51
|
Kostrzewa-Nowak D, Nowak R. Differential Th Cell-Related Immune Responses in Young Physically Active Men after an Endurance Effort. J Clin Med 2020; 9:E1795. [PMID: 32526904 PMCID: PMC7356896 DOI: 10.3390/jcm9061795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/15/2022] Open
Abstract
The participation of T cell subsets in the modulation of immunity in athletes triggered by maximal effort was investigated. In total, 80 physically active young men (range 16-20 years) were divided into 5 age groups: 16, 17, 18, 19, and 20 years old. They performed efficiency tests on mechanical treadmills until exhaustion. White blood cell (WBC) and lymphocyte (LYM) counts were determined, and the type 1 (Th1), type 2 (Th2) helper T cells, T helper 17 (Th17), and T regulatory (Treg) cell distribution and plasma levels of selected cytokines were analyzed. An increase in WBC and LYM counts after the test and in Th1 and Treg cells after the test and in recovery was observed. There were no changes in Th2 cells. An increase in interleukins (IL): IL-2 and IL-8 was observed. The IL-6 level was altered in all studied groups. IL-17A and interferon gamma (IFN-γ) levels were increased in all studied groups. The mechanism of differential T cell subset activation may be related to athletes' age. The novel findings of this study are the involvement of Th17 cells in post-effort immune responses and the participation of IL-6 in post-effort and the long-term biological effect of endurance effort.
Collapse
Affiliation(s)
- Dorota Kostrzewa-Nowak
- Centre for Human Structural and Functional Research, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland;
| | | |
Collapse
|
52
|
Pathophysiological Basis of Endometriosis-Linked Stress Associated with Pain and Infertility: A Conceptual Review. REPRODUCTIVE MEDICINE 2020. [DOI: 10.3390/reprodmed1010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Women with endometriosis are often under stress due to the associated pain, infertility, inflammation-related and other comorbidities including cancer. Additionally, these women are also under stress due to taboos, myths, inter-personal troubles surrounding infertility and pain of the disease as well as due to frequent incidences of missed diagnosis and treatment recurrence. Often these women suffer from frustration and loss of valuable time in the prime phase of life. All these complexities integral to endometriosis posit a hyperstructure of integrative stress physiology with overt differentials in effective allostatic state in women with disease compared with disease-free women. In the present review, we aim to critically examine various aspects of pathophysiological basis of stress surrounding endometriosis with special emphasis on pain and subfertility that are known to affect the overall health and quality of life of women with the disease and promising pathophysiological basis for its effective management.
Collapse
|
53
|
Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat Commun 2020; 11:2622. [PMID: 32457361 PMCID: PMC7251120 DOI: 10.1038/s41467-020-16439-7] [Citation(s) in RCA: 358] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 04/30/2020] [Indexed: 12/27/2022] Open
Abstract
Vascular disease remains the leading cause of death and disability, the etiology of which often involves atherosclerosis. The current treatment of atherosclerosis by pharmacotherapy has limited therapeutic efficacy. Here we report a biomimetic drug delivery system derived from macrophage membrane coated ROS-responsive nanoparticles (NPs). The macrophage membrane not only avoids the clearance of NPs from the reticuloendothelial system, but also leads NPs to the inflammatory tissues, where the ROS-responsiveness of NPs enables specific payload release. Moreover, the macrophage membrane sequesters proinflammatory cytokines to suppress local inflammation. The synergistic effects of pharmacotherapy and inflammatory cytokines sequestration from such a biomimetic drug delivery system lead to improved therapeutic efficacy in atherosclerosis. Comparison to macrophage internalized with ROS-responsive NPs, as a live-cell based drug delivery system for treatment of atherosclerosis, suggests that cell membrane coated drug delivery approach is likely more suitable for dealing with an inflammatory disease than the live-cell approach.
Collapse
|
54
|
Peritoneal Fluid Cytokines Reveal New Insights of Endometriosis Subphenotypes. Int J Mol Sci 2020; 21:ijms21103515. [PMID: 32429215 PMCID: PMC7278942 DOI: 10.3390/ijms21103515] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023] Open
Abstract
Endometriosis is a common inflammatory gynecological disorder which causes pelvic scarring, pain, and infertility, characterized by the implantation of endometrial-like lesions outside the uterus. The peritoneum, ovaries, and deep soft tissues are the commonly involved sites, and endometriotic lesions can be classified into three subphenotypes: superficial peritoneal endometriosis (PE), ovarian endometrioma (OE), and deep infiltrating endometriosis (DIE). In 132 women diagnosed laparoscopically with and without endometriosis (n = 73, 59 respectively), and stratified into PE, OE, and DIE, peritoneal fluids (PF) were characterized for 48 cytokines by using multiplex immunoassays. Partial-least-squares-regression analysis revealed distinct subphenotype cytokine signatures—a six-cytokine signature distinguishing PE from OE, a seven-cytokine signature distinguishing OE from DIE, and a six-cytokine-signature distinguishing PE from DIE—each associated with different patterns of biological processes, signaling events, and immunology. These signatures describe endometriosis better than disease stages (p < 0.0001). Pathway analysis revealed the association of ERK1 and 2, AKT, MAPK, and STAT4 linked to angiogenesis, cell proliferation, migration, and inflammation in the subphenotypes. These data shed new insights on the pathophysiology of endometriosis subphenotypes, with the potential to exploit the cytokine signatures to stratify endometriosis patients for targeted therapies and biomarker discovery.
Collapse
|
55
|
Xu H, Zhao J, Lu J, Sun X. Ovarian endometrioma infiltrating neutrophils orchestrate immunosuppressive microenvironment. J Ovarian Res 2020; 13:44. [PMID: 32334621 PMCID: PMC7183111 DOI: 10.1186/s13048-020-00642-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/31/2020] [Indexed: 01/08/2023] Open
Abstract
Background Ovarian endometrioma (EM) lesions not only have overwhelmed the amount of infiltrating immune cells but also display immunosuppressive phenotype. The close relationship between neutrophils and the pathogenesis of endometriosis has been demonstrated. The present study aims to elucidate whether or not neutrophils are involved in the regulation of immunosuppressive microenvironment in ovarian endometrioma. Methods Immunochemistry (IHC) and flow cytometry analysis (FACS) were conducted to measure CD66b expression in ovarian endometrioma samples from EM patients. The correlation between percentage of CD66b and PD1 + CD8+, TIM3 + CD8+, CTLA4 + CD8+, IFN-γ + CD8+ of CD45+ cells were analyzed. Neutrophil survival and PD-L1 expression were determined under the stimulations of ovarian endometrioma conditional supernatants (OECS). Finally, CD8+ T cell’s proliferation and IFN-γ expression were detected under co-cultured with OECS cultured neutrophils stimulated with the α-CD3/α-CD28 antibody. Results IHC and FACS results revealed correlation between the counts of neutrophils and the severity of ovarian endometrioma. The percentage of CD66b + cells was positively correlated with PD1 + CD8+, TIM3 + CD8+ and CTLA4 + CD8+ of CD45+ cells in ovarian endometrioma. OECS promoted neutrophils’ survival and enhanced PD-L1 expression. OECS cultured neutrophils inhibited proliferation and activity of autologous T cells. Conclusions Neutrophils play a crucial role in the progression of ovarian endometrioma by orchestrated the immunosuppressive microenvironment under the PD-1/PD-L1 axis.
Collapse
Affiliation(s)
- Hua Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.,Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Jing Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Jiaqi Lu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China. .,Department of Gynecology, Second People's Hospital in Kashgar, Xinjiang Uyhur Autonomous Region. No.1, Health Road, Kashgar, 844000, Xinjiang, China.
| | - Xiaoxi Sun
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China. .,Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China. .,Key laboratory of Female Reproductive endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
56
|
Precision Medicine in Childhood Asthma: Omic Studies of Treatment Response. Int J Mol Sci 2020; 21:ijms21082908. [PMID: 32326339 PMCID: PMC7215369 DOI: 10.3390/ijms21082908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Asthma is a heterogeneous and multifactorial respiratory disease with an important impact on childhood. Difficult-to-treat asthma is not uncommon among children, and it causes a high burden to the patient, caregivers, and society. This review aims to summarize the recent findings on pediatric asthma treatment response revealed by different omic approaches conducted in 2018–2019. A total of 13 studies were performed during this period to assess the role of genomics, epigenomics, transcriptomics, metabolomics, and the microbiome in the response to short-acting beta agonists, inhaled corticosteroids, and leukotriene receptor antagonists. These studies have identified novel associations of genetic markers, epigenetic modifications, metabolites, bacteria, and molecular mechanisms involved in asthma treatment response. This knowledge will allow us establishing molecular biomarkers that could be integrated with clinical information to improve the management of children with asthma.
Collapse
|
57
|
Luddi A, Marrocco C, Governini L, Semplici B, Pavone V, Luisi S, Petraglia F, Piomboni P. Expression of Matrix Metalloproteinases and Their Inhibitors in Endometrium: High Levels in Endometriotic Lesions. Int J Mol Sci 2020; 21:ijms21082840. [PMID: 32325785 PMCID: PMC7215833 DOI: 10.3390/ijms21082840] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Endometriosis is a condition defined as presence of endometrium outside of the uterine cavity. These endometrial cells are able to attach and invade the peritoneum or ovary, thus forming respectively the deep infiltrating endometriosis (DIE) and the ovarian endometrioma (OMA), the ectopic lesions feature of this pathology. Endometriotic cells display high invasiveness and share some features of malignancy with cancer cells. Indeed, the tissue remodeling underlining lesion formation is achieved by matrix metalloproteinases (MMPs) and their inhibitors. Therefore, these molecules are believed to play a key role in development and pathogenesis of endometriosis. This study investigated the molecular profile of metalloproteinases and their inhibitors in healthy (n = 15) and eutopic endometrium (n = 19) in OMA (n = 10) and DIE (n = 9); moreover, we firstly validated the most reliable housekeeping genes allowing accurate gene expression analysis in these tissues. Gene expression, Western blot, and immunofluorescence analysis of MMP2, MMP3, and MMP10 and their tissue inhibitors TIMP1 and TIMP2 demonstrated that these enzymes are finely tuned in these tissues. In OMA lesions, all the investigated MMPs and their inhibitors were significantly increased, while DIE expressed high levels of MMP3. Finally, in vitro TNFα treatment induced a significant upregulation of MMP3, MMP10, and TIMP2 in both healthy and eutopic endometrial stromal cells. This study, shedding light on MMP and TIMP expression in endometriosis, confirms that these molecules are altered both in eutopic endometrium and endometriotic lesions. Although further studies are needed, these data may help in understanding the molecular mechanisms involved in the extracellular matrix remodeling, a crucial process for the endometrial physiology.
Collapse
Affiliation(s)
- Alice Luddi
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (A.L.); (C.M.); (L.G.); (B.S.); (V.P.); (S.L.)
| | - Camilla Marrocco
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (A.L.); (C.M.); (L.G.); (B.S.); (V.P.); (S.L.)
| | - Laura Governini
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (A.L.); (C.M.); (L.G.); (B.S.); (V.P.); (S.L.)
| | - Bianca Semplici
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (A.L.); (C.M.); (L.G.); (B.S.); (V.P.); (S.L.)
| | - Valentina Pavone
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (A.L.); (C.M.); (L.G.); (B.S.); (V.P.); (S.L.)
| | - Stefano Luisi
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (A.L.); (C.M.); (L.G.); (B.S.); (V.P.); (S.L.)
| | - Felice Petraglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy;
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (A.L.); (C.M.); (L.G.); (B.S.); (V.P.); (S.L.)
- Correspondence: ; Tel.: +39-0577-586632
| |
Collapse
|
58
|
Perrotta AR, Borrelli GM, Martins CO, Kallas EG, Sanabani SS, Griffith LG, Alm EJ, Abrao MS. The Vaginal Microbiome as a Tool to Predict rASRM Stage of Disease in Endometriosis: a Pilot Study. Reprod Sci 2020; 27:1064-1073. [PMID: 32046455 PMCID: PMC7539818 DOI: 10.1007/s43032-019-00113-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022]
Abstract
Endometriosis remains a challenge to understand and to diagnose. This is an observational cross-sectional pilot study to characterize the gut and vaginal microbiome profiles among endometriosis patients and control subjects without the disease and to explore their potential use as a less-invasive diagnostic tool for endometriosis. Overall, 59 women were included, n = 35 with endometriosis and n = 24 controls. Rectal and vaginal samples were collected in two different periods of the menstrual cycle from all subjects. Gut and vaginal microbiomes from patients with different rASRM (revised American Society for Reproductive Medicine) endometriosis stages and controls were analyzed. Illumina sequencing libraries were constructed using a two-step 16S rRNA gene PCR amplicon approach. Correlations of 16S rRNA gene amplicon data with clinical metadata were conducted using a random forest-based machine-learning classification analysis. Distribution of vaginal CSTs (community state types) significantly differed between follicular and menstrual phases of the menstrual cycle (p = 0.021, Fisher's exact test). Vaginal and rectal microbiome profiles and their association to severity of endometriosis (according to rASRM stages) were evaluated. Classification models built with machine-learning methods on the microbiota composition during follicular and menstrual phases of the cycle were built, and it was possible to accurately predict rASRM stages 1-2 verses rASRM stages 3-4 endometriosis. The feature contributing the most to this prediction was an OTU (operational taxonomic unit) from the genus Anaerococcus. Gut and vaginal microbiomes of women with endometriosis have been investigated. Our findings suggest for the first time that vaginal microbiome may predict stage of disease when endometriosis is present.
Collapse
Affiliation(s)
- Allison R Perrotta
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giuliano M Borrelli
- Endometriosis Section, Gynecologic Division. Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, São Paulo, Brazil
| | - Carlo O Martins
- Endometriosis Section, Gynecologic Division. Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, São Paulo, Brazil
| | - Esper G Kallas
- Division of Clinical Immunology and Allergy. Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, São Paulo, Brazil
| | - Sabri S Sanabani
- Laboratory of Dermatology and Immunodeficiency, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Gynephathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric J Alm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT Cambridge, Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - Mauricio S Abrao
- Endometriosis Section, Gynecologic Division. Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, São Paulo, Brazil
- Gynecologic Division, BP - A Beneficencia Portuguesa de Sao Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
59
|
Affiliation(s)
- Krina T Zondervan
- From the Endometriosis Care and Research (CaRe) Centre, Nuffield Department of Women's and Reproductive Health (K.T.Z., C.M.B.), and Wellcome Centre for Human Genetics (K.T.Z.), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; the Division of Adolescent and Young Adult Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston Center for Endometriosis, Boston Children's Hospital and Brigham and Women's Hospital, and the Department of Epidemiology, Harvard T.H. Chan School of Public Health - all in Boston (S.A.M.); and the Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids (S.A.M.)
| | - Christian M Becker
- From the Endometriosis Care and Research (CaRe) Centre, Nuffield Department of Women's and Reproductive Health (K.T.Z., C.M.B.), and Wellcome Centre for Human Genetics (K.T.Z.), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; the Division of Adolescent and Young Adult Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston Center for Endometriosis, Boston Children's Hospital and Brigham and Women's Hospital, and the Department of Epidemiology, Harvard T.H. Chan School of Public Health - all in Boston (S.A.M.); and the Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids (S.A.M.)
| | - Stacey A Missmer
- From the Endometriosis Care and Research (CaRe) Centre, Nuffield Department of Women's and Reproductive Health (K.T.Z., C.M.B.), and Wellcome Centre for Human Genetics (K.T.Z.), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; the Division of Adolescent and Young Adult Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston Center for Endometriosis, Boston Children's Hospital and Brigham and Women's Hospital, and the Department of Epidemiology, Harvard T.H. Chan School of Public Health - all in Boston (S.A.M.); and the Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids (S.A.M.)
| |
Collapse
|
60
|
Miller JE, Ahn SH, Marks RM, Monsanto SP, Fazleabas AT, Koti M, Tayade C. IL-17A Modulates Peritoneal Macrophage Recruitment and M2 Polarization in Endometriosis. Front Immunol 2020; 11:108. [PMID: 32117261 PMCID: PMC7034338 DOI: 10.3389/fimmu.2020.00108] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
Endometriosis is a debilitating gynecological disease characterized by the extrauterine presence of endometrial-like tissues located on the peritoneal membrane and organs of the pelvic cavity. Notably, dysfunctional immune activation in women with endometriosis could also contribute to the development of disease. In particular, alternatively activated (M2) peritoneal macrophages are shown to aid peritoneal lesion development by promoting remodeling of extracellular matrix and neovascularization of lesions. However, the stimuli responsible for polarizing M2 macrophages in endometriosis remain elusive. Interleukin-17A (IL-17A) can induce M2 macrophage polarization in other disease models and IL-17A is elevated in the plasma and endometriotic lesions of women with endometriosis. In this study, we investigated whether IL-17A could induce macrophage recruitment and M2 polarization, while promoting endometriotic lesion growth through enhanced vascularization. By utilizing a co-culture of macrophage-like THP-1 cells with an endometriotic epithelial cell line, our in vitro results suggest that IL-17A indirectly induces M2 markers CCL17 and CD206 by interacting with endometriotic epithelial cells. Further, in a syngeneic mouse model of endometriosis, IL-17A treatment increased macrophages in the peritoneum, which were also M2 in phenotype. However, IL-17A treatment did not augment proliferation or vascularization of the lesion in the study time frame. These findings suggest that IL-17A may be a stimulus inducing the pathogenic polarization of macrophages into the M2 phenotype by first acting on the endometriotic lesion itself.
Collapse
Affiliation(s)
- Jessica E. Miller
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Soo Hyun Ahn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Ryan M. Marks
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Stephany P. Monsanto
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, MI, United States
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
61
|
Guo X, Ding S, Li T, Wang J, Yu Q, Zhu L, Xu X, Zou G, Peng Y, Zhang X. Macrophage-derived netrin-1 is critical for neuroangiogenesis in endometriosis. Int J Biol Macromol 2020; 148:226-237. [PMID: 31953174 DOI: 10.1016/j.ijbiomac.2020.01.130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Netrin-1 is an extracellular guidance cue of neuronal navigation, mediated through interaction with its main receptors, and is known to be crucial in the development of multiple chronic inflammatory diseases. However, the expression pattern and mechanism of netrin-1 in endometriosis are currently undefined. Here we report that netrin-1 expression peaked in peritoneal macrophages found in endometriosis. Netrin-1 induced angiogenesis in ovarian endometriomas through interaction with CD146 in vascular endothelial cells. Through another receptor, neogenin, netrin-1 promoted neurite growth and sensitization in endometriosis through the up-regulation of MAP4, TAU, and CGRP. Targeted knockdown of neogenin in dorsal root ganglion (DRG) nerve cells compromised its response to netrin-1 through inhibiting phosphorylation of ERK1/2. The inhibition of netrin-1 using a neutralizing antibody reduced vascular and nerve infiltration in rat endometriotic lesions. In summary, our results suggest that netrin-1 is an important factor that promotes neuroangiogenesis in endometriosis.
Collapse
Affiliation(s)
- Xinyue Guo
- The Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou 310006, Zhejiang, PR China
| | - Shaojie Ding
- The Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou 310006, Zhejiang, PR China
| | - Tiantian Li
- The Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou 310006, Zhejiang, PR China
| | - Jianzhang Wang
- The Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou 310006, Zhejiang, PR China
| | - Qin Yu
- The Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou 310006, Zhejiang, PR China
| | - Libo Zhu
- The Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou 310006, Zhejiang, PR China
| | - Xinxin Xu
- The Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou 310006, Zhejiang, PR China
| | - Gen Zou
- The Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou 310006, Zhejiang, PR China
| | - Yangying Peng
- The Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou 310006, Zhejiang, PR China
| | - Xinmei Zhang
- The Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou 310006, Zhejiang, PR China..
| |
Collapse
|
62
|
Guo M, Bafligil C, Tapmeier T, Hubbard C, Manek S, Shang C, Martinez FO, Schmidt N, Obendorf M, Hess-Stumpp H, Zollner TM, Kennedy S, Becker CM, Zondervan KT, Cribbs AP, Oppermann U. Mass cytometry analysis reveals a distinct immune environment in peritoneal fluid in endometriosis: a characterisation study. BMC Med 2020; 18:3. [PMID: 31907005 PMCID: PMC6945609 DOI: 10.1186/s12916-019-1470-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Endometriosis is a gynaecological condition characterised by immune cell infiltration and distinct inflammatory signatures found in the peritoneal cavity. In this study, we aim to characterise the immune microenvironment in samples isolated from the peritoneal cavity in patients with endometriosis. METHODS We applied mass cytometry (CyTOF), a recently developed multiparameter single-cell technique, in order to characterise and quantify the immune cells found in peritoneal fluid and peripheral blood from endometriosis and control patients. RESULTS Our results demonstrate the presence of more than 40 different distinct immune cell types within the peritoneal cavity. This suggests that there is a complex and highly heterogeneous inflammatory microenvironment underpinning the pathology of endometriosis. Stratification by clinical disease stages reveals a dynamic spectrum of cell signatures suggesting that adaptations in the inflammatory system occur due to the severity of the disease. Notably, among the inflammatory microenvironment in peritoneal fluid (PF), the presence of CD69+ T cell subsets is increased in endometriosis when compared to control patient samples. On these CD69+ cells, the expression of markers associated with T cell function are reduced in PF samples compared to blood. Comparisons between CD69+ and CD69- populations reveal distinct phenotypes across peritoneal T cell lineages. Taken together, our results suggest that both the innate and the adaptive immune system play roles in endometriosis. CONCLUSIONS This study provides a systematic characterisation of the specific immune environment in the peritoneal cavity and identifies cell immune signatures associated with endometriosis. Overall, our results provide novel insights into the specific cell phenotypes governing inflammation in patients with endometriosis. This prospective study offers a useful resource for understanding disease pathology and opportunities for identifying therapeutic targets.
Collapse
Affiliation(s)
- Manman Guo
- Botnar Research Centre, NIHR Biomedical Research Unit Oxford, Nuffield Department of Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Cemsel Bafligil
- Botnar Research Centre, NIHR Biomedical Research Unit Oxford, Nuffield Department of Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Thomas Tapmeier
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Carol Hubbard
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Sanjiv Manek
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Catherine Shang
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Fernando O Martinez
- Botnar Research Centre, NIHR Biomedical Research Unit Oxford, Nuffield Department of Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Nicole Schmidt
- Bayer AG, Drug Discovery Pharmaceuticals, Gynecological Therapies, Müllerstr. 178, Berlin, Germany
| | - Maik Obendorf
- Bayer AG, Drug Discovery Pharmaceuticals, Gynecological Therapies, Müllerstr. 178, Berlin, Germany
| | - Holger Hess-Stumpp
- Bayer AG, Drug Discovery Pharmaceuticals, Gynecological Therapies, Müllerstr. 178, Berlin, Germany
| | - Thomas M Zollner
- Bayer AG, Drug Discovery Pharmaceuticals, Gynecological Therapies, Müllerstr. 178, Berlin, Germany
| | - Stephen Kennedy
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Christian M Becker
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Krina T Zondervan
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Adam P Cribbs
- Botnar Research Centre, NIHR Biomedical Research Unit Oxford, Nuffield Department of Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Udo Oppermann
- Botnar Research Centre, NIHR Biomedical Research Unit Oxford, Nuffield Department of Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
63
|
Hogg C, Horne AW, Greaves E. Endometriosis-Associated Macrophages: Origin, Phenotype, and Function. Front Endocrinol (Lausanne) 2020; 11:7. [PMID: 32038499 PMCID: PMC6989423 DOI: 10.3389/fendo.2020.00007] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/07/2020] [Indexed: 01/03/2023] Open
Abstract
Endometriosis is a complex, heterogeneous, chronic inflammatory condition impacting ~176 million women worldwide. It is associated with chronic pelvic pain, infertility, and fatigue, and has a substantial impact on health-related quality of life. Endometriosis is defined by the growth of endometrial-like tissue outside the uterus, typically on the lining of the pelvic cavity and ovaries (known as "lesions"). Macrophages are complex cells at the center of this enigmatic condition; they are critical for the growth, development, vascularization, and innervation of lesions as well as generation of pain symptoms. In health, tissue-resident macrophages are seeded during early embryonic life are vital for development and homeostasis of tissues. In the adult, under inflammatory challenge, monocytes are recruited from the blood and differentiate into macrophages in tissues where they fulfill functions, such as fighting infection and repairing wounds. The interplay between tissue-resident and recruited macrophages is now at the forefront of macrophage research due to their differential roles in inflammatory disorders. In some cancers, tumor-associated macrophages (TAMs) are comprised of tissue-resident macrophages and recruited inflammatory monocytes that differentiate into macrophages within the tumor. These macrophages of different origins play differential roles in disease progression. Herein, we review the complexities of macrophage dynamics in health and disease and explore the paradigm that under disease-modified conditions, macrophages that normally maintain homeostasis become modified such that they promote disease. We also interrogate the evidence to support the existence of multiple phenotypic populations and origins of macrophages in endometriosis and how this could be exploited for therapy.
Collapse
Affiliation(s)
- Chloe Hogg
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew W. Horne
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Erin Greaves
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- *Correspondence: Erin Greaves
| |
Collapse
|
64
|
Yland J, Carvalho LFP, Beste M, Bailey A, Thomas C, Abrão MS, Racowsky C, Griffith L, Missmer SA. Endometrioma, the follicular fluid inflammatory network and its association with oocyte and embryo characteristics. Reprod Biomed Online 2019; 40:399-408. [PMID: 32057676 DOI: 10.1016/j.rbmo.2019.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/11/2019] [Accepted: 12/10/2019] [Indexed: 01/23/2023]
Abstract
RESEARCH QUESTION What is the association between endometrioma-affected ovaries, their follicular fluid inflammatory microenvironment, and ovary-specific oocyte and embryo yield and quality? DESIGN Exposure-matched prospective cohort study conducted at a university-affiliated infertility clinic. Thirty-four women presenting for oocyte retrieval were enrolled between 2012 and 2013: women with unilateral endometrioma and no other observed peritoneal or deep lesions (n = 10) and women with no signs or symptoms of endometriosis (n = 24). Follicular fluid was aspirated at the time of oocyte retrieval. Samples from each ovary were analysed using a 27-plex immunoassay panel. The associations were evaluated by ovary-specific endometrioma exposure status (affected, unaffected, unexposed) with cytokine levels, oocyte yield and embryo quality. RESULTS Levels of interleukin (IL)-8 and monocyte chemoattractant protein-1 were higher in fluid obtained from endometrioma-affected ovaries compared with the unexposed ovaries from women without endometriosis, with intermediate levels observed in the contralateral unaffected ovaries. More modest differences were observed for IL-1β and IL-6. The affected ovaries of women with endometriosis yielded fewer oocytes (mean ± SD = 4.6 ± 2.3) compared with both the unaffected (6.0 ± 3.8) and unexposed (7.9 ± 5.6) ovaries. After adjusting for potential confounders and variables generated in a cytokine principal components analysis, oocyte yield remained slightly lower for the endometrioma-affected ovaries compared with unexposed ovaries. No informative differences among ovary groups for embryo quality parameters were observed. CONCLUSIONS The results suggest that the inflammatory milieu of ovarian endometriosis is strongly localized and has a more modestly systemic effect. The effect of endometriomas on infertility, however, cannot be entirely explained by increased inflammation.
Collapse
Affiliation(s)
- Jennifer Yland
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.
| | - Luiz Fernando Pina Carvalho
- Department of Obstetrics and Gynecology, São Paulo University, Butanta, São Paulo, Brazil; Baby Center, Center for Reproductive Medicine, R. Joaquim Floriano, São Paulo, 04534-002, Brazil
| | - Michael Beste
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge MA, 02139, USA
| | - Amelia Bailey
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Vanderbilt University School of Medicine, 1161 21st Avenue S, Nashville TN 37232, USA; Fertility Associates of Memphis, 80 Humphreys Center, Memphis TN, 38120, USA
| | - Cassandra Thomas
- Center for Infertility and Reproductive Surgery, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston MA, 02115, USA
| | - Mauricio S Abrão
- Department of Obstetrics and Gynecology, São Paulo University, Butanta, São Paulo, Brazil; Center for Gynepathology Research, Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St, Cambridge TN, 02142, USA
| | - Catherine Racowsky
- Center for Infertility and Reproductive Surgery, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston MA, 02115, USA
| | - Linda Griffith
- Center for Gynepathology Research, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Stacey A Missmer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA; Boston Center for Endometriosis, Boston Children's and Brigham and Women's Hospitals, Boston MA, USA; Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, 400 Monroe Avenue NW, Grand Rapids MI, 49503, USA
| |
Collapse
|
65
|
Plavnik K, Tenaglia A, Hill C, Ahmed T, Shrikhande A. A Novel, Non‐opioid Treatment for Chronic Pelvic Pain in Women with Previously Treated Endometriosis Utilizing Pelvic‐Floor Musculature Trigger‐Point Injections and Peripheral Nerve Hydrodissection. PM R 2019; 12:655-662. [DOI: 10.1002/pmrj.12258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/18/2019] [Indexed: 11/05/2022]
|
66
|
Feider CL, Woody S, Ledet S, Zhang J, Sebastian K, Breen MT, Eberlin LS. Molecular Imaging of Endometriosis Tissues using Desorption Electrospray Ionization Mass Spectrometry. Sci Rep 2019; 9:15690. [PMID: 31666535 PMCID: PMC6821845 DOI: 10.1038/s41598-019-51853-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 10/05/2019] [Indexed: 12/11/2022] Open
Abstract
Endometriosis is a pathologic condition affecting approximately 10% of women in their reproductive years. Characterized by abnormal growth of uterine endometrial tissue in other body areas, endometriosis can cause severe abdominal pain and/or infertility. Despite devastating consequences to patients' quality of life, the causes of endometriosis are not fully understood and validated diagnostic markers for endometriosis have not been identified. Molecular analyses of ectopic and eutopic endometrial tissues could lead to enhanced understanding of the disease. Here, we apply desorption electrospray ionization (DESI) mass spectrometry (MS) imaging to chemically and spatially characterize the molecular profiles of 231 eutopic and ectopic endometrial tissues from 89 endometriosis patients. DESI-MS imaging allowed clear visualization of endometrial glandular and stromal regions within tissue samples. Statistical models built from DESI-MS imaging data allowed classification of endometriosis lesions with overall accuracies of 89.4%, 98.4%, and 98.8% on training, validation, and test sample sets, respectively. Further, molecular markers that are significantly altered in ectopic endometrial tissues when compared to eutopic tissues were identified, including fatty acids and glycerophosphoserines. Our study showcases the value of MS imaging to investigate the molecular composition of endometriosis lesions and pinpoints metabolic markers that may provide new knowledge on disease pathogenesis.
Collapse
Affiliation(s)
- Clara L Feider
- The University of Texas at Austin, Department of Chemistry, 100 E. 24th St, Austin, TX, 78712, USA
| | - Spencer Woody
- The University of Texas at Austin, Department of Statistics and Data Science, 2317 Speedway, Austin, TX, 78712, USA
| | - Suzanne Ledet
- Ascension Seton Medical Center, Department of Pathology, 1201W. 38th St., Austin, TX, 78705, USA
| | - Jialing Zhang
- The University of Texas at Austin, Department of Chemistry, 100 E. 24th St, Austin, TX, 78712, USA
| | - Katherine Sebastian
- The University of Texas at Austin Dell Medical School, Department of Internal Medicine, 1601 Trinity St., Austin, TX, 78712, USA
| | - Michael T Breen
- The University of Texas at Austin Dell Medical School, Department of Women's Health, 1301W. 38th St., Austin, TX, 7870, USA
| | - Livia S Eberlin
- The University of Texas at Austin, Department of Chemistry, 100 E. 24th St, Austin, TX, 78712, USA.
| |
Collapse
|
67
|
Forster R, Sarginson A, Velichkova A, Hogg C, Dorning A, Horne AW, Saunders PTK, Greaves E. Macrophage-derived insulin-like growth factor-1 is a key neurotrophic and nerve-sensitizing factor in pain associated with endometriosis. FASEB J 2019; 33:11210-11222. [PMID: 31291762 PMCID: PMC6766660 DOI: 10.1096/fj.201900797r] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022]
Abstract
Endometriosis is a common incurable inflammatory disorder that is associated with debilitating pelvic pain in women. Macrophages are central to the pathophysiology of endometriosis: they dictate the growth and vascularization of endometriosis lesions and more recently have been shown to promote lesion innervation. The aim of this study was to determine the mechanistic role of macrophages in producing pain associated with endometriosis. Herein, we show that macrophage depletion in a mouse model of endometriosis can reverse abnormal changes in pain behavior. We identified that disease-modified macrophages exhibit increased expression of IGF-1 in an in vitro model of endometriosis-associated macrophages and confirmed expression by lesion-resident macrophages in mice and women. Concentrations of IGF-1 were elevated in peritoneal fluid from women with endometriosis and positively correlate with their pain scores. Mechanistically, we demonstrate that macrophage-derived IGF-1 promotes sprouting neurogenesis and nerve sensitization in vitro. Finally, we show that the Igf-1 receptor inhibitor linsitinib reverses the pain behavior observed in mice with endometriosis. Our data support a role for macrophage-derived IGF-1 as a key neurotrophic and sensitizing factor in endometriosis, and we propose that therapies that modify macrophage phenotype may be attractive therapeutic options for the treatment of women with endometriosis-associated pain.-Forster, R., Sarginson, A., Velichkova, A., Hogg, C., Dorning, A., Horne, A. W., Saunders, P. T. K., Greaves, E. Macrophage-derived insulin-like growth factor-1 is a key neurotrophic and nerve-sensitizing factor in pain associated with endometriosis.
Collapse
Affiliation(s)
- Rachel Forster
- Medical Research Council (MRC) Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Alexandra Sarginson
- Medical Research Council (MRC) Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Atanaska Velichkova
- Medical Research Council (MRC) Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Chloe Hogg
- Medical Research Council (MRC) Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ashley Dorning
- Medical Research Council (MRC) Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew W. Horne
- Medical Research Council (MRC) Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Philippa T. K. Saunders
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Erin Greaves
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
68
|
Leonardi M, Hicks C, El‐Assaad F, El‐Omar E, Condous G. Endometriosis and the microbiome: a systematic review. BJOG 2019; 127:239-249. [DOI: 10.1111/1471-0528.15916] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2019] [Indexed: 12/13/2022]
Affiliation(s)
- M Leonardi
- Acute Gynaecology, Early Pregnancy and Advanced Endosurgery Unit Sydney Medical School Nepean, University of Sydney, Nepean Hospital Sydney NSW Australia
| | - C Hicks
- Microbiome Research Centre St George and Sutherland Clinical School UNSW Sydney Kogarah NSW Australia
| | - F El‐Assaad
- Microbiome Research Centre St George and Sutherland Clinical School UNSW Sydney Kogarah NSW Australia
| | - E El‐Omar
- Microbiome Research Centre St George and Sutherland Clinical School UNSW Sydney Kogarah NSW Australia
| | - G Condous
- Acute Gynaecology, Early Pregnancy and Advanced Endosurgery Unit Sydney Medical School Nepean, University of Sydney, Nepean Hospital Sydney NSW Australia
| |
Collapse
|
69
|
Vallvé-Juanico J, Houshdaran S, Giudice LC. The endometrial immune environment of women with endometriosis. Hum Reprod Update 2019; 25:564-591. [PMID: 31424502 PMCID: PMC6737540 DOI: 10.1093/humupd/dmz018] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/07/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Endometriosis, a common oestrogen-dependent inflammatory disorder in women of reproductive age, is characterized by endometrial-like tissue outside its normal location in the uterus, which causes pelvic scarring, pain and infertility. While its pathogenesis is poorly understood, the immune system (systemically and locally in endometrium, pelvic endometriotic lesions and peritoneal fluid) is believed to play a central role in its aetiology, pathophysiology and associated morbidities of pain, infertility and poor pregnancy outcomes. However, immune cell populations within the endometrium of women with the disease have had incomplete phenotyping, thereby limiting insight into their roles in this disorder. OBJECTIVE AND RATIONALE The objective herein was to determine reproducible and consistent findings regarding specific immune cell populations and their abundance, steroid hormone responsiveness, functionality, activation states, and markers, locally and systemically in women with and without endometriosis. SEARCH METHODS A comprehensive English language PubMed, Medline and Google Scholar search was conducted with key search terms that included endometriosis, inflammation, human eutopic/ectopic endometrium, immune cells, immune population, immune system, macrophages, dendritic cells (DC), natural killer cells, mast cells, eosinophils, neutrophils, B cells and T cells. OUTCOMES In women with endometriosis compared to those without endometriosis, some endometrial immune cells display similar cycle-phase variation, whereas macrophages (Mø), immature DC and regulatory T cells behave differently. A pro-inflammatory Mø1 phenotype versus anti-inflammatory Mø2 phenotype predominates and natural killer cells display abnormal activity in endometrium of women with the disease. Conflicting data largely derive from small studies, variably defined hormonal milieu and different experimental approaches and technologies. WIDER IMPLICATIONS Phenotyping immune cell subtypes is essential to determine the role of the endometrial immune niche in pregnancy and endometrial homeostasis normally and in women with poor reproductive history and can facilitate development of innovative diagnostics and therapeutics for associated symptoms and compromised reproductive outcomes.
Collapse
Affiliation(s)
- Júlia Vallvé-Juanico
- Department of Gynecology, IVI Barcelona S.L., 08017, Barcelona, Spain
- Group of Biomedical Research in Gynecology, Vall Hebron Research Institute (VHIR) and University Hospital, 08035, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94193, USA
| | - Sahar Houshdaran
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94193, USA
| | - Linda C Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94193, USA
| |
Collapse
|
70
|
Riccio LGC, Jeljeli M, Santulli P, Chouzenoux S, Doridot L, Nicco C, Reis FM, Abrão MS, Chapron C, Batteux F. B lymphocytes inactivation by Ibrutinib limits endometriosis progression in mice. Hum Reprod 2019; 34:1225-1234. [DOI: 10.1093/humrep/dez071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 04/14/2019] [Indexed: 12/14/2022] Open
Abstract
Abstract
STUDY QUESTION
What are the effects of B lymphocyte inactivation or depletion on the progression of endometriosis?
SUMMARY ANSWER
Skewing activated B cells toward regulatory B cells (Bregs) by Bruton’s tyrosine kinase (Btk) inhibition using Ibrutinib prevents endometriosis progression in mice while B cell depletion using an anti-CD20 antibody has no effect.
WHAT IS KNOWN ALREADY
A polyclonal activation of B cells and the presence of anti-endometrial autoantibodies have been described in a large proportion of women with endometriosis though their exact role in the disease mechanisms remains unclear.
STUDY DESIGN, SIZE, DURATION
This study included comparison of endometriosis progression for 21 days in control mice versus animals treated with the anti-CD20 depleting antibody or with the Btk inhibitor Ibrutinib that prevents B cell activation.
PARTICIPANTS/MATERIALS, SETTING, METHODS
After syngeneic endometrial transplantation, murine endometriotic lesions were compared between treated and control mice using volume, weight, ultrasonography, histology and target genes expression in lesions. Phenotyping of activated and regulatory B cells, T lymphocytes and macrophages was performed by flow cytometry on isolated spleen and peritoneal cells. Cytokines were assayed by ELISA.
MAIN RESULTS AND THE ROLE OF CHANCE
Btk inhibitor Ibrutinib prevented lesion growth, reduced mRNA expression of cyclooxygenase-2, alpha smooth muscle actin and type I collagen in the lesions and skewed activated B cells toward Bregs in the spleen and peritoneal cavity of mice with endometriosis. In addition, the number of M2 macrophages decreased in the peritoneal cavity of Ibrutinib-treated mice compared to anti-CD20 and control mice. Depletion of B cells using an anti-CD20 antibody had no effect on activity and growth of endometriotic lesions and neither on the macrophages, compared to control mice.
LARGE SCALE DATA
N/A.
LIMITATIONS, REASONS FOR CAUTION
It is still unclear whether B cell depletion by the anti-CD20 or inactivation by Ibrutinib can prevent establishment and/or progression of endometriosis in humans.
WIDER IMPLICATIONS OF THE FINDINGS
Further investigation may contribute to clarifying the role of B cell subsets in human endometriosis.
STUDY FUNDING/COMPETING INTEREST(S)
This research was supported by a grant of Institut National de la Santé et de la Recherche Médicale and Paris Descartes University. None of the authors has any conflict of interest to disclose.
Collapse
Affiliation(s)
- L G C Riccio
- Département ‘Développement, Reproduction et Cancer’, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Université Paris Descartes, Sorbonne Paris Cité Paris, France
- Faculté de Médecine, Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- Faculty of Medicine, Endometriosis Division, Obstetrics and Gynecology Department, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, Cerqueira César 05403-000, São Paulo, Brazil
| | - M Jeljeli
- Département ‘Développement, Reproduction et Cancer’, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Université Paris Descartes, Sorbonne Paris Cité Paris, France
- Faculté de Médecine, Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - P Santulli
- Département ‘Développement, Reproduction et Cancer’, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Université Paris Descartes, Sorbonne Paris Cité Paris, France
- Faculté de Médecine, Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - S Chouzenoux
- Département ‘Développement, Reproduction et Cancer’, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Université Paris Descartes, Sorbonne Paris Cité Paris, France
| | - L Doridot
- Département ‘Développement, Reproduction et Cancer’, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Université Paris Descartes, Sorbonne Paris Cité Paris, France
| | - C Nicco
- Département ‘Développement, Reproduction et Cancer’, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Université Paris Descartes, Sorbonne Paris Cité Paris, France
| | - F M Reis
- Département ‘Développement, Reproduction et Cancer’, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Université Paris Descartes, Sorbonne Paris Cité Paris, France
| | - M S Abrão
- Faculty of Medicine, Endometriosis Division, Obstetrics and Gynecology Department, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, Cerqueira César 05403-000, São Paulo, Brazil
| | - C Chapron
- Département ‘Développement, Reproduction et Cancer’, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Université Paris Descartes, Sorbonne Paris Cité Paris, France
- Département de Gynécologie Obstétrique II et Médecine de la Reproduction, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire Cochin, Paris, France
| | - F Batteux
- Département ‘Développement, Reproduction et Cancer’, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Université Paris Descartes, Sorbonne Paris Cité Paris, France
- Service d’Immunologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire Cochin, Paris, France
| |
Collapse
|
71
|
Jiang J, Yu K, Jiang Z, Xue M. IL-37 affects the occurrence and development of endometriosis by regulating the biological behavior of endometrial stromal cells through multiple signaling pathways. Biol Chem 2019; 399:1325-1337. [PMID: 29924731 DOI: 10.1515/hsz-2018-0254] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022]
Abstract
Endometriosis (EMs) is a chronic inflammatory condition. Interleukin (IL)-37 is a member of the IL-1 family and an anti-inflammatory cytokine. This study aimed to evaluate the possible role of IL-37 in the EMs pathogenesis. We investigated the in vivo effect of IL-37 on EMs by injection with recombinant human IL-37 (rhIL-37) into EMs mice. Furthermore, we evaluated the in vitro effects of IL-37 on proliferation, adhesion, migration and invasiveness of endometrial stromal cells (ESCs), and explored whether Wnt/β-catenin and mitogen-activated protein kinase (MAPK) pathways were involved in this process. In cultured ESCs, IL-37 overexpression significantly suppressed both protein and mRNA expression of the inflammation-associated cytokines, including IL-1β, IL-6, IL-10 and tumor necrosis factor (TNF-α). Furthermore, IL-37 overexpression significantly inhibited ESCs proliferation, adhesion, migration, invasion and the activity of matrix metalloproteinase (MMP)-2 and MMP-9. In contrast, knockdown of IL-37 exerted the opposite effects. Importantly, the IL-37-mediated action in ESCs was through inactivation of Wnt/β-catenin, p38 MAPK, extracellular signal-related kinases MAPK and c-Jun N-terminal kinase MAPK pathways. Moreover, EMs mice treated with rhIL-37 showed the decreased endometriotic-like lesion size and lesion weight, lower expression of IL-1β, IL-6, IL-10, TNF-α, vascular endothelial growth factor (VEGF), soluble intercellular adhesion molecule-I (ICAM-I) and MMP-2/9 activity in peritoneal fluid compared with the wide type (WT) EMs mice. These findings suggest that IL-37 suppresses cell proliferation, adhesion, migration and invasion of human ESCs through multiple signaling pathways, thereby affecting the occurrence and development of EMs.
Collapse
Affiliation(s)
- Jianfa Jiang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, No. 138 tongzipo, Yuelu District, Changsha 100730, Hunan, China
| | - Kenan Yu
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, No. 138 tongzipo, Yuelu District, Changsha 100730, Hunan, China
| | - Zhaoying Jiang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, No. 138 tongzipo, Yuelu District, Changsha 100730, Hunan, China
| | - Min Xue
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, No. 138 tongzipo, Yuelu District, Changsha 100730, Hunan, China
| |
Collapse
|
72
|
Yu JS, Seo H, Kim GB, Hong J, Yoo HH. MS-Based Molecular Networking of Designer Drugs as an Approach for the Detection of Unknown Derivatives for Forensic and Doping Applications: A Case of NBOMe Derivatives. Anal Chem 2019; 91:5483-5488. [PMID: 30990678 DOI: 10.1021/acs.analchem.9b00294] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The NBOMe family is a group of new psychoactive substances (NPSs). In this study, the fragmentation patterns of NBOMe derivatives were analyzed using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS). The MS/MS spectral data was used to establish a molecular networking map for NBOMe derivatives. The fragmentation patterns of nine NBOMe derivatives were interpreted on the basis of their product ion spectral data. NBOMe derivatives generally showed similar product ion spectral patterns; among them, the halogen-substituted methoxybenzyl ethanamine type derivatives showed a characteristic product ion of a radical cation. Molecular network analysis of the MS/MS data revealed that all NBOMe derivatives formed one integrated networking cluster that discriminated them from other types of NPSs. NBOMe derivatives were spiked into human urine and identified by connection to the NBOMe database network. Furthermore, the NBOMe compounds that were not registered in the database were also recognized as an NBOMe-related substance by molecular networking. These results demonstrate the potential of using molecular networking-based screening methods for designer drugs, and the proposed method would be useful in forensic or doping analysis.
Collapse
Affiliation(s)
- Jun Sang Yu
- Institute of Pharmaceutical Science and Technology and College of Pharmacy , Hanyang University , Ansan , Gyeonggi-do 15588 , Republic of Korea
| | - Hyewon Seo
- Pharmacological Research Division, Toxicological and Research Department , National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Cheongju , North Chungcheong 28159 , Republic of Korea
| | - Gi Beom Kim
- Institute of Pharmaceutical Science and Technology and College of Pharmacy , Hanyang University , Ansan , Gyeonggi-do 15588 , Republic of Korea
| | - Jin Hong
- Pharmacological Research Division, Toxicological and Research Department , National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Cheongju , North Chungcheong 28159 , Republic of Korea.,College of Pharmacy , Ewha Womans University , 11-1 Daehyun-dong , Seodaemun-gu 120750 , Republic of Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy , Hanyang University , Ansan , Gyeonggi-do 15588 , Republic of Korea
| |
Collapse
|
73
|
Yuan M, Li D, Zhang Z, Sun H, An M, Wang G. Endometriosis induces gut microbiota alterations in mice. Hum Reprod 2019; 33:607-616. [PMID: 29462324 DOI: 10.1093/humrep/dex372] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023] Open
Abstract
STUDY QUESTION What happens to the gut microbiota during development of murine endometriosis? SUMMARY ANSWER Mice with the persistence of endometrial lesions for 42 days develop a distinct composition of gut microbiota. WHAT IS KNOWN ALREADY Disorders in the immune system play fundamental roles in changing the intestinal microbiota. No study has used high-throughput DNA sequencing to show how endometriosis changes the gut microbiota, although endometriosis is accompanied by abnormal cytokine expression and immune cell dysfunction. STUDY DESIGN, SIZE, DURATION This study includes a prospective and randomized experiment on an animal endometriosis model induced via the intraperitoneal injection of endometrial tissues. PARTICIPANTS/MATERIALS, SETTING, METHODS The mice were divided into endometriosis and mock groups and were sacrificed at four different time points for model confirmation and fecal sample collection. To detect gut microbiota, 16S ribosomal-RNA gene sequencing was performed. Alpha diversity was used to analyze the complexity and species diversity of the samples through six indices. Beta diversity analysis was utilized to evaluate the differences in species complexity. Principal coordinate analysis and unweighted pair-group method with arithmetic means clustering were performed to determine the clustering features. The microbial features differentiating the fecal microbiota were characterized by linear discriminant analysis effect size method. MAIN RESULTS AND THE ROLE OF CHANCE The endometriosis and mock mice shared similar diversity and richness of gut microbiota. However, different compositions of gut microbiota were detected 42 days after the modeling. Among the discriminative concrete features, the Firmicutes/Bacteroidetes ratio was elevated in mice with endometriosis, indicating that endometriosis may induce dysbiosis. Bifidobacterium, which is known as a commonly used probiotic, was also increased in mice with endometriosis. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION More control groups should be further studied to clarify the specificity of the dysbiosis induced by endometriosis. This study was performed only on mice. Thus, additional data acquired from patients with endometriosis are needed in future research. We only detected the changes of gut microbiota at 42 days after the modeling, while the long-term effect of endometriosis on gut microbiota remains poorly understood. Moreover, we only revealed a single effect of endometriosis on gut microbiota. WIDER IMPLICATIONS OF THE FINDINGS This study provided the first comprehensive data on the association of endometriosis and gut microbiota from high-throughput sequencing technology. The gut microbiota changed with the development of endometriosis in a murine model. The communication between the host and the gut microbiota is bidirectional, and further studies should be performed to clarify their relationship. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by Grant (81571417) from the National Science Foundation of China and Grant (2015GSF118092) from the Technology Development Plan of Shandong Province. The authors report no conflict of interest.
Collapse
Affiliation(s)
- Ming Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Dong Li
- Cryomedicine Lab, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Zhe Zhang
- Department of Gynecology, The Central Hospital of Zibo, No. 54 Gongqingtuanxi Road, Zibo, Shandong 255036, China
| | - Huihui Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Min An
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Guoyun Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| |
Collapse
|
74
|
Machado DE, Perini JA, de Mendonça EM, Branco JR, Rodrigues-Baptista KC, Alessandra-Perini J, Espíndola-Netto JM, Dos Santos TA, Coelho WS, Nasciutti LE, Sola-Penna M, Zancan P. Clotrimazole is effective for the regression of endometriotic implants in a Wistar rat experimental model of endometriosis. Mol Cell Endocrinol 2018; 476:17-26. [PMID: 29689297 DOI: 10.1016/j.mce.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 01/31/2023]
Abstract
The present work aimed to evaluate molecular, angiogenic and inflammatory changes induced by clotrimazole (CTZ) on endometriosis lesions. For this, thirty female Wistar rats with surgically implanted autologous endometrium were treated with CTZ or vehicle (200 mg/kg) via esophageal gavage for 15 consecutive days. CTZ treatment significantly decreased the growth and the size of the implants, and histological examination indicated regression and atrophy, with no toxicity to the animals. The levels of the angiogenic markers VEGF and VEGFR-2 were significantly decreased in CTZ group. The treatment also promotes a reduction on PGE2 and TNF-α levels. All these effects involve the amelioration of ERK1/2, Akt, AMPK and PERK signaling upon CTZ treatment. In conclusion, CTZ promoted an overall amelioration of endometriosis in a rat model due to the anti-angiogenic properties of the drug. Therefore, our results support the proposal of a clinical trial using CTZ for the treatment of endometriosis.
Collapse
Affiliation(s)
- Daniel Escorsim Machado
- Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brazil; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jamila Alessandra Perini
- Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Osvaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Erika Menezes de Mendonça
- Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Osvaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Jessica Ristow Branco
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica (BioTecFar), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Karina Cristina Rodrigues-Baptista
- Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Osvaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Jessica Alessandra-Perini
- Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brazil; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jair Machado Espíndola-Netto
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica (BioTecFar), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thiago Alves Dos Santos
- Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brazil
| | - Wagner Santos Coelho
- Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brazil
| | - Luiz Eurico Nasciutti
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mauro Sola-Penna
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica (BioTecFar), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patricia Zancan
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica (BioTecFar), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
75
|
Chronic Niche Inflammation in Endometriosis-Associated Infertility: Current Understanding and Future Therapeutic Strategies. Int J Mol Sci 2018; 19:ijms19082385. [PMID: 30104541 PMCID: PMC6121292 DOI: 10.3390/ijms19082385] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is an estrogen-dependent inflammatory disease that affects up to 10% of women of reproductive age and accounts for up to 50% of female infertility cases. It has been highly associated with poorer outcomes of assisted reproductive technology (ART), including decreased oocyte retrieval, lower implantation, and pregnancy rates. A better understanding of the pathogenesis of endometriosis-associated infertility is crucial for improving infertility treatment outcomes. Current theories regarding how endometriosis reduces fertility include anatomical distortion, ovulatory dysfunction, and niche inflammation-associated peritoneal or implantation defects. This review will survey the latest evidence on the role of inflammatory niche in the peritoneal cavity, ovaries, and uterus of endometriosis patients. Nonhormone treatment strategies that target these inflammation processes are also included. Furthermore, mesenchymal stem cell-based therapies are highlighted for potential endometriosis treatment because of their immunomodulatory effects and tropism toward inflamed lesion foci. Potential applications of stem cell therapy in treatment of endometriosis-associated infertility in particular for safety and efficacy are discussed.
Collapse
|
76
|
Yu J, Francisco AMC, Patel BG, Cline JM, Zou E, Berga SL, Taylor RN. IL-1β Stimulates Brain-Derived Neurotrophic Factor Production in Eutopic Endometriosis Stromal Cell Cultures: A Model for Cytokine Regulation of Neuroangiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2281-2292. [PMID: 30031725 DOI: 10.1016/j.ajpath.2018.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/15/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022]
Abstract
Endometriosis implants are comprised of glandular and stromal elements, macrophages, nerves, and blood vessels and are commonly accompanied by pelvic pain. We propose that activated macrophages are recruited to and infiltrate nascent lesions, where they secrete proinflammatory cytokines, promoting the production of chemokines, neurotrophins, and angiogenic growth factors that sustain an inflammatory microenvironment. Immunohistochemical evaluation of endometriosis lesions reveals in situ colocalization of concentrated macrophages, brain-derived neurotrophic factor (BDNF), and nerve fibers. These observations were coupled with biochemical analyses of primary eutopic endometriosis stromal cell (EESC) cultures, which allowed defining potential pathways leading to the neuroangiogenic phenotype of these lesions. Our findings indicate that IL-1β potently (EC50 = 7 ± 2 ng/mL) stimulates production of EESC BDNF at the mRNA and protein levels in an IL-1 receptor-dependent fashion. Selective kinase inhibitors demonstrate that this IL-1β effect is mediated by c-Jun N-terminal kinase (JNK), NF-κB, and mechanistic target of rapamycin signal transduction pathways. IL-1β regulation of regulated on activation normal T cell expressed and secreted (RANTES), a prominent EESC chemokine, also relies on JNK and NF-κB. An important clinical implication of the study is that interference with BDNF and RANTES production, by selectively targeting the JNK and NF-κB cascades, may offer a tractable therapeutic strategy to mitigate the pain and inflammation associated with endometriosis.
Collapse
Affiliation(s)
- Jie Yu
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Antônio M C Francisco
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Health Sciences School, University of Vale do Sapucaí, Pouso Alegre, Brazil
| | - Bansari G Patel
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - J Mark Cline
- Department of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; Molecular Medicine and Translational Sciences Program, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Eric Zou
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sarah L Berga
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Molecular Medicine and Translational Sciences Program, Wake Forest School of Medicine, Winston-Salem, North Carolina; Clinical and Translational Science Institute, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
77
|
Chellappan DK, Leng KH, Jia LJ, Aziz NABA, Hoong WC, Qian YC, Ling FY, Wei GS, Ying T, Chellian J, Gupta G, Dua K. The role of bevacizumab on tumour angiogenesis and in the management of gynaecological cancers: A review. Biomed Pharmacother 2018; 102:1127-1144. [DOI: 10.1016/j.biopha.2018.03.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 02/06/2023] Open
|
78
|
Zhang T, Zhou J, Man GCW, Leung KT, Liang B, Xiao B, Ma X, Huang S, Huang H, Hegde VL, Zhong Y, Li Y, Kong GWS, Yiu AKW, Kwong J, Ng PC, Lessey BA, Nagarkatti PS, Nagarkatti M, Wang CC. MDSCs drive the process of endometriosis by enhancing angiogenesis and are a new potential therapeutic target. Eur J Immunol 2018; 48:1059-1073. [PMID: 29460338 DOI: 10.1002/eji.201747417] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/20/2018] [Accepted: 02/14/2018] [Indexed: 12/21/2022]
Abstract
Endometriosis affects women of reproductive age via unclear immunological mechanism(s). Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells with potent immunosuppressive and angiogenic properties. Here, we found MDSCs significantly increased in the peripheral blood of patients with endometriosis and in the peritoneal cavity of a mouse model of surgically induced endometriosis. Majority of MDSCs were granulocytic, produced ROS, and arginase, and suppressed T-cell proliferation. Depletion of MDSCs by antiGr-1 antibody dramatically suppressed development of endometrial lesions in mice. The chemokines CXCL1, 2, and 5 were expressed at sites of lesion while MDSCs expressed CXCR-2. These CXC-chemokines promoted MDSC migration toward endometriotic implants both in vitro and in vivo. Also, CXCR2-deficient mice show significantly decreased MDSC induction, endometrial lesions, and angiogenesis. Importantly, adoptive transfer of MDSCs into CXCR2-KO mice restored endometriotic growth and angiogenesis. Together, this study demonstrates that MDSCs play a role in the pathogenesis of endometriosis and identifies a novel CXC-chemokine and receptor for the recruitment of MDSCs, thereby providing a potential target for endometriosis treatment.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Obstetrics and Gynaecology, the Chinese University of Hong Kong, Hong Kong
| | - Juhua Zhou
- Institute for Tumor Immunology, School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Gene Chi Wai Man
- Department of Obstetrics and Gynaecology, the Chinese University of Hong Kong, Hong Kong
| | - Kam Tong Leung
- Department of Paediatrics, the Chinese University of Hong Kong, Hong Kong
| | - Bo Liang
- Department of Obstetrics and Gynaecology, the Chinese University of Hong Kong, Hong Kong
| | - Bo Xiao
- Institute for Tumor Immunology, School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Xinting Ma
- Institute for Tumor Immunology, School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Shaoyan Huang
- Department of Oncology, Yantai Mountain Hospital, Yantai, Shandong, China
| | | | - Venkatesh L Hegde
- Department of Obstetrics and Gynecology, Greenville Health Systems, Greenville, South Carolina, SC, USA
| | - Yin Zhong
- Department of Obstetrics and Gynecology, Greenville Health Systems, Greenville, South Carolina, SC, USA
| | - Yanmin Li
- Institute for Tumor Immunology, School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Grace Wing Shan Kong
- Department of Obstetrics and Gynaecology, the Chinese University of Hong Kong, Hong Kong
| | - Alice Ka Wah Yiu
- Department of Obstetrics and Gynaecology, the Chinese University of Hong Kong, Hong Kong
| | - Joseph Kwong
- Department of Obstetrics and Gynaecology, the Chinese University of Hong Kong, Hong Kong
| | - Pak Cheung Ng
- Department of Paediatrics, the Chinese University of Hong Kong, Hong Kong
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Greenville Health Systems, Greenville, South Carolina, SC, USA
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, the Chinese University of Hong Kong, Hong Kong.,Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong.,School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
79
|
Starchenko A, Lauffenburger DA. In vivo systems biology approaches to chronic immune/inflammatory pathophysiology. Curr Opin Biotechnol 2018; 52:9-16. [PMID: 29494996 DOI: 10.1016/j.copbio.2018.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/11/2018] [Indexed: 12/19/2022]
Abstract
Systems biology offers an emphasis on integrative computational analysis of complex multi-component processes to enhance capability for predictive insights concerning operation of those processes. The immune system represents a prominent arena in which such processes are manifested for vital roles in physiology and pathology, encompassing dozens of cell types and hundreds of reciprocal interactions. Chronic, debilitating pathologies involving immune system dysregulation have become recognized as increasing in incidence over recent decades. While clinical consequences of immune dysregulation in such pathologies are well characterized, treatment options remain limited and focus on ameliorating symptoms. Because it is difficult to recapitulate more than a severely limited facet of the immune system in vitro, application of systems biology approaches to autoimmune and inflammatory pathophysiology in vivo has opened a new door toward discerning disease sub-groups and developing associated stratification strategies for patient treatment. In particular, early instances of these approaches have demonstrated advances in uncovering previously under-appreciated dysregulation of signaling networks between immune system and tissue cells, raising promise for improving upon current therapeutic approaches.
Collapse
Affiliation(s)
- Alina Starchenko
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
80
|
Miller JE, Ahn SH, Monsanto SP, Khalaj K, Koti M, Tayade C. Implications of immune dysfunction on endometriosis associated infertility. Oncotarget 2018; 8:7138-7147. [PMID: 27740937 PMCID: PMC5351695 DOI: 10.18632/oncotarget.12577] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/05/2016] [Indexed: 01/21/2023] Open
Abstract
Endometriosis is a complex, inflammatory disease that affects 6-10% of reproductive-aged women. Almost half of the women with endometriosis experience infertility. Despite the excessive prevalence, the pathogenesis of endometriosis and its associated infertility is unknown and a cure is not available. While many theories have been suggested to link endometriosis and infertility, a consensus among investigators has not emerged. In this extensive review of the literature as well as research from our laboratory, we provide potential insights into the role of immune dysfunction in endometriosis associated infertility. We discuss the implication of the peritoneal inflammatory microenvironment on various factors that contribute to infertility such as hormonal imbalance, oxidative stress and how these could further lead to poor oocyte, sperm and embryo quality, impaired receptivity of the endometrium and implantation failure.
Collapse
Affiliation(s)
- Jessica E Miller
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Soo Hyun Ahn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Stephany P Monsanto
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kasra Khalaj
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
81
|
Patel BG, Lenk EE, Lebovic DI, Shu Y, Yu J, Taylor RN. Pathogenesis of endometriosis: Interaction between Endocrine and inflammatory pathways. Best Pract Res Clin Obstet Gynaecol 2018; 50:50-60. [PMID: 29576469 DOI: 10.1016/j.bpobgyn.2018.01.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/23/2018] [Indexed: 01/26/2023]
Abstract
Despite an estimated prevalence of 11% in women and plausible historical descriptions dating back to the 17th century, the etiology of endometriosis remains poorly understood. Classical theories of the histological origins of endometriosis are reviewed below. Clinical presentations are variable, and signs and symptoms do not correlate well with the extent of disease. In this summary, we have attempted to synthesize the growing evidence that hormonal and immune factors conspire to activate a local inflammatory microenvironment that encourages endometriosis to persist and elaborate mediators of its two cardinal symptoms: pain and infertility. Surprisingly, in the search for novel therapeutics for medical treatment of endometriosis, some compounds appear to have dual pharmacological functions, simultaneously modifying the endocrine and immune system facets of this complex gynecologic syndrome. We predict that these lead drugs will provide more therapeutic choices for patients in the future.
Collapse
Affiliation(s)
- Bansari G Patel
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Emily E Lenk
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Dan I Lebovic
- Center for Reproductive Medicine, Minneapolis, MN 55435, USA
| | - Yimin Shu
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jie Yu
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Molecular Medicine and Translational Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
82
|
Burns KA, Thomas SY, Hamilton KJ, Young SL, Cook DN, Korach KS. Early Endometriosis in Females Is Directed by Immune-Mediated Estrogen Receptor α and IL-6 Cross-Talk. Endocrinology 2018; 159:103-118. [PMID: 28927243 PMCID: PMC5761597 DOI: 10.1210/en.2017-00562] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/06/2017] [Indexed: 01/13/2023]
Abstract
Endometriosis is a gynecological disease that negatively affects the health of 1 in 10 women. Although more information is known about late stage disease, the early initiation of endometriosis and lesion development is poorly understood. Herein, we use a uterine tissue transfer mouse model of endometriosis to examine early disease development and its dependence on estradiol (E2) and estrogen receptor (ER) α within 72 hours of disease initiation. Using wild-type and ERα knockout mice as hosts or donors, we find substantial infiltration of neutrophils and macrophages into the peritoneal cavity. Examining cell infiltration, lesion gene expression, and peritoneal fluid, we find that E2/ERα plays a minor role in early lesion development. Immune-mediated signaling predominates E2-mediated signaling, but 48 hours after the initiation of disease, a blunted interleukin (IL)-6-mediated response is found in developing lesions lacking ERα. Our data provide evidence that the early initiation of endometriosis is predominantly dependent on the immune system, whereas E2/ERα/IL-6-mediated cross-talk plays a partial role. These findings suggest there are two phases of endometriosis-an immune-dependent phase and a hormone-dependent phase, and that targeting the innate immune system could prevent lesion attachment in this susceptible population of women.
Collapse
Affiliation(s)
- Katherine A Burns
- Receptor Biology Group, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Seddon Y Thomas
- Immunogenetics Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Katherine J Hamilton
- Receptor Biology Group, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Steven L Young
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina
| | - Donald N Cook
- Immunogenetics Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Kenneth S Korach
- Receptor Biology Group, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
83
|
Colón-Caraballo M, Flores-Caldera I. Translational Aspects of the Endometriosis Epigenome. EPIGENETICS IN HUMAN DISEASE 2018:717-749. [DOI: 10.1016/b978-0-12-812215-0.00023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
84
|
Wu XH, Zhao C, Zhang AH, Zhang JQ, Wang X, Sun XL, Sun Z, Wang XJ. High-throughput metabolomics used to identify potential therapeutic targets of Guizhi Fuling Wan against endometriosis of cold coagulation and blood stasis. RSC Adv 2018; 8:19238-19250. [PMID: 35539642 PMCID: PMC9080683 DOI: 10.1039/c8ra00978c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/07/2018] [Indexed: 12/04/2022] Open
Abstract
Metabolomics is an emerging and robust discipline and involves the comprehensive evaluation of small molecule endogenous metabolites and enables the exploration of the pathogenesis of diseases. For example, endometriosis – a common disease which mostly occurs in women of childbearing age. A cure for endometriosis of cold coagulation and blood stasis (ECB) is highly sought after. This study was conducted to discover the potential biomarkers of ECB and the effective mechanism undertaken by Guizhi Fuling Wan (GFW) in treating ECB in rats. Urinary metabolomics were performed by using UPLC-Q-TOF-MS with pattern recognition methods to evaluate the changes in metabolic profiles and to identify biomarkers for elucidating the mechanism of the treatment of ECB with GFW. The results showed that urinary metabolism in the two groups were distinctly separated on the 28th day, and a total of 20 differential biomarkers (16 in the positive mode, 4 in the negative mode) were confirmed involving several key metabolic pathways which included phenylalanine, tyrosine and tryptophan biosynthesis, valine, leucine and isoleucine biosynthesis, glyoxylate and dicarboxylate metabolism, tyrosine metabolism and the citrate cycle. Following the oral administration of GFW, certain pathways were affected; these included the following: phenylalanine, tyrosine and tryptophan biosynthesis, valine, leucine and isoleucine biosynthesis, glyoxylate and dicarboxylate metabolism, tyrosine metabolism, citrate cycle, steroid hormone biosynthesis, tryptophan metabolism, phenylalanine metabolism, primary bile acid biosynthesis, and aminoacyl-tRNA biosynthesis. This study also demonstrated that the administration of GFW affected the levels of urine endogenous metabolites, thereby laying a foundation for further study of the pharmacodynamical mechanism of GFW. Metabolomics is an emerging and robust discipline and involves the comprehensive evaluation of small molecule endogenous metabolites and enables the exploration of the pathogenesis of diseases.![]()
Collapse
Affiliation(s)
- Xiu-hong Wu
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Metabolomics Laboratory
- Heilongjiang University of Chinese Medicine
| | - Chuang Zhao
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Metabolomics Laboratory
- Heilongjiang University of Chinese Medicine
| | - Ai-hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Metabolomics Laboratory
- Heilongjiang University of Chinese Medicine
| | - Jin-qi Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Metabolomics Laboratory
- Heilongjiang University of Chinese Medicine
| | - Xu Wang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Metabolomics Laboratory
- Heilongjiang University of Chinese Medicine
| | - Xiao-lan Sun
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Metabolomics Laboratory
- Heilongjiang University of Chinese Medicine
| | - Ze Sun
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Metabolomics Laboratory
- Heilongjiang University of Chinese Medicine
| | - Xi-jun Wang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Metabolomics Laboratory
- Heilongjiang University of Chinese Medicine
| |
Collapse
|
85
|
Miller JE, Monsanto SP, Ahn SH, Khalaj K, Fazleabas AT, Young SL, Lessey BA, Koti M, Tayade C. Interleukin-33 modulates inflammation in endometriosis. Sci Rep 2017; 7:17903. [PMID: 29263351 PMCID: PMC5738435 DOI: 10.1038/s41598-017-18224-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/07/2017] [Indexed: 01/05/2023] Open
Abstract
Endometriosis is a debilitating condition that is categorized by the abnormal growth of endometrial tissue outside the uterus. Although the pathogenesis of this disease remains unknown, it is well established that endometriosis patients exhibit immune dysfunction. Interleukin (IL)-33 is a danger signal that is a critical regulator of chronic inflammation. Although plasma and peritoneal fluid levels of IL-33 have been associated with deep infiltrating endometriosis, its contribution to the disease pathophysiology is unknown. We investigated the role of IL-33 in the pathology of endometriosis using patient samples, cell lines and a syngeneic mouse model. We found that endometriotic lesions produce significantly higher levels of IL-33 compared to the endometrium of healthy, fertile controls. In vitro stimulation of endometrial epithelial, endothelial and endometriotic epithelial cells with IL-33 led to the production of pro-inflammatory and angiogenic cytokines. In a syngeneic mouse model of endometriosis, IL-33 injections caused systemic inflammation, which manifested as an increase in plasma pro-inflammatory cytokines compared to control mice. Furthermore, endometriotic lesions from IL-33 treated mice were highly vascularized and exhibited increased proliferation. Collectively, we provide convincing evidence that IL-33 perpetuates inflammation, angiogenesis and lesion proliferation, which are critical events in the lesion survival and progression of endometriosis.
Collapse
Affiliation(s)
- Jessica E Miller
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Stephany P Monsanto
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Soo Hyun Ahn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Kasra Khalaj
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, 49503, USA
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina, NC, 27514, USA
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Greenville Health Systems, Greenville, South Carolina, SC, 29605, USA
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
86
|
Berglund J. Fertile Ground: Work at MIT?s Center for Gynepathology Research is Revealing How Tissue Engineering Can Help Address Gynecological Disorders. IEEE Pulse 2017; 8:42-45. [PMID: 28961096 DOI: 10.1109/mpul.2017.2729720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
At the age of 14, Linda Griffith experienced such abnormally painful periods that her doctor had already put her on birth control pills. They helped but only a little. In graduate school, a boyfriend convinced her to go off the pills, and her periods became so painful, she couldn't walk.
Collapse
|
87
|
Tanaka Y, Mori T, Ito F, Koshiba A, Takaoka O, Kataoka H, Maeda E, Okimura H, Mori T, Kitawaki J. Exacerbation of Endometriosis Due To Regulatory T-Cell Dysfunction. J Clin Endocrinol Metab 2017; 102:3206-3217. [PMID: 28575420 DOI: 10.1210/jc.2017-00052] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/22/2017] [Indexed: 02/04/2023]
Abstract
CONTEXT Endometriosis is a chronic inflammatory disease associated with altered immune response to endometrial cells facilitating the implantation and proliferation of ectopic endometrial tissues. Although regulatory T (Treg) cells play a key role in T cell-mediated immune response and development of immune disorders, their significance in endometriosis remains to be elucidated. Recently, CD4+CD45RA- forkhead box protein 3 (Foxp3)hi T cells, activated Treg cells, have been identified as a functionally true suppressive population of Treg cells. OBJECTIVE To investigate the role of Treg cells in endometriosis. DESIGN Three Treg cell fractions (resting Treg cells, activated Treg cells, and non-Treg cells) were examined using flow cytometry in the endometrioma, endometrium, peritoneal fluid, and peripheral blood obtained from women with (n = 27) and without (n = 28) endometriosis. A mouse model of endometriosis was made in Foxp3tm3Ayr/J (Foxp3DTR) C57BL/6 Treg cell-depleted mice (n = 28). RESULTS In women with endometrioma, the proportion of activated Treg cells in the endometrioma and the endometrium, but not in the peritoneal fluid or peripheral blood, was significantly decreased compared with that in women without endometriosis. In Foxp3DTR/diphtheria toxin mice, the number and weight of endometriotic lesions, inflammatory cytokine levels and angiogenetic factors were significantly increased compared with those in control mice. CONCLUSIONS Treg cell deficiency exaggerates local inflammation and angiogenesis and simultaneously facilitates the attachment and growth of endometrial implants. The findings provide an insight into dysregulated immune response for the pathogenesis and development.
Collapse
Affiliation(s)
- Yukiko Tanaka
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Taisuke Mori
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Fumitake Ito
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Akemi Koshiba
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Osamu Takaoka
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hisashi Kataoka
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Eiko Maeda
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hiroyuki Okimura
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takahide Mori
- Academia for Repro-regenerative Medicine, Kyoto 602-0917, Japan
| | - Jo Kitawaki
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
88
|
Qiu W, Guo F, Glass K, Yuan GC, Quackenbush J, Zhou X, Tantisira KG. Differential connectivity of gene regulatory networks distinguishes corticosteroid response in asthma. J Allergy Clin Immunol 2017; 141:1250-1258. [PMID: 28736268 DOI: 10.1016/j.jaci.2017.05.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/02/2017] [Accepted: 05/03/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Variations in drug response between individuals have prevented us from achieving high drug efficacy in treating many complex diseases, including asthma. Genetics plays an important role in accounting for such interindividual variations in drug response. However, systematic approaches for addressing how genetic factors and their regulators determine variations in drug response in asthma treatment are lacking. OBJECTIVE We sought to identify key transcriptional regulators of corticosteroid response in asthma using a novel systems biology approach. METHODS We used Passing Attributes between Networks for Data Assimilations (PANDA) to construct the gene regulatory networks associated with good responders and poor responders to inhaled corticosteroids based on a subset of 145 white children with asthma who participated in the Childhood Asthma Management Cohort. PANDA uses gene expression profiles and published relationships among genes, transcription factors (TFs), and proteins to construct the directed networks of TFs and genes. We assessed the differential connectivity between the gene regulatory network of good responders versus that of poor responders. RESULTS When compared with poor responders, the network of good responders has differential connectivity and distinct ontologies (eg, proapoptosis enriched in network of good responders and antiapoptosis enriched in network of poor responders). Many of the key hubs identified in conjunction with clinical response are also cellular response hubs. Functional validation demonstrated abrogation of differences in corticosteroid-treated cell viability following siRNA knockdown of 2 TFs and differential downstream expression between good responders and poor responders. CONCLUSIONS We have identified and validated multiple TFs influencing asthma treatment response. Our results show that differential connectivity analysis can provide new insights into the heterogeneity of drug treatment effects.
Collapse
Affiliation(s)
- Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Feng Guo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Guo Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Mass; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Mass; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass.
| |
Collapse
|
89
|
Börner C, Scheerer C, Buschow R, Chiantera V, Sehouli J, Mechsner S. Pain Mechanisms in Peritoneal Diseases Might Be Partially Regulated by Estrogen. Reprod Sci 2017; 25:424-434. [PMID: 28659008 DOI: 10.1177/1933719117715126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To identify factors influencing the differential pain pathogenesis in peritoneal endometriosis (pEM) and peritoneal carcinomatosis in ovarian cancer (pOC), we undertook an experimental study. Tissue samples of 18 patients with pEM, 15 patients with pOC, and 15 unaffected peritoneums as controls were collected during laparoscopy or laparotomy. Immunohistochemical stainings were conducted to identify nerve fibers and neurotrophins in the tissue samples. Additionally, 23 pEM fluids, 25 pOC ascites fluids, and 20 peritoneal fluids of patients with myoma uteri as controls were collected. In these fluids, the expression of neurotrophins was evaluated. The effects of peritoneal fluids and ascites on the neurite outgrowth of chicken sensory ganglia were estimated by using a neuronal growth assay. An electrochemiluminescence immunoassay was carried out to determine the expression of estrogen in the peritoneal fluids and ascites. The total and sensory nerve fiber density was significantly higher in pEM than in pOC ( P < .001 and P < .01). All neurotrophins tested were present in tissue and fluid samples of pEM and pOC. Furthermore, the neurotrophic properties of pEM and pOC fluids were demonstrated, leading to sensory nerve fiber outgrowth. Estrogen concentration in the peritoneal fluids of pEM was significantly higher compared to ascites of pOC ( P < .001). The total and sensory nerve fiber density in the tissue samples as well as the estrogen expression in the peritoneal fluid of pEM was considerably higher than that in pOC, representing the most notable difference found in both diseases. This might explain the differential pain perception in pEM and pOC. Therefore, estrogen might be a key factor in influencing the genesis of pain in endometriosis.
Collapse
Affiliation(s)
- Clara Börner
- 1 Department of Gynecology, Endometriosis Research Centre Charité, Charité, Hindenburgdamm, Berlin, Germany
| | - Claudia Scheerer
- 1 Department of Gynecology, Endometriosis Research Centre Charité, Charité, Hindenburgdamm, Berlin, Germany
| | - Rene Buschow
- 1 Department of Gynecology, Endometriosis Research Centre Charité, Charité, Hindenburgdamm, Berlin, Germany
| | - Vito Chiantera
- 1 Department of Gynecology, Endometriosis Research Centre Charité, Charité, Hindenburgdamm, Berlin, Germany
| | - Jalid Sehouli
- 1 Department of Gynecology, Endometriosis Research Centre Charité, Charité, Hindenburgdamm, Berlin, Germany
| | - Sylvia Mechsner
- 1 Department of Gynecology, Endometriosis Research Centre Charité, Charité, Hindenburgdamm, Berlin, Germany
| |
Collapse
|
90
|
Faner R, Cruz T, Casserras T, López-Giraldo A, Noell G, Coca I, Tal-Singer R, Miller B, Rodriguez-Roisin R, Spira A, Kalko SG, Agustí A. Network Analysis of Lung Transcriptomics Reveals a Distinct B-Cell Signature in Emphysema. Am J Respir Crit Care Med 2017; 193:1242-53. [PMID: 26735770 DOI: 10.1164/rccm.201507-1311oc] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) is characterized by chronic airflow limitation caused by a combination of airways disease (bronchiolitis) and parenchymal destruction (emphysema), whose relative proportion varies from patient to patient. OBJECTIVES To explore and contrast the molecular pathogenesis of emphysema and bronchiolitis in COPD. METHODS We used network analysis of lung transcriptomics (Affymetrix arrays) in 70 former smokers with COPD to compare differential expression and gene coexpression in bronchiolitis and emphysema. MEASUREMENTS AND MAIN RESULTS We observed that in emphysema (but not in bronchiolitis) (1) up-regulated genes were enriched in ontologies related to B-cell homing and activation; (2) the immune coexpression network had a central core of B cell-related genes; (3) B-cell recruitment and immunoglobulin transcription genes (CXCL13, CCL19, and POU2AF1) correlated with emphysema severity; (4) there were lymphoid follicles (CD20(+)IgM(+)) with active B cells (phosphorylated nuclear factor-κB p65(+)), proliferation markers (Ki-67(+)), and class-switched B cells (IgG(+)); and (5) both TNFRSF17 mRNA and B cell-activating factor protein were up-regulated. These findings were by and large reproduced in a group of patients with incipient emphysema and when patients with emphysema were matched for the severity of airflow limitation of those with bronchiolitis. CONCLUSIONS Our study identifies enrichment in B cell-related genes in patients with COPD with emphysema that is absent in bronchiolitis. These observations contribute to a better understanding of COPD pathobiology and may open new therapeutic opportunities for patients with COPD.
Collapse
Affiliation(s)
- Rosa Faner
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Tamara Cruz
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Teresa Casserras
- 3 Bioinformatics Platform Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Alejandra López-Giraldo
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Guillaume Noell
- 2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Ignacio Coca
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
| | | | | | - Roberto Rodriguez-Roisin
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain.,5 Respiratory Institute, Pulmonary Service, Hospital Clinic, Institut d'investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain; and
| | - Avrum Spira
- 6 Boston University School of Medicine, Boston, Massachusetts
| | - Susana G Kalko
- 3 Bioinformatics Platform Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Alvar Agustí
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain.,5 Respiratory Institute, Pulmonary Service, Hospital Clinic, Institut d'investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain; and
| |
Collapse
|
91
|
Decker JT, Hobson EC, Zhang Y, Shin S, Thomas AL, Jeruss JS, Arnold KB, Shea LD. Systems analysis of dynamic transcription factor activity identifies targets for treatment in Olaparib resistant cancer cells. Biotechnol Bioeng 2017; 114:2085-2095. [PMID: 28322442 DOI: 10.1002/bit.26293] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 12/26/2022]
Abstract
The development of resistance to targeted therapeutics is a challenging issue for the treatment of cancer. Cancers that have mutations in BRCA, a DNA repair protein, have been treated with poly(ADP-ribose) polymerase (PARP) inhibitors, which target a second DNA repair mechanism with the aim of inducing synthetic lethality. While these inhibitors have shown promise clinically, the development of resistance can limit their effectiveness as a therapy. This study investigated mechanisms of resistance in BRCA-mutated cancer cells (HCC1937) to Olaparib (AZD2281) using TRACER, a technique for measuring dynamics of transcription factor (TF) activity in living cells. TF activity was monitored in the parental HCC1937 cell line and two distinct resistant cell lines, one with restored wild-type BRCA1 and one with acquired resistance independent of BRCA1 for 48 h during treatment with Olaparib. Partial least squares discriminant analysis (PLSDA) was used to categorize the three cell types based on TF activity, and network analysis was used to investigate the mechanism of early response to Olaparib in the study cells. NOTCH signaling was identified as a common pathway linked to resistance in both Olaparib-resistant cell types. Western blotting confirmed upregulation of NOTCH protein, and sensitivity to Olaparib was restored through co-treatment with a gamma secretase inhibitor. The identification of NOTCH signaling as a common pathway contributing to PARP inhibitor resistance by TRACER indicates the efficacy of transcription factor dynamics in identifying targets for intervention in treatment-resistant cancer and provides a new method for determining effective strategies for directed chemotherapy. Biotechnol. Bioeng. 2017;114: 2085-2095. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joseph T Decker
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, 1119 Gerstacker, Ann Arbor 48109, Michigan
| | - Eric C Hobson
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, 1119 Gerstacker, Ann Arbor 48109, Michigan
| | - Yining Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Seungjin Shin
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | | | | | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, 1119 Gerstacker, Ann Arbor 48109, Michigan
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, 1119 Gerstacker, Ann Arbor 48109, Michigan
| |
Collapse
|
92
|
Jørgensen H, Hill AS, Beste MT, Kumar MP, Chiswick E, Fedorcsak P, Isaacson KB, Lauffenburger DA, Griffith LG, Qvigstad E. Peritoneal fluid cytokines related to endometriosis in patients evaluated for infertility. Fertil Steril 2017; 107:1191-1199.e2. [DOI: 10.1016/j.fertnstert.2017.03.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 01/25/2023]
|
93
|
Greaves E, Critchley HOD, Horne AW, Saunders PTK. Relevant human tissue resources and laboratory models for use in endometriosis research. Acta Obstet Gynecol Scand 2017; 96:644-658. [PMID: 28233896 PMCID: PMC5485163 DOI: 10.1111/aogs.13119] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/18/2017] [Indexed: 12/17/2022]
Abstract
Endometriosis is characterized by the growth of endometrium‐like tissue outside the uterus, most commonly on the pelvic peritoneum and ovaries. Although it may be asymptomatic in some women, in others it can cause debilitating pain, infertility or other symptoms including fatigue. Current research is directed both at understanding the complex etiology and pathophysiology of the disorder and at the development of new nonsurgical approaches to therapy that lack the unwanted side effects of current medical management. Tools for endometriosis research fall into two broad categories; patient‐derived tissues, and fluids (and cells isolated from these sources) or models based on the use of cells or animals. In this review, we discuss the literature that has reported data from the use of these tools in endometriosis research and we highlight the strengths and weaknesses of each. Although many different models are reported in the literature, hypothesis‐driven research will only be facilitated with careful experimental design and selection of the most appropriate human tissue from patients with and without endometriosis and combinations of physiologically relevant in vitro and in vivo laboratory models.
Collapse
Affiliation(s)
- Erin Greaves
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Hilary O D Critchley
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Andrew W Horne
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Philippa T K Saunders
- MRC Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
94
|
IL-27 triggers IL-10 production in Th17 cells via a c-Maf/RORγt/Blimp-1 signal to promote the progression of endometriosis. Cell Death Dis 2017; 8:e2666. [PMID: 28300844 PMCID: PMC5386585 DOI: 10.1038/cddis.2017.95] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/11/2022]
Abstract
Endometriosis is an estrogen-dependent inflammatory disease. The anti-inflammatory cytokine IL-10 is also increased in endometriosis. IL-10 production by Th17 cells is critical for limiting autoimmunity and inflammatory responses. However, the mechanism of inducing IL-10-producing Th17 cells is still largely unknown. The present study investigated the differentiation mechanism and role of IL-10-producing Th17 cells in endometriosis. Here, we report that IL-10+Th17 cells are significantly increased in the peritoneal fluid of women with endometriosis, along with an elevation of IL-27, IL-6 and TGF-β. Compared with peripheral CD4+ T cells, endometrial CD4+ T cells highly expressed IL-27 receptors, especially the ectopic endometrium. Under external (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) and local (estrogen, IL-6 and TGF-β) environmental regulation, IL-27 from macrophages and endometrial stromal cells (ESCs) induces IL-10 production in Th17 cells in vitro and in vivo. This process may be mediated through the interaction between c-musculoaponeurotic fibrosarconna (c-Maf) and retinoic acid-related orphan receptor gamma t (RORγt), and associated with the upregulation of downstream B lymphocyte-induced maturation protein-1 (Blimp-1). IL-10+Th17 cells, in turn, stimulate the proliferation and implantation of ectopic lesions and accelerate the progression of endometriosis. These results suggest that IL-27 is a pivotal regulator in endometriotic immune tolerance by triggering Th17 cells to produce IL-10 and promoting the rapid growth and implantation of ectopic lesions. This finding provides a scientific basis for potential therapeutic strategies aimed at preventing the development of endometriosis, especially for patients with high levels of IL-10+Th17 cells.
Collapse
|
95
|
Abstract
According to recent year studies, the classical biguanide metformin has antiproliferative, proapoptotic and anti-inflammatory effects in addition to the main hypoglycemic effect. There are clinical and experimental studies these effects in the therapy of oncological and benign hyperplastic diseases. There is no data about the clinical efficacy of metformin in the therapy of endometriosis in the domestic literature, and there were a few studies in foreign sources. There was a decrease in the severity of the pain syndrome and an increase of pregnancy rate in two clinical studies with small samples. However, future studies are needed to investigate the mechanisms of the target drug effect and to develop effective regimens for the treatment of endometriosis.
Collapse
|
96
|
Rogers PAW, Adamson GD, Al-Jefout M, Becker CM, D’Hooghe TM, Dunselman GAJ, Fazleabas A, Giudice LC, Horne AW, Hull ML, Hummelshoj L, Missmer SA, Montgomery GW, Stratton P, Taylor RN, Rombauts L, Saunders PT, Vincent K, Zondervan KT. Research Priorities for Endometriosis. Reprod Sci 2017; 24:202-226. [PMID: 27368878 PMCID: PMC5933154 DOI: 10.1177/1933719116654991] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The 3rd International Consensus Workshop on Research Priorities in Endometriosis was held in São Paulo on May 4, 2014, following the 12th World Congress on Endometriosis. The workshop was attended by 60 participants from 19 countries and was divided into 5 main sessions covering pathogenesis/pathophysiology, symptoms, diagnosis/classification/prognosis, disease/symptom management, and research policy. This research priorities consensus statement builds on earlier efforts to develop research directions for endometriosis. Of the 56 research recommendations from the 2011 meeting in Montpellier, a total of 41 remained unchanged, 13 were updated, and 2 were deemed to be completed. Fifty-three new research recommendations were made at the 2014 meeting in Sao Paulo, which in addition to the 13 updated recommendations resulted in a total of 66 new recommendations for research. The research recommendations published herein, as well as those from the 2 previous papers from international consensus workshops, are an attempt to promote high-quality research in endometriosis by identifying and agreeing on key issues that require investigation. New areas included in the 2014 recommendations include infertility, patient stratification, and research in emerging nations, in addition to an increased focus on translational research. A revised and updated set of research priorities that builds on this document will be developed at the 13th World Congress on Endometriosis to be held on May 17-20, 2017, in Vancouver, British Columbia, Canada.
Collapse
Affiliation(s)
| | - G. David Adamson
- Palo Alto Medical Foundation Fertility Physicians of Northern California,
Palo Alto, CA, USA
- World Endometriosis Research Foundation (WERF), London, United Kingdom
| | | | - Christian M. Becker
- Nuffield Department of Obstetrics & Gynaecology, Endometriosis Care
Centre, Oxford, United Kingdom
| | | | - Gerard A. J. Dunselman
- Department of Obstetrics & Gynaecology, Research Institute GROW,
Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | - Linda C. Giudice
- World Endometriosis Research Foundation (WERF), London, United Kingdom
- University of California, San Francisco, CA, USA
- World Endometriosis Society (WES), Vancouver, Canada
| | - Andrew W. Horne
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh,
United Kingdom
| | - M. Louise Hull
- The Robinson Institute, University of Adelaide, Adelaide, Australia
| | - Lone Hummelshoj
- World Endometriosis Research Foundation (WERF), London, United Kingdom
- World Endometriosis Society (WES), Vancouver, Canada
| | - Stacey A. Missmer
- World Endometriosis Research Foundation (WERF), London, United Kingdom
- Harvard Schools of Medicine and Public Health, Boston, MA, USA
| | | | | | - Robert N. Taylor
- World Endometriosis Society (WES), Vancouver, Canada
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Luk Rombauts
- World Endometriosis Research Foundation (WERF), London, United Kingdom
- World Endometriosis Society (WES), Vancouver, Canada
- Monash University, Clayton, Australia
| | - Philippa T. Saunders
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh,
United Kingdom
| | - Katy Vincent
- Nuffield Department of Obstetrics & Gynaecology, Endometriosis Care
Centre, Oxford, United Kingdom
| | - Krina T. Zondervan
- Nuffield Department of Obstetrics & Gynaecology, Endometriosis Care
Centre, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford,
United Kingdom
| |
Collapse
|
97
|
Tanbo T, Fedorcsak P. Endometriosis-associated infertility: aspects of pathophysiological mechanisms and treatment options. Acta Obstet Gynecol Scand 2017; 96:659-667. [DOI: 10.1111/aogs.13082] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/14/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Tom Tanbo
- Department of Reproductive Medicine; Oslo University Hospital; Oslo Norway
- Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - Peter Fedorcsak
- Department of Reproductive Medicine; Oslo University Hospital; Oslo Norway
- Institute of Clinical Medicine; University of Oslo; Oslo Norway
| |
Collapse
|
98
|
Aredo JV, Heyrana KJ, Karp BI, Shah JP, Stratton P. Relating Chronic Pelvic Pain and Endometriosis to Signs of Sensitization and Myofascial Pain and Dysfunction. Semin Reprod Med 2017; 35:88-97. [PMID: 28049214 DOI: 10.1055/s-0036-1597123] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chronic pelvic pain is a frustrating symptom for patients with endometriosis and is frequently refractory to hormonal and surgical management. While these therapies target ectopic endometrial lesions, they do not directly address pain due to central sensitization of the nervous system and myofascial dysfunction, which can continue to generate pain from myofascial trigger points even after traditional treatments are optimized. This article provides a background for understanding how endometriosis facilitates remodeling of neural networks, contributing to sensitization and generation of myofascial trigger points. A framework for evaluating such sensitization and myofascial trigger points in a clinical setting is presented. Treatments that specifically address myofascial pain secondary to spontaneously painful myofascial trigger points and their putative mechanisms of action are also reviewed, including physical therapy, dry needling, anesthetic injections, and botulinum toxin injections.
Collapse
Affiliation(s)
- Jacqueline V Aredo
- National Institute of Neurological Disorders and Stroke, Clinical Center, Intramural Research Program NIH, Bethesda, Maryland
| | - Katrina J Heyrana
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York
| | - Barbara I Karp
- National Institute of Neurological Disorders and Stroke, Clinical Center, Intramural Research Program NIH, Bethesda, Maryland
| | - Jay P Shah
- Rehabilitation Medicine Department, Clinical Center, Intramural Research Program NIH, Bethesda, Maryland
| | - Pamela Stratton
- National Institute of Neurological Disorders and Stroke, Clinical Center, Intramural Research Program NIH, Bethesda, Maryland
| |
Collapse
|
99
|
Affiliation(s)
- Jayasree Sengupta
- Department of Physiology; All India Institute of Medical Sciences; New Delhi India
| | - G. Anupa
- Department of Physiology; All India Institute of Medical Sciences; New Delhi India
| | - Muzaffer Ahmed Bhat
- Department of Physiology; All India Institute of Medical Sciences; New Delhi India
| | - Debabrata Ghosh
- Department of Physiology; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
100
|
Yuan M, Li D, An M, Li Q, Zhang L, Wang G. Rediscovering peritoneal macrophages in a murine endometriosis model. Hum Reprod 2016; 32:94-102. [PMID: 27816922 DOI: 10.1093/humrep/dew274] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/26/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022] Open
Abstract
STUDY QUESTION What are the features of peritoneal macrophage subgroups and T helper cells in the development of murine endometriosis? SUMMARY ANSWER During the development of endometriosis in a murine model, large peritoneal macrophages (LPMs) and small peritoneal macrophages (SPMs) are polarized into M1 and M2 cells, respectively, and the proportions of T helper (Th) 1, Th17 and T regulatory (Treg) cells are increased. WHAT IS KNOWN ALREADY Numerous studies investigating the etiology and pathogenesis of endometriosis have focused on the polarization states of peritoneal macrophages in endometriosis models and patients, but the results are inconclusive. Further studies indicate that peritoneal macrophages are composed of two distinct subsets: LPMs and SPMs, although their roles in endometriosis are unknown. STUDY DESIGN, SIZE, DURATION This study involves a prospective and randomized experiment. Fifty C57BL/6 female mice were randomly allocated to five control and five experimental groups (n = 5/group) according to the presence or absence of transplantation. The transplant periods are 0.25, 3, 14, 28 and 42 days. PARTICIPANTS/MATERIALS, SETTING, METHODS C57BL/6 mice were utilized to establish an endometriosis model by i.p. injection of allogeneic endometrial segments. Dynamic changes of peritoneal macrophage subsets and polarization profiles were evaluated by flow cytometry (FCM). Macrophage morphology and density were assessed by cell counting under a microscope. Dynamic changes of Th1, Th2, Th17 and Treg cells were estimated by FCM. MAIN RESULTS AND THE ROLE OF CHANCE Peritoneal macrophages are composed of two distinct subsets: LPMs and SPMs. The proportion of SPMs increased immediately after peritoneal injection of endometrial tissues, whereas LPMs showed an opposite trend. Peritoneal macrophages differentiated into both M1 and M2 macrophages. The bidirectional polarization of macrophages was caused by the inverse trends of polarization of LPMs and SPMs. Consistently, the proportions of Th1, Th17 and Treg cells were all increased in mice with endometriosis. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION In this study, detection was only performed in a murine endometriosis model. Clinical data and more intervention experiments are required in understanding the roles of LPMs and SPMs in endometriosis. WIDER IMPLICATIONS OF THE FINDINGS The dramatic changes of LPMs and SPMs in proportion and polarization profiles clarified the varying differentiation states of peritoneal macrophages. In addition, LPMs and SPMs may play different roles in the pathogenesis of endometriosis in different stages of endometriosis. Therefore, the new classification should be included in future relevant basic and clinical studies on endometriosis. STUDY FUNDING/COMPETING INTERESTS This research was supported totally by grant 81270671 from the National Natural Science Foundation of China. The authors report no conflict of interest.
Collapse
Affiliation(s)
- Ming Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan 250012, People's Republic of China
| | - Dong Li
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan 250012, People's Republic of China
| | - Min An
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan 250012, People's Republic of China
| | - Qiuju Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan 250012, People's Republic of China
| | - Lu Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan 250012, People's Republic of China
| | - Guoyun Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan 250012, People's Republic of China
| |
Collapse
|