51
|
Barry DM, Liu XT, Liu B, Liu XY, Gao F, Zeng X, Liu J, Yang Q, Wilhelm S, Yin J, Tao A, Chen ZF. Exploration of sensory and spinal neurons expressing gastrin-releasing peptide in itch and pain related behaviors. Nat Commun 2020; 11:1397. [PMID: 32170060 PMCID: PMC7070094 DOI: 10.1038/s41467-020-15230-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrin-releasing peptide (GRP) functions as a neurotransmitter for non-histaminergic itch, but its site of action (sensory neurons vs spinal cord) remains controversial. To determine the role of GRP in sensory neurons, we generated a floxed Grp mouse line. We found that conditional knockout of Grp in sensory neurons results in attenuated non-histaminergic itch, without impairing histamine-induced itch. Using a Grp-Cre knock-in mouse line, we show that the upper epidermis of the skin is exclusively innervated by GRP fibers, whose activation via optogeneics and chemogenetics in the skin evokes itch- but not pain-related scratching or wiping behaviors. In contrast, intersectional genetic ablation of spinal Grp neurons does not affect itch nor pain transmission, demonstrating that spinal Grp neurons are dispensable for itch transmission. These data indicate that GRP is a neuropeptide in sensory neurons for non-histaminergic itch, and GRP sensory neurons are dedicated to itch transmission.
Collapse
Affiliation(s)
- Devin M Barry
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xue-Ting Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Center for Immunology, Inflammation, Immune-mediated disease, Guangzhou Medical University, 510260, Guangzhou, Guangdong, P.R. China
| | - Benlong Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xian-Yu Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fang Gao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiansi Zeng
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- College of Life Sciences, Xinyang Normal University, 237 Nanhu Road, 464000, Xinyang, P. R. China
| | - Juan Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Qianyi Yang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Steven Wilhelm
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jun Yin
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ailin Tao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Center for Immunology, Inflammation, Immune-mediated disease, Guangzhou Medical University, 510260, Guangzhou, Guangdong, P.R. China
| | - Zhou-Feng Chen
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
52
|
Kiguchi N, Uta D, Ding H, Uchida H, Saika F, Matsuzaki S, Fukazawa Y, Abe M, Sakimura K, Ko MC, Kishioka S. GRP receptor and AMPA receptor cooperatively regulate itch-responsive neurons in the spinal dorsal horn. Neuropharmacology 2020; 170:108025. [PMID: 32142790 DOI: 10.1016/j.neuropharm.2020.108025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 01/19/2023]
Abstract
Gastrin-releasing peptide (GRP) receptor-expressing (GRPR)+ neurons have a central role in the spinal transmission of itch. Because their fundamental regulatory mechanisms are not yet understood, it is important to determine how such neurons are excited and integrate itch sensation. In this study, we investigated the mechanisms for the activation of itch-responsive GRPR+ neurons in the spinal dorsal horn (SDH). GRPR+ neurons expressed the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) containing the GluR2 subunit. In mice, peripherally elicited histaminergic and non-histaminergic itch was prevented by intrathecal (i.t.) administration of the AMPAR antagonist NBQX, which was consistent with the fact that firing of GRPR+ neurons in SDH under histaminergic and non-histaminergic itch was completely blocked by NBQX, but not by the GRPR antagonist RC-3095. Because GRP+ neurons in SDH contain glutamate, we investigated the role of GRP+ (GRP+/Glu+) neurons in regulating itch. Chemogenetic inhibition of GRP+ neurons suppressed both histaminergic and non-histaminergic itch without affecting the mechanical pain threshold. In nonhuman primates, i.t. administration of NBQX also attenuated peripherally elicited itch without affecting the thermal pain threshold. In a mouse model of diphenylcyclopropenone (DCP)-induced contact dermatitis, GRP, GRPR, and AMPAR subunits were upregulated in SDH. DCP-induced itch was prevented by either silencing GRP+ neurons or ablation of GRPR+ neurons. Altogether, these findings demonstrate that GRP and glutamate cooperatively regulate GRPR+ AMPAR+ neurons in SDH, mediating itch sensation. GRP-GRPR and the glutamate-AMPAR system may play pivotal roles in the spinal transmission of itch in rodents and nonhuman primates.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama City, Wakayama, 641-0012, Japan.
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama City, Toyama, 930-0194, Japan
| | - Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Hitoshi Uchida
- Department of Cellular Neuropathology, Brain Research Institute Niigata University, Niigata City, Niigata, 951-8585, Japan
| | - Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, Wakayama City, Wakayama, 641-0012, Japan
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Wakayama City, Wakayama, 641-0012, Japan
| | - Yohji Fukazawa
- Department of Anatomy, Kansai University of Health Sciences, Sennan-gun, Osaka, 590-0482, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata City, Niigata, 951-8585, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata City, Niigata, 951-8585, Japan
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA; W.G. Hefner Veterans Affairs Medical Center, Salisbury, NC, 28144, USA
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama City, Wakayama, 641-0012, Japan
| |
Collapse
|
53
|
Complementary roles of murine Na V1.7, Na V1.8 and Na V1.9 in acute itch signalling. Sci Rep 2020; 10:2326. [PMID: 32047194 PMCID: PMC7012836 DOI: 10.1038/s41598-020-59092-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Acute pruritus occurs in various disorders. Despite severe repercussions on quality of life treatment options remain limited. Voltage-gated sodium channels (NaV) are indispensable for transformation and propagation of sensory signals implicating them as drug targets. Here, NaV1.7, 1.8 and 1.9 were compared for their contribution to itch by analysing NaV-specific knockout mice. Acute pruritus was induced by a comprehensive panel of pruritogens (C48/80, endothelin, 5-HT, chloroquine, histamine, lysophosphatidic acid, trypsin, SLIGRL, β-alanine, BAM8-22), and scratching was assessed using a magnet-based recording technology. We report an unexpected stimulus-dependent diversity in NaV channel-mediated itch signalling. NaV1.7−/− showed substantial scratch reduction mainly towards strong pruritogens. NaV1.8−/− impaired histamine and 5-HT-induced scratching while NaV1.9 was involved in itch signalling towards 5-HT, C48/80 and SLIGRL. Furthermore, similar microfluorimetric calcium responses of sensory neurons and expression of itch-related TRP channels suggest no change in sensory transduction but in action potential transformation and conduction. The cumulative sum of scratching over all pruritogens confirmed a leading role of NaV1.7 and indicated an overall contribution of NaV1.9. Beside the proposed general role of NaV1.7 and 1.9 in itch signalling, scrutiny of time courses suggested NaV1.8 to sustain prolonged itching. Therefore, NaV1.7 and 1.9 may represent targets in pruritus therapy.
Collapse
|
54
|
Zhao J, Munanairi A, Liu XY, Zhang J, Hu L, Hu M, Bu D, Liu L, Xie Z, Kim BS, Yang Y, Chen ZF. PAR2 Mediates Itch via TRPV3 Signaling in Keratinocytes. J Invest Dermatol 2020; 140:1524-1532. [PMID: 32004565 DOI: 10.1016/j.jid.2020.01.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/10/2019] [Accepted: 01/12/2020] [Indexed: 12/13/2022]
Abstract
Animal studies have suggested that transient receptor potential ion channels and G-protein coupled receptors play important roles in itch transmission. TRPV3 gain-of-function mutations have been identified in patients with Olmsted syndrome, which is associated with severe pruritus. However, the mechanisms causing itch remain poorly understood. Here, we show that keratinocytes lacking TRPV3 impair the function of protease-activated receptor 2 (PAR2), resulting in reduced neuronal activation and scratching behavior in response to PAR2 agonists. Moreover, we show that TRPV3 and PAR2 were upregulated in skin biopsies from patients and mice with atopic dermatitis, whereas their inhibition attenuated scratching and inflammatory responses in mouse atopic dermatitis models. These results reveal a previously unrecognized link between TRPV3 and PAR2 in keratinocytes to convey itch information and suggest that a blockade of PAR2 or TRPV3 individually or both may serve as a potential approach for antipruritic therapy in atopic dermatitis.
Collapse
Affiliation(s)
- Jiahui Zhao
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Disease, Beijing, China; Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, USA
| | - Admire Munanairi
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, USA; Current Address: Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Xian-Yu Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, USA
| | - Jie Zhang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Disease, Beijing, China
| | - Linghan Hu
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Disease, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Meiqin Hu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardio-metabolic Molecular Medicine, Peking University, Beijing, China
| | - Dingfang Bu
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Disease, Beijing, China
| | - Lingling Liu
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Disease, Beijing, China
| | - Zhiqiang Xie
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Brian S Kim
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, USA; Department of Dermatology(,) Washington University School of Medicine, St. Louis, USA
| | - Yong Yang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Disease, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China; Current Address: Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| | - Zhou-Feng Chen
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA.
| |
Collapse
|
55
|
Antipruritic Effects of Kappa Opioid Receptor Agonists: Evidence from Rodents to Humans. Handb Exp Pharmacol 2020; 271:275-292. [PMID: 33296031 DOI: 10.1007/164_2020_420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Centrally administered bombesin induces scratching and grooming in rats. These behaviors were blocked by early benzomorphan kappa opioid receptor (KOR) agonists as reported by Gmerek and Cowan in 1984. This was the first evidence that KORs may be involved in the sensation of itch-like behaviors. Subsequent development of additional animal models for acute and chronic itch has led to important discoveries since then. For example, it was found that (a) gastrin-releasing peptide (GRP), natriuretic polypeptide b and their cognate receptors are keys for the transmission of itch sensation at the spinal cord level, (b) dynorphins (Dyns), the endogenous KOR agonists, work as inhibitory neuromodulators of itch at the spinal cord level, (c) in a mouse model for acute itch, certain KOR antagonists elicit scratching, (d) in mouse models of acute or chronic itch, KOR agonists (e.g., U50,488, nalfurafine, CR 845, nalbuphine) suppress scratching induced by different pruritogens, and (e) nalfurafine, CR 845, and nalbuphine are in the clinic or in clinical trials for pruritus associated with chronic kidney disease and chronic liver disease, as well as pruritus in chronic skin diseases.
Collapse
|
56
|
Ma H, Gao T, Jakobsson JET, Weman HM, Xu B, Larhammar D, Lagerström MC. The Neuropeptide Y Y 2 Receptor Is Coexpressed with Nppb in Primary Afferent Neurons and Y 2 Activation Reduces Histaminergic and IL-31-Induced Itch. J Pharmacol Exp Ther 2020; 372:73-82. [PMID: 31771994 DOI: 10.1124/jpet.119.262584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/28/2019] [Indexed: 01/06/2023] Open
Abstract
Itch stimuli are detected by specialized primary afferents that convey the signal to the spinal cord, but how itch transmission is regulated is still not completely known. Here, we investigated the roles of the neuropeptide Y (NPY)/Y2 receptor system on scratch behavior. The inhibitory Y2 receptor is expressed on mouse primary afferents, and intrathecal administration of the Y2 agonist peptide YY (PYY)3-36 reduced scratch episode frequency and duration induced by compound 48/80, an effect that could be reversed by intrathecal preadministration of the Y2 antagonist BIIE0246. Also, scratch episode duration induced by histamine could be reduced by PYY3-36 In contrast, scratch behavior induced by α-methyl-5HT, protease-activated receptor-2-activating peptide SLIGRL, chloroquine, topical dust mite extract, or mechanical itch induced by von Frey filaments was unaffected by stimulation of Y2 Primary afferent neurons expressing the Npy2r gene were found to coexpress itch-associated markers such as natriuretic peptide precursor b, oncostatin M receptor, and interleukin (IL) 31 receptor A. Accordingly, intrathecal PYY3-36 reduced the scratch behavior induced by IL-31. Our findings imply that the NPY/Y2 system reduces histaminergic and IL-31-associated itch through presynaptic inhibition of a subpopulation of itch-associated primary afferents. SIGNIFICANCE STATEMENT: The spinal neuropeptide Y system dampens scratching behavior induced by histaminergic compounds and interleukin 31, a cytokine involved in atopic dermatitis, through interactions with the Y2 receptor. The Y2 receptor is expressed by primary afferent neurons that are rich in itch-associated neurotransmitters and receptors such as somatostatin, natriuretic peptide precursor b, and interleukin 31 receptors.
Collapse
MESH Headings
- Animals
- Antipruritics/administration & dosage
- Antipruritics/pharmacology
- Antipruritics/therapeutic use
- Arginine/analogs & derivatives
- Arginine/toxicity
- Benzazepines/toxicity
- Cells, Cultured
- Chloroquine/pharmacology
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/metabolism
- Ganglia, Spinal/cytology
- Histamine/pharmacology
- Histamine/toxicity
- Interleukins/pharmacology
- Interleukins/toxicity
- Male
- Mice
- Mice, Inbred C57BL
- Natriuretic Peptide, Brain/genetics
- Natriuretic Peptide, Brain/metabolism
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neurons, Afferent/physiology
- Oligopeptides/pharmacology
- Peptide Fragments/administration & dosage
- Peptide Fragments/pharmacology
- Peptide Fragments/therapeutic use
- Peptide YY/administration & dosage
- Peptide YY/pharmacology
- Peptide YY/therapeutic use
- Pruritus/drug therapy
- Pruritus/etiology
- Pruritus/metabolism
- Receptors, Neuropeptide Y/genetics
- Receptors, Neuropeptide Y/metabolism
- Receptors, Oncostatin M/genetics
- Receptors, Oncostatin M/metabolism
- Serotonin/pharmacology
Collapse
Affiliation(s)
- Haisha Ma
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Tianle Gao
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Hannah M Weman
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Bo Xu
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Dan Larhammar
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
57
|
Guo CJ, Mack MR, Oetjen LK, Trier AM, Council ML, Pavel AB, Guttman-Yassky E, Kim BS, Liu Q. Kallikrein 7 Promotes Atopic Dermatitis-Associated Itch Independently of Skin Inflammation. J Invest Dermatol 2019; 140:1244-1252.e4. [PMID: 31883963 DOI: 10.1016/j.jid.2019.10.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022]
Abstract
Atopic dermatitis (AD) is a highly prevalent, itchy inflammatory skin disorder that is thought to arise from a combination of skin barrier defect and immune dysregulation. Kallikreins (KLK), a family of serine proteases with a diverse array of homeostatic functions, including skin desquamation and innate immunity, are hypothesized to contribute to AD pathogenesis. However, their precise role in AD has not been clearly defined. In this study, RNA sequencing analyses identified KLK7 as the most abundant and differentially expressed KLK in both human AD and murine AD-like skin. Further, in mice, Klk7 expression was localized to the epidermis in both steady state and inflammation. Unexpectedly, KLK7 was dispensable for the development of AD-associated skin inflammation. Instead, KLK7 was selectively required for AD-associated chronic itch. Even without the alleviation of skin inflammation, KLK7-deficient mice exhibited significantly attenuated scratching, compared with littermate controls, after AD-like disease induction. Collectively, our findings indicate that KLK7 promotes AD-associated itch independently from skin inflammation and reveal a previously unrecognized epidermal-neural mechanism of AD associated itch.
Collapse
Affiliation(s)
- Changxiong J Guo
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA; Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Madison R Mack
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Medicine, Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Landon K Oetjen
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Medicine, Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anna M Trier
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Medicine, Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Martha L Council
- Department of Medicine, Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ana B Pavel
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brian S Kim
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA; Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Medicine, Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Qin Liu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA; Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
58
|
Li F, Yang W, Jiang H, Guo C, Huang AJW, Hu H, Liu Q. TRPV1 activity and substance P release are required for corneal cold nociception. Nat Commun 2019; 10:5678. [PMID: 31831729 PMCID: PMC6908618 DOI: 10.1038/s41467-019-13536-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 10/30/2019] [Indexed: 01/07/2023] Open
Abstract
As a protective mechanism, the cornea is sensitive to noxious stimuli. Here, we show that in mice, a high proportion of corneal TRPM8+ cold-sensing fibers express the heat-sensitive TRPV1 channel. Despite its insensitivity to cold, TRPV1 enhances membrane potential changes and electrical firing of TRPM8+ neurons in response to cold stimulation. This elevated neuronal excitability leads to augmented ocular cold nociception in mice. In a model of dry eye disease, the expression of TRPV1 in TRPM8+ cold-sensing fibers is increased, and results in severe cold allodynia. Overexpression of TRPV1 in TRPM8+ sensory neurons leads to cold allodynia in both corneal and non-corneal tissues without affecting their thermal sensitivity. TRPV1-dependent neuronal sensitization facilitates the release of the neuropeptide substance P from TRPM8+ cold-sensing neurons to signal nociception in response to cold. Our study identifies a mechanism underlying corneal cold nociception and suggests a potential target for the treatment of ocular pain. The eye shows protective responses to noxious stimuli including cold. Here, the authors show that TRPV1, found co-expressed on TRPM8 + fibres in the cornea, is necessary for cold nociception in the eye.
Collapse
Affiliation(s)
- Fengxian Li
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA.,Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangdong, China
| | - Weishan Yang
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Haowu Jiang
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Changxiong Guo
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew J W Huang
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Hongzhen Hu
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Qin Liu
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
59
|
Castro J, Harrington AM, Lieu T, Garcia-Caraballo S, Maddern J, Schober G, O’Donnell T, Grundy L, Lumsden AL, Miller P, Ghetti A, Steinhoff MS, Poole DP, Dong X, Chang L, Bunnett NW, Brierley SM. Activation of pruritogenic TGR5, MrgprA3, and MrgprC11 on colon-innervating afferents induces visceral hypersensitivity. JCI Insight 2019; 4:131712. [PMID: 31536477 PMCID: PMC6824308 DOI: 10.1172/jci.insight.131712] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Itch induces scratching that removes irritants from the skin, whereas pain initiates withdrawal or avoidance of tissue damage. While pain arises from both the skin and viscera, we investigated whether pruritogenic irritant mechanisms also function within visceral pathways. We show that subsets of colon-innervating sensory neurons in mice express, either individually or in combination, the pruritogenic receptors Tgr5 and the Mas-gene-related GPCRs Mrgpra3 and Mrgprc11. Agonists of these receptors activated subsets of colonic sensory neurons and evoked colonic afferent mechanical hypersensitivity via a TRPA1-dependent mechanism. In vivo intracolonic administration of individual TGR5, MrgprA3, or MrgprC11 agonists induced pronounced visceral hypersensitivity to colorectal distension. Coadministration of these agonists as an "itch cocktail" augmented hypersensitivity to colorectal distension and changed mouse behavior. These irritant mechanisms were maintained and enhanced in a model of chronic visceral hypersensitivity relevant to irritable bowel syndrome. Neurons from human dorsal root ganglia also expressed TGR5, as well as the human ortholog MrgprX1, and showed increased responsiveness to pruritogenic agonists in pathological states. These data support the existence of an irritant-sensing system in the colon that is a visceral representation of the itch pathways found in skin, thereby contributing to sensory disturbances accompanying common intestinal disorders.
Collapse
Affiliation(s)
- Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea M. Harrington
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - TinaMarie Lieu
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Jessica Maddern
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Gudrun Schober
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Tracey O’Donnell
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Amanda L. Lumsden
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Paul Miller
- AnaBios Corporation, San Diego, California, USA
| | | | - Martin S. Steinhoff
- Department of Dermatology and Dermatology Immunology Institute, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology, Weill Cornell Medicine-Qatar and Weill Cornell University, New York, New York, USA
- School of Medicine Qatar University, Doha, Qatar
| | - Daniel P. Poole
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lin Chang
- G. Oppenheimer Centre for Neurobiology of Stress and Resilience, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California, USA
| | - Nigel W. Bunnett
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery and
- Department of Pharmacology, Columbia University, New York, New York, USA
| | - Stuart M. Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
60
|
Anzelc M, Burkhart CG. Pain and Pruritus: a study of their similarities and differences. Int J Dermatol 2019; 59:159-164. [PMID: 31605395 DOI: 10.1111/ijd.14678] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 11/29/2022]
Abstract
Pruritus is one of the most common dermatologic complaints and, as the most common dermatologic symptom, is a major contributor to frequent dermatology visits. Chronic pruritus mirrors another major medical condition faced by millions of Americans each year - chronic pain. In older literature, pain and pruritus were thought to have been conveyed by the same C fiber, and the proportion contributing to pruritus was just a small subset of this general fiber. Overall, pain and pruritus share many integral similarities. Although these sensations both initiate the body's awareness to injury, pain and itch may have evolved for sensing different damages such as a burrowing parasite or a noxious stimulus, respectively. This seems to have been validated through analyses of their pathophysiology, acute and chronic conditions, and treatment modalities. However, their symptoms and intrinsic mechanisms vary considerably. It is important to view pruritus in more of an overall, whole body experience, rather than just the sensory aspect. Future studies should investigate the psychological treatment of chronic pruritus, considering the immense similarities with its chronic pain counterpart.
Collapse
Affiliation(s)
- Madison Anzelc
- Department of Medicine, Division of Dermatology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Craig G Burkhart
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.,Department of Medicine, Ohio University of Osteopathic Medicine, Athens, OH, USA
| |
Collapse
|
61
|
Van Remoortel S, Ceuleers H, Arora R, Van Nassauw L, De Man JG, Buckinx R, De Winter BY, Timmermans JP. Mas-related G protein-coupled receptor C11 (Mrgprc11) induces visceral hypersensitivity in the mouse colon: A novel target in gut nociception? Neurogastroenterol Motil 2019; 31:e13623. [PMID: 31119828 DOI: 10.1111/nmo.13623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Visceral hypersensitivity, an important cause of abdominal pain in disorders such as IBD and IBS, presents with a poorly understood pathophysiology and limited treatment options. Several members of the Mas-related G protein-coupled receptor family (Mrgprs) have become promising targets in pain research. The potential link between the murine Mrgpr C11 (Mrgprc11) and gut nociception is currently uninvestigated. Therefore, we explored the expression and functional role of Mrgprc11 in the gut nociceptive innervation. METHODS Mrgprc11 expression was evaluated in DRG neurons innervating the mouse colon using in situ hybridization and immunohistochemistry. Visceromotor responses to colorectal distension (CRD) assessed the effect of the Mrgprc11 agonist, BAM(8-22), on colonic pain sensitivity in healthy mice. Moreover, we determined pERK1/2-immunoreactivity in the thoracolumbar spinal cord after noxious CRD. Finally, from a translational point of view, we looked for expression of the human counterpart of Mrgprc11, MRGPRX1, in human thoracolumbar DRGs. KEY RESULTS In situ hybridization and immunohistochemistry revealed Mrgprc11 expression in colonic DRG neurons. Intracolonic administration of BAM(8-22) significantly increased colonic pain sensitivity in an Mrgprc11-dependent manner, and led to a significantly increased degree of neuronal activation in the splanchnic spinal cord upon noxious stimulation. Furthermore, MRGPRX1 expression was also detected in human thoracolumbar DRG neurons. CONCLUSIONS & INFERENCES: Our findings established a novel function for Mrgprc11 in the gut nociceptive innervation and propose the receptor as a new player in visceral hypersensitivity. Given the presence of MRGPRX1 in human DRG neurons, our study warrants future research on its therapeutic potential in abdominal pain disorders.
Collapse
Affiliation(s)
- Samuel Van Remoortel
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Rohit Arora
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Luc Van Nassauw
- Laboratory of Human Anatomy and Embryology, Division ASTARC, University of Antwerp, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Roeland Buckinx
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
62
|
Chung K, Pitcher T, Grant AD, Hewitt E, Lindstrom E, Malcangio M. Cathepsin S acts via protease-activated receptor 2 to activate sensory neurons and induce itch-like behaviour. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2019; 6:100032. [PMID: 31223140 PMCID: PMC6565756 DOI: 10.1016/j.ynpai.2019.100032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 01/19/2023]
Abstract
Chronic itch is a debilitating condition characterised by excessive scratching and is a symptom frequently reported in skin diseases such as atopic dermatitis. It has been proposed that release of the cysteine protease Cathepsin S (CatS) from skin keratinocytes or immune cells resident in or infiltrating the skin could act as a pruritogen in chronic itch conditions. CatS is known to activate protease-activated receptor 2 (PAR2). We therefore hypothesised that enzymatic activation of neuronally expressed PAR2 by CatS was responsible for activation of sensory neurons and transmission of itch signals. Intradermally-injected human recombinant (hr)-CatS or the PAR2 agonist, SLIGRL-NH2 behaved as pruritogens by causing scratching behaviour in mice. Hr-CatS-induced scratching behaviour was prevented by CatS inhibitors and PAR2 antagonists and reduced by 50% in TRPV1-/- mice compared with wild-type mice, whilst no significant reduction in scratching behaviour was observed in TRPA1-/- mice. Cultured dorsal root ganglion (DRG) cells showed an increase in [Ca2+]i following incubation with hr-CatS, and the percentage of neurons that responded to hr-CatS decreased in the presence of a PAR2 antagonist or in cultures of neurons from TRPV1-/- mice. Taken together, our results indicate CatS acts as a pruritogen via PAR2 activation in TRPV1-expressing sensory neurons.
Collapse
Affiliation(s)
- Keshi Chung
- Wolfson Centre for Age-Related Diseases, King’s College London, UK
| | - Thomas Pitcher
- Wolfson Centre for Age-Related Diseases, King’s College London, UK
| | - Andrew D. Grant
- Wolfson Centre for Age-Related Diseases, King’s College London, UK
| | | | | | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, King’s College London, UK
| |
Collapse
|
63
|
BAM8-22 and its receptor MRGPRX1 may attribute to cholestatic pruritus. Sci Rep 2019; 9:10888. [PMID: 31350433 PMCID: PMC6659683 DOI: 10.1038/s41598-019-47267-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
Pruritus is an unexpected symptom observed in cholestasis and its mechanism is still unclear. Here, we show that bovine adrenal medulla (BAM) 8-22, an endogenous itch-inducing peptide, could be involved in cholestatic pruritus. It was found that bile duct ligation (BDL) mice, an obstructive cholestasis model, showed increased spontaneous scratching behaviour. Importantly, the mRNA level of proenkephalin, a precursor polypeptide of BAM8-22, was significantly increased in the skin of BDL mice. Furthermore, the mRNA level of Mrgprx1, which encodes a receptor for BAM8-22, was significantly increased in the dorsal root ganglia (DRG) of BDL mice. This was further confirmed by elevation of intracellular calcium levels upon BAM8-22 treatment in primarily-cultured DRG neurons. In addition, BDL mice showed augmented scratching behaviour by BAM8-22, indicating enhanced activity of MRGPRX1. Moreover, the skin homogenate of BDL mice induced elevation of intracellular calcium levels through MRGPRX1. Finally, among the various bile acids, chenodeoxycholic acid significantly increased proenkephalin transcription in a human keratinocyte cell line (HaCaT). In conclusion, cholestatic pruritus could be attributed in part to enhanced action of both BAM8-22 in the skin and its receptor MRGPRX1 in sensory neurons.
Collapse
|
64
|
Abstract
Itching can result from activity of specialized primary afferent neurons (“pruriceptors”) that have been shown to express certain molecular markers such as B-type natriuretic peptide and several members of the Mrgpr-family in rodents. On the other hand, neurons involved in pain processing (“nociceptors”) can also provoke itching when the activation site is restricted to an isolated tiny spot within the epidermis. Individuals classified as having sensitive skin report increased itching and pain sensations upon weak external stimuli that are not painful or itchy in the control group. Numerous possible factors could contribute to sensitive skin along the pathway of transduction of the external stimuli into peripheral neuronal signals, followed by neuronal processing, finally resulting in the perception: (a) reduced local protective factors leading to impaired skin barrier function, (b) increased production of excitatory skin mediators, (c) sensitized peripheral neurons, (d) facilitated spinal and central processing, and (e) reduced descending inhibition from the central nervous system. For all of those pathophysiological mechanisms there are clinical examples such as atopic dermatitis (a,b,c), neuropathic itching (c,e), and restless leg syndrome (d,e). However, none of these factors have been directly linked to the occurrence of sensitive skin. Moreover, individuals reporting sensitive skin are heterogeneous and a subpopulation with defined pathophysiology has not yet been identified. Given that the condition is reported in about 50% of women, and thereby includes many healthy individuals, it appears problematic to assign a definitive pathophysiological mechanism to it.
Collapse
Affiliation(s)
- Martin Schmelz
- Department Experimental Pain Research, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
65
|
Dong X, Dong X. Peripheral and Central Mechanisms of Itch. Neuron 2019; 98:482-494. [PMID: 29723501 DOI: 10.1016/j.neuron.2018.03.023] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022]
Abstract
Itch is a unique sensory experience that is encoded by genetically distinguishable neurons both in the peripheral nervous system (PNS) and central nervous system (CNS) to elicit a characteristic behavioral response (scratching). Itch interacts with the other sensory modalities at multiple locations, from its initiation in a particular dermatome to its transmission to the brain where it is finally perceived. In this review, we summarize the current understanding of the molecular and neural mechanisms of itch by starting in the periphery, where itch is initiated, and discussing the circuits involved in itch processing in the CNS.
Collapse
Affiliation(s)
- Xintong Dong
- The Solomon H. Snyder Department of Neuroscience and the Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience and the Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
66
|
Abstract
Neuropathic itch is clinically important but has received much less attention as compared to neuropathic pain. In the past decade, itch-specific pathways have been characterized on a cellular and molecular level, but their exact role in the pathophysiology of neuropathic itch is still unclear. Traditionally, mutually exclusive theories for itch such as labeled line, temporal/spatial pattern, or intensity theory have been proposed, and experimental studies in mice mainly favor the specificity theory of itch. By contrast, results in humans also suggest a role for spatial and temporal patterns in neuropathic itch. Rarefication of skin innervation in neuropathy could provide a "spatial contrast" discharge pattern, and axotomy could induce de novo expression of the itch-specific spinal neuropeptide, gastrin-releasing peptide, in primary afferent nociceptors, thereby modulating itch processing in the dorsal horn. Thus, clinical neuropathy may generate itch by changes in the spatial and temporal discharge patterns of nociceptors, hijacking the labeled line processing of itch and abandoning the canonical scheme of mutual exclusive itch theories. Moreover, the overlap between itch and pain symptoms in neuropathy patients complicates direct translation from animal experiments and, on a clinical level, necessitates collaboration between medical specialities, such as dermatologists, anesthesiologists, and neurologists.
Collapse
|
67
|
Meixiong J, Anderson M, Limjunyawong N, Sabbagh MF, Hu E, Mack MR, Oetjen LK, Wang F, Kim BS, Dong X. Activation of Mast-Cell-Expressed Mas-Related G-Protein-Coupled Receptors Drives Non-histaminergic Itch. Immunity 2019; 50:1163-1171.e5. [PMID: 31027996 DOI: 10.1016/j.immuni.2019.03.013] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/24/2018] [Accepted: 03/14/2019] [Indexed: 11/28/2022]
Abstract
Classical itch studies have focused on immunoglobulin E (IgE)-mediated mast cell activation and histamine release. Recently, members of the Mas-related G-protein-coupled receptor (Mrgpr) family have been identified as mast cell receptors, but their role in itch is unclear. Here, we report that mast cell activation via Mrgprb2 evoked non-histaminergic itch in mice independently of the IgE-Fc epsilon RI (FcεRI)-histamine axis. Compared with IgE-FcεRI stimulation, Mrgprb2 activation of mast cells was distinct in both released substances (histamine, serotonin, and tryptase) and the pattern of activated itch-sensory neurons. Mrgprb2 deficiency decreased itch in multiple preclinical models of allergic contact dermatitis (ACD), a pruritic inflammatory skin disorder, and both mast cell number and PAMP1-20 concentrations (agonist of the human Mrgprb2 homolog, MRGPRX2) were increased in human ACD skin. These findings suggest that this pathway may represent a therapeutic target for treating ACD and mast-cell-associated itch disorders in which antihistamines are ineffective.
Collapse
Affiliation(s)
- James Meixiong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Anderson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathachit Limjunyawong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mark F Sabbagh
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eric Hu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Madison R Mack
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Landon K Oetjen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fang Wang
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian S Kim
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute.
| |
Collapse
|
68
|
Tsagareli MG, Nozadze I, Tsiklauri N, Gurtskaia G. TRPA1 Channel is Involved in SLIGRL-Evoked Thermal and Mechanical Hyperalgesia in Mice. Med Sci (Basel) 2019; 7:E62. [PMID: 31003539 PMCID: PMC6524052 DOI: 10.3390/medsci7040062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/16/2022] Open
Abstract
Persistent itch (pruritus) accompanying dermatologic and systemic diseases can significantly impair the quality of life. It is well known that itch is broadly categorized as histaminergic (sensitive to antihistamine medications) or non-histaminergic. Sensory neurons expressing Mas-related G-protein-coupled receptors (Mrgprs) mediate histamine-independent itch. These receptors have been shown to bind selective pruritogens in the periphery and mediate non-histaminergic itch. For example, mouse MrgprA3 responds to chloroquine (an anti-malarial drug), and are responsible for relaying chloroquine-induced scratching in mice. Mouse MrgprC11 responds to a different subset of pruritogens including bovine adrenal medulla peptide (BAM8-22) and the peptide Ser-Leu-Ile-Gly-Arg-Leu (SLIGRL). On the other hand, the possibility that itch mediators also influence pain is supported by recent findings that most non-histaminergic itch mediators require the transient receptor potential ankyrin 1 (TRPA1) channel. We have recently found a significant increase of thermal and mechanical hyperalgesia induced by non-histaminergic pruritogens chloroquine and BAM8-22, injected into mice hindpaw, for the first 30-45 min. Pretreatment with TRPA1 channel antagonist HC-030031 did significantly reduce the magnitude of this hyperalgesia, as well as significantly shortened the time-course of hyperalgesia induced by chloroquine and BAM8-22. Here, we report that MrgprC11-mediated itch by their agonist SLIGRL is accompanied by heat and mechanical hyperalgesia via the TRPA1 channel. We measured nociceptive thermal paw withdrawal latencies and mechanical thresholds bilaterally in mice at various time points following intra-plantar injection of SLIGRL producing hyperalgesia. When pretreated with the TRPA1 antagonist HC-030031, we found a significant reduction of thermal and mechanical hyperalgesia.
Collapse
Affiliation(s)
- Merab G Tsagareli
- Laboratory of Pain and Analgesia, Beritashvili Center for Experimental Biomedicine, Tbilisi 0160, Georgia.
| | - Ivliane Nozadze
- Laboratory of Pain and Analgesia, Beritashvili Center for Experimental Biomedicine, Tbilisi 0160, Georgia.
| | - Nana Tsiklauri
- Laboratory of Pain and Analgesia, Beritashvili Center for Experimental Biomedicine, Tbilisi 0160, Georgia.
| | - Gulnaz Gurtskaia
- Laboratory of Pain and Analgesia, Beritashvili Center for Experimental Biomedicine, Tbilisi 0160, Georgia.
| |
Collapse
|
69
|
Du L, Long Y, Kim JJ, Chen B, Zhu Y, Dai N. Protease Activated Receptor-2 Induces Immune Activation and Visceral Hypersensitivity in Post-infectious Irritable Bowel Syndrome Mice. Dig Dis Sci 2019; 64:729-739. [PMID: 30446929 DOI: 10.1007/s10620-018-5367-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The role of protease activated receptor-2 (PAR-2) in the pathogenesis of abdominal pain in irritable bowel syndrome (IBS) is not well defined. AIMS To investigate the role of PAR-2-mediated visceral hypersensitivity in a post-infectious IBS (PI-IBS) mouse model. METHODS T. spiralis-infected PI-IBS mouse model was used. Fecal serine protease activity and intestinal mast cells were evaluated. Intestinal permeability was assessed by urine lactulose/mannitol ratio, and colonic expressions of PAR-2 and tight junction (TJ) proteins were examined by Western blot. Intestinal immune profile was assessed by measuring Th (T helper) 1/Th2 cytokine expression. Visceral sensitivity was evaluated by abdominal withdrawal reflex in response to colorectal distention. RESULTS Colonic PAR-2 expression as well as fecal serine protease activity and intestinal mast cell counts were elevated in PI-IBS compared to the control mice. Decreased colonic TJ proteins expression, increased lactulose/mannitol ratio, elevated colonic Th1/Th2 cytokine ratio, and visceral hypersensitivity were observed in PI-IBS compared to the control mice. Administration of PAR-2 agonist in control mice demonstrated similar changes observed in PI-IBS mice, while PAR-2 antagonist normalized the increased intestinal permeability and reduced visceral hypersensitivity observed in PI-IBS mice. CONCLUSIONS PAR-2 activation increases intestinal permeability leading to immune activation and visceral hypersensitivity in PI-IBS mouse model.
Collapse
Affiliation(s)
- Lijun Du
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Yanqin Long
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| | - John J Kim
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Division of Gastroenterology & Hepatology, Loma Linda University Health, Loma Linda, CA, 92354, USA
| | - Binrui Chen
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Yubin Zhu
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Ning Dai
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| |
Collapse
|
70
|
Lee MS, Lerner EA. Targeting PAR2 with Pepducins. J Invest Dermatol 2019; 139:282-284. [DOI: 10.1016/j.jid.2018.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 11/24/2022]
|
71
|
Hassler SN, Ahmad FB, Burgos-Vega CC, Boitano S, Vagner J, Price TJ, Dussor G. Protease activated receptor 2 (PAR2) activation causes migraine-like pain behaviors in mice. Cephalalgia 2019; 39:111-122. [PMID: 29848111 PMCID: PMC6081257 DOI: 10.1177/0333102418779548] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Pain is the most debilitating symptom of migraine. The cause of migraine pain likely requires activation of meningeal nociceptors. Mast cell degranulation, with subsequent meningeal nociceptor activation, has been implicated in migraine pathophysiology. Degranulating mast cells release serine proteases that can cleave and activate protease activated receptors. The purpose of these studies was to investigate whether protease activated receptor 2 is a potential generator of nociceptive input from the meninges by using selective pharmacological agents and knockout mice. METHODS Ratiometric Ca++ imaging was performed on primary trigeminal and dural cell cultures after application of 2at-LIGRL-NH2, a specific protease activated receptor 2 agonist. Cutaneous hypersensitivity and facial grimace was measured in wild-type and protease activated receptor 2-/- mice after dural application of 2at-LIGRL-NH2 or compound 48-80, a mast cell degranulator. Behavioral experiments were also conducted in mice after dural application of 2at-LIGRL-NH2 (2AT) in the presence of either C391, a selective protease activated receptor 2 antagonist, or sumatriptan. RESULTS 2at-LIGRL-NH2 evoked Ca2+ signaling in mouse trigeminal neurons, dural fibroblasts and in meningeal afferents. Dural application of 2at-LIGRL-NH2 or 48-80 caused dose-dependent grimace behavior and mechanical allodynia that were attenuated by either local or systemic application of C391 as well as in protease activated receptor 2-/- mice. Nociceptive behavior after dural injection of 2at-LIGRL-NH2 was also attenuated by sumatriptan. CONCLUSIONS Functional protease activated receptor 2 receptors are expressed on both dural afferents and fibroblasts and activation of dural protease activated receptor 2 produces migraine-like behavioral responses. Protease activated receptor 2 may link resident immune cells to meningeal nociceptor activation, driving migraine-like pain and implicating protease activated receptor 2 as a therapeutic target for migraine in humans.
Collapse
Affiliation(s)
- Shayne N Hassler
- School of Brain and Behavioral Sciences, University of Texas at Dallas, TX, USA
| | - Fatima B Ahmad
- School of Brain and Behavioral Sciences, University of Texas at Dallas, TX, USA
| | | | - Scott Boitano
- Department of Physiology, University of Arizona, AZ, USA
- Arizona Respiratory Center, University of Arizona, AZ, USA
- Bio5 Institute, University of Arizona, AZ, USA
| | | | - Theodore J Price
- School of Brain and Behavioral Sciences, University of Texas at Dallas, TX, USA
| | - Gregory Dussor
- School of Brain and Behavioral Sciences, University of Texas at Dallas, TX, USA
| |
Collapse
|
72
|
Mack MR, Kim BS. The Itch–Scratch Cycle: A Neuroimmune Perspective. Trends Immunol 2018; 39:980-991. [DOI: 10.1016/j.it.2018.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
|
73
|
Espino SS, Robinson SD, Safavi-Hemami H, Gajewiak J, Yang W, Olivera BM, Liu Q. Conopeptides promote itch through human itch receptor hMgprX1. Toxicon 2018; 154:28-34. [PMID: 30243794 DOI: 10.1016/j.toxicon.2018.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022]
Abstract
Members of Mas related G-protein coupled receptors (Mrgpr) are known to mediate itch. To date, several compounds have been shown to activate these receptors, including chloroquine, a common antimalarial drug, and peptides of the RF-amide family. However, specific ligands for these receptors are still lacking and there is a need for novel compounds that can be used to modulate the receptors in order to understand the cellular and molecular mechanism in which they mediate itch. Some cone snail venoms were previously shown to induce itch in mice. Here, we show that the venom of Conus textile induces itch through activation of itch-sensing sensory neurons, marked by their sensitivity to chloroquine. Two RF-amide peptides, CNF-Tx1 and CNF-Tx2, were identified in a C. textile venom gland transcriptome. These belong to the conorfamide family of peptides which includes previously described peptides from the venoms of Conus victoriae (CNF-Vc1) and Conus spurius (CNF-Sr1 and CNF-Sr2). We show that CNF-Vc1 and CNF-Sr1 activate MrgprC11 whereas CNF-Vc1 and CNF-Tx2 activate the human MrgprX1 (hMrgprX1). The peptides CNF-Tx1 and CNF-Sr2 do not activate MrgprC11 or hMrgprX1. Intradermal injection of CNF-Vc1 and CNF-Tx2 into the cheek of a transgenic mouse expressing hMrgprX1 instead of endogenous mouse Mrgprs resulted in itch-related scratching thus demonstrating the in vivo activity of these peptides. Using truncated analogues of CNF-Vc1, we identified amino acids at positions 7-14 as important for activity against hMrgprX1. The conopeptides reported here are tools that can be used to advance our understanding of the cellular and molecular mechanism of itch mediated by Mrgprs.
Collapse
Affiliation(s)
- Samuel S Espino
- Department of Anesthesiology and Center for the Study of Itch, Washington University School of Medicine, St. Louis MO 63110, USA
| | - Samuel D Robinson
- Department of Biology, University of Utah, Salt Lake City UT 84112, USA
| | - Helena Safavi-Hemami
- Department of Biology, University of Utah, Salt Lake City UT 84112, USA; Department of Biochemistry, University of Utah, Salt Lake City UT 84112, USA
| | - Joanna Gajewiak
- Department of Biology, University of Utah, Salt Lake City UT 84112, USA
| | - Weishan Yang
- Department of Anesthesiology and Center for the Study of Itch, Washington University School of Medicine, St. Louis MO 63110, USA
| | | | - Qin Liu
- Department of Anesthesiology and Center for the Study of Itch, Washington University School of Medicine, St. Louis MO 63110, USA.
| |
Collapse
|
74
|
Matrine inhibits itching by lowering the activity of calcium channel. Sci Rep 2018; 8:11328. [PMID: 30054511 PMCID: PMC6063846 DOI: 10.1038/s41598-018-28661-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/22/2018] [Indexed: 01/26/2023] Open
Abstract
Sophorae Flavescentis Radix (SFR) is a medicinal herb with many functions that are involved in anti-inflammation, antinociception, and anticancer. SFR is also used to treat a variety of itching diseases. Matrine (MT) is one of the main constituents in SFR and also has the effect of relieving itching, but the antipruritic mechanism is still unclear. Here, we investigated the effect of MT on anti-pruritus. In acute and chronic itch models, MT significantly inhibited the scratching behavior not only in acute itching induced by histamine (His), chloroquine (CQ) and compound 48/80 with a dose-depended manner, but also in the chronic pruritus models of atopic dermatitis (AD) and acetone-ether-water (AEW) in mice. Furthermore, MT could be detected in the blood after intraperitoneal injection (i.p.) and subcutaneous injection (s.c.). Finally, electrophysiological and calcium imaging results showed that MT inhibited the excitatory synaptic transmission from dorsal root ganglion (DRG) to the dorsal horn of the spinal cord by suppressing the presynaptic N-type calcium channel. Taken together, we believe that MT is a novel drug candidate in treating pruritus diseases, especially for histamine-independent and chronic pruritus, which might be attributed to inhibition of the presynaptic N-type calcium channel.
Collapse
|
75
|
Anatomical and functional dichotomy of ocular itch and pain. Nat Med 2018; 24:1268-1276. [PMID: 29988128 PMCID: PMC6093777 DOI: 10.1038/s41591-018-0083-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
Itch and pain are refractory symptoms of many ocular conditions. Ocular itch is generated mainly in the conjunctiva, and is absent from the cornea. In contrast, most ocular pain arises from the cornea. However, the underlying mechanisms remain unknown. Using genetic axonal tracing approaches, we discovered distinct sensory innervation patterns between the conjunctiva and cornea. Further genetic and functional analyses in rodent models demonstrate that a subset of conjunctival-selective sensory fibers marked by MrgprA3 expression, rather than corneal sensory fibers, mediates ocular itch. Importantly, the actions of both histamine and non-histamine pruritogens converge onto this unique subset of conjunctiva sensory fibers, and enable them to play a key role in mediating itch associated with allergic conjunctivitis. This is distinct from skin itch in which discrete populations of sensory neurons co-operate to carry itch. Finally, we provide a proof-of-concept that selective silencing of conjunctiva itch-sensing fibers by pruritogen-mediated entry of sodium channel blocker QX-314 is a feasible therapeutic strategy to treat ocular itch in mice. Itch-sensing fibers also innervate the human conjunctiva,and allow pharmacological silence using QX-314.Our results cast new light on the neural mechanisms of ocular itch and open a new avenue for developing therapeutic strategies.
Collapse
|
76
|
Abstract
Chronic, persistent itch is a devastating symptom that causes much suffering. In recent years, there has been great progress made in understanding the molecules, cells, and circuits underlying itch sensation. Once thought to be carried by pain-sensing neurons, itch is now believed to be capable of being transmitted by dedicated sensory labeled lines. Members of the Mas-related G protein-coupled receptor (Mrgpr) family demarcate an itch-specific labeled line in the peripheral nervous system. In the spinal cord, the expression of other proteins identifies additional populations of itch-dedicated sensory neurons. However, as evidence for labeled-line coding has mounted, studies promoting alternative itch-coding strategies have emerged, complicating our understanding of the neural basis of itch. In this review, we cover the molecules, cells, and circuits related to understanding the neural basis of itch, with a focus on the role of Mrgprs in mediating itch sensation.
Collapse
Affiliation(s)
- James Meixiong
- The Solomon H. Snyder Department of Neuroscience and the Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA; ,
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience and the Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA; , .,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
77
|
Gouin O, L'Herondelle K, Buscaglia P, Le Gall-Ianotto C, Philippe R, Legoux N, Mignen O, Buhé V, Leschiera R, Sakka M, Kerfant N, Carré JL, Le Garrec R, Lefeuvre L, Lebonvallet N, Misery L. Major Role for TRPV1 and InsP3R in PAR2-Elicited Inflammatory Mediator Production in Differentiated Human Keratinocytes. J Invest Dermatol 2018; 138:1564-1572. [DOI: 10.1016/j.jid.2018.01.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 11/15/2022]
|
78
|
Voisin T, Bouvier A, Chiu IM. Neuro-immune interactions in allergic diseases: novel targets for therapeutics. Int Immunol 2018; 29:247-261. [PMID: 28814067 DOI: 10.1093/intimm/dxx040] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022] Open
Abstract
Recent studies have highlighted an emerging role for neuro-immune interactions in mediating allergic diseases. Allergies are caused by an overactive immune response to a foreign antigen. The peripheral sensory and autonomic nervous system densely innervates mucosal barrier tissues including the skin, respiratory tract and gastrointestinal (GI) tract that are exposed to allergens. It is increasingly clear that neurons actively communicate with and regulate the function of mast cells, dendritic cells, eosinophils, Th2 cells and type 2 innate lymphoid cells in allergic inflammation. Several mechanisms of cross-talk between the two systems have been uncovered, with potential anatomical specificity. Immune cells release inflammatory mediators including histamine, cytokines or neurotrophins that directly activate sensory neurons to mediate itch in the skin, cough/sneezing and bronchoconstriction in the respiratory tract and motility in the GI tract. Upon activation, these peripheral neurons release neurotransmitters and neuropeptides that directly act on immune cells to modulate their function. Somatosensory and visceral afferent neurons release neuropeptides including calcitonin gene-related peptide, substance P and vasoactive intestinal peptide, which can act on type 2 immune cells to drive allergic inflammation. Autonomic neurons release neurotransmitters including acetylcholine and noradrenaline that signal to both innate and adaptive immune cells. Neuro-immune signaling may play a central role in the physiopathology of allergic diseases including atopic dermatitis, asthma and food allergies. Therefore, getting a better understanding of these cellular and molecular neuro-immune interactions could lead to novel therapeutic approaches to treat allergic diseases.
Collapse
Affiliation(s)
- Tiphaine Voisin
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Amélie Bouvier
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
79
|
Jiang YM, Huang C, Peng Z, Han SL, Li WG, Zhu MX, Xu TL. Acidosis counteracts itch tachyphylaxis to consecutive pruritogen exposure dependent on acid-sensing ion channel 3. Mol Pain 2018; 13:1744806917721114. [PMID: 28745101 PMCID: PMC5533257 DOI: 10.1177/1744806917721114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tachyphylaxis of itch refers to a markedly reduced scratching response to consecutive exposures of a pruritogen, a process thought to protect against tissue damage by incessant scratching and to become disrupted in chronic itch. Here, we report that a strong stimulation of the Mas-related G-protein-coupled receptor C11 by its agonist, Ser-Leu-Ile-Gly-Arg-Leu-NH2 (SL-NH2) or bovine adrenal medulla 8-22 peptide, via subcutaneous injection in mice induces tachyphylaxis to the subsequent application of SL-NH2 to the same site. Notably, co-application of acid and SL-NH2 following the initial injection of the pruritogen alone counteracted itch tachyphylaxis by augmenting the scratching behaviors in wild-type but not in acid-sensing ion channel 3-null, animals. Using an activity-dependent silencing strategy, we identified that acid-sensing ion channel 3-mediated itch enhancement mainly occurred via the Mas-related G-protein-coupled receptor C11-responsive sensory neurons. Together, our results indicate that acid-sensing ion channel 3, activated by concomitant acid and certain pruritogens, constitute a novel signaling pathway that counteracts itch tachyphylaxis to successive pruritogenic stimulation, which likely contributes to chronic itch associated with tissue acidosis.
Collapse
Affiliation(s)
- Yi-Ming Jiang
- 1 Department of Anatomy and Physiology, Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Huang
- 1 Department of Anatomy and Physiology, Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Peng
- 1 Department of Anatomy and Physiology, Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shao-Ling Han
- 1 Department of Anatomy and Physiology, Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Guang Li
- 1 Department of Anatomy and Physiology, Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael Xi Zhu
- 2 Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, USA
| | - Tian-Le Xu
- 1 Department of Anatomy and Physiology, Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
80
|
Pruritus: Progress toward Pathogenesis and Treatment. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9625936. [PMID: 29850592 PMCID: PMC5925168 DOI: 10.1155/2018/9625936] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/15/2018] [Accepted: 02/11/2018] [Indexed: 02/06/2023]
Abstract
Pruritus, the most common cutaneous symptom, is widely seen in many skin complaints. It is an uncomfortable feeling on the skin and sometimes impairs patients' quality of life. At present, the specific mechanism of pruritus still remains unclear. Antihistamines, which are usually used to relieve pruritus, ineffectively work in some patients with itching. Recent evidence has suggested that, apart from histamine, many mediators and signaling pathways are involved in the pathogenesis of pruritus. Various therapeutic options for itching correspondingly have been developed. In this review, we summarize the updated pathogenesis and therapeutic strategies for pruritus.
Collapse
|
81
|
|
82
|
Abstract
Introduction Chronic itch has been drawing much attention due to its clinical significance and the complexity of its mechanisms. To facilitate the development of anti-itch strategies, it is necessary to investigate the key players in itch sensation under chronic itch conditions. Several members of the Mrgpr family were identified as itch receptors that detect cutaneous pruritogens in primary sensory neurons. However, the role of Mrgprs in chronic itch conditions has not been well described. Methods Scratching behaviors of WT and Mrgpr-clusterΔ-/- mice were examined in dry skin model and contact dermatitis model to examine the role of Mrgpr genes in mediating chronic itch sensation. Scratching behaviors of the mice were also examined in allergic itch model. Real-time PCR were performed to examine the expression level of MrgprA3 and MrgprC11 under naïve and dry skin conditions. The MrgprA3+ itch-sensing fibers were labeled by tdTomato fluorescence in Mrgpra3GFP-Cre; ROSA26tdTomato mice, and the morphology and density of those fibers in the epidermis were analyzed under dry skin condition. Results We showed that deleting a cluster of Mrgpr genes in mice reduced scratching behavior severely under two chronic itch conditions, namely dry skin and contact dermatitis, and the allergic itch condition. Moreover, the gene expressions of itch receptors MrgprA3 and MrgprC11 in dorsal root ganglia (DRG) were upregulated significantly under dry skin condition. Consistently, the percentage of MrgprA3+ itch-sensing neurons was increased as well. We also observed hyperinnervation of MrgprA3+ itch-sensing fibers in the epidermis of the skin under dry skin condition. Discussion We demonstrate that Mrgprs play important roles in mediating chronic itch and allergic itch. These findings enrich our knowledge of itch mechanism and may lead to the development of novel therapeutic approach to combat itch.
Collapse
|
83
|
Astrocytes in the spinal dorsal horn and chronic itch. Neurosci Res 2017; 126:9-14. [PMID: 28870604 DOI: 10.1016/j.neures.2017.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 11/22/2022]
Abstract
Chronic itch is a hallmark symptom of inflammatory skin conditions, such as atopic dermatitis. Existing treatment for chronic itch is largely ineffective. Despite recent progress in our understanding of the neuronal basis for itch sensation in the peripheral and central nervous systems, the mechanisms underlying how itch turns into a pathological chronic state remain poorly understood. Recent studies have uncovered the causal role of astrocytes in the spinal dorsal horn using mouse models of chronic itch, including atopic dermatitis. Understanding the key roles of astrocytes may provide us with exciting insights into the mechanisms for the chronicity of itch sensation and clues to develop novel therapeutic agents for treating chronic itch.
Collapse
|
84
|
Sun S, Xu Q, Guo C, Guan Y, Liu Q, Dong X. Leaky Gate Model: Intensity-Dependent Coding of Pain and Itch in the Spinal Cord. Neuron 2017; 93:840-853.e5. [PMID: 28231466 DOI: 10.1016/j.neuron.2017.01.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/06/2016] [Accepted: 01/13/2017] [Indexed: 01/01/2023]
Abstract
Coding of itch versus pain has been heatedly debated for decades. However, the current coding theories (labeled line, intensity, and selectivity theory) cannot accommodate all experimental observations. Here we identified a subset of spinal interneurons, labeled by gastrin-releasing peptide (Grp), that receive direct synaptic input from both pain and itch primary sensory neurons. When activated, these Grp+ neurons generated rarely seen, simultaneous robust pain and itch responses that were intensity dependent. Accordingly, we propose a "leaky gate" model in which Grp+ neurons transmit both itch and weak pain signals; however, upon strong painful stimuli, the recruitment of endogenous opioids works to close this gate, reducing overwhelming pain generated by parallel pathways. Consistent with our model, loss of these Grp+ neurons increased pain responses while itch was decreased. Our new model serves as an example of non-monotonic coding in the spinal cord and better explains observations in human psychophysical studies.
Collapse
Affiliation(s)
- Shuohao Sun
- The Solomon H. Snyder Department of Neuroscience and Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qian Xu
- The Solomon H. Snyder Department of Neuroscience and Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Changxiong Guo
- Department of Anesthesiology and the Center for the Study of Itch, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qin Liu
- Department of Anesthesiology and the Center for the Study of Itch, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience and Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
85
|
Liu BW, Li ZX, He ZG, Liu C, Xiong J, Xiang HB. Altered expression of target genes of spinal cord in different itch models compared with capsaicin assessed by RT-qPCR validation. Oncotarget 2017; 8:74423-74433. [PMID: 29088797 PMCID: PMC5650352 DOI: 10.18632/oncotarget.20148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 05/23/2017] [Indexed: 11/25/2022] Open
Abstract
Spinal cord plays a central role in the development and progression of pathogenesis of obstinate pruritus. In the current study, four groups of adult male C57Bl/6 mice were investigated; one group treated with saline, while the other groups intradermally injected with compound 48/80, histamine, α-Me-5-HT and capsaicin (algogenic substance), respectively. The intradermal microinjection of pruritic and algogenic compound resulted in a dramatic increase in the itch/algogenic behavior. Analysis of the microarray data showed that 15 genes in spinal cord (C5-C8) were differentially expressed between control group and 48/80 group, in which 9 genes were up-regulated and 6 genes were down-regulated. Furthermore, the results of RT-qPCR validation studies in C5-C8 spinal cord revealed that the 9 mRNA (Sgk1, Bag4, Fos, Ehd2, Edn3, Wdfy, Corin, 4921511E18Rik and 4930423020Rik) showed very different patterns for these different drugs, especially when comparing α-Me-5-HT and capsaicin. In three itch models, Fos and Ehd2 were up-regulated whereas Corin, 4921511E18Rik and 4930423020Rik were down-regulated. Furthermore, Corin and 4930423020Rik were down-regulated in itch model group compared to capsaicin group. Thus the application of microarray technique, coupled with RT-qPCR validation, further explain the mechanism behind itching evoked by pruritic compounds. It can contribute to our understanding of pharmacological methods for prevention or treatment of obstinate pruritus.
Collapse
Affiliation(s)
- Bao-Wen Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Gang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiong
- Hepatobiliary Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
86
|
Reddy VB, Lerner EA. Activation of mas-related G-protein-coupled receptors by the house dust mite cysteine protease Der p1 provides a new mechanism linking allergy and inflammation. J Biol Chem 2017; 292:17399-17406. [PMID: 28768771 DOI: 10.1074/jbc.m117.787887] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/24/2017] [Indexed: 11/06/2022] Open
Abstract
Cysteine and serine proteases function via protease-activated and mas-related G-protein-coupled receptors (Mrgprs) to contribute to allergy and inflammation. Der p1 is a cysteine protease and major allergen from the house dust mite and is associated with allergic rhinitis and allergic asthma. Der p1 activates protease-activated receptor 2 and induces the release of the pro-inflammatory cytokine IL-6 from cells. However, the possibility that Der p1 acts on Mrgprs has not been considered. We report here that ratiometric calcium imaging reveals that Der p1 activates the human receptor MRGPRX1 and the mouse homolog MrgprC11, implicated previously in itch. Der p1 cleavage of N-terminal receptor peptides followed by site-directed mutagenesis of the cleavage sites links receptor activation to specific amino acid residues. Der p1 also induced the release of IL-6 from heterologous cells expressing MRGPRX1. In summary, activation of Mrgprs by the allergen Der p1 may contribute to inflammation.
Collapse
Affiliation(s)
- Vemuri B Reddy
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Ethan A Lerner
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| |
Collapse
|
87
|
Azimi E, Reddy VB, Pereira PJS, Talbot S, Woolf CJ, Lerner EA. Substance P activates Mas-related G protein-coupled receptors to induce itch. J Allergy Clin Immunol 2017; 140:447-453.e3. [PMID: 28219706 PMCID: PMC5546940 DOI: 10.1016/j.jaci.2016.12.980] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/28/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Substance P (SP) is linked to itch and inflammation through activation of receptors on mast cells and sensory neurons. There is increasing evidence that SP functions through Mas-related G protein-coupled receptors (Mrgprs) in addition to its conventional receptor, neurokinin-1. OBJECTIVE Because Mrgprs mediate some aspects of inflammation that had been considered mediated by neurokinin-1 receptor (NK-1R), we sought to determine whether itch induced by SP can also be mediated by Mrgprs. METHODS Genetic and pharmacologic approaches were used to evaluate the contribution of Mrgprs to SP-induced scratching behavior and activation of cultured dorsal root ganglion neurons from mice. RESULTS SP-induced scratching behavior and activation of cultured dorsal root ganglion neurons was dependent on Mrgprs rather than NK-1R. CONCLUSION We deduce that SP activates MrgprA1 on sensory neurons rather than NK-1R to induce itch.
Collapse
Affiliation(s)
- Ehsan Azimi
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Mass
| | - Vemuri B Reddy
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Mass
| | - Paula Juliana Seadi Pereira
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Mass; PUCRS, Programa de Pós-graduação em Biologia Celular e Molecular, Porto Alegre, Brazil
| | - Sebastien Talbot
- FM Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass
| | - Clifford J Woolf
- FM Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass
| | - Ethan A Lerner
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Mass.
| |
Collapse
|
88
|
Huang C, Lu F, Li P, Cao C, Liu Z. Tlx3 Function in the Dorsal Root Ganglion is Pivotal to Itch and Pain Sensations. Front Mol Neurosci 2017; 10:205. [PMID: 28701920 PMCID: PMC5487456 DOI: 10.3389/fnmol.2017.00205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022] Open
Abstract
Itch, a sensation eliciting a desire to scratch, is distinct from but not completely independent of pain. Inspiring achievements have been made in the characterization of itch-related receptors and neurotransmitters, but the molecular mechanisms controlling the development of pruriceptors remain poorly understood. Here, our RNAseq and in situ hybridization data show that the transcription factor Tlx3 is required for the expression of a majority of itch-related molecules in the dorsal root ganglion (DRG). As a result, Tlx3F/F;Nav1.8-cre mice exhibit significantly attenuated acute and dry skin-induced chronic itch. Furthermore, our study indicates that TRPV1 plays a pivotal role in the chronic itch evoked by dry skin and allergic contact dermatitis (ACD). The mutants also display impaired response to cold and inflammatory pain and elevated response to capsaicin, whereas the responses to acute mechanical, thermal stimuli and neuropathic pain remain normal. In Tlx3F/F;Nav1.8-cre mice, TRPV1 is derepressed and expands predominantly into IB4+ non-peptidergic (NP) neurons. Collectively, our data reveal a molecular mechanism in regulating the development of pruriceptors and controlling itch and pain sensations.
Collapse
Affiliation(s)
| | - Fumin Lu
- School of Life Sciences, Anhui Agricultural UniversityHefei, China
| | - Ping Li
- Beijing Institute of BiotechnologyBeijing, China
| | - Cheng Cao
- Beijing Institute of BiotechnologyBeijing, China
| | - Zijing Liu
- Beijing Institute of BiotechnologyBeijing, China
| |
Collapse
|
89
|
A Combined Water Extract of Frankincense and Myrrh Alleviates Neuropathic Pain in Mice via Modulation of TRPV1. Neural Plast 2017; 2017:3710821. [PMID: 28740739 PMCID: PMC5504955 DOI: 10.1155/2017/3710821] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/24/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
Frankincense and myrrh are widely used in clinics as a pair of herbs to obtain a synergistic effect for relieving pain. To illuminate the analgesia mechanism of frankincense and myrrh, we assessed its effect in a neuropathic pain mouse model. Transient receptor potential vanilloid 1 (TRPV1) plays a crucial role in neuropathic pain and influences the plasticity of neuronal connectivity. We hypothesized that the water extraction of frankincense and myrrh (WFM) exerted its analgesia effect by modulating the neuronal function of TRPV1. In our study, WFM was verified by UHPLC-TQ/MS assay. In vivo study showed that nociceptive response in mouse by heat and capsaicin induced were relieved by WFM treatment. Furthermore, thermal hypersensitivity and mechanical allodynia were also alleviated by WFM treatment in a chronic constriction injury (CCI) mouse model. CCI resulted in increased TRPV1 expression at both the mRNA and protein levels in predominantly small-to-medium neurons. However, after WFM treatment, TRPV1 expression was reverted in real-time PCR, Western blot, and immunofluorescence experiments. Calcium response to capsaicin was also decreased in cultured DRG neurons from CCI model mouse after WFM treatment. In conclusion, WFM alleviated CCI-induced mechanical allodynia and thermal hypersensitivity via modulating TRPV1.
Collapse
|
90
|
Abstract
Itch is a protective sensation producing a desire to scratch. Pathologic itch can be a chronic symptom of illnesses such as uremia, cholestatic liver disease, neuropathies and dermatitis, however current therapeutic options are limited. Many types of cell surface receptors, including those present on cells in the skin, on sensory neurons and on neurons in the spinal cord, have been implicated in itch signaling. The role of G protein signaling in the regulation of pruriception is poorly understood. We identify here 2 G protein signaling components whose mutation impairs itch sensation. R7bp (a.k.a. Rgs7bp) is a palmitoylated membrane anchoring protein expressed in neurons that facilitates Gαi/o -directed GTPase activating protein activity mediated by the Gβ5/R7-RGS complex. Knockout of R7bp diminishes scratching responses to multiple cutaneously applied and intrathecally-administered pruritogens in mice. Knock-in to mice of a GTPase activating protein-insensitive mutant of Gαo (Gnao1 G184S/+) produces a similar pruriceptive phenotype. The pruriceptive defect in R7bp knockout mice was rescued in double knockout mice also lacking Oprk1, encoding the G protein-coupled kappa-opioid receptor whose activation is known to inhibit itch sensation. In a model of atopic dermatitis (eczema), R7bp knockout mice showed diminished scratching behavior and enhanced sensitivity to kappa opioid agonists. Taken together, our results indicate that R7bp is a key regulator of itch sensation and suggest the potential targeting of R7bp-dependent GTPase activating protein activity as a novel therapeutic strategy for pathological itch.
Collapse
|
91
|
Grace MS, Bonvini SJ, Belvisi MG, McIntyre P. Modulation of the TRPV4 ion channel as a therapeutic target for disease. Pharmacol Ther 2017; 177:9-22. [PMID: 28202366 DOI: 10.1016/j.pharmthera.2017.02.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transient Receptor Potential Vanilloid 4 (TRPV4) is a broadly expressed, polymodally gated ion channel that plays an important role in many physiological and pathophysiological processes. TRPV4 knockout mice and several synthetic pharmacological compounds that selectively target TRPV4 are now available, which has allowed detailed investigation in to the therapeutic potential of this ion channel. Results from animal studies suggest that TRPV4 antagonism has therapeutic potential in oedema, pain, gastrointestinal disorders, and lung diseases such as cough, bronchoconstriction, pulmonary hypertension, and acute lung injury. A lack of observed side-effects in vivo has prompted a first-in-human trial for a TRPV4 antagonist in healthy participants and stable heart failure patients. If successful, this would open up an exciting new area of research for a multitude of TRPV4-related pathologies. This review will discuss the known roles of TRPV4 in disease, and highlight the possible implications of targeting this important cation channel for therapy.
Collapse
Affiliation(s)
- Megan S Grace
- Baker Heart and Diabetes Institute, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia; Department of Physiology, School of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
| | - Sara J Bonvini
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Maria G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Peter McIntyre
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| |
Collapse
|
92
|
Lee JS, Han JS, Lee K, Bang J, Lee H. The peripheral and central mechanisms underlying itch. BMB Rep 2017; 49:474-87. [PMID: 27418284 PMCID: PMC5227140 DOI: 10.5483/bmbrep.2016.49.9.108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 12/20/2022] Open
Abstract
Itch is one of the most distressing sensations that substantially impair quality of life. It is a cardinal symptom of many skin diseases and is also caused by a variety of systemic disorders. Unfortunately, currently available itch medications are ineffective in many chronic itch conditions, and they often cause undesirable side effects. To develop novel therapeutic strategies, it is essential to identify primary afferent neurons that selectively respond to itch mediators as well as the central nervous system components that process the sensation of itch and initiate behavioral responses. This review summarizes recent progress in the study of itch, focusing on itch-selective receptors, signaling molecules, neuronal pathways from the primary sensory neurons to the brain, and potential decoding mechanisms based on which itch is distinguished from pain. [BMB Reports 2016; 49(9): 474-487]
Collapse
Affiliation(s)
- Jae Seung Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | | | - Kyeongho Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Juwon Bang
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Hyosang Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| |
Collapse
|
93
|
Coavoy-Sánchez SA, Rodrigues L, Teixeira SA, Soares AG, Torregrossa R, Wood ME, Whiteman M, Costa SKP, Muscará MN. Hydrogen sulfide donors alleviate itch secondary to the activation of type-2 protease activated receptors (PAR-2) in mice. Pharmacol Res 2016; 113:686-694. [PMID: 27720932 DOI: 10.1016/j.phrs.2016.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 11/16/2022]
Abstract
Hydrogen sulfide (H2S) has been highlighted as an endogenous signaling molecule and we have previously found that it can inhibit histamine-mediated itching. Pruritus is the most common symptom of cutaneous diseases and anti-histamines are the usual treatment; however, anti-histamine-resistant pruritus is common in some clinical settings. In this way, the involvement of mediators other than histamine in the context of pruritus requires new therapeutic targets. Considering that the activation of proteinase-activated receptor 2 (PAR-2) is involved in pruritus both in rodents and humans, in this study we investigated the effect of H2S donors on the acute scratching behavior mediated by PAR-2 activation in mice, as well as some of the possible pharmacological mechanisms involved. The intradermal injection of the PAR-2 peptide agonist SLIGRL-NH2 (8-80nmol) caused a dose-dependent scratching that was unaffected by intraperitoneal pre-treatment with the histamine H1 antagonist pyrilamine (30mg/kg). Co-injection of SLIGRL-NH2 (40nmol) with either the slow-release H2S donor GYY4137 (1 and 3nmol) or the spontaneous donor NaHS (1 and 0.3nmol) significantly reduced pruritus. Co-treatment with the KATP channel blocker glibenclamide (200nmol) or the nitric oxide (NO) donor sodium nitroprusside (10nmol) abolished the antipruritic effects of NaHS; however, the specific soluble guanylyl cyclase inhibitor ODQ (30μg) had no significant effects. The transient receptor potential ankyrin type 1 (TRPA1) antagonist HC-030031 (20μg) significantly reduced SLIGRL-NH2-induced pruritus; however pruritus induced by the TRPA1 agonist AITC (1000nmol) was unaffected by NaHS. Based on these data, we conclude that pruritus secondary to PAR-2 activation can be reduced by H2S, which acts through KATP channel opening and involves NO in a cyclic guanosine monophosphate (cGMP)-independent manner. Furthermore, TRPA1 receptors mediate the pruritus induced by activation of PAR-2, but H2S does not interfere with this pathway. These results provide additional support for the development of new therapeutical alternatives, mainly intended for treatment of pruritus in patients unresponsive to anti-histamines.
Collapse
Affiliation(s)
- S A Coavoy-Sánchez
- Dept. of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-900, SP, Brazil
| | - L Rodrigues
- Dept. of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-900, SP, Brazil
| | - S A Teixeira
- Dept. of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-900, SP, Brazil
| | - A G Soares
- Dept. of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-900, SP, Brazil
| | - R Torregrossa
- Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, UK; University of Exeter Medical School, Exeter, UK
| | - M E Wood
- University of Exeter Medical School, Exeter, UK
| | - M Whiteman
- University of Exeter Medical School, Exeter, UK
| | - S K P Costa
- Dept. of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-900, SP, Brazil
| | - M N Muscará
- Dept. of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-900, SP, Brazil.
| |
Collapse
|
94
|
Azimi E, Reddy VB, Shade KTC, Anthony RM, Talbot S, Pereira PJS, Lerner EA. Dual action of neurokinin-1 antagonists on Mas-related GPCRs. JCI Insight 2016; 1:e89362. [PMID: 27734033 DOI: 10.1172/jci.insight.89362] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The challenge of translating findings from animal models to the clinic is well known. An example of this challenge is the striking effectiveness of neurokinin-1 receptor (NK-1R) antagonists in mouse models of inflammation coupled with their equally striking failure in clinical investigations in humans. Here, we provide an explanation for this dichotomy: Mas-related GPCRs (Mrgprs) mediate some aspects of inflammation that had been considered mediated by NK-1R. In support of this explanation, we show that conventional NK-1R antagonists have off-target activity on the mouse receptor MrgprB2 but not on the homologous human receptor MRGPRX2. An unrelated tripeptide NK-1R antagonist has dual activity on MRGPRX2. This tripeptide both suppresses itch in mice and inhibits degranulation from the LAD-2 human mast cell line elicited by basic secretagogue activation of MRGPRX2. Antagonists of Mrgprs may fill the void left by the failure of NK-1R antagonists.
Collapse
Affiliation(s)
- Ehsan Azimi
- Cutaneous Biology Research Center, Department of Dermatology, and
| | - Vemuri B Reddy
- Cutaneous Biology Research Center, Department of Dermatology, and
| | - Kai-Ting C Shade
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Robert M Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Sebastien Talbot
- FM Kirby Neurobiology Center, Children's Hospital Boston, Boston, Massachusetts, USA
| | - Paula Juliana Seadi Pereira
- Cutaneous Biology Research Center, Department of Dermatology, and.,Programa de Pós-graduação em Biologia Celular e Molecular, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ethan A Lerner
- Cutaneous Biology Research Center, Department of Dermatology, and
| |
Collapse
|
95
|
Valtcheva MV, Copits BA, Davidson S, Sheahan TD, Pullen MY, McCall JG, Dikranian K, Gereau RW. Surgical extraction of human dorsal root ganglia from organ donors and preparation of primary sensory neuron cultures. Nat Protoc 2016; 11:1877-88. [PMID: 27606776 PMCID: PMC5082842 DOI: 10.1038/nprot.2016.111] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Primary cultures of rodent sensory neurons are widely used to investigate the cellular and molecular mechanisms involved in pain, itch, nerve injury and regeneration. However, translation of these preclinical findings may be greatly improved by direct validation in human tissues. We have developed an approach to extract and culture human sensory neurons in collaboration with a local organ procurement organization (OPO). Here we describe the surgical procedure for extraction of human dorsal root ganglia (hDRG) and the necessary modifications to existing culture techniques to prepare viable adult human sensory neurons for functional studies. Dissociated sensory neurons can be maintained in culture for >10 d, and they are amenable to electrophysiological recording, calcium imaging and viral gene transfer. The entire process of extraction and culturing can be completed in <7 h, and it can be performed by trained graduate students. This approach can be applied at any institution with access to organ donors consenting to tissue donation for research, and is an invaluable resource for improving translational research.
Collapse
Affiliation(s)
- Manouela V. Valtcheva
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, 660 South Euclid Ave, Campus Box 8054, St. Louis, MO 63110
- Medical Scientist Training Program, Washington University in St. Louis, 660 South Euclid Ave, St. Louis, MO 63110
- Neurosciences Program, Washington University in St. Louis, 660 South Euclid Ave, St. Louis, MO 63110
| | - Bryan A. Copits
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, 660 South Euclid Ave, Campus Box 8054, St. Louis, MO 63110
| | - Steve Davidson
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, 660 South Euclid Ave, Campus Box 8054, St. Louis, MO 63110
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Tayler D. Sheahan
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, 660 South Euclid Ave, Campus Box 8054, St. Louis, MO 63110
- Neurosciences Program, Washington University in St. Louis, 660 South Euclid Ave, St. Louis, MO 63110
| | - Melanie Y. Pullen
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, 660 South Euclid Ave, Campus Box 8054, St. Louis, MO 63110
- Developmental, Regenerative, and Stem Cell Biology Program, Washington University in St. Louis, 660 South Euclid Ave, St. Louis, MO 63110
| | - Jordan G. McCall
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, 660 South Euclid Ave, Campus Box 8054, St. Louis, MO 63110
| | - Krikor Dikranian
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Ave, St. Louis, Missouri, 63110
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, 660 South Euclid Ave, Campus Box 8054, St. Louis, MO 63110
| |
Collapse
|
96
|
Ramachandran R, Altier C, Oikonomopoulou K, Hollenberg MD. Proteinases, Their Extracellular Targets, and Inflammatory Signaling. Pharmacol Rev 2016; 68:1110-1142. [PMID: 27677721 DOI: 10.1124/pr.115.010991] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Given that over 2% of the human genome codes for proteolytic enzymes and their inhibitors, it is not surprising that proteinases serve many physiologic-pathophysiological roles. In this context, we provide an overview of proteolytic mechanisms regulating inflammation, with a focus on cell signaling stimulated by the generation of inflammatory peptides; activation of the proteinase-activated receptor (PAR) family of G protein-coupled receptors (GPCR), with a mechanism in common with adhesion-triggered GPCRs (ADGRs); and by proteolytic ion channel regulation. These mechanisms are considered in the much wider context that proteolytic mechanisms serve, including the processing of growth factors and their receptors, the regulation of matrix-integrin signaling, and the generation and release of membrane-tethered receptor ligands. These signaling mechanisms are relevant for inflammatory, neurodegenerative, and cardiovascular diseases as well as for cancer. We propose that the inflammation-triggering proteinases and their proteolytically generated substrates represent attractive therapeutic targets and we discuss appropriate targeting strategies.
Collapse
Affiliation(s)
- Rithwik Ramachandran
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| | - Christophe Altier
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| | - Katerina Oikonomopoulou
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| | - Morley D Hollenberg
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| |
Collapse
|
97
|
Sanders KM, Nattkemper LA, Yosipovitch G. Advances in understanding itching and scratching: a new era of targeted treatments. F1000Res 2016; 5. [PMID: 27610225 PMCID: PMC4995681 DOI: 10.12688/f1000research.8659.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2016] [Indexed: 01/14/2023] Open
Abstract
Chronic itch is a significant health burden with few effective treatments. As such, itch researchers seek to understand the mechanisms behind itch and to find potential targets for treatment. The field of itch research is dynamic, and many advances have been made so far this decade. In particular, major steps forward include the identification of new peripheral and central itch mediators and modulators, the discovery of greater roles for immune cells and glia in itch transmission, and a focus on the brain processing of itching and scratching. Finally, several new therapeutic interventions for itch have shown success in clinical trials.
Collapse
Affiliation(s)
- Kristen M Sanders
- Department of Dermatology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Leigh A Nattkemper
- Department of Dermatology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Gil Yosipovitch
- Department of Dermatology and Itch Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
98
|
Chang AY, Mann TS, McFawn PK, Han L, Dong X, Henry PJ. Investigating the role of MRGPRC11 and capsaicin-sensitive afferent nerves in the anti-influenza effects exerted by SLIGRL-amide in murine airways. Respir Res 2016; 17:62. [PMID: 27215903 PMCID: PMC4877944 DOI: 10.1186/s12931-016-0378-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/15/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The hexapeptide SLIGRL-amide activates protease-activated receptor-2 (PAR-2) and mas-related G protein-coupled receptor C11 (MRGPRC11), both of which are known to be expressed on populations of sensory nerves. SLIGRL-amide has recently been reported to inhibit influenza A (IAV) infection in mice independently of PAR-2 activation, however the explicit roles of MRGPRC11 and sensory nerves in this process are unknown. Thus, the principal aim of this study was to determine whether SLIGRL-amide-induced inhibition of influenza infection is mediated by MRGPRC11 and/or by capsaicin-sensitive sensory nerves. METHODS The inhibitory effect of SLIGRL-amide on IAV infection observed in control mice in vivo was compared to effects produced in mice that did not express MRGPRC11 (mrgpr-cluster∆ (-/-) mice) or had impaired sensory nerve function (induced by chronic pre-treatment with capsaicin). Complementary mechanistic studies using both in vivo and ex vivo approaches investigated whether the anti-IAV activity of SLIGRL-amide was (1) mimicked by either activators of MRGPRC11 (BAM8-22) or by activators (acute capsaicin) or selected mediators (substance P, CGRP) of sensory nerve function, or (2) suppressed by inhibitors of sensory nerve function (e.g. NK1 receptor antagonists). RESULTS SLIGRL-amide and BAM8-22 dose-dependently inhibited IAV infection in mrgpr-cluster∆ (-/-) mice that do not express MRGPRC11. In addition, SLIGRL-amide and BAM8-22 each inhibited IAV infection in capsaicin-pre-treated mice that lack functional sensory nerves. Furthermore, the anti-IAV activity of SLIGRL-amide was not mimicked by the sensory neuropeptides substance P or CGRP, nor blocked by either NK1 (L-703,606, RP67580) and CGRP receptor (CGRP8-37) antagonists. Direct stimulation of airway sensory nerves through acute exposure to the TRPV1 activator capsaicin also failed to mimic SLIGRL-amide-induced inhibition of IAV infectivity. The anti-IAV activity of SLIGRL-amide was mimicked by the purinoceptor agonist ATP, a direct activator of mucus secretion from airway epithelial cells. Additionally, both SLIGRL-amide and ATP stimulated mucus secretion and inhibited IAV infectivity in mouse isolated tracheal segments. CONCLUSIONS SLIGRL-amide inhibits IAV infection independently of MRGPRC11 and independently of capsaicin-sensitive, neuropeptide-releasing sensory nerves, and its secretory action on epithelial cells warrants further investigation.
Collapse
Affiliation(s)
- Amy Y Chang
- School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, 6009, Australia.,School of Anatomy, Physiology & Human Biology, University of Western Australia, Crawley, 6009, WA, Australia
| | - Tracy S Mann
- School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, 6009, Australia
| | - Peter K McFawn
- School of Anatomy, Physiology & Human Biology, University of Western Australia, Crawley, 6009, WA, Australia
| | - Liang Han
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xinzhong Dong
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Peter J Henry
- School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
99
|
Akiyama T, Ivanov M, Nagamine M, Davoodi A, Carstens MI, Ikoma A, Cevikbas F, Kempkes C, Buddenkotte J, Steinhoff M, Carstens E. Involvement of TRPV4 in Serotonin-Evoked Scratching. J Invest Dermatol 2016; 136:154-160. [PMID: 26763435 PMCID: PMC4731048 DOI: 10.1038/jid.2015.388] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/26/2015] [Accepted: 09/05/2015] [Indexed: 01/13/2023]
Abstract
Several thermo-sensitive TRP channels (TRPV1, -3; TRPA1) have been implicated in itch. In contrast, the role of transient receptor potential vanilloid type-4 (TRPV4) in itch is unknown. Therefore, we investigated if TRPV4, a temperature-sensitive cation channel, plays an important role in acute itch in mice. Four different pruritogens including serotonin (5-hydroxytrytamine, 5-HT), histamine, SLIGRL (PAR2/MrgprC11 agonist) and chloroquine (MrgprA3 agonist) were intradermally injected and itch-related scratching behavior was assessed. TRPV4 knockout (TRPV4KO) mice exhibited significantly fewer 5-HT-evoked scratching bouts compared to wild-type (WT) mice. Notably, no differences between TRPV4KO and WT mice were observed in the number of scratch bouts elicited by SLIGRL and histamine. Pretreatment with a TRPV4 antagonist significantly attenuated 5-HT-evoked scratching in vivo. Using calcium imaging in cultured primary murine dorsal root ganglion (DRG) neurons, the response of neurons after 5-HT application, but not other pruritogens, was significantly lower in TRPV4KO compared to WT mice. A TRPV4 antagonist significantly suppressed 5-HT-evoked responses in DRG cells from WT mice. Approximately 90% of 5-HT-sensitive DRG neurons were immunoreactive for an antibody to TRPV4, as assessed by calcium imaging. These results indicate that serotonin-induced itch is linked to TRPV4.
Collapse
Affiliation(s)
- Tasuku Akiyama
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, USA; Department of Dermatology, Department of Anatomy & Cell Biology, Temple Itch Center, Temple University, Philadelphia, Pennsylvania, USA.
| | - Margaret Ivanov
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, USA
| | - Masaki Nagamine
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, USA
| | - Auva Davoodi
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, USA
| | - Mirela I Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, USA
| | - Akihiko Ikoma
- Departments of Dermatology and Surgery, University of California, San Francisco, USA
| | - Ferda Cevikbas
- Departments of Dermatology and Surgery, University of California, San Francisco, USA
| | - Cordula Kempkes
- Departments of Dermatology and Surgery, University of California, San Francisco, USA
| | - Joerg Buddenkotte
- Departments of Dermatology and Surgery, University of California, San Francisco, USA; U Dept. of Dermatology and UCD Charles Institute for Translational Dermatology, University College Dublin, Dublin, Ireland
| | - Martin Steinhoff
- Departments of Dermatology and Surgery, University of California, San Francisco, USA; U Dept. of Dermatology and UCD Charles Institute for Translational Dermatology, University College Dublin, Dublin, Ireland.
| | - E Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, USA.
| |
Collapse
|
100
|
Inhibition of the mammalian target of rapamycin complex 1 signaling pathway reduces itch behaviour in mice. Pain 2016; 156:1519-1529. [PMID: 25906350 DOI: 10.1097/j.pain.0000000000000197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Activated mammalian target of rapamycin (P-mTOR) has been shown to maintain the sensitivity of subsets of small-diameter primary afferent A-nociceptors. Local or systemic inhibition of the mTOR complex 1 (mTORC1) pathway reduced punctate mechanical and cold sensitivity in neuropathic pain and therefore offered a new approach to chronic pain control. In this study, we have investigated the effects of the rapamycin analog temsirolimus (CCI-779) on itch. Bouts of scratching induced by the histamine-dependent pruritogenic compound 48/80 and histamine-independent pruritogens, chloroquine and SLIGRL-NH2, injected intradermally were significantly reduced by local (intradermal) or systemic (intraperitoneal, i.p.) pretreatment with CCI-779. We also investigated the action of metformin, a drug taken to control type 2 diabetes and recently shown to inhibit mTORC1 in vivo. Although the response to nonhistaminergic stimuli was reduced at all of the time points tested, scratching to compound 48/80 was modified by metformin only when the drug was injected 24 hours before this pruritogen. We also examined the colocalization of P-mTOR with gastrin-releasing peptide, a putative marker for some itch-sensitive primary afferents, and found that P-mTOR was coexpressed in less than 5% of gastrin-releasing peptide-positive fibers in the mouse skin. Taken together, the data highlight the role that P-mTOR-positive A-fibers play in itch signaling and underline the importance of the mTORC1 pathway in the regulation of homeostatic primary afferent functions such as pain and itch. The actions of the antidiabetic drug metformin in ameliorating nonhistamine-mediated itch also suggest a new therapeutic route for the control of this category of pruritus.
Collapse
|