post-translational modifications, as well as partner degradation. With this newly elucidated central role of stress-enhanced sumoylation, it should now be possible to build a working model for the different NB-regulated cellular activities. Moreover, pharmacological manipulation of NB formation by interferons or oxidants holds the promise of clearing many undesirable proteins for clinical management of malignant, viral or neurodegenerative diseases.
Collapse
Affiliation(s)
- Umut Sahin
- a University Paris Diderot; Sorbonne Paris Cité ; Hôpital St. Louis ; Paris , France
| | | | | |
Collapse
|
73
|
Abstract
The protein called 'small ubiquitin-like modifier' (SUMO) is post-translationally linked to target proteins at the ɛ-amino group of lysine residues. This 'SUMOylation' alters the behavior of the target protein, a change that is utilized to regulate diverse cellular processes. Understanding the target-specific consequences of SUMO modification requires knowledge of the location of conjugation sites, and we have developed a straightforward protocol for the proteome-wide identification of SUMO modification sites using mass spectrometry (MS). The approach described herein requires the expression of a mutant form of SUMO, in which the residue preceding the C-terminal Gly-Gly (diGly) is replaced with a lysine (SUMO(KGG)). Digestion of SUMO(KGG) protein conjugates with endoproteinase Lys-C yields a diGly motif attached to target lysines. Peptides containing this adduct are enriched using a diGly-Lys (K-ɛ-GG)-specific antibody and identified by MS. This diGly signature is characteristic of SUMO(KGG) conjugation alone, as no other ubiquitin-like protein (Ubl) yields this adduct upon Lys-C digestion. We have demonstrated the utility of the approach in SUMOylation studies, but, in principle, it may be adapted for the site-specific identification of proteins modified by any Ubl. Starting from cell lysis, this protocol can be completed in ∼5 d.
Collapse
|
74
|
Abstract
Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens.
Collapse
|
75
|
Naegeli H. Exonuclease containment by SUMO plus ubiquitin. Cell Cycle 2015. [PMID: 26199201 PMCID: PMC4825536 DOI: 10.1080/15384101.2015.1071140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Hanspeter Naegeli
- a Institute of Pharmacology and Toxicology; University of Zurich-Vetsuisse ; Zurich , Switzerland
| |
Collapse
|
76
|
Abstract
Covalent linkage to members of the small ubiquitin-like (SUMO) family of proteins is an important mechanism by which the functions of many cellular proteins are regulated. Sumoylation has roles in the control of protein stability, activity and localization, and is involved in the regulation of transcription, gene expression, chromatin structure, nuclear transport and RNA metabolism. Sumoylation is also linked, both positively and negatively, with the replication of many different viruses both in terms of modification of viral proteins and modulation of sumoylated cellular proteins that influence the efficiency of infection. One prominent example of the latter is the widespread reduction in the levels of cellular sumoylated species induced by herpes simplex virus type 1 (HSV-1) ubiquitin ligase ICP0. This activity correlates with relief from intrinsic immunity antiviral defence mechanisms. Previous work has shown that ICP0 is selective in substrate choice, with some sumoylated proteins such the promyelocytic leukemia protein PML being extremely sensitive, while RanGAP is completely resistant. Here we present a comprehensive proteomic analysis of changes in the cellular SUMO2 proteome during HSV-1 infection. Amongst the 877 potentially sumoylated species detected, we identified 124 whose abundance was decreased by a factor of 3 or more by the virus, several of which were validated by western blot and expression analysis. We found many previously undescribed substrates of ICP0 whose degradation occurs by a range of mechanisms, influenced or not by sumoylation and/or the SUMO2 interaction motif within ICP0. Many of these proteins are known or are predicted to be involved in the regulation of transcription, chromatin assembly or modification. These results present novel insights into mechanisms and host cell proteins that might influence the efficiency of HSV-1 infection. Proteins are subject to many types of modification that regulate their functions and which are applied after their initial synthesis in the cell. One such modification is known as sumoylation, the covalent linkage of a small ubiquitin-like protein to a wide variety of substrate proteins. Sumoylation is involved in the regulation of many cellular pathways, including transcription, DNA repair, chromatin modification and defence to viral infections. Several viruses have connections with sumoylation, either through modification of their own proteins or in changing the sumoylation status of cellular proteins in ways that may be beneficial for infection. Herpes simplex virus type 1 (HSV-1) causes a widespread reduction in uncharacterized sumoylated cellular protein species, an effect that is caused by one of its key regulatory proteins (ICP0), which also induces the degradation of a number of repressive cellular proteins and thereby stimulates efficient infection. This study describes a comprehensive analysis of cellular proteins whose sumoylation status is altered by HSV-1 infection. Of 877 putative cellular sumoylation substrates, we found 124 whose sumoylation status reduces at least three-fold during infection. We validated the behavior of several such proteins and identified amongst them several novel targets of ICP0 activity with predicted repressive properties.
Collapse
|
77
|
Bish R, Cuevas-Polo N, Cheng Z, Hambardzumyan D, Munschauer M, Landthaler M, Vogel C. Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins. Biomolecules 2015; 5:1441-66. [PMID: 26184334 PMCID: PMC4598758 DOI: 10.3390/biom5031441] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/15/2015] [Indexed: 12/24/2022] Open
Abstract
DDX6 (p54/RCK) is a human RNA helicase with central roles in mRNA decay and translation repression. To help our understanding of how DDX6 performs these multiple functions, we conducted the first unbiased, large-scale study to map the DDX6-centric protein-protein interactome using immunoprecipitation and mass spectrometry. Using DDX6 as bait, we identify a high-confidence and high-quality set of protein interaction partners which are enriched for functions in RNA metabolism and ribosomal proteins. The screen is highly specific, maximizing the number of true positives, as demonstrated by the validation of 81% (47/58) of the RNA-independent interactors through known functions and interactions. Importantly, we minimize the number of indirect interaction partners through use of a nuclease-based digestion to eliminate RNA. We describe eleven new interactors, including proteins involved in splicing which is an as-yet unknown role for DDX6. We validated and characterized in more detail the interaction of DDX6 with Nuclear fragile X mental retardation-interacting protein 2 (NUFIP2) and with two previously uncharacterized proteins, FAM195A and FAM195B (here referred to as granulin-1 and granulin-2, or GRAN1 and GRAN2). We show that NUFIP2, GRAN1, and GRAN2 are not P-body components, but re-localize to stress granules upon exposure to stress, suggesting a function in translation repression in the cellular stress response. Using a complementary analysis that resolved DDX6's multiple complex memberships, we further validated these interaction partners and the presence of splicing factors. As DDX6 also interacts with the E3 SUMO ligase TIF1β, we tested for and observed a significant enrichment of sumoylation amongst DDX6's interaction partners. Our results represent the most comprehensive screen for direct interaction partners of a key regulator of RNA life cycle and localization, highlighting new stress granule components and possible DDX6 functions-many of which are likely conserved across eukaryotes.
Collapse
Affiliation(s)
- Rebecca Bish
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| | - Nerea Cuevas-Polo
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| | - Zhe Cheng
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| | - Dolores Hambardzumyan
- The Cleveland Clinic, Department of Neurosciences, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Mathias Munschauer
- RNA Biology and Post-Transcriptional Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Str. 10, Berlin 13092, Germany.
| | - Markus Landthaler
- RNA Biology and Post-Transcriptional Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Str. 10, Berlin 13092, Germany.
| | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| |
Collapse
|
78
|
Seifert A, Schofield P, Barton GJ, Hay RT. Proteotoxic stress reprograms the chromatin landscape of SUMO modification. Sci Signal 2015; 8:rs7. [PMID: 26152697 DOI: 10.1126/scisignal.aaa2213] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The small ubiquitin-like modifier 2 (SUMO-2) is required for survival when cells are exposed to treatments that induce proteotoxic stress by causing the accumulation of misfolded proteins. Exposure of cells to heat shock or other forms of proteotoxic stress induces the conjugation of SUMO-2 to proteins in the nucleus. We investigated the chromatin landscape of SUMO-2 modifications in response to heat stress. Through chromatin immunoprecipitation assays coupled to high-throughput DNA sequencing and mRNA sequencing, we showed that in response to heat shock, SUMO-2 accumulated at nucleosome-depleted, active DNA regulatory elements, which represented binding sites for large protein complexes and were predominantly associated with active genes. However, SUMO did not act as a direct transcriptional repressor or activator of these genes during heat shock. Instead, integration of our results with published proteomics data on heat shock-induced SUMO-2 substrates supports a model in which the conjugation of SUMO-2 to proteins acts as an acute stress response that is required for the stability of protein complexes involved in gene expression and posttranscriptional modification of mRNA. We showed that the conjugation of SUMO-2 to chromatin-associated proteins is an integral component of the proteotoxic stress response, and propose that SUMO-2 fulfills its essential role in cell survival by contributing to the maintenance of protein complex homeostasis.
Collapse
Affiliation(s)
- Anne Seifert
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - Pietà Schofield
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - Geoffrey J Barton
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK.
| |
Collapse
|
79
|
Beauclair G, Bridier-Nahmias A, Zagury JF, Saïb A, Zamborlini A. JASSA: a comprehensive tool for prediction of SUMOylation sites and SIMs. Bioinformatics 2015; 31:3483-91. [PMID: 26142185 DOI: 10.1093/bioinformatics/btv403] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/25/2015] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Post-translational modification by the Small Ubiquitin-like Modifier (SUMO) proteins, a process termed SUMOylation, is involved in many fundamental cellular processes. SUMO proteins are conjugated to a protein substrate, creating an interface for the recruitment of cofactors harboring SUMO-interacting motifs (SIMs). Mapping both SUMO-conjugation sites and SIMs is required to study the functional consequence of SUMOylation. To define the best candidate sites for experimental validation we designed JASSA, a Joint Analyzer of SUMOylation site and SIMs. RESULTS JASSA is a predictor that uses a scoring system based on a Position Frequency Matrix derived from the alignment of experimental SUMOylation sites or SIMs. Compared with existing web-tools, JASSA displays on par or better performances. Novel features were implemented towards a better evaluation of the prediction, including identification of database hits matching the query sequence and representation of candidate sites within the secondary structural elements and/or the 3D fold of the protein of interest, retrievable from deposited PDB files. AVAILABILITY AND IMPLEMENTATION JASSA is freely accessible at http://www.jassa.fr/. Website is implemented in PHP and MySQL, with all major browsers supported. CONTACT guillaume.beauclair@inserm.fr SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Guillaume Beauclair
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d'Hématologie, Hôpital St Louis, Université Paris Diderot, Sorbonne Paris Cité, Hôpital St Louis
| | - Antoine Bridier-Nahmias
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d'Hématologie, Hôpital St Louis, Université Paris Diderot, Sorbonne Paris Cité, Hôpital St Louis, Laboratoire PVM, Conservatoire national des arts et métiers (Cnam) and
| | - Jean-François Zagury
- Laboratoire Génomique, Bioinformatique, et Applications, EA4627, Chaire de bioinformatique, Conservatoire national des arts et métiers (Cnam), Paris, France
| | - Ali Saïb
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d'Hématologie, Hôpital St Louis, Université Paris Diderot, Sorbonne Paris Cité, Hôpital St Louis, Laboratoire PVM, Conservatoire national des arts et métiers (Cnam) and
| | - Alessia Zamborlini
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d'Hématologie, Hôpital St Louis, Université Paris Diderot, Sorbonne Paris Cité, Hôpital St Louis, Laboratoire PVM, Conservatoire national des arts et métiers (Cnam) and
| |
Collapse
|
80
|
An H, Statsyuk AV. An inhibitor of ubiquitin conjugation and aggresome formation. Chem Sci 2015; 6:5235-5245. [PMID: 28717502 PMCID: PMC5500945 DOI: 10.1039/c5sc01351h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/22/2015] [Indexed: 11/21/2022] Open
Abstract
Proteasome inhibitors have revolutionized the treatment of multiple myeloma, and validated the therapeutic potential of the ubiquitin proteasome system (UPS). It is believed that in part, proteasome inhibitors elicit their therapeutic effect by inhibiting the degradation of misfolded proteins, which is proteotoxic and causes cell death. In spite of these successes, proteasome inhibitors are not effective against solid tumors, thus necessitating the need to explore alternative approaches. Furthermore, proteasome inhibitors lead to the formation of aggresomes that clear misfolded proteins via the autophagy-lysosome degradation pathway. Importantly, aggresome formation depends on the presence of polyubiquitin tags on misfolded proteins. We therefore hypothesized that inhibitors of ubiquitin conjugation should inhibit both degradation of misfolded proteins, and ubiquitin dependent aggresome formation, thus outlining the path forward toward more effective anticancer therapeutics. To explore the therapeutic potential of targeting the UPS to treat solid cancers, we have developed an inhibitor of ubiquitin conjugation (ABP A3) that targets ubiquitin and Nedd8 E1 enzymes, enzymes that are required to maintain the activity of the entire ubiquitin system. We have shown that ABP A3 inhibits conjugation of ubiquitin to intracellular proteins and prevents the formation of cytoprotective aggresomes in A549 lung cancer cells. Furthermore, ABP A3 induces activation of the unfolded protein response and apoptosis. Thus, similar to proteasome inhibitors MG132, bortezomib, and carfilzomib, ABP A3 can serve as a novel probe to explore the therapeutic potential of the UPS in solid and hematological malignancies.
Collapse
Affiliation(s)
- Heeseon An
- Department of Chemistry , Center for Molecular Innovation and Drug Discovery , Chemistry of Life Processes Institute , Northwestern University , Silverman Hall, 2145 Sheridan Road , Evanston , Illinois 60208 , USA
| | - Alexander V Statsyuk
- Department of Chemistry , Center for Molecular Innovation and Drug Discovery , Chemistry of Life Processes Institute , Northwestern University , Silverman Hall, 2145 Sheridan Road , Evanston , Illinois 60208 , USA
| |
Collapse
|
81
|
Abstract
The ubiquitin family member Sumo has important functions in many cellular processes including DNA repair, transcription and cell division. Numerous studies have shown that Sumo is essential for maintaining cell homeostasis when the cell encounters endogenous or environmental stress, such as osmotic stress, hypoxia, heat shock, genotoxic stress, and nutrient stress. Regulation of transcription is a key component of the Sumo stress response, and multiple mechanisms have been described by which Sumo can regulate transcription. Although many individual substrates have been described that are sumoylated during the Sumo stress response, an emerging concept is modification of entire complexes or pathways by Sumo. This review focuses on the function and regulation of Sumo during the stress response.
Collapse
Affiliation(s)
- Jorrit M Enserink
- Institute for Microbiology, Oslo University Hospital, Sognsvannsveien 20N-0027, Oslo, Norway
| |
Collapse
|
82
|
Bologna S, Altmannova V, Valtorta E, Koenig C, Liberali P, Gentili C, Anrather D, Ammerer G, Pelkmans L, Krejci L, Ferrari S. Sumoylation regulates EXO1 stability and processing of DNA damage. Cell Cycle 2015; 14:2439-50. [PMID: 26083678 DOI: 10.1080/15384101.2015.1060381] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
DNA double-strand break repair by the error-free pathway of homologous recombination (HR) requires the concerted action of several factors. Among these, EXO1 and DNA2/BLM are responsible for the extensive resection of DNA ends to produce 3'-overhangs, which are essential intermediates for downstream steps of HR. Here we show that EXO1 is a SUMO target and that sumoylation affects EXO1 ubiquitylation and protein stability. We identify an UBC9-PIAS1/PIAS4-dependent mechanism controlling human EXO1 sumoylation in vivo and demonstrate conservation of this mechanism in yeast by the Ubc9-Siz1/Siz2 using an in vitro reconstituted system. Furthermore, we show physical interaction between EXO1 and the de-sumoylating enzyme SENP6 both in vitro and in vivo, promoting EXO1 stability. Finally, we identify the major sites of sumoylation in EXO1 and show that ectopic expression of a sumoylation-deficient form of EXO1 rescues the DNA damage-induced chromosomal aberrations observed upon wt-EXO1 expression. Thus, our study identifies a novel layer of regulation of EXO1, making the pathways that regulate its function an ideal target for therapeutic intervention.
Collapse
Affiliation(s)
- Serena Bologna
- a Institute of Molecular Cancer Research; University of Zurich ; Zurich , Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Hendriks IA, Schimmel J, Eifler K, Olsen JV, Vertegaal ACO. Ubiquitin-specific Protease 11 (USP11) Deubiquitinates Hybrid Small Ubiquitin-like Modifier (SUMO)-Ubiquitin Chains to Counteract RING Finger Protein 4 (RNF4). J Biol Chem 2015; 290:15526-15537. [PMID: 25969536 DOI: 10.1074/jbc.m114.618132] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Indexed: 11/06/2022] Open
Abstract
Ring finger protein 4 (RNF4) is a SUMO-targeted ubiquitin E3 ligase with a pivotal function in the DNA damage response (DDR). SUMO interaction motifs (SIMs) in the N-terminal part of RNF4 tightly bind to SUMO polymers, and RNF4 can ubiquitinate these polymers in vitro. Using a proteomic approach, we identified the deubiquitinating enzyme ubiquitin-specific protease 11 (USP11), a known DDR-component, as a functional interactor of RNF4. USP11 can deubiquitinate hybrid SUMO-ubiquitin chains to counteract RNF4. SUMO-enriched nuclear bodies are stabilized by USP11, which functions downstream of RNF4 as a counterbalancing factor. In response to DNA damage induced by methyl methanesulfonate, USP11 could counteract RNF4 to inhibit the dissolution of nuclear bodies. Thus, we provide novel insight into cross-talk between ubiquitin and SUMO and uncover USP11 and RNF4 as a balanced SUMO-targeted ubiquitin ligase/protease pair with a role in the DDR.
Collapse
Affiliation(s)
- Ivo A Hendriks
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Joost Schimmel
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Karolin Eifler
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
84
|
Leyva MJ, Kim YS, Peach ML, Schneekloth JS. Synthetic derivatives of the SUMO consensus sequence provide a basis for improved substrate recognition. Bioorg Med Chem Lett 2015; 25:2146-51. [PMID: 25881829 PMCID: PMC6341477 DOI: 10.1016/j.bmcl.2015.03.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/21/2015] [Accepted: 03/24/2015] [Indexed: 12/21/2022]
Abstract
Protein sumoylation is a dynamic posttranslational modification that regulates a diverse subset of the proteome. The mechanism by which sumoylation enzymes recognize their cognate substrates is unclear, and the consequences of sumoylation remain difficult to predict. While small molecule probes of the sumoylation process could be valuable for understanding SUMO biology, few small molecules that modulate this process exist. Here, we report the synthesis and evaluation of over 600 oxime-containing peptide sumoylation substrates. Our work demonstrates that higher modification efficiency can be achieved with non-natural side chains that deviate substantially from the consensus site requirement of a hydrophobic substituent. Furthermore, docking studies suggest that these improved substrates mimic binding interactions that are used by other endogenous protein sequences through tertiary interactions. The development of these high efficiency substrates provides key mechanistic insights toward specific recognition of low molecular weight species in the sumoylation pathway.
Collapse
Affiliation(s)
- Melissa J Leyva
- Chemical Biology Laboratory, National Cancer Institute, 376 Boyles St., Frederick, MD 21702, USA
| | - Yeong Sang Kim
- Chemical Biology Laboratory, National Cancer Institute, 376 Boyles St., Frederick, MD 21702, USA
| | - Megan L Peach
- Basic Science Program, Chemical Biology Laboratory, Leidos Biomedical Research, Inc., National Cancer Institute, 376 Boyles St., Frederick, MD 21702, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, 376 Boyles St., Frederick, MD 21702, USA.
| |
Collapse
|
85
|
Sarangi P, Zhao X. SUMO-mediated regulation of DNA damage repair and responses. Trends Biochem Sci 2015; 40:233-42. [PMID: 25778614 DOI: 10.1016/j.tibs.2015.02.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 12/21/2022]
Abstract
Sumoylation has important roles during DNA damage repair and responses. Recent broad-scope and substrate-based studies have shed light on the regulation and significance of sumoylation during these processes. An emerging paradigm is that sumoylation of many DNA metabolism proteins is controlled by DNA engagement. Such 'on-site modification' can explain low substrate modification levels and has important implications in sumoylation mechanisms and effects. New studies also suggest that sumoylation can regulate a process through an ensemble effect or via major substrates. Additionally, we describe new trends in the functional effects of sumoylation, such as bi-directional changes in biomolecule binding and multilevel coordination with other modifications. These emerging themes and models will stimulate our thinking and research in sumoylation and genome maintenance.
Collapse
Affiliation(s)
- Prabha Sarangi
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
86
|
Gibbs-Seymour I, Oka Y, Rajendra E, Weinert BT, Passmore LA, Patel KJ, Olsen JV, Choudhary C, Bekker-Jensen S, Mailand N. Ubiquitin-SUMO circuitry controls activated fanconi anemia ID complex dosage in response to DNA damage. Mol Cell 2014; 57:150-64. [PMID: 25557546 PMCID: PMC4416315 DOI: 10.1016/j.molcel.2014.12.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/02/2014] [Accepted: 11/24/2014] [Indexed: 12/12/2022]
Abstract
We show that central components of the Fanconi anemia (FA) DNA repair pathway, the tumor suppressor proteins FANCI and FANCD2 (the ID complex), are SUMOylated in response to replication fork stalling. The ID complex is SUMOylated in a manner that depends on the ATR kinase, the FA ubiquitin ligase core complex, and the SUMO E3 ligases PIAS1/PIAS4 and is antagonized by the SUMO protease SENP6. SUMOylation of the ID complex drives substrate selectivity by triggering its polyubiquitylation by the SUMO-targeted ubiquitin ligase RNF4 to promote its removal from sites of DNA damage via the DVC1-p97 ubiquitin segregase complex. Deregulation of ID complex SUMOylation compromises cell survival following replication stress. Our results uncover a regulatory role for SUMOylation in the FA pathway, and we propose that ubiquitin-SUMO signaling circuitry is a mechanism that contributes to the balance of activated ID complex dosage at sites of DNA damage. The Fanconi anemia ID complex (FANCI/FANCD2) is SUMOylated after DNA damage ID complex SUMOylation is regulated by ATR, the FA core complex, PIAS1/4, and SENP6 SUMO-dependent ubiquitylation by RNF4 allows ID complex removal from DNA by DVC1/p97 Deregulated ID complex SUMOylation compromises cell survival following DNA damage
Collapse
Affiliation(s)
- Ian Gibbs-Seymour
- Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yasuyoshi Oka
- Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Eeson Rajendra
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Brian T Weinert
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lori A Passmore
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ketan J Patel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jesper V Olsen
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Niels Mailand
- Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
87
|
Bursomanno S, Beli P, Khan AM, Minocherhomji S, Wagner SA, Bekker-Jensen S, Mailand N, Choudhary C, Hickson ID, Liu Y. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells. DNA Repair (Amst) 2014; 25:84-96. [PMID: 25497329 DOI: 10.1016/j.dnarep.2014.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/26/2014] [Accepted: 10/28/2014] [Indexed: 02/04/2023]
Abstract
SUMOylation is a form of post-translational modification involving covalent attachment of SUMO (Small Ubiquitin-like Modifier) polypeptides to specific lysine residues in the target protein. In human cells, there are four SUMO proteins, SUMO1-4, with SUMO2 and SUMO3 forming a closely related subfamily. SUMO2/3, in contrast to SUMO1, are predominantly involved in the cellular response to certain stresses, including heat shock. Substantial evidence from studies in yeast has shown that SUMOylation plays an important role in the regulation of DNA replication and repair. Here, we report a proteomic analysis of proteins modified by SUMO2 in response to DNA replication stress in S phase in human cells. We have identified a panel of 22 SUMO2 targets with increased SUMOylation during DNA replication stress, many of which play key functions within the DNA replication machinery and/or in the cellular response to DNA damage. Interestingly, POLD3 was found modified most significantly in response to a low dose aphidicolin treatment protocol that promotes common fragile site (CFS) breakage. POLD3 is the human ortholog of POL32 in budding yeast, and has been shown to act during break-induced recombinational repair. We have also shown that deficiency of POLD3 leads to an increase in RPA-bound ssDNA when cells are under replication stress, suggesting that POLD3 plays a role in the cellular response to DNA replication stress. Considering that DNA replication stress is a source of genome instability, and that excessive replication stress is a hallmark of pre-neoplastic and tumor cells, our characterization of SUMO2 targets during a perturbed S-phase should provide a valuable resource for future functional studies in the fields of DNA metabolism and cancer biology.
Collapse
Affiliation(s)
- Sara Bursomanno
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, DK-2200 Copenhagen, Denmark
| | - Petra Beli
- Department of Proteomics, The Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Panum Institute, DK-2200 Copenhagen, Denmark; Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Asif M Khan
- Molecular Oncology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Sheroy Minocherhomji
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, DK-2200 Copenhagen, Denmark
| | - Sebastian A Wagner
- Department of Proteomics, The Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Panum Institute, DK-2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Department of Disease Biology, The Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Panum Institute, DK-2200 Copenhagen, Denmark
| | - Niels Mailand
- Department of Disease Biology, The Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Panum Institute, DK-2200 Copenhagen, Denmark
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Panum Institute, DK-2200 Copenhagen, Denmark
| | - Ian D Hickson
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, DK-2200 Copenhagen, Denmark; Molecular Oncology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Ying Liu
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, DK-2200 Copenhagen, Denmark; Molecular Oncology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
88
|
Lamoliatte F, Caron D, Durette C, Mahrouche L, Maroui MA, Caron-Lizotte O, Bonneil E, Chelbi-Alix MK, Thibault P. Large-scale analysis of lysine SUMOylation by SUMO remnant immunoaffinity profiling. Nat Commun 2014; 5:5409. [PMID: 25391492 DOI: 10.1038/ncomms6409] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/29/2014] [Indexed: 01/11/2023] Open
Abstract
Small ubiquitin-related modifiers (SUMO) are evolutionarily conserved ubiquitin-like proteins that regulate several cellular processes including cell cycle progression, intracellular trafficking, protein degradation and apoptosis. Despite the importance of protein SUMOylation in different biological pathways, the global identification of acceptor sites in complex cell extracts remains a challenge. Here we generate a monoclonal antibody that enriches for peptides containing SUMO remnant chains following tryptic digestion. We identify 954 SUMO3-modified lysine residues on 538 proteins and profile by quantitative proteomics the dynamic changes of protein SUMOylation following proteasome inhibition. More than 86% of these SUMOylation sites have not been reported previously, including 5 sites on the tumour suppressor parafibromin (CDC73). The modification of CDC73 at K136 affects its nuclear retention within PML nuclear bodies on proteasome inhibition. In contrast, a CDC73 K136R mutant translocates to the cytoplasm under the same conditions, further demonstrating the effectiveness of our method to characterize the dynamics of lysine SUMOylation.
Collapse
Affiliation(s)
- Frédéric Lamoliatte
- 1] Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7 [2] Department of Chemistry, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Danielle Caron
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Chantal Durette
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Louiza Mahrouche
- 1] Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7 [2] Department of Biochemistry, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | - Olivier Caron-Lizotte
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | - Pierre Thibault
- 1] Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7 [2] Department of Chemistry, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7 [3] Department of Biochemistry, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
89
|
Yang W, Paschen W. SUMO proteomics to decipher the SUMO-modified proteome regulated by various diseases. Proteomics 2014; 15:1181-91. [PMID: 25236368 DOI: 10.1002/pmic.201400298] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/18/2014] [Accepted: 09/15/2014] [Indexed: 01/14/2023]
Abstract
Small ubiquitin-like modifier (SUMO1-3) conjugation is a posttranslational protein modification whereby SUMOs are conjugated to lysine residues of target proteins. SUMO conjugation can alter the activity, stability, and function of target proteins, and thereby modulate almost all major cellular pathways. Many diseases are associated with SUMO conjugation, including heart failure, arthritis, cancer, degenerative diseases, and brain ischemia/stroke. It is, therefore, of major interest to characterize the SUMO-modified proteome regulated by these disorders. SUMO proteomics analysis is hampered by low levels of SUMOylated proteins. Several strategies have, therefore, been developed to enrich SUMOylated proteins from cell/tissue extracts. These include proteomics analysis on cells expressing epitope-tagged SUMO isoforms, use of monoclonal SUMO antibodies for immunoprecipitation and epitope-specific peptides for elution, and affinity purification with peptides containing SUMO interaction motifs to specifically enrich polySUMOylated proteins. Recently, two mouse models were generated and characterized that express tagged SUMO isoforms, and allow purification of SUMOylated proteins from complex organ extracts. Ultimately, these new analytical tools will help to decipher the SUMO-modified proteome regulated by various human diseases, and thereby, identify new targets for preventive and therapeutic purposes.
Collapse
Affiliation(s)
- Wei Yang
- Molecular Neurobiology Laboratory, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
90
|
Hendriks IA, D'Souza RCJ, Yang B, Verlaan-de Vries M, Mann M, Vertegaal ACO. Uncovering global SUMOylation signaling networks in a site-specific manner. Nat Struct Mol Biol 2014; 21:927-36. [PMID: 25218447 PMCID: PMC4259010 DOI: 10.1038/nsmb.2890] [Citation(s) in RCA: 385] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/19/2014] [Indexed: 12/28/2022]
Abstract
SUMOylation is a reversible post-translational modification essential for genome stability. Using high-resolution mass spectrometry, we have studied global SUMOylation in human cells and in a site-specific manner, identifying a total of over 4,300 SUMOylation sites in over 1,600 proteins. Moreover, for the first time in excess of 1,000 SUMOylation sites were identified under standard growth conditions. SUMOylation dynamics were quantitatively studied in response to SUMO protease inhibition, proteasome inhibition and heat shock. A considerable amount of SUMOylated lysines have previously been reported to be ubiquitylated, acetylated or methylated, indicating crosstalk between SUMO and other post-translational modifications. We identified 70 phosphorylation and 4 acetylation events in close proximity to SUMOylation sites, and provide evidence for acetylation-dependent SUMOylation of endogenous histone H3. SUMOylation regulates target proteins involved in all nuclear processes including transcription, DNA repair, chromatin remodeling, pre-mRNA splicing and ribosome assembly.
Collapse
Affiliation(s)
- Ivo A Hendriks
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rochelle C J D'Souza
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Bing Yang
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Matty Verlaan-de Vries
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
91
|
Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli. Proc Natl Acad Sci U S A 2014; 111:12432-7. [PMID: 25114211 DOI: 10.1073/pnas.1413825111] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
SUMOylation is an essential ubiquitin-like modification involved in important biological processes in eukaryotic cells. Identification of small ubiquitin-related modifier (SUMO)-conjugated residues in proteins is critical for understanding the role of SUMOylation but remains experimentally challenging. We have set up a powerful and high-throughput method combining quantitative proteomics and peptide immunocapture to map SUMOylation sites and have analyzed changes in SUMOylation in response to stimuli. With this technique we identified 295 SUMO1 and 167 SUMO2 sites on endogenous substrates of human cells. We further used this strategy to characterize changes in SUMOylation induced by listeriolysin O, a bacterial toxin that impairs the host cell SUMOylation machinery, and identified several classes of host proteins specifically deSUMOylated in response to this toxin. Our approach constitutes an unprecedented tool, broadly applicable to various SUMO-regulated cellular processes in health and disease.
Collapse
|
92
|
Subramonian D, Raghunayakula S, Olsen JV, Beningo KA, Paschen W, Zhang XD. Analysis of changes in SUMO-2/3 modification during breast cancer progression and metastasis. J Proteome Res 2014; 13:3905-18. [PMID: 25072996 DOI: 10.1021/pr500119a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
SUMOylation is an essential posttranslational modification and regulates many cellular processes. Dysregulation of SUMOylation plays a critical role in metastasis, yet how its perturbation affects this lethal process of cancer is not well understood. We found that SUMO-2/3 modification is greatly up-regulated in metastatic breast cancer cells compared with nonmetastatic control cells. To identify proteins differentially modified by SUMO-2/3 between metastatic and nonmetastatic cells, we established a method in which endogenous SUMO-2/3 conjugates are labeled by stable isotope labeling by amino acids in cell culture (SILAC), immunopurified by SUMO-2/3 monoclonal antibodies and epitope-peptide elution, and analyzed by quantitative mass spectrometry. We identified 66 putative SUMO-2/3-conjugated proteins, of which 15 proteins show a significant increase/decrease in SUMO-2/3 modification in metastatic cells. Targets with altered SUMOylation are involved in cell cycle, migration, inflammation, glycolysis, gene expression, and SUMO/ubiquitin pathways, suggesting that perturbations of SUMO-2/3 modification might contribute to metastasis by affecting these processes. Consistent with this, up-regulation of PML SUMO-2/3 modification corresponds to an increased number of PML nuclear bodies (PML-NBs) in metastatic cells, whereas up-regulation of global SUMO-2/3 modification promotes 3D cell migration. Our findings provide a foundation for further investigating the effects of SUMOylation on breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Divya Subramonian
- Department of Biological Sciences, Wayne State University , 5047 Gullen Mall, Detroit, Michigan 48202, United States
| | | | | | | | | | | |
Collapse
|
93
|
Fritah S, Lhocine N, Golebiowski F, Mounier J, Andrieux A, Jouvion G, Hay RT, Sansonetti P, Dejean A. Sumoylation controls host anti-bacterial response to the gut invasive pathogen Shigella flexneri. EMBO Rep 2014; 15:965-72. [PMID: 25097252 DOI: 10.15252/embr.201338386] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Shigella flexneri, the etiological agent of bacillary dysentery, invades the human colonic epithelium and causes its massive inflammatory destruction. Little is known about the post-translational modifications implicated in regulating the host defense pathway against Shigella. Here, we show that SUMO-2 impairs Shigella invasion of epithelial cells in vitro. Using mice haploinsufficient for the SUMO E2 enzyme, we found that sumoylation regulates intestinal permeability and is required to restrict epithelial invasion and control mucosal inflammation. Quantitative proteomics reveals that Shigella infection alters the sumoylation status of a restricted set of transcriptional regulators involved in intestinal functions and inflammation. Consistent with this, sumoylation restricts the pro-inflammatory transcriptional response of Shigella-infected guts. Altogether, our results show that the SUMO pathway is an essential component of host innate protection, as it reduces the efficiency of two key steps of shigellosis: invasion and inflammatory destruction of the intestinal epithelium.
Collapse
Affiliation(s)
- Sabrina Fritah
- Laboratory of Nuclear Organization and Oncogenesis, Institut Pasteur, Paris, France INSERM U993, Paris, France Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France NorLux Neuro-Oncology Laboratory, Centre de Recherche Public de la Santé (CRP-Santé), Luxembourg, Luxembourg
| | - Nouara Lhocine
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France INSERM U786, Paris, France
| | - Filip Golebiowski
- Centre for Gene Regulation and Expression, College of Life Sciences University of Dundee, Dundee, UK
| | - Joëlle Mounier
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France INSERM U786, Paris, France
| | - Alexandra Andrieux
- Laboratory of Nuclear Organization and Oncogenesis, Institut Pasteur, Paris, France INSERM U993, Paris, France Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Grégory Jouvion
- Unité d'Histopathologie Humaine et Modèles Animaux, Institut Pasteur, Paris, France
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, College of Life Sciences University of Dundee, Dundee, UK
| | - Philippe Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France INSERM U786, Paris, France
| | - Anne Dejean
- Laboratory of Nuclear Organization and Oncogenesis, Institut Pasteur, Paris, France INSERM U993, Paris, France Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
94
|
Gupta MK, Gulick J, Liu R, Wang X, Molkentin JD, Robbins J. Sumo E2 enzyme UBC9 is required for efficient protein quality control in cardiomyocytes. Circ Res 2014; 115:721-9. [PMID: 25097219 DOI: 10.1161/circresaha.115.304760] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RATIONALE Impairment of proteasomal function is pathogenic in several cardiac proteinopathies and can eventually lead to heart failure. Loss of proteasomal activity often results in the accumulation of large protein aggregates. The ubiquitin proteasome system (UPS) is primarily responsible for cellular protein degradation, and although the role of ubiquitination in this process is well studied, the function of an ancillary post-translational modification, SUMOylation, in protein quality control is not fully understood. OBJECTIVE To determine the role of ubiquitin-conjugating enzyme 9 (UBC9), a small ubiquitin-like modifier-conjugating enzyme, in cardiomyocyte protein quality control. METHODS AND RESULTS Gain- and loss-of-function approaches were used to determine the importance of UBC9. Overexpression of UBC9 enhanced UPS function in cardiomyocytes, whereas knockdown of UBC9 by small interfering RNA caused significant accumulations of aggregated protein. UPS function and relative activity was analyzed using a UPS reporter protein consisting of a short degron, CL1, fused to the COOH-terminus of green fluorescent protein (GFPu). Subsequently, the effects of UBC9 on UPS function were tested in a proteotoxic model of desmin-related cardiomyopathy, caused by cardiomyocyte-specific expression of a mutated αB crystallin, CryAB(R120G). CryAB(R120G) expression leads to aggregate formation and decreased proteasomal function. Coinfection of UBC9-adenovirus with CryAB(R120G) virus reduced the proteotoxic sequelae, decreasing overall aggregate concentrations. Conversely, knockdown of UBC9 significantly decreased UPS function in the model and resulted in increased aggregate levels. CONCLUSIONS UBC9 plays a significant role in cardiomyocyte protein quality control, and its activity can be exploited to reduce toxic levels of misfolded or aggregated proteins in cardiomyopathy.
Collapse
Affiliation(s)
- Manish K Gupta
- From the Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, OH (M.K.G., J.G., R.L., J.D.M., J.R.); and Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion (X.W.)
| | - James Gulick
- From the Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, OH (M.K.G., J.G., R.L., J.D.M., J.R.); and Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion (X.W.)
| | - Ruijie Liu
- From the Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, OH (M.K.G., J.G., R.L., J.D.M., J.R.); and Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion (X.W.)
| | - Xuejun Wang
- From the Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, OH (M.K.G., J.G., R.L., J.D.M., J.R.); and Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion (X.W.)
| | - Jeffery D Molkentin
- From the Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, OH (M.K.G., J.G., R.L., J.D.M., J.R.); and Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion (X.W.)
| | - Jeffrey Robbins
- From the Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, OH (M.K.G., J.G., R.L., J.D.M., J.R.); and Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion (X.W.).
| |
Collapse
|
95
|
Nielsen SV, Poulsen EG, Rebula CA, Hartmann-Petersen R. Protein quality control in the nucleus. Biomolecules 2014; 4:646-61. [PMID: 25010148 PMCID: PMC4192666 DOI: 10.3390/biom4030646] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/20/2014] [Accepted: 06/04/2014] [Indexed: 01/18/2023] Open
Abstract
In their natural environment, cells are regularly exposed to various stress conditions that may lead to protein misfolding, but also in the absence of stress, misfolded proteins occur as the result of mutations or failures during protein synthesis. Since such partially denatured proteins are prone to aggregate, cells have evolved several elaborate quality control systems to deal with these potentially toxic proteins. First, various molecular chaperones will seize the misfolded protein and either attempt to refold the protein or target it for degradation via the ubiquitin-proteasome system. The degradation of misfolded proteins is clearly compartmentalized, so unique degradation pathways exist for misfolded proteins depending on whether their subcellular localization is ER/secretory, mitochondrial, cytosolic or nuclear. Recent studies, mainly in yeast, have shown that the nucleus appears to be particularly active in protein quality control. Thus, specific ubiquitin-protein ligases located in the nucleus, target not only misfolded nuclear proteins, but also various misfolded cytosolic proteins which are transported to the nucleus prior to their degradation. In comparison, much less is known about these mechanisms in mammalian cells. Here we highlight recent advances in our understanding of nuclear protein quality control, in particular regarding substrate recognition and proteasomal degradation.
Collapse
Affiliation(s)
- Sofie V Nielsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Esben G Poulsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Caio A Rebula
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Rasmus Hartmann-Petersen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
96
|
Abstract
BACKGROUND Many aspects of autoimmune disease are not well understood, including the specificities of autoimmune targets, and patterns of co-morbidity and cross-heritability across diseases. Prior work has provided evidence that somatic mutation caused by gene conversion and deletion at segmentally duplicated loci is relevant to several diseases. Simple tandem repeat (STR) sequence is highly mutable, both somatically and in the germ-line, and somatic STR mutations are observed under inflammation. RESULTS Protein-coding genes spanning STRs having markers of mutability, including germ-line variability, high total length, repeat count and/or repeat similarity, are evaluated in the context of autoimmunity. For the initiation of autoimmune disease, antigens whose autoantibodies are the first observed in a disease, termed primary autoantigens, are informative. Three primary autoantigens, thyroid peroxidase (TPO), phogrin (PTPRN2) and filaggrin (FLG), include STRs that are among the eleven longest STRs spanned by protein-coding genes. This association of primary autoantigens with long STR sequence is highly significant (p<3.0x10(-7)). Long STRs occur within twenty genes that are associated with sixteen common autoimmune diseases and atherosclerosis. The repeat within the TTC34 gene is an outlier in terms of length and a link with systemic lupus erythematosus is proposed. CONCLUSIONS The results support the hypothesis that many autoimmune diseases are triggered by immune responses to proteins whose DNA sequence mutates somatically in a coherent, consistent fashion. Other autoimmune diseases may be caused by coherent somatic mutations in immune cells. The coherent somatic mutation hypothesis has the potential to be a comprehensive explanation for the initiation of many autoimmune diseases.
Collapse
Affiliation(s)
- Kenneth Andrew Ross
- Department of Computer Science, Columbia University, New York, New York, United States of America
| |
Collapse
|
97
|
|
98
|
Schou J, Kelstrup CD, Hayward DG, Olsen JV, Nilsson J. Comprehensive identification of SUMO2/3 targets and their dynamics during mitosis. PLoS One 2014; 9:e100692. [PMID: 24971888 PMCID: PMC4074068 DOI: 10.1371/journal.pone.0100692] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/27/2014] [Indexed: 12/01/2022] Open
Abstract
During mitosis large alterations in cellular structures occur rapidly, which to a large extent is regulated by post-translational modification of proteins. Modification of proteins with the small ubiquitin-related protein SUMO2/3 regulates mitotic progression, but few mitotic targets have been identified so far. To deepen our understanding of SUMO2/3 during this window of the cell cycle, we undertook a comprehensive proteomic characterization of SUMO2/3 modified proteins in mitosis and upon mitotic exit. We developed an efficient tandem affinity purification strategy of SUMO2/3 modified proteins from mitotic cells. Combining this purification strategy with cell synchronization procedures and quantitative mass spectrometry allowed for the mapping of numerous novel targets and their dynamics as cells progressed out of mitosis. This identified RhoGDIα as a major SUMO2/3 modified protein, specifically during mitosis, mediated by the SUMO ligases PIAS2 and PIAS3. Our data provide a rich resource for further exploring the role of SUMO2/3 modifications in mitosis and cell cycle regulation.
Collapse
Affiliation(s)
- Julie Schou
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian D. Kelstrup
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel G. Hayward
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper V. Olsen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
99
|
Mattiroli F, Sixma TK. Lysine-targeting specificity in ubiquitin and ubiquitin-like modification pathways. Nat Struct Mol Biol 2014; 21:308-16. [PMID: 24699079 DOI: 10.1038/nsmb.2792] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/13/2014] [Indexed: 12/19/2022]
Abstract
Ubiquitin and ubiquitin-like modifications are central to virtually all cellular signaling pathways. They occur primarily on lysine residues of target proteins and stimulate a large number of downstream signals. The diversity of these signals depends on the type, location and dynamics of the modification, but the role of the exact site of modification and the selectivity for specific lysines are poorly understood. Here we review the current literature on lysine specificity in these modifications, and we highlight the known signaling mechanisms and the open questions that pose future challenges to ubiquitin research.
Collapse
Affiliation(s)
- Francesca Mattiroli
- 1] Division of Biochemistry, Cancer Genomics Center, Netherlands Cancer Institute, Amsterdam, The Netherlands. [2]
| | - Titia K Sixma
- Division of Biochemistry, Cancer Genomics Center, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
100
|
Cui Z, Scruggs SB, Gilda JE, Ping P, Gomes AV. Regulation of cardiac proteasomes by ubiquitination, SUMOylation, and beyond. J Mol Cell Cardiol 2014; 71:32-42. [PMID: 24140722 PMCID: PMC3990655 DOI: 10.1016/j.yjmcc.2013.10.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/21/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the major intracellular degradation system, and its proper function is critical to the health and function of cardiac cells. Alterations in cardiac proteasomes have been linked to several pathological phenotypes, including cardiomyopathies, ischemia-reperfusion injury, heart failure, and hypertrophy. Defects in proteasome-dependent cellular protein homeostasis can be causal for the initiation and progression of certain cardiovascular diseases. Emerging evidence suggests that the UPS can specifically target proteins that govern pathological signaling pathways for degradation, thus altering downstream effectors and disease outcomes. Alterations in UPS-substrate interactions in disease occur, in part, due to direct modifications of 19S, 11S or 20S proteasome subunits. Post-translational modifications (PTMs) are one facet of this proteasomal regulation, with over 400 known phosphorylation sites, over 500 ubiquitination sites and 83 internal lysine acetylation sites, as well as multiple sites for caspase cleavage, glycosylation (such as O-GlcNAc modification), methylation, nitrosylation, oxidation, and SUMOylation. Changes in cardiac proteasome PTMs, which occur in ischemia and cardiomyopathies, are associated with changes in proteasome activity and proteasome assembly; however several features of this regulation remain to be explored. In this review, we focus on how some of the less common PTMs affect proteasome function and alter cellular protein homeostasis. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".
Collapse
Affiliation(s)
- Ziyou Cui
- Department of Neurobiology, Physiology and Behavior, University of California, Davis CA 95616, USA
| | - Sarah B Scruggs
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | - Jennifer E Gilda
- Department of Neurobiology, Physiology and Behavior, University of California, Davis CA 95616, USA
| | - Peipei Ping
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis CA 95616, USA; Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|