51
|
Dried Spent Yeast and Its Hydrolysate as Nitrogen Supplements for Single Batch and Repeated-Batch Ethanol Fermentation from Sweet Sorghum Juice. ENERGIES 2013. [DOI: 10.3390/en6031618] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
52
|
Ekberg J, Rautio J, Mattinen L, Vidgren V, Londesborough J, Gibson BR. Adaptive evolution of the lager brewing yeastSaccharomyces pastorianusfor improved growth under hyperosmotic conditions and its influence on fermentation performance. FEMS Yeast Res 2013; 13:335-49. [DOI: 10.1111/1567-1364.12038] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/08/2013] [Accepted: 02/08/2013] [Indexed: 11/26/2022] Open
Affiliation(s)
| | | | | | - Virve Vidgren
- VTT Technical Research Centre of Finland; Espoo; Finland
| | | | | |
Collapse
|
53
|
Bioprospecting of thermo- and osmo-tolerant fungi from mango pulp-peel compost for bioethanol production. Antonie van Leeuwenhoek 2012. [PMID: 23180376 DOI: 10.1007/s10482-012-9854-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The persistent edaphic stress on microbial succession due to dynamic changes during composting was explored for selection of multi-stress tolerant microbe(s) desirable for ethanol production. A total of 23 strains were isolated from mango compost using four successive enrichments in YP broth (g l(-1)): glucose, 100; 150; 250 with ethanol (40) and cycloheximide (0.4) at 40 °C, pH 6.0. Based on multi-gene ribotyping, 14 yeasts (61 %) of Saccharomycetaceae, 2 filamentous fungi (8.6 %) and 7 bacteria (30.4 %) were obtained. Phenetic and phylogenetic analysis of the 14 yeasts revealed 64.3 % tolerant to 500 g l(-1) glucose, growth at 45 °C and resemblance to Candida sp. (14.3 %), Kluyveromyces marxianus (35.7 %), Pichia kudriavzevii (21.4 %) and Saccharomyces cerevisiae (28.6 %). Assessment of the 14 yeasts in glucose fermentation medium (pH 4.5 at 40 °C) showed ethanol productivity of ≥92 % by 12 yeasts with theoretical yields of 90-97 %. Fermentation of molasses (150 g l(-1) glucose equivalent) by P. kudriavzevii D1C at 40 °C resulted in 73.70 ± 0.02 g l(-1) ethanol and productivity of 4.91 ± 0.01 g l(-1) h(-1). Assessment of P. kudriavzevii D1C revealed multi-stress tolerance towards 5-hydroxymethyl furfural, ethanol (20 %, v/v), high gravity and H2O2 (0.3 M) indicating suitability for ethanol production using high gravity molasses and pre-treated lignocellulosic biomass fermentation.
Collapse
|
54
|
Miller KP, Gowtham YK, Henson JM, Harcum SW. Xylose isomerase improves growth and ethanol production rates from biomass sugars for both Saccharomyces pastorianus and Saccharomyces cerevisiae. Biotechnol Prog 2012; 28:669-80. [PMID: 22866331 DOI: 10.1002/btpr.1535] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion.
Collapse
Affiliation(s)
- Kristen P Miller
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | | | | | | |
Collapse
|
55
|
Hasegawa S, Ogata T, Tanaka K, Ando A, Takagi H, Shima J. Overexpression of vacuolar H+-ATPase-related genes in bottom-fermenting yeast enhances ethanol tolerance and fermentation rates during high-gravity fermentation. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/jib.32] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sonoko Hasegawa
- Research Division of Microbial Sciences; Kyoto University; Kyoto; Japan
| | - Tomoo Ogata
- Research Laboratories for Brewing; Asahi Breweries Ltd; Ibaraki; Japan
| | - Koichi Tanaka
- Research Division of Microbial Sciences; Kyoto University; Kyoto; Japan
| | - Akira Ando
- NARO Food Research Institute; Ibaraki; Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences; Nara Institute of Science and Technology; Nara; Japan
| | - Jun Shima
- Research Division of Microbial Sciences; Kyoto University; Kyoto; Japan
| |
Collapse
|
56
|
Yu Z, Zhao M, Li H, Zhao H, Zhang Q, Wan C, Li H. A comparative study on physiological activities of lager and ale brewing yeasts under different gravity conditions. BIOTECHNOL BIOPROC E 2012; 17:818-826. [DOI: 10.1007/s12257-011-0658-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
57
|
Lima L, Brandão T, Lima N, Teixeira JA. Comparing the Impact of Environmental Factors During Very High Gravity Brewing Fermentations. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2011.tb00480.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
58
|
Yu Z, Zhao H, Li H, Zhang Q, Lei H, Zhao M. Selection of Saccharomyces pastorianus variants with improved fermentation performance under very high gravity wort conditions. Biotechnol Lett 2012; 34:365-370. [PMID: 22038548 DOI: 10.1007/s10529-011-0780-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 10/12/2011] [Indexed: 10/16/2022]
Abstract
Saccharomyces pastorianus FBY0095 was mutated and variants were selected for efficient very high gravity brewing using 15% (w/v) maltose and 15% (w/v) ethanol. Two useful variants were obtained of which one (L6) had growth, wort consumption and ethanol production rates of 0.036, 1.13 and 0.49 g l(-1) h(-1), respectively. The corresponding results for the wild type were 0.028, 0.98 and 0.4 g l(-1) h(-1), respectively. The vitality of the variant (expressed as acidification power) was 2.5 while that of the wild type was 2.3. There was also an obvious improvement on flavor of resulting beer when using L6 and the other variant.
Collapse
Affiliation(s)
- Zhimin Yu
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, 510640, China
| | | | | | | | | | | |
Collapse
|
59
|
Swinnen S, Thevelein JM, Nevoigt E. Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae. FEMS Yeast Res 2012; 12:215-27. [PMID: 22150948 DOI: 10.1111/j.1567-1364.2011.00777.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 12/13/2022] Open
Abstract
Saccharomyces cerevisiae has become a favorite production organism in industrial biotechnology presenting new challenges to yeast engineers in terms of introducing advantageous traits such as stress tolerances. Exploring subspecies diversity of S. cerevisiae has identified strains that bear industrially relevant phenotypic traits. Provided that the genetic basis of such phenotypic traits can be identified inverse engineering allows the targeted modification of production strains. Most phenotypic traits of interest in S. cerevisiae strains are quantitative, meaning that they are controlled by multiple genetic loci referred to as quantitative trait loci (QTL). A straightforward approach to identify the genetic basis of quantitative traits is QTL mapping which aims at the allocation of the genetic determinants to regions in the genome. The application of high-density oligonucleotide arrays and whole-genome re-sequencing to detect genetic variations between strains has facilitated the detection of large numbers of molecular markers thus allowing high-resolution QTL mapping over the entire genome. This review focuses on the basic principle and state of the art of QTL mapping in S. cerevisiae. Furthermore we discuss several approaches developed during the last decade that allow down-scaling of the regions identified by QTL mapping to the gene level. We also emphasize the particular challenges of QTL mapping in nonlaboratory strains of S. cerevisiae.
Collapse
Affiliation(s)
- Steve Swinnen
- School of Engineering and Science, Jacobs University gGmbH, Bremen, Germany
| | | | | |
Collapse
|
60
|
Zhang H, Chong H, Ching CB, Jiang R. Random mutagenesis of global transcription factor cAMP receptor protein for improved osmotolerance. Biotechnol Bioeng 2011; 109:1165-72. [DOI: 10.1002/bit.24411] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/07/2011] [Accepted: 12/08/2011] [Indexed: 11/08/2022]
|
61
|
Duong C, Strack L, Futschik M, Katou Y, Nakao Y, Fujimura T, Shirahige K, Kodama Y, Nevoigt E. Identification of Sc-type ILV6 as a target to reduce diacetyl formation in lager brewers' yeast. Metab Eng 2011; 13:638-47. [DOI: 10.1016/j.ymben.2011.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 07/04/2011] [Accepted: 07/22/2011] [Indexed: 11/28/2022]
|
62
|
|
63
|
Puligundla P, Smogrovicova D, Obulam VSR, Ko S. Very high gravity (VHG) ethanolic brewing and fermentation: a research update. J Ind Microbiol Biotechnol 2011; 38:1133-44. [DOI: 10.1007/s10295-011-0999-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 06/07/2011] [Indexed: 11/30/2022]
|
64
|
Lewandowicz G, Białas W, Marczewski B, Szymanowska D. Application of membrane distillation for ethanol recovery during fuel ethanol production. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2011.03.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
65
|
Zheng DQ, Wu XC, Tao XL, Wang PM, Li P, Chi XQ, Li YD, Yan QF, Zhao YH. Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. BIORESOURCE TECHNOLOGY 2011; 102:3020-7. [PMID: 20980141 DOI: 10.1016/j.biortech.2010.09.122] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/28/2010] [Accepted: 09/29/2010] [Indexed: 05/13/2023]
Abstract
In this study, a systemic analysis was initially performed to investigate the relationship between fermentation-related stress tolerances and ethanol yield. Based on the results obtained, two elite Saccharomyces cerevisiae strains, Z8 and Z15, with variant phenotypes were chosen to construct strains with improved multi-stress tolerance by genome shuffling in combination with optimized initial selection. After three rounds of genome shuffling, a shuffled strain, YZ1, which surpasses its parent strains in osmotic, heat, and acid tolerances, was obtained. Ethanol yields of YZ1 were 3.11%, 10.31%, and 10.55% higher than those of its parent strains under regular, increased heat, and high gravity fermentation conditions, respectively. YZ1 was applied to bioethanol production at an industrial scale. Results demonstrated that the variant phenotypes from available yeast strains could be used as parent stock for yeast breeding and that the genome shuffling approach is sufficiently powerful in combining suitable phenotypes in a single strain.
Collapse
Affiliation(s)
- Dao-Qiong Zheng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Yu Z, Zhao H, Wan C, Sun G, Zhao M. The Dynamic Changes of Proton Efflux Rate in Saccharomyces pastorianus Strains During High Gravity or Very High Gravity Brewing. JOURNAL OF THE INSTITUTE OF BREWING 2011; 117:176-181. [DOI: 10.1002/j.2050-0416.2011.tb00457.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
67
|
Mussatto SI, Dragone G, Guimarães PM, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 2010; 28:817-30. [DOI: 10.1016/j.biotechadv.2010.07.001] [Citation(s) in RCA: 479] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/02/2010] [Indexed: 11/27/2022]
|
68
|
Gao C, Wang Z, Liang Q, Qi Q. Global transcription engineering of brewer’s yeast enhances the fermentation performance under high-gravity conditions. Appl Microbiol Biotechnol 2010; 87:1821-7. [DOI: 10.1007/s00253-010-2648-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/22/2010] [Accepted: 04/24/2010] [Indexed: 10/19/2022]
|
69
|
Hirasawa T, Furusawa C, Shimizu H. Saccharomyces cerevisiae and DNA microarray analyses: what did we learn from it for a better understanding and exploitation of yeast biotechnology? Appl Microbiol Biotechnol 2010; 87:391-400. [PMID: 20414652 DOI: 10.1007/s00253-010-2582-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 03/16/2010] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
Abstract
Saccharomyces cerevisiae has been widely used in industrial fields such as in the production of alcoholic beverages and useful chemicals and in bakery. Since S. cerevisiae was the first organism whose genome sequence was determined in eukaryotes, genome-wide analysis systems such as DNA microarrays also developed early for this organism. Many researches related to the analysis of transcriptional profiles during the processes and transcriptional responses to the environmental stresses that are encountered during production processes using DNA microarray were reported in the literature. In addition, DNA microarrays can be used in detecting transcription factor binding sites and single nucleotide polymorphisms. In this paper, we review transcriptome analysis toward industrial production processes involving yeast, as in the case of wine, beer, and sake. Moreover, identification of the target genes for genetic manipulation to confer useful phenotypes, such as stress tolerance and high fermentation activity, and to improve production of target product in useful chemicals production using DNA microarray analysis is described. Finally, recent advances of DNA microarray analysis are briefly discussed.
Collapse
Affiliation(s)
- Takashi Hirasawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | |
Collapse
|
70
|
Saerens SMG, Duong CT, Nevoigt E. Genetic improvement of brewer’s yeast: current state, perspectives and limits. Appl Microbiol Biotechnol 2010; 86:1195-212. [DOI: 10.1007/s00253-010-2486-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/29/2010] [Accepted: 01/29/2010] [Indexed: 10/19/2022]
|
71
|
Selection from industrial lager yeast strains of variants with improved fermentation performance in very-high-gravity worts. Appl Environ Microbiol 2010; 76:1563-73. [PMID: 20081007 DOI: 10.1128/aem.03153-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There are economic and other advantages if the fermentable sugar concentration in industrial brewery fermentations can be increased from that of currently used high-gravity (ca. 14 to 17 degrees P [degrees Plato]) worts into the very-high-gravity (VHG; 18 to 25 degrees P) range. Many industrial strains of brewer's yeast perform poorly in VHG worts, exhibiting decreased growth, slow and incomplete fermentations, and low viability of the yeast cropped for recycling into subsequent fermentations. A new and efficient method for selecting variant cells with improved performance in VHG worts is described. In this new method, mutagenized industrial yeast was put through a VHG wort fermentation and then incubated anaerobically in the resulting beer while maintaining the alpha-glucoside concentration at about 10 to 20 g.liter(-1) by slowly feeding the yeast maltose or maltotriose until most of the cells had died. When survival rates fell to 1 to 10 cells per 10(6) original cells, a high proportion (up to 30%) of survivors fermented VHG worts 10 to 30% faster and more completely (residual sugars lower by 2 to 8 g.liter(-1)) than the parent strains, but the sedimentation behavior and profiles of yeast-derived flavor compounds of the survivors were similar to those of the parent strains.
Collapse
|
72
|
Çakar ZP. Metabolic and evolutionary engineering research in Turkey and beyond. Biotechnol J 2009; 4:992-1002. [DOI: 10.1002/biot.200800332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
73
|
Physiological characterization of brewer's yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts. Appl Microbiol Biotechnol 2009; 84:453-64. [PMID: 19343343 DOI: 10.1007/s00253-009-1930-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
Abstract
High-gravity brewing, which can decrease production costs by increasing brewery yields, has become an attractive alternative to traditional brewing methods. However, as higher sugar concentration is required, the yeast is exposed to various stresses during fermentation. We evaluated the influence of high-gravity brewing on the fermentation performance of the brewer's yeast under model brewing conditions. The lager brewer's strain Weihenstephan 34/70 strain was characterized at three different gravities by adding either glucose or maltose syrups to the basic wort. We observed that increased gravity resulted in a lower specific growth rate, a longer lag phase before initiation of ethanol production, incomplete sugar utilization, and an increase in the concentrations of ethyl acetate and isoamyl acetate in the final beer. Increasing the gravity by adding maltose syrup as opposed to glucose syrup resulted in more balanced fermentation performance in terms of higher cell numbers, respectively, higher wort fermentability and a more favorable flavor profile of the final beer. Our study underlines the effects of the various stress factors on brewer's yeast metabolism and the influence of the type of sugar syrups on the fermentation performance and the flavor profile of the final beer.
Collapse
|
74
|
Abstract
The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial ("white") biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate.
Collapse
|
75
|
Pham TK, Wright PC. The Proteomic Response of Saccharomyces cerevisiae in Very High Glucose Conditions with Amino Acid Supplementation. J Proteome Res 2008; 7:4766-74. [DOI: 10.1021/pr800331s] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Trong Khoa Pham
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Phillip C. Wright
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
76
|
James TC, Usher J, Campbell S, Bond U. Lager yeasts possess dynamic genomes that undergo rearrangements and gene amplification in response to stress. Curr Genet 2008; 53:139-52. [PMID: 18183398 DOI: 10.1007/s00294-007-0172-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 12/10/2007] [Accepted: 12/10/2007] [Indexed: 11/29/2022]
Abstract
A long-term goal of the brewing industry is to identify yeast strains with increased tolerance to the stresses experienced during the brewing process. We have characterised the genomes of a number of stress-tolerant mutants, derived from the lager yeast strain CMBS-33, that were selected for tolerance to high temperatures and to growth in high specific gravity wort. Our results indicate that the heat-tolerant strains have undergone a number of gross chromosomal rearrangements when compared to the parental strain. To determine if such rearrangements can spontaneously arise in response to exposure to stress conditions experienced during the brewing process, we examined the chromosome integrity of both the stress-tolerant strains and their parent during a single round of fermentation under a variety of environmental stresses. Our results show that the lager yeast genome shows tremendous plasticity during fermentation, especially when fermentations are carried out in high specific gravity wort and at higher than normal temperatures. Many localised regions of gene amplification were observed especially at the telomeres and at the rRNA gene locus on chromosome XII, and general chromosomal instability was evident. However, gross chromosomal rearrangements were not detected, indicating that continued selection in the stress conditions are required to obtain clonal isolates with stable rearrangements. Taken together, the data suggest that lager yeasts display a high degree of genomic plasticity and undergo genomic changes in response to environmental stress.
Collapse
Affiliation(s)
- Tharappel C James
- The School of Genetics and Microbiology, Trinity College, College Green, Dublin 2, Ireland
| | | | | | | |
Collapse
|
77
|
Pham TK, Wright PC. Proteomic Analysis of Calcium Alginate-Immobilized Saccharomyces cerevisiae under High-Gravity Fermentation Conditions. J Proteome Res 2008; 7:515-25. [DOI: 10.1021/pr070391h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Trong Khoa Pham
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K
| | - Phillip C. Wright
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K
| |
Collapse
|
78
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|