51
|
Mackinnon MJ. The role of immunity in mosquito-induced attenuation of malaria virulence. Malar J 2014; 13:25. [PMID: 24443873 PMCID: PMC3904012 DOI: 10.1186/1475-2875-13-25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/19/2014] [Indexed: 11/10/2022] Open
Abstract
A recent study found that mosquito-transmitted (MT) lines of rodent malaria parasites elicit a more effective immune response than non-transmitted lines maintained by serial blood passage (non-MT), thereby causing lower parasite densities in the blood and less pathology to the host. The authors attribute these changes to higher diversity in expression of antigen-encoding genes in MT cf. non-MT lines. Alternative explanations that are equally parsimonious with these new data, and results from previous studies, suggest that this conclusion may be premature.
Collapse
|
52
|
Smith JD, Rowe JA, Higgins MK, Lavstsen T. Malaria's deadly grip: cytoadhesion of Plasmodium falciparum-infected erythrocytes. Cell Microbiol 2013; 15:1976-83. [PMID: 23957661 PMCID: PMC3836831 DOI: 10.1111/cmi.12183] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/07/2013] [Accepted: 08/12/2013] [Indexed: 12/17/2022]
Abstract
Cytoadhesion of Plasmodium falciparum-infected erythrocytes to host microvasculature is a key virulence determinant. Parasite binding is mediated by a large family of clonally variant adhesion proteins, termed P. falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by var genes and expressed at the infected erythrocyte surface. Although PfEMP1 proteins have extensively diverged under opposing selection pressure to maintain ligand binding while avoiding antibody-mediated detection, recent work has revealed they can be classified into different groups based on chromosome location and domain composition. This grouping reflects functional specialization of PfEMP1 proteins for different human host and microvascular binding niches and appears to be maintained by gene recombination hierarchies. Inone extreme, a specific PfEMP1 variant is associated with placental binding and malaria during pregnancy, while other PfEMP1 subtypes appear to be specialized for infection of malaria naïve hosts. Here, we discuss recent findings on the origins and evolution of the var gene family, the structure-function of PfEMP1 proteins, and a distinct subset of PfEMP1 variants that have been associated with severe childhood malaria.
Collapse
Affiliation(s)
- Joseph D. Smith
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America, 98109
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - J. Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Matthew K. Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, University of Copenhagen and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
53
|
Cunnington AJ, Riley EM, Walther M. Stuck in a rut? Reconsidering the role of parasite sequestration in severe malaria syndromes. Trends Parasitol 2013; 29:585-92. [PMID: 24210256 PMCID: PMC3880783 DOI: 10.1016/j.pt.2013.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 09/30/2013] [Accepted: 10/07/2013] [Indexed: 12/20/2022]
Abstract
Severe malaria defines individuals at increased risk of death from their infection. Proposed pathogenic mechanisms include parasite sequestration, inflammation, and endothelial dysfunction. Severe malaria is not a single entity, manifesting with distinct syndromes such as severe anemia, severe respiratory distress or coma, each characterized by differences in epidemiology, underlying biology, and risk of death. The relative contribution of the various pathogenic mechanisms may differ between syndromes, and this is supported by accumulating evidence, which challenges sequestration as the initiating event. Here we propose that high parasite biomass is the common initiating feature, but subtle variations in the interaction between the host and parasite exist, and understanding these differences may be crucial to improve outcomes in patients with severe malaria.
Collapse
|
54
|
|
55
|
Rorick MM, Rask TS, Baskerville EB, Day KP, Pascual M. Homology blocks of Plasmodium falciparum var genes and clinically distinct forms of severe malaria in a local population. BMC Microbiol 2013; 13:244. [PMID: 24192078 PMCID: PMC3827005 DOI: 10.1186/1471-2180-13-244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/26/2013] [Indexed: 11/25/2022] Open
Abstract
Background The primary target of the human immune response to the malaria parasite Plasmodium falciparum, P. falciparum erythrocyte membrane protein 1 (PfEMP1), is encoded by the members of the hyper-diverse var gene family. The parasite exhibits antigenic variation via mutually exclusive expression (switching) of the ~60 var genes within its genome. It is thought that different variants exhibit different host endothelial binding preferences that in turn result in different manifestations of disease. Results Var sequences comprise ancient sequence fragments, termed homology blocks (HBs), that recombine at exceedingly high rates. We use HBs to define distinct var types within a local population. We then reanalyze a dataset that contains clinical and var expression data to investigate whether the HBs allow for a description of sequence diversity corresponding to biological function, such that it improves our ability to predict disease phenotype from parasite genetics. We find that even a generic set of HBs, which are defined for a small number of non-local parasites: capture the majority of local sequence diversity; improve our ability to predict disease severity from parasite genetics; and reveal a previously hypothesized yet previously unobserved parasite genetic basis for two forms of severe disease. We find that the expression rates of some HBs correlate more strongly with severe disease phenotypes than the expression rates of classic var DBLα tag types, and principal components of HB expression rate profiles further improve genotype-phenotype models. More specifically, within the large Kenyan dataset that is the focus of this study, we observe that HB expression differs significantly for severe versus mild disease, and for rosetting versus impaired consciousness associated severe disease. The analysis of a second much smaller dataset from Mali suggests that these HB-phenotype associations are consistent across geographically distant populations, since we find evidence suggesting that the same HB-phenotype associations characterize this population as well. Conclusions The distinction between rosetting versus impaired consciousness associated var genes has not been described previously, and it could have important implications for monitoring, intervention and diagnosis. Moreover, our results have the potential to illuminate the molecular mechanisms underlying the complex spectrum of severe disease phenotypes associated with malaria—an important objective given that only about 1% of P. falciparum infections result in severe disease.
Collapse
Affiliation(s)
- Mary M Rorick
- Department of Ecology and Evolutionary Biology, University of Michigan, 2019 Kraus Nat, Sci, Bldg,, 830 North University Ave, Ann Arbor 48109-1048, Michigan, USA.
| | | | | | | | | |
Collapse
|
56
|
Larremore DB, Clauset A, Buckee CO. A network approach to analyzing highly recombinant malaria parasite genes. PLoS Comput Biol 2013; 9:e1003268. [PMID: 24130474 PMCID: PMC3794903 DOI: 10.1371/journal.pcbi.1003268] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences. The human malaria parasite kills nearly 1 million people each year globally. Frequent genetic exchange between malaria parasites creates enormous genetic diversity that largely explains the lack of an effective vaccine for the disease. Traditional phylogenetic tools cannot accommodate this type of diversity, however, and rigorous analytical tools capable of making sense of gene sequences that recombine frequently are still lacking. Here, we use network techniques that have been developed by the physics and network science communities to analyze malaria parasite gene sequences, allowing us to automatically identify highly variable mosaic regions in sequence data and to derive the network of recombination events. We apply our method to seven fully-sequenced parasite genomes, and show that our method provides new insights into the complex evolutionary patterns of the parasite. Our results suggest that the structure of these sequences allows the parasite to rapidly diversify to evade immune responses while maintaining antigen structure and function.
Collapse
Affiliation(s)
- Daniel B. Larremore
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| | - Aaron Clauset
- Department of Computer Science, University of Colorado, Boulder, Colorado, United States of America
- BioFrontiers Institute, University of Colorado, Boulder, Colorado, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Caroline O. Buckee
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
57
|
Warimwe GM, Recker M, Kiragu EW, Buckee CO, Wambua J, Musyoki JN, Marsh K, Bull PC. Plasmodium falciparum var gene expression homogeneity as a marker of the host-parasite relationship under different levels of naturally acquired immunity to malaria. PLoS One 2013; 8:e70467. [PMID: 23922996 PMCID: PMC3726600 DOI: 10.1371/journal.pone.0070467] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/19/2013] [Indexed: 11/19/2022] Open
Abstract
Acquired immunity to Plasmodium falciparum infection causes a change from frequent, sometimes life-threatening, malaria in young children to asymptomatic, chronic infections in older children and adults. Little is known about how this transition occurs but antibodies to the extremely diverse PfEMP1 parasite antigens are thought to play a role. PfEMP1 is encoded by a family of 60 var genes that undergo clonal antigenic variation, potentially creating an antigenically heterogeneous infecting population of parasites within the host. Previous theoretical work suggests that antibodies to PfEMP1 may play a role in "orchestrating" their expression within infections leading to sequential, homogeneous expression of var genes, and prolonged infection chronicity. Here, using a cloning and sequencing approach we compare the var expression homogeneity (VEH) between isolates from children with asymptomatic and clinical infections. We show that asymptomatic infections have higher VEH than clinical infections and a broader host antibody response. We discuss this in relation to the potential role of host antibodies in promoting chronicity of infection and parasite survival through the low transmission season.
Collapse
Affiliation(s)
- George M. Warimwe
- Pathogen, Vector and Human Biology Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Mario Recker
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Esther W. Kiragu
- Pathogen, Vector and Human Biology Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Caroline O. Buckee
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Juliana Wambua
- Pathogen, Vector and Human Biology Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Jennifer N. Musyoki
- Pathogen, Vector and Human Biology Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kevin Marsh
- Pathogen, Vector and Human Biology Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter C. Bull
- Pathogen, Vector and Human Biology Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
58
|
Avril M, Brazier AJ, Melcher M, Sampath S, Smith JD. DC8 and DC13 var genes associated with severe malaria bind avidly to diverse endothelial cells. PLoS Pathog 2013; 9:e1003430. [PMID: 23825944 PMCID: PMC3694856 DOI: 10.1371/journal.ppat.1003430] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/30/2013] [Indexed: 11/25/2022] Open
Abstract
During blood stage infection, Plasmodium falciparum infected erythrocytes (IE) bind to host blood vessels. This virulence determinant enables parasites to evade spleen-dependent killing mechanisms, but paradoxically in some cases may reduce parasite fitness by killing the host. Adhesion of infected erythrocytes is mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1), a family of polymorphic adhesion proteins encoded by var genes. Whereas cerebral binding and severe malaria are associated with parasites expressing DC8 and DC13 var genes, relatively little is known about the non-brain endothelial selection on severe malaria adhesive types. In this study, we selected P. falciparum-IEs on diverse endothelial cell types and demonstrate that DC8 and DC13 var genes were consistently among the major var transcripts selected on non-brain endothelial cells (lung, heart, bone marrow). To investigate the molecular basis for this avid endothelial binding activity, recombinant proteins were expressed from the predominant upregulated DC8 transcript, IT4var19. In-depth binding comparisons revealed that multiple extracellular domains from this protein bound brain and non-brain endothelial cells, and individual domains largely did not discriminate between different endothelial cell types. Additionally, we found that recombinant DC8 and DC13 CIDR1 domains exhibited a widespread endothelial binding activity and could compete for DC8-IE binding to brain endothelial cells, suggesting they may bind the same host receptor. Our findings provide new insights into the interaction of severe malaria adhesive types and host blood vessels and support the hypothesis that parasites causing severe malaria express PfEMP1 variants with a superior ability to adhere to diverse endothelial cell types, and may therefore endow these parasites with a growth and transmission advantage.
Collapse
Affiliation(s)
- Marion Avril
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Andrew J. Brazier
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Martin Melcher
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Sowmya Sampath
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Joseph D. Smith
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
59
|
Cunnington AJ, Bretscher MT, Nogaro SI, Riley EM, Walther M. Comparison of parasite sequestration in uncomplicated and severe childhood Plasmodium falciparum malaria. J Infect 2013; 67:220-30. [PMID: 23623771 PMCID: PMC3744804 DOI: 10.1016/j.jinf.2013.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/13/2013] [Accepted: 04/15/2013] [Indexed: 12/31/2022]
Abstract
Objectives To determine whether sequestration of parasitized red blood cells differs between children with uncomplicated and severe Plasmodium falciparum malaria. Methods We quantified circulating-, total- and sequestered-parasite biomass, using a mathematical model based on plasma concentration of P. falciparum histidine rich protein 2, in Gambian children with severe (n = 127) and uncomplicated (n = 169) malaria. Results Circulating- and total-, but not sequestered-, parasite biomass estimates were significantly greater in children with severe malaria than in those with uncomplicated malaria. Sequestered biomass estimates in children with hyperlactataemia or prostration were similar to those in uncomplicated malaria, whereas sequestered biomass was higher in patients with severe anaemia, and showed a trend to higher values in cerebral malaria and fatal cases. Blood lactate concentration correlated with circulating- and total-, but not sequestered parasite biomass. These findings were robust after controlling for age, prior antimalarial treatment and clonality of infection, and over a realistic range of variation in model parameters. Conclusion Extensive sequestration is not a uniform requirement for severe paediatric malaria. The pathophysiology of hyperlactataemia and prostration appears to be unrelated to sequestered parasite biomass. Different mechanisms may underlie different severe malaria syndromes, and different therapeutic strategies may be required to improve survival.
Collapse
Affiliation(s)
- Aubrey J Cunnington
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | | | | | | | |
Collapse
|
60
|
Artzy-Randrup Y, Rorick MM, Day K, Chen D, Dobson AP, Pascual M. Population structuring of multi-copy, antigen-encoding genes in Plasmodium falciparum. eLife 2012; 1:e00093. [PMID: 23251784 PMCID: PMC3524794 DOI: 10.7554/elife.00093] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/04/2012] [Indexed: 11/21/2022] Open
Abstract
The coexistence of multiple independently circulating strains in pathogen populations that undergo sexual recombination is a central question of epidemiology with profound implications for control. An agent-based model is developed that extends earlier ‘strain theory’ by addressing the var gene family of Plasmodium falciparum. The model explicitly considers the extensive diversity of multi-copy genes that undergo antigenic variation via sequential, mutually exclusive expression. It tracks the dynamics of all unique var repertoires in a population of hosts, and shows that even under high levels of sexual recombination, strain competition mediated through cross-immunity structures the parasite population into a subset of coexisting dominant repertoires of var genes whose degree of antigenic overlap depends on transmission intensity. Empirical comparison of patterns of genetic variation at antigenic and neutral sites supports this role for immune selection in structuring parasite diversity. DOI:http://dx.doi.org/10.7554/eLife.00093.001 Malaria is an infectious disease that is estimated to kill more than half a million people every year, mostly young children in Africa. It is spread by mosquitos that are infected with Plasmodium parasites that attack red blood cells in the human body. Plasmodium falciparum, the species that is responsible for most of these deaths, causes malaria by entering red blood cells and releasing antigens that travel to the surface of the cells, where they change the adhesion properties. This causes the infected red blood cells to accumulate in small blood vessels, surface capillaries or the brain, which can have severe consequences for the person infected. P. falciparum is particularly dangerous because of its ability to vary the antigens displayed on the cell surface: this process, known as antigenic variation, helps to maintain infections for extended periods of time by allowing the antigens to stay one step ahead of the immune system (a process known as immune escape). The origins of antigenic variation lie in the fact that each P. falciparum genome has a repertoire of between 50 and 60 var genes that code for the variability of a major antigen that is responsible for immune escape in malaria. Molecular sequencing has shown that local parasite populations contain thousands of different types of var genes: hence, meiotic recombination in the mosquito can create a vast number of combinations of var repertoires. Artzy-Randrup et al. have developed a computational model of this highly diverse and complex system to address the following question: is a local pathogen population composed of largely random and ephemeral repertoires of these genes, or is it structured into independently circulating strains? Their model goes beyond previous models by including interactions within the local host population that arise as a result of indirect competition between different strains of the pathogen for available hosts: this competition is influenced by the history of infection and, therefore, by the patterns of immunity within the host population. Previous models included within-host processes but not these higher, local population-level interactions. The model simulates the dynamics of all the unique combinations of var genes in a population of hosts, and shows that even with high rates of reproduction, the parasite population self-organizes into a limited number of coexisting strains: the distinct var repertoires of these strains only weakly overlap, suggesting that the immune response of the host population has been partitioned into distinct niches. By investigating genetic variation at both antigenic sites and regions of the genome that do not code for antigens, Artzy-Randrup et al. suggest that immune selection—the selection imposed on var repertoires by the build up of specific immunity at the population level—plays a central role in structuring parasite diversity. The new model should lead to a better understanding of the epidemiology of Plasmodium and other pathogens that work in similar ways, including Trypanosoma brucei (sleeping sickness), Borellia burgdorferi (Lyme disease) and Giardia lamblia (gastroenteritis), and help with global efforts to eliminate malaria and other diseases. DOI:http://dx.doi.org/10.7554/eLife.00093.002
Collapse
Affiliation(s)
- Yael Artzy-Randrup
- Department of Ecology and Evolutionary Biology , Howard Hughes Medical Institute and the University of Michigan , Ann Arbor , United States
| | | | | | | | | | | |
Collapse
|
61
|
Multiple malaria mechanisms. Nature 2012. [DOI: 10.1038/484291b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|