51
|
Martinez A, Ferrer S, Santos I, Jimenez E, Sparrowe J, Regadera J, De Las Heras FG, Gargallo-Viola D. Antifungal activities of two new azasordarins, GW471552 and GW471558, in experimental models of oral and vulvovaginal candidiasis in immunosuppressed rats. Antimicrob Agents Chemother 2001; 45:3304-9. [PMID: 11709301 PMCID: PMC90830 DOI: 10.1128/aac.45.12.3304-3309.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sordarins constitute a new class of antifungal agents with a novel mechanism of action involving the selective inhibition of fungal protein synthesis. A further evolution of this class of antifungals has led to a new family of sordarin derivatives called azasordarins. The therapeutic efficacies of two new azasordarins, GW471552 and GW471558, were studied in experimental models of oral and vulvovaginal candidiasis in immunosuppressed rats. In all cases rats were immunosuppressed with dexamethasone in the drinking water. Oral candidiasis was established by inoculating 0.1 ml of a yeast suspension containing 5 x 10(8) cells of Candida albicans 4711E with a cotton swab on three alternate days. Vulvovaginal candidiasis was established in ovariectomized and estrus-induced rats by intravaginal inoculation of 10(7) CFU of C. albicans 4711E in 0.1 ml of saline. GW471552 and GW471558 were administered at 1, 5, and 10 mg/kg of body weight via the subcutaneous route. In oral candidiasis, azasordarins were administered each 8 h for 7 consecutive days, while in vaginal candidiasis the compounds were given each 4 h for 3 consecutive days. Antifungal activity of azasordarins was assessed by colony counts and by histological examination 1 day after treatment. In the oral infection model, GW471552 and GW471558 administered at 5 mg/kg significantly reduced (P < 0.05) the number of CFU of C. albicans compared with untreated controls. In addition, GW471552 and GW471558 given at 10 mg/kg eradicated C. albicans from the oral cavities of 100% of infected animals. Against vulvovaginal infection, both compounds showed significant therapeutic efficacy. GW471552 was able to eradicate the vaginal fungal burden at a dose of 10 mg/kg, and it significantly reduced the number of CFU of C. albicans in vaginas of rats treated with a dose of 5 mg/kg (P < 0.05). GW471558 showed greater efficacy, eradicating the fungal burden of 100% of infected rats at a dose of 5 mg/kg and significantly reducing (P < 0.05) the C. albicans vaginal counts even at a dose of 1 mg/kg. In both therapeutic efficacy studies, the histological findings confirmed the microbiological results. The experimental results presented show that the tested azasordarins are effective against oral and vulvovaginal candidiasis in immunosuppressed rats and could be promising antifungal agents for use in humans.
Collapse
|
52
|
Herreros E, Almela MJ, Lozano S, Gomez de las Heras F, Gargallo-Viola D. Antifungal activities and cytotoxicity studies of six new azasordarins. Antimicrob Agents Chemother 2001; 45:3132-9. [PMID: 11600368 PMCID: PMC90794 DOI: 10.1128/aac.45.11.3132-3139.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GW 471552, GW 471558, GW 479821, GW 515716, GW 570009, and GW 587270 are members of a new family of sordarin derivatives called azasordarins. The in vitro activities of these compounds were evaluated against clinical isolates of yeasts, including Candida albicans, Candida non-albicans, and Cryptococcus neoformans strains. Activities against Pneumocystis carinii, Aspergillus spp., less common molds, and dermatophytes were also investigated. Azasordarin derivatives displayed significant activities against the most clinically important Candida species, with the exception of C. krusei. Against C. albicans, including fluconazole-resistant strains, MICs at which 90% of the isolates tested are inhibited (MIC(90)s) were 0.002 microg/ml with GW 479821, 0.015 microg/ml with GW 515716 and GW 587270, and 0.06 microg/ml with GW 471552, GW 471558, and GW 570009. The MIC(90)s of GW 471552, GW 471558, GW 479821, GW 515716, GW 570009, and GW 587270 were 0.12, 0.12, 0.03, 0.06, 0.12, and 0.06 microg/ml, respectively, against C. tropicalis and 4, 0.25, 0.06, 0.25, 0.5, and 0.5 microg/ml, respectively, against C. glabrata. In addition, some azasordarin derivatives (GW 479821, GW 515716, GW 570009, and GW 58720) were active against C. parapsilosis, with MIC(90)s of 2, 4, 4, and 1 microg/ml, respectively. The compounds were extremely potent against P. carinii, showing 50% inhibitory concentrations of <or=0.001 microg/ml. However Cryptococcus neoformans was resistant to all compounds tested (MIC > 16 microg/ml). These azasordarin derivatives also showed significant activity against emerging fungal pathogens, which affect immunocompromised patients, such as Rhizopus arrhizus, Blastoschizomyces capitatus, and Geotrichum clavatum. Against these organisms, the MICs of GW 587270 ranged from 0.12 to 1 microg/ml, those of GW 479821 and GW 515716 ranged from 0.12 to 2 microg/ml, and those of GW 570009 ranged from 0.12 to 4 microg/ml. Against Fusarium oxysporum, Scedosporium apiospermum, Absidia corymbifera, Cunninghamella bertholletiae, and dermatophytes, GW 587270 was the most active compound, with MICs ranging from 4 to 16 microg/ml. Against Aspergillus spp., the MICs of the compounds tested were higher than 16 microg/ml. The in vitro selectivity of azasordarins was investigated by cytotoxicity studies performed with five cell lines and primary hepatocytes. Concentrations of compound required to achieve 50% inhibition of the parameter considered (Tox(50)s) of GW 570009, GW 587270, GW 479281, and GW 515716 in the cell lines ranged from 60 to 96, 49 to 62, 24 to 36, and 16 to 38 microg/ml, respectively. The cytotoxicity values of GW 471552 and GW 471558 were >100 microg/ml for all cell lines tested. Tox(50)s on hepatocytes were in the following order: GW 471558 > GW 471552 > GW 570009 > GW 587270 > GW 515716 > GW 479821, with values ranging from higher than 100 microg/ml to 23 microg/ml. The cytotoxicity results obtained with fully metabolizing rat hepatocytes were in total agreement with those obtained with cell lines. In summary, the in vitro activities against important pathogenic fungi and the selectivity demonstrated in mammalian cell lines justify additional studies to determine the clinical usefulness of azasordarins.
Collapse
Affiliation(s)
- E Herreros
- Glaxo Smithkline, 28760 Tres Cantos, Madrid, Spain
| | | | | | | | | |
Collapse
|
53
|
Aviles P, Pateman A, San Roman R, Guillén MJ, Gómez De Las Heras F, Gargallo-Viola D. Animal pharmacokinetics and interspecies scaling of sordarin derivatives following intravenous administration. Antimicrob Agents Chemother 2001; 45:2787-92. [PMID: 11557470 PMCID: PMC90732 DOI: 10.1128/aac.45.10.2787-2792.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sordarin derivatives constitute a new group of synthetic antifungal agents that selectively inhibit fungal protein synthesis. They have demonstrated in vitro activity against the most important fungal pathogens, both yeast and filamentous. This new family of compounds has also shown in vivo activity against murine Candida albicans, Histoplasma capsulatum, and Coccidioides immitis experimental infections, as well as against Pneumocystis carinii pneumonia in rats. After intravenous dosing in animals, both the area under the concentration-time curve and the elimination half-life were highest in Cynomolgus monkeys, followed by those in rats, mice, and rabbits. The volume of distribution at steady state for sordarin derivatives was similar in all species tested. The clearance in rats and mice was higher than for other species. GM 237354, a sordarin derivative, was characterized by high serum protein binding in mouse, rat, and monkey serum (unbound fraction, < or =5%). An indirect evaluation of the effect of liver function upon the metabolism of this class of compounds has been made in animals with impaired liver function such as Gunn rats, as well as in allometric studies that showed better correlations of half-life to liver blood flow than to animal body weight. Linearity of the main pharmacokinetic parameters was demonstrated after intravenous dosing of the representative compound GM 193663 at 10 and 20 mg/kg of body weight in rats. Allometry was used to determine whether human pharmacokinetic parameters can be predicted from animal data by regression analysis against body weight and liver blood flow. All these results have demonstrated that the human pharmacokinetics of sordarin derivatives can be forecast from animal data.
Collapse
Affiliation(s)
- P Aviles
- GlaxoSmithKline, Parque Tecnológico de Madrid, 28760 Tres Cantos, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
54
|
Cuenca-Estrella M, Mellado E, Díaz-Guerra TM, Monzón A, Rodríguez-Tudela JL. Azasordarins: susceptibility of fluconazole-susceptible and fluconazole-resistant clinical isolates of Candida spp. to GW 471558. Antimicrob Agents Chemother 2001; 45:1905-7. [PMID: 11353650 PMCID: PMC90570 DOI: 10.1128/aac.45.6.1905-1907.2001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vitro activity of the azasordarin GW 471558 was compared with those of amphotericin B, flucytosine, itraconazole, and ketoconazole against 177 clinical isolates of Candida spp. GW 471558 showed potent activity against Candida albicans, Candida glabrata, and Candida tropicalis, even against isolates with decreased susceptibility to azoles. Candida krusei, Candida parapsilosis, Candida lusitaniae, and Candida guilliermondii are resistant to GW 471558 in vitro (MICs, >128 microg/ml).
Collapse
Affiliation(s)
- M Cuenca-Estrella
- Servicio de Micología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda Madrid, Spain.
| | | | | | | | | |
Collapse
|
55
|
Domínguez JM, Martin JJ. Identification of a putative sordarin binding site in Candida albicans elongation factor 2 by photoaffinity labeling. J Biol Chem 2001; 276:31402-7. [PMID: 11402051 DOI: 10.1074/jbc.m104183200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Candida albicans EF-2 binds sordarin to a single class of binding sites with K(d) = 1.26 microm. Equimolar mixtures of EF-2 and ribosomes, in the presence of a non-hydrolyzable GTP analog, reveal two classes of high affinity sordarin binding sites with K(d) = 0.7 and 41.5 nm, probably due to the existence of two ribosome populations. Photoaffinity labeling of C. albicans EF-2 in the absence of ribosomes has been performed with [(14)C]GM258383, a photoactivatable sordarin derivative. Labeling is saturable and can be considered specific, because it can be prevented with another sordarin analog. The fragment Gln(224)-Lys(232) has been identified as the modified peptide within the EF-2 sequence, Lys(228) being the residue to which the photoprobe was linked. This fragment is included within the G"-subdomain of EF-2. These results are discussed in the light of the high sordarin specificity toward fungal systems.
Collapse
Affiliation(s)
- J M Domínguez
- Research Department, GlaxoSmithKline S. A. PTM, C/Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain.
| | | |
Collapse
|
56
|
Abstract
Several new antifungal agents, including novel compounds in familiar classes and entirely new classes targeting previously untapped mechanisms, are in various stages of the drug development process. Many new triazole antifungal agents are being studied, including voriconazole, posaconazole, and ravuconazole. The echinocandin antifungals, which represent a new class of antifungal agents, possess activity against a variety of fungal pathogens. The sodarin derivatives and nikkomycins are two additional classes of antifungals in early stages of development; future studies will determine their therapeutic usefulness.
Collapse
Affiliation(s)
- E J Ernst
- College of Pharmacy, University of Iowa, Iowa City 52242-1112, USA
| |
Collapse
|
57
|
Groll AH, Piscitelli SC, Walsh TJ. Antifungal pharmacodynamics: concentration-effect relationships in vitro and in vivo. Pharmacotherapy 2001; 21:133S-148S. [PMID: 11501987 DOI: 10.1592/phco.21.12.133s.34507] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The pharmacodynamics of antifungal compounds involve relationships among drug concentrations, time, and antimicrobial effects in vitro and in vivo. Beyond better understanding of a drug's mode of action, characterization of these relationships has important implications for setting susceptibility breakpoints, establishing rational dosing regimens, and facilitating drug development. Important advances have been made in the experimental investigation of pharmacokinetics and pharmacodynamics of antifungal drugs; however, much remains to be learned about specific pathogens and specific sites of infection. Increased incorporation of pharmacokinetic and pharmacodynamic principles in experimental and clinical studies with antifungal agents is an important objective that will benefit the treatment and prophylaxis of life-threatening invasive fungal infections in immunocompromised patients.
Collapse
Affiliation(s)
- A H Groll
- Immunocompromised Host Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
58
|
Harger JW, Meskauskas A, Nielsen J, Justice MC, Dinman JD. Ty1 retrotransposition and programmed +1 ribosomal frameshifting require the integrity of the protein synthetic translocation step. Virology 2001; 286:216-24. [PMID: 11448174 DOI: 10.1006/viro.2001.0997] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Programmed ribosomal frameshifting is utilized by a number of RNA viruses to ensure the correct ratio of viral structural to enzymatic proteins for viral particle assembly. Altering frameshifting efficiencies upsets this ratio, inhibiting virus propagation. Two yeast viruses that induce host cell ribosomes to shift translational reading frame were used as tools to explore the interactions between viruses and host cellular protein synthetic machinery. Previous studies showed that the ribosome-inactivating protein pokeweed antiviral protein specifically inhibited propagation of the Ty1 retrotransposable element of yeast as a consequence of inhibition of programmed +1 ribosomal frameshifting. Here, complementary genetic and pharmacological approaches were employed to test whether inhibition of Ty1 retrotransposition is a general feature of alterations in the translocation step of elongation and +1 frameshifting. The results demonstrate that cells harboring a variety of mutant alleles of two host-encoded proteins that are involved in translocation, eukaryotic elongation factor-2 and the ribosome-associated protein RPP0, have Ty1 propagation defects. We also show that sordarin, a fungus-specific inhibitor of eEF-2 function, specifically inhibits programmed +1 ribosomal frameshifting and Ty1 retrotransposition. These findings serve to link inhibition of Ty1 retrotransposition and +1 frameshifting to changes in the translocation step of elongation.
Collapse
Affiliation(s)
- J W Harger
- Department of Molecular Genetics and Microbiology, Graduate Program in Molecular Biosciences at UMDNJ/Rutgers Universities, The Cancer Institute of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
59
|
Shastry M, Nielsen J, Ku T, Hsu MJ, Liberator P, Anderson J, Schmatz D, Justice MC. Species-specific inhibition of fungal protein synthesis by sordarin: identification of a sordarin-specificity region in eukaryotic elongation factor 2. MICROBIOLOGY (READING, ENGLAND) 2001; 147:383-390. [PMID: 11158355 DOI: 10.1099/00221287-147-2-383] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The sordarin class of natural products selectively inhibits fungal protein synthesis by impairing the function of eukaryotic elongation factor 2 (eEF2). Mutations in Saccharomyces cerevisiae eEF2 or the ribosomal stalk protein rpP0 can confer resistance to sordarin, although eEF2 is the major determinant of sordarin specificity. It has been shown previously that sordarin specifically binds S. cerevisiae eEF2 while there is no detectable binding to eEF2 from plants or mammals, despite the high level of amino acid sequence conservation among these proteins. In both whole-cell assays and in vitro translation assays, the efficacy of sordarin varies among different species of pathogenic fungi. To investigate the basis of sordarin's fungal selectivity, eEF2 has been cloned and characterized from several sordarin-sensitive and -insensitive fungal species. Results from in vivo expression of Candida species eEF2s in S. cerevisiae and in vitro translation and growth inhibition assays using hybrid S. cerevisiae eEF2 proteins demonstrate that three amino acid residues within eEF2 account for the selectivity of this class of compounds. It is also shown that the corresponding residues at these positions in human eEF2 are sufficient to confer sordarin insensitivity to S. cerevisiae identical to that observed with mammalian eEF2.
Collapse
Affiliation(s)
- Mythili Shastry
- Department of Animal Health, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA1
| | - Jennifer Nielsen
- Department of Animal Health, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA1
| | - Theresa Ku
- Department of Animal Health, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA1
| | - Ming-Jo Hsu
- Department of Animal Health, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA1
| | - Paul Liberator
- Department of Animal Health, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA1
| | - Jennifer Anderson
- Department of Animal Health, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA1
| | - Dennis Schmatz
- Department of Animal Health, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA1
| | - Michael C Justice
- Department of Animal Health, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA1
| |
Collapse
|
60
|
Graybill JR. The role of murine models in the development of antifungal therapy for systemic mycoses. Drug Resist Updat 2000; 3:364-383. [PMID: 11498404 DOI: 10.1054/drup.2000.0171] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Animal testing is crucial to the development of new antifungal compounds. This review describes the role that murine and other animal models have played in the development of three classes of antifungal agents: the polyenes, the triazoles and the echinocandins and the ways in which these models have been either the positive link in the path from in vitro studies to the patient, or have foreclosed later clinical evaluation. Efficacy studies in particular mycoses are discussed, as well as studies designed to determine whether combinations of antifungal drugs may have value over single agents. Copyright 2000 Harcourt Publishers Ltd.
Collapse
|
61
|
Martinez A, Aviles P, Jimenez E, Caballero J, Gargallo-Viola D. Activities of sordarins in experimental models of candidiasis, aspergillosis, and pneumocystosis. Antimicrob Agents Chemother 2000; 44:3389-94. [PMID: 11083645 PMCID: PMC90210 DOI: 10.1128/aac.44.12.3389-3394.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sordarin derivatives represent a new class of antifungal agents that act as potent inhibitors of fungal protein synthesis and possess a broad spectrum of activity. The in vivo activity of GM193663 and GM237354 was studied in mouse models of disseminated candidiasis and aspergillosis and in a rat model of pneumocystosis. The pharmacokinetic behavior of both sordarin derivatives was studied in mice and rats. In all studies, compounds were administered by the subcutaneous route. After a subcutaneous dose of 50 mg/kg of body weight to mice, the maximum level in serum, area under the concentration-time curve, half-life, and clearance for GM193663 and GM237354 were 51.8 and 23 microg/ml, 79.5 and 46 microg. h/ml, 0.8 and 0.85 h, and 21 and 25 ml/h, respectively. Systemic candidiasis and aspergillosis were established in CD-1 male mice infected with Candida albicans or Aspergillus fumigatus. For systemic candidiasis, compounds were given three times per day for seven consecutive days at 15, 30, 60, or 120 mg/kg/day. GM193663 and GM237354 showed dose-related efficacy against C. albicans, with 50% effective doses, 1 month after infection, of 25.2 and 10.7 mg/kg/dose, respectively. In experimental infections with A. fumigatus, GM237354 was given three times per day at 30, 60, or 120 mg/kg/day for five consecutive days. Animals treated with GM237354 demonstrated irregular responses. The survival of animals treated with GM237354 was 0, 30, and 0% at 30, 60, and 120 mg/kg/day, respectively. The therapeutic efficacy of GM193663 and GM237354 against Pneumocystis carinii was studied in an experimental P. carinii pneumonia (PCP) rat model. After a subcutaneous dose of 10 mg/kg given to rats, the maximum level in serum, area under the concentration-time curve, half-life, and clearance for GM193663 and GM237354 were 6.6 and 7.2 microg/ml, 8.5 and 11.8 microg. h/ml, 0.7 and 0.8 h, and 230 and 133 ml/h, respectively. To induce spontaneous PCP, rats were chronically immunosuppressed with dexamethasone. Infected animals were treated twice daily for 10 days at 0.2, 2, or 10 mg/kg/day. The therapeutic effect was estimated by the reduction in the number of cysts in the lungs of treated versus untreated animals. GM193663 and GM237354 significantly reduced the mean (+/- standard deviation) log number of cysts from 7.6 +/- 0.2 in the untreated group to 4.7 +/- 0.2 and 4.6 +/- 0.1, respectively, when the drugs were administered at a dose of 2 mg/kg/day. The log number of cysts was also reduced in infected animals given lower doses of the compounds (0.2 mg/kg/day). In summary, GM193663 and GM237354 are new sordarin derivatives that may potentially play a major role in the treatment of candidiasis and PCP. Further testing with Aspergillus in other animal models is warranted.
Collapse
Affiliation(s)
- A Martinez
- Research Department, Glaxo Wellcome S.A., 28760 Tres Cantos, Madrid, Spain
| | | | | | | | | |
Collapse
|
62
|
Briones C, Ballesta JP. Conformational changes induced in the Saccharomyces cerevisiae GTPase-associated rRNA by ribosomal stalk components and a translocation inhibitor. Nucleic Acids Res 2000; 28:4497-505. [PMID: 11071938 PMCID: PMC113874 DOI: 10.1093/nar/28.22.4497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The yeast ribosomal GTPase associated center is made of parts of the 26S rRNA domains II and VI, and a number of proteins including P0, P1alpha, P1beta, P2alpha, P2beta and L12. Mapping of the rRNA neighborhood of the proteins was performed by footprinting in ribosomes from yeast strains lacking different GTPase components. The absence of protein P0 dramatically increases the sensitivity of the defective ribosome to degradation hampering the RNA footprinting. In ribosomes lacking the P1/P2 complex, protection of a number of nucleotides is detected around positions 840, 880, 1100, 1220-1280 and 1350 in domain II as well as in several positions in the domain VI alpha-sarcin region. The protection pattern resembles the one reported for the interaction of elongation factors in bacterial systems. The results exclude a direct interaction of these proteins with the rRNA and are compatible with an increase in the ribosome affinity for EF-2 in the absence of the acidic P proteins. Interestingly, a sordarin derivative inhibitor of EF-2 causes an opposite effect, increasing the reactivity in positions protected by the absence of P1/P2. Similarly, a deficiency in protein L12 exposes nucleotides G1235, G1242, A1262, A1269, A1270 and A1272 to chemical modification, thus situating the protein binding site in the most conserved part of the 26S rRNA, equivalent to the bacterial protein L11 binding site.
Collapse
Affiliation(s)
- C Briones
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | | |
Collapse
|
63
|
Aviles P, Falcoz C, San Roman R, Gargallo-Viola D. Pharmacokinetics-pharmacodynamics of a sordarin derivative (GM 237354) in a murine model of lethal candidiasis. Antimicrob Agents Chemother 2000; 44:2333-40. [PMID: 10952576 PMCID: PMC90066 DOI: 10.1128/aac.44.9.2333-2340.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sordarins are a new class of antifungal agents which selectively inhibit fungal protein synthesis (FPS) by impairing the function of elongation factor 2. The present study investigates possible correlations between sordarin pharmacokinetic (PK) properties and therapeutic efficacy, based on a murine model of invasive systemic candidiasis, and provides a rationale for dose selection in the first study of efficacy in humans. A significant correlation between PK parameters and the in vivo activity of GM 237354, taken as a representative FPS inhibitor, was demonstrated in a murine model of lethal systemic candidiasis. Area under the concentration-time curve (AUC) and maximum concentration of drug in serum (C(max)) over 24 h were determined after a single GM 237354 subcutaneous (s.c.) dose (50 mg/kg of body weight) in healthy animals (no significant PK changes with infection were observed for other sordarin derivatives). These results have been used to simulate PK profiles obtained after several doses and/or schedules in animal therapy. A PK-pharmacodynamic (PD) parameter such as the time that serum drug concentrations remain above the MIC (t > MIC) was also determined. Treatment efficacies were evaluated in terms of the area under the survival time curve (AUSTC), using Kaplan-Meier survival analysis and in terms of kidney fungal burden (log CFU/gram) after s.c. doses of 2.5, 5, 10, 20, and 40 mg/kg every 4, 8, or 12 h (corresponding to total daily doses of 5 to 240 mg/kg). The results show all treatments to significantly prolong survival versus that of infected and nontreated controls (P < 0.05). Relationships between simulated PK and PK-PD parameters and efficacy were explored. A good correlation independent of the dosing interval was observed with AUC (but not C(max) or t > MIC) and both AUSTC and kidney burden. Following repeated dosing every 8 h, AUC(50) (AUC at which 50% of the maximum therapeutic efficacy is obtained) was estimated as 21.7 and 37.1 microg. h/ml (total concentrations) for AUSTC and kidney burden using a sigmoid E(max) and an inhibitory sigmoid E(max) PK-PD model, respectively. For an efficacy target of 90% survival, AUC was predicted as 67 microg. h/ml. We conclude that the PK-PD approach is useful for evaluating relationships between PK parameters and efficacy in antifungal research. Moreover, the results obtained with this approach could be successfully applied to clinical studies.
Collapse
Affiliation(s)
- P Aviles
- Glaxo Wellcome S.A., Parque Tecnológico de Madrid, Spain
| | | | | | | |
Collapse
|
64
|
Clemons KV, Stevens DA. Efficacies of sordarin derivatives GM193663, GM211676, and GM237354 in a murine model of systemic coccidioidomycosis. p6. Antimicrob Agents Chemother 2000; 44:1874-7. [PMID: 10858347 PMCID: PMC89978 DOI: 10.1128/aac.44.7.1874-1877.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sordarin derivatives (Glaxo Wellcome) are a new class of compounds that selectively inhibit fungal protein synthesis and have a broad spectrum of activity. Systemic coccidioidomycosis was established in female CD-1 mice infected with Coccidioides immitis, and therapy was begun on day 4 with either GM193663, GM211676, GM237354, fluconazole, or no treatment; compounds were given twice daily orally for 19 days at 20 or 100 mg/kg/day. The serum pharmacokinetics of the compounds were studied in uninfected mice. The MICs of GM193663, GM211676, and GM237354 for C. immitis were 1.56, 0.39, and 0.39 microgram/ml, respectively, and the minimum fungicidal concentrations were 6.25, 3.13, and 0.39 microgram/ml, respectively. Peak serum levels (sampled at 1 to 2 h) after a single 50-mg/kg dose were 9.8 microgram/ml for GM193663, 13 microgram/ml for GM211676, and 6.0 microgram/ml for GM237354. No accumulation occurred after 19 days of dosing, and peak levels were lower at 3.2 microgram/ml for GM193663, 4.0 microgram/ml for GM211676, and <2.5 microgram/ml for GM237354. We estimate that the t(1/2) for each compound in serum is <2 h. In vivo, all compounds showed dose-responsive efficacy, significantly prolonging survival over the control groups (100% lethal dose); 80 to 100% of the mice given the 100-mg/kg doses of fluconazole or a GM drug survived. All 100-mg/kg/day regimens were equivalent. At 20 mg/kg/day, GM211676 was equivalent to 100 mg of fluconazole/kg/day, indicating that GM211676 was approximately 5-fold more efficacious. No mice surviving the 49 days of the experiment were free of infection. All drugs dose responsively reduced the fungal burden in the spleen, liver, and lungs, and GM237354 at 100 mg/kg/day was superior to all of the other regimens in the reduction of burden in all organs. C. immitis was susceptible both in vitro and in vivo to the GM compounds, which were found to be equivalent or superior to fluconazole. These results are encouraging, indicating that further testing in other models of fungal disease is warranted.
Collapse
Affiliation(s)
- K V Clemons
- California Institute for Medical Research, San Jose, California 95128, USA.
| | | |
Collapse
|
65
|
Gomez-Lorenzo MG, Spahn CM, Agrawal RK, Grassucci RA, Penczek P, Chakraburtty K, Ballesta JP, Lavandera JL, Garcia-Bustos JF, Frank J. Three-dimensional cryo-electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 A resolution. EMBO J 2000; 19:2710-8. [PMID: 10835368 PMCID: PMC212750 DOI: 10.1093/emboj/19.11.2710] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2000] [Revised: 03/28/2000] [Accepted: 04/04/2000] [Indexed: 11/14/2022] Open
Abstract
Using a sordarin derivative, an antifungal drug, it was possible to determine the structure of a eukaryotic ribosome small middle dotEF2 complex at 17.5 A resolution by three-dimensional (3D) cryo-electron microscopy. EF2 is directly visible in the 3D map and the overall arrangement of the complex from Saccharomyces cerevisiae corresponds to that previously seen in Escherichia coli. However, pronounced differences were found in two prominent regions. First, in the yeast system the interaction between the elongation factor and the stalk region of the large subunit is much more extensive. Secondly, domain IV of EF2 contains additional mass that appears to interact with the head of the 40S subunit and the region of the main bridge of the 60S subunit. The shape and position of domain IV of EF2 suggest that it might interact directly with P-site-bound tRNA.
Collapse
Affiliation(s)
- M G Gomez-Lorenzo
- Health Research Inc. at Wadsworth Center, State University of New York at Albany, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
Promising new compounds have recently been identified in an effort to supplement the relatively sparse portfolio of antifungal drugs. Many of these compounds have defined mechanisms of action against fungal cells and have, in some cases, aided the identification of new selective targets in fungi. For most of these compounds, however, factors such as a narrow spectrum of activity, susceptibility to efflux pumps, protein binding, serum inactivation and poor pharmaceutical properties prevent their use in the clinic. Even so, these compounds are novel substrates for synthetic modifications that could lead to the discovery of future antifungal drugs.
Collapse
|
67
|
Abstract
There have been many new developments in antifungal therapy in the past few years. Some antifungal drugs have been reformulated to reduce toxicity (e.g. new lipid formulations of polyenes), and new derivatives of drugs have been developed to enhance potencies. The search for unique drug targets will be enhanced by the availability of sequencing data from whole genome sequencing projects.
Collapse
Affiliation(s)
- B DiDomenico
- Schering-Plough Research Institute K15/4700, 2015 Galloping Hill Road, Kenilworth, NJ 07033-1300, USA
| |
Collapse
|
68
|
Domínguez JM, Gómez-Lorenzo MG, Martín JJ. Sordarin inhibits fungal protein synthesis by blocking translocation differently to fusidic acid. J Biol Chem 1999; 274:22423-7. [PMID: 10428815 DOI: 10.1074/jbc.274.32.22423] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sordarin derivatives are selective inhibitors of fungal protein synthesis, which specifically impair elongation factor 2 (EF-2) function. We have studied the effect of sordarin on the ribosome-dependent GTPase activity of EF-2 from Candida albicans in the absence of any other component of the translation system. The effect of sordarin turned out to be dependent both on the ratio of ribosomes to EF-2 and on the nature of the ribosomes. When the amount of EF-2 exceeded that of ribosomes sordarin inhibited the GTPase activity following an inverted bell-shaped dose-response curve, whereas when EF-2 and ribosomes were in equimolar concentrations sordarin yielded a typical sigmoidal dose-dependent inhibition. However, when ricin-treated ribosomes were used, sordarin stimulated the hydrolysis of GTP. These results were compared with those obtained with fusidic acid, showing that both drugs act in a different manner. All these data are consistent with sordarin blocking the elongation cycle at the initial steps of translocation, prior to GTP hydrolysis. In agreement with this conclusion, sordarin prevented the formation of peptidyl-[(3)H]puromycin on polysomes from Candida albicans.
Collapse
Affiliation(s)
- J M Domínguez
- Research Department, Glaxo Wellcome SA, PTM, C/Severo Ochoa 2, 28760-Tres Cantos, Madrid, Spain.
| | | | | |
Collapse
|
69
|
Andriole VT. The 1998 Garrod lecture. Current and future antifungal therapy: new targets for antifungal agents. J Antimicrob Chemother 1999; 44:151-62. [PMID: 10473222 DOI: 10.1093/jac/44.2.151] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Invasive fungal infections are a major problem in immunocompromised patients. The recent expansion of antifungal drug research has occurred because there is a critical need for new antifungal agents to treat these life-threatening invasive infections. The overview of the development of antifungal therapy which is provided herein reflects the increased interest in this very special area of infectious diseases. Although we have newer, less toxic, antifungal agents that are available for clinical use, their clinical efficacy in some invasive fungal infections, such as aspergillosis and fusariosis, is not optimal. Thus, intense efforts in antifungal drug discovery are still needed to develop more promising and effective antifungal agents for use in the clinical arena.
Collapse
Affiliation(s)
- V T Andriole
- Yale University School of Medicine, New Haven, CT 06518, USA
| |
Collapse
|
70
|
Graybill JR, Najvar L, Fothergill A, Bocanegra R, de las Heras FG. Activities of sordarins in murine histoplasmosis. Antimicrob Agents Chemother 1999; 43:1716-8. [PMID: 10390228 PMCID: PMC89349 DOI: 10.1128/aac.43.7.1716] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/1998] [Accepted: 04/23/1999] [Indexed: 11/20/2022] Open
Abstract
Sordarins are new antifungals which inhibit fungal protein synthesis by blocking elongation factor 2. Three compounds were evaluated in a murine model of histoplasmosis. Immune-competent mice were infected intravenously with 10(6) to 10(8) CFU of Histoplasma capsulatum yeast cells. Mice were treated either orally with sordarins or fluconazole from day 2 through 8 after infection or intraperitoneally with amphotericin B during the same period. Protection was measured by increased rates of survival for 30 days after infection or reduction of lung or kidney tissue counts 9 days after infection. All three of the antifungal drugs tested were protective compared with controls. Sordarins were effective at doses as low as 2 mg/kg of body weight/day. This novel class of drugs compared favorably with amphotericin B and fluconazole for the treatment of histoplasmosis.
Collapse
Affiliation(s)
- J R Graybill
- University of Texas Health Science Center, San Antonio, Texas.
| | | | | | | | | |
Collapse
|
71
|
Mendoza A, Serramía MJ, Capa L, García-Bustos JF. Translation elongation factor 2 is encoded by a single essential gene in Candida albicans. Gene 1999; 229:183-91. [PMID: 10095118 DOI: 10.1016/s0378-1119(99)00024-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Translation elongation factor 2 (eEF2) is a large protein of more than 800 amino acids which establishes complex interactions with the ribosome in order to catalyze the conformational changes needed for translation elongation. Unlike other yeasts, the pathogenic fungus Candida albicans was found to have a single gene encoding this factor per haploid genome, located on chromosome 2. Expression of this locus is essential for vegetative growth, as evidenced by placing it under the control of a repressible promoter. This C. albicans gene, named EFT2, was cloned and sequenced (EMBL accession number Y09664). Genomic and cDNA sequence analysis identified common transcription initiation and termination signals and an 842 amino acid open reading frame (ORF), which is interrupted by a single intron. Despite some genetic differences, CaEFT2 was capable of complementing a Saccharomyces cerevisiae Deltaeft1 Deltaeft2 null mutant, which lacks endogenous eEF2, indicating that CaEFT2 can be expressed from its own promoter and its intron can be correctly spliced in S. cerevisiae.
Collapse
Affiliation(s)
- A Mendoza
- Research Department, Glaxo Wellcome, S.A., Severo Ochoa 2, E-28760, Tres Cantos, Spain
| | | | | | | |
Collapse
|
72
|
Justice MC, Ku T, Hsu MJ, Carniol K, Schmatz D, Nielsen J. Mutations in ribosomal protein L10e confer resistance to the fungal-specific eukaryotic elongation factor 2 inhibitor sordarin. J Biol Chem 1999; 274:4869-75. [PMID: 9988728 DOI: 10.1074/jbc.274.8.4869] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The natural product sordarin, a tetracyclic diterpene glycoside, selectively inhibits fungal protein synthesis by impairing the function of eukaryotic elongation factor 2 (eEF2). Sordarin and its derivatives bind to the eEF2-ribosome-nucleotide complex in sensitive fungi, stabilizing the post-translocational GDP form. We have previously described a class of Saccharomyces cerevisiae mutants that exhibit resistance to varying levels of sordarin and have identified amino acid substitutions in yeast eEF2 that confer sordarin resistance. We now report on a second class of sordarin-resistant mutants. Biochemical and molecular genetic analysis of these mutants demonstrates that sordarin resistance is dependent on the essential large ribosomal subunit protein L10e in S. cerevisiae. Five unique L10e alleles were characterized and sequenced, and several nucleotide changes that differ from the wild-type sequence were identified. Changes that result in the resistance phenotype map to 4 amino acid substitutions and 1 amino acid deletion clustered in a conserved 10-amino acid region of L10e. Like the previously identified eEF2 mutations, the mutant ribosomes show reduced sordarin-conferred stabilization of the eEF2-nucleotide-ribosome complex. To our knowledge, this report provides the first description of ribosomal protein mutations affecting translocation. These results and our previous observations with eEF2 suggest a functional linkage between L10e and eEF2.
Collapse
Affiliation(s)
- M C Justice
- Department of Basic Animal Science Research, Merck Research Laboratories, Rahway, New Jersey 07065, USA
| | | | | | | | | | | |
Collapse
|
73
|
Cuevas JC, Lavandera JL, Martos JL. Design and synthesis of simplified sordaricin derivatives as inhibitors of fungal protein synthesis. Bioorg Med Chem Lett 1999; 9:103-8. [PMID: 9990465 DOI: 10.1016/s0960-894x(98)00693-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A reduction of the tetracyclic skeleton of sordarins and sordaricins to a cyclopentane ring bearing the pharmacophore functional groups led to new derivatives retaining part of their in vitro and whole-cell activity.
Collapse
Affiliation(s)
- J C Cuevas
- Glaxo Wellcome, S.A., Research Department, Parque Tecnológico de Madrid, Spain
| | | | | |
Collapse
|
74
|
Herreros E, Martinez CM, Almela MJ, Marriott MS, De Las Heras FG, Gargallo-Viola D. Sordarins: in vitro activities of new antifungal derivatives against pathogenic yeasts, Pneumocystis carinii, and filamentous fungi. Antimicrob Agents Chemother 1998; 42:2863-9. [PMID: 9797217 PMCID: PMC105957 DOI: 10.1128/aac.42.11.2863] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GM 193663, GM 211676, GM 222712, and GM 237354 are new semisynthetic derivatives of the sordarin class. The in vitro antifungal activities of GM 193663, GM 211676, GM 222712, and GM 237354 against 111 clinical yeast isolates of Candida albicans, Candida kefyr, Candida glabrata, Candida parapsilosis, Candida krusei, and Cryptococcus neoformans were compared. The in vitro activities of some of these compounds against Pneumocystis carinii, 20 isolates each of Aspergillus fumigatus and Aspergillus flavus, and 30 isolates of emerging less-common mold pathogens and dermatophytes were also compared. The MICs of GM 193663, GM 211676, GM 222712, and GM 237354 at which 90% of the isolates were inhibited (MIC90s) were 0.03, 0.03, 0.004, and 0.015 microg/ml, respectively, for C. albicans, including strains with decreased susceptibility to fluconazole; 0.5, 0.5, 0.06, and 0.12 microg/ml, respectively, for C. tropicalis; and 0.004, 0.015, 0.008, and 0.03 microg/ml, respectively, for C. kefyr. GM 222712 and GM 237354 were the most active compounds against C. glabrata, C. parapsilosis, and Cryptococcus neoformans. Against C. glabrata and C. parapsilosis, the MIC90s of GM 222712 and GM 237354 were 0.5 and 4 microg/ml and 1 and 16 microg/ml, respectively. The MIC90s of GM 222712 and GM 237354 against Cryptococcus neoformans were 0.5 and 0.25 microg/ml, respectively. GM 193663, GM 211676, GM 222712, and GM 237354 were extremely active against P. carinii. The efficacies of sordarin derivatives against this organism were determined by measuring the inhibition of the uptake and incorporation of radiolabelled methionine into newly synthesized proteins. All compounds tested showed 50% inhibitory concentrations of <0.008 microg/ml. Against A. flavus and A. fumigatus, the MIC90s of GM 222712 and GM 237354 were 1 and 32 microg/ml and 32 and >64 microg/ml, respectively. In addition, GM 237354 was tested against the most important emerging fungal pathogens which affect immunocompromised patients. Cladosporium carrioni, Pseudallescheria boydii, and the yeast-like fungi Blastoschizomyces capitatus and Geotrichum clavatum were the most susceptible of the fungi to GM 237354, with MICs ranging from </=0.25 to 2 microg/ml. The MICs of GM 237354 against Trichosporon beigelii and the zygomycetes Absidia corymbifera, Cunninghamella bertholletiae, and Rhizopus arrhizus ranged from </=0.25 to 8 microg/ml. Against dermatophytes, GM 237354 MICs were >/=2 microg/ml. In summary, we concluded that some sordarin derivatives, such as GM 222712 and GM 237354, showed excellent in vitro activities against a wide range of pathogenic fungi, including Candida spp., Cryptococcus neoformans, P. carinii, and some filamentous fungi and emerging invasive fungal pathogens.
Collapse
Affiliation(s)
- E Herreros
- Glaxo Wellcome S.A., 28760 Tres Cantos, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
75
|
Capa L, Mendoza A, Lavandera JL, Gómez de las Heras F, García-Bustos JF. Translation elongation factor 2 is part of the target for a new family of antifungals. Antimicrob Agents Chemother 1998; 42:2694-9. [PMID: 9756779 PMCID: PMC105921 DOI: 10.1128/aac.42.10.2694] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/1998] [Accepted: 07/15/1998] [Indexed: 11/20/2022] Open
Abstract
Translation elongation factor 2 (EF2), which in Saccharomyces cerevisiae is expressed from the EFT1 and EFT2 genes, has been found to be targeted by a new family of highly specific antifungal compounds derived from the natural product sordarin. Two complementation groups of mutants resistant to the semisynthetic sordarin derivative GM193663 were found. The major one (21 members) consisted of isolates with mutations on EFT2. The minor one (four isolates) is currently being characterized but it is already known that resistance in this group is not due to mutations on EFT1, pointing to the complex structure of the functional target for these compounds. Mutations on EF2 clustered, forming a possible drug binding pocket on a three-dimensional model of EF2, and mutant cell extracts lost the capacity to bind to the inhibitors. This new family of antifungals holds the promise to be a much needed and potent addition to current antimicrobial treatments, as well as a useful tool for dissection of the elongation process in ribosomal protein synthesis.
Collapse
Affiliation(s)
- L Capa
- Research Department, Glaxo Wellcome, S.A., 28760 Tres Cantos, Spain
| | | | | | | | | |
Collapse
|
76
|
Domínguez JM, Kelly VA, Kinsman OS, Marriott MS, Gómez de las Heras F, Martín JJ. Sordarins: A new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts. Antimicrob Agents Chemother 1998; 42:2274-8. [PMID: 9736548 PMCID: PMC105812 DOI: 10.1128/aac.42.9.2274] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GR135402, a sordarin derivative, was isolated in an antifungal screening program. GR135402, sordarin, and derivatives of both compounds were evaluated for their ability to inhibit cell-free translational systems from five different pathogenic fungi (Candida albicans, Candida glabrata, Candida krusei, Candida parapsilosis, and Cryptococcus neoformans). The activity profile of GR135402 is extended to other chemical compounds derived from sordarin. Experimental results indicate that sordarin analogs exert their antifungal effects by specifically inhibiting the protein synthesis elongation cycle in yeasts but do not affect protein synthesis machinery in mammalian systems. Intrinsically resistant strains owe their resistance to differences in the molecular target of sordarins in these strains. Preliminary studies performed to elucidate the mode of action of this new class of antifungal agents have shown that the putative target of sordarins is one of the protein synthesis elongation factors.
Collapse
Affiliation(s)
- J M Domínguez
- Departamento de Investigación, Glaxo Wellcome S.A., 28760-Tres Cantos, Madrid, Spain
| | | | | | | | | | | |
Collapse
|