51
|
Singh BK, Walker A, Morgan JAW, Wright DJ. Biodegradation of chlorpyrifos by enterobacter strain B-14 and its use in bioremediation of contaminated soils. Appl Environ Microbiol 2004; 70:4855-63. [PMID: 15294824 PMCID: PMC492451 DOI: 10.1128/aem.70.8.4855-4863.2004] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Six chlorpyrifos-degrading bacteria were isolated from an Australian soil and compared by biochemical and molecular methods. The isolates were indistinguishable, and one (strain B-14) was selected for further analysis. This strain showed greatest similarity to members of the order Enterobacteriales and was closest to members of the Enterobacter asburiae group. The ability of the strain to mineralize chlorpyrifos was investigated under different culture conditions, and the strain utilized chlorpyrifos as the sole source of carbon and phosphorus. Studies with ring or uniformly labeled [(14)C]chlorpyrifos in liquid culture demonstrated that the isolate hydrolyzed chlorpyrifos to diethylthiophospshate (DETP) and 3, 5, 6-trichloro-2-pyridinol, and utilized DETP for growth and energy. The isolate was found to possess mono- and diphosphatase activities along with a phosphotriesterase activity. Addition of other sources of carbon (glucose and succinate) resulted in slowing down of the initial rate of degradation of chlorpyrifos. The isolate degraded the DETP-containing organophosphates parathion, diazinon, coumaphos, and isazofos when provided as the sole source of carbon and phosphorus, but not fenamiphos, fonofos, ethoprop, and cadusafos, which have different side chains. Studies of the molecular basis of degradation suggested that the degrading ability could be polygenic and chromosome based. Further studies revealed that the strain possessed a novel phosphotriesterase enzyme system, as the gene coding for this enzyme had a different sequence from the widely studied organophosphate-degrading gene (opd). The addition of strain B-14 (10(6) cells g(-1)) to soil with a low indigenous population of chlorpyrifos-degrading bacteria treated with 35 mg of chlorpyrifos kg(-1) resulted in a higher degradation rate than was observed in noninoculated soils. These results highlight the potential of this bacterium to be used in the cleanup of contaminated pesticide waste in the environment.
Collapse
Affiliation(s)
- Brajesh K Singh
- Horticulture Research International, Wellesbourne, Warwick, United Kingdom.
| | | | | | | |
Collapse
|
52
|
Williams RE, Rathbone DA, Scrutton NS, Bruce NC. Biotransformation of explosives by the old yellow enzyme family of flavoproteins. Appl Environ Microbiol 2004; 70:3566-74. [PMID: 15184158 PMCID: PMC427764 DOI: 10.1128/aem.70.6.3566-3574.2004] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several independent studies of bacterial degradation of nitrate ester explosives have demonstrated the involvement of flavin-dependent oxidoreductases related to the old yellow enzyme (OYE) of yeast. Some of these enzymes also transform the nitroaromatic explosive 2,4,6-trinitrotoluene (TNT). In this work, catalytic capabilities of five members of the OYE family were compared, with a view to correlating structure and function. The activity profiles of the five enzymes differed substantially; no one compound proved to be a good substrate for all five enzymes. TNT is reduced, albeit slowly, by all five enzymes. The nature of the transformation products differed, with three of the five enzymes yielding products indicative of reduction of the aromatic ring. Our findings suggest two distinct pathways of TNT transformation, with the initial reduction of TNT being the key point of difference between the enzymes. Characterization of an active site mutant of one of the enzymes suggests a structural basis for this difference.
Collapse
Affiliation(s)
- Richard E Williams
- Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, United Kingdom
| | | | | | | |
Collapse
|
53
|
Nagpal A, Valley MP, Fitzpatrick PF, Orville AM. Crystallization and preliminary analysis of active nitroalkane oxidase in three crystal forms. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2004; 60:1456-60. [PMID: 15272176 PMCID: PMC1680162 DOI: 10.1107/s0907444904013289] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 06/02/2004] [Indexed: 11/10/2022]
Abstract
Nitroalkane oxidase (NAO), a flavoprotein cloned and purified from Fusarium oxysporum, catalyzes the oxidation of neutral nitroalkanes to the corresponding aldehydes or ketones, with the production of H2O2 and nitrite. In this paper, the crystallization and preliminary X-ray data analysis of three crystal forms of active nitroalkane oxidase are described. The first crystal form belongs to a trigonal space group (either P3(1)21 or P3(2)21, with unit-cell parameters a = b = 103.8, c = 487.0 A) and diffracts to at least 1.6 A resolution. Several data sets were collected using 2theta and kappa geometry in order to obtain a complete data set to 2.07 A resolution. Solvent-content and Matthews coefficient analysis suggests that crystal form 1 contains two homotetramers per asymmetric unit. Crystal form 2 (P2(1)2(1)2(1); a = 147.3, b = 153.5, c = 169.5 A) and crystal form 3 (P3(1) or P3(2); a = b = 108.9, c = 342.5 A) are obtained from slightly different conditions and also contain two homotetramers per asymmetric unit, but have different solvent contents. A three-wavelength MAD data set was collected from selenomethionine-enriched NAO (SeMet-NAO) in crystal form 3 and will be used for phasing.
Collapse
Affiliation(s)
- Akanksha Nagpal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta 30332-0400, USA
| | | | | | | |
Collapse
|
54
|
Gruzdkov YA, Dreger ZA, Gupta YM. Experimental and Theoretical Study of Pentaerythritol Tetranitrate Conformers. J Phys Chem A 2004. [DOI: 10.1021/jp040214t] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
55
|
Khan H, Barna T, Harris RJ, Bruce NC, Barsukov I, Munro AW, Moody PCE, Scrutton NS. Atomic Resolution Structures and Solution Behavior of Enzyme-Substrate Complexes of Enterobacter cloacae PB2 Pentaerythritol Tetranitrate Reductase. J Biol Chem 2004; 279:30563-72. [PMID: 15128738 DOI: 10.1074/jbc.m403541200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure of pentaerythritol tetranitrate (PETN) reductase in complex with the nitroaromatic substrate picric acid determined previously at 1.55 A resolution indicated additional electron density between the indole ring of residue Trp-102 and the nitro group at C-6 of picrate. The data suggested the presence of an unusual bond between substrate and the tryptophan side chain. Herein, we have extended the resolution of the PETN reductase-picric acid complex to 0.9 A. This high-resolution analysis indicates that the active site is partially occupied with picric acid and that the anomalous density seen in the original study is attributed to the population of multiple conformational states of Trp-102 and not a formal covalent bond between the indole ring of Trp-102 and picric acid. The significance of any interaction between Trp-102 and nitroaromatic substrates was probed further in solution and crystal complexes with wild-type and mutant (W102Y and W102F) enzymes. Unlike with wild-type enzyme, in the crystalline form picric acid was bound at full occupancy in the mutant enzymes, and there was no evidence for multiple conformations of active site residues. Solution studies indicate tighter binding of picric acid in the active sites of the W102Y and W102F enzymes. Mutation of Trp-102 does not impair significantly enzyme reduction by NADPH, but the kinetics of decay of the hydride-Meisenheimer complex are accelerated in the mutant enzymes. The data reveal that decay of the hydride-Meisenheimer complex is enzyme catalyzed and that the final distribution of reaction products for the mutant enzymes is substantially different from wild-type enzyme. Implications for the mechanism of high explosive degradation by PETN reductase are discussed.
Collapse
Affiliation(s)
- Huma Khan
- Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Marshall SJ, Krause D, Blencowe DK, White GF. Characterization of glycerol trinitrate reductase (NerA) and the catalytic role of active-site residues. J Bacteriol 2004; 186:1802-10. [PMID: 14996811 PMCID: PMC355970 DOI: 10.1128/jb.186.6.1802-1810.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycerol trinitrate reductase (NerA) from Agrobacterium radiobacter, a member of the old yellow enzyme (OYE) family of oxidoreductases, was expressed in and purified from Escherichia coli. Denaturation of pure enzyme liberated flavin mononucleotide (FMN), and spectra of NerA during reduction and reoxidation confirmed its catalytic involvement. Binding of FMN to apoenzyme to form the holoenzyme occurred with a dissociation constant of ca. 10(-7) M and with restoration of activity. The NerA-dependent reduction of glycerol trinitrate (GTN; nitroglycerin) by NADH followed ping-pong kinetics. A structural model of NerA based on the known coordinates of OYE showed that His-178, Asn-181, and Tyr-183 were close to FMN in the active site. The NerA mutation H178A produced mutant protein with bound FMN but no activity toward GTN. The N181A mutation produced protein that did not bind FMN and was isolated in partly degraded form. The mutation Y183F produced active protein with the same k(cat) as that of wild-type enzyme but with altered K(m) values for GTN and NADH, indicating a role for this residue in substrate binding. Correlation of the ratio of K(m)(GTN) to K(m)(NAD(P)H), with sequence differences for NerA and several other members of the OYE family of oxidoreductases that reduce GTN, indicated that Asn-181 and a second Asn-238 that lies close to Tyr-183 in the NerA model structure may influence substrate specificity.
Collapse
|
57
|
Basran J, Harris RJ, Sutcliffe MJ, Scrutton NS. H-tunneling in the multiple H-transfers of the catalytic cycle of morphinone reductase and in the reductive half-reaction of the homologous pentaerythritol tetranitrate reductase. J Biol Chem 2003; 278:43973-82. [PMID: 12941965 DOI: 10.1074/jbc.m305983200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of flavin reduction in morphinone reductase (MR) and pentaerythritol tetranitrate (PETN) reductase, and flavin oxidation in MR, has been studied by stopped-flow and steady-state kinetic methods. The temperature dependence of the primary kinetic isotope effect for flavin reduction in MR and PETN reductase by nicotinamide coenzyme indicates that quantum mechanical tunneling plays a major role in hydride transfer. In PETN reductase, the kinetic isotope effect (KIE) is essentially independent of temperature in the experimentally accessible range, contrasting with strongly temperature-dependent reaction rates, consistent with a tunneling mechanism from the vibrational ground state of the reactive C-H/D bond. In MR, both the reaction rates and the KIE are dependent on temperature, and analysis using the Eyring equation suggests that hydride transfer has a major tunneling component, which, unlike PETN reductase, is gated by thermally induced vibrations in the protein. The oxidative half-reaction of MR is fully rate-limiting in steady-state turnover with the substrate 2-cyclohexenone and NADH at saturating concentrations. The KIE for hydride transfer from reduced flavin to the alpha/beta unsaturated bond of 2-cyclohexenone is independent of temperature, contrasting with strongly temperature-dependent reaction rates, again consistent with ground-state tunneling. A large solvent isotope effect (SIE) accompanies the oxidative half-reaction, which is also independent of temperature in the experimentally accessible range. Double isotope effects indicate that hydride transfer from the flavin N5 atom to 2-cyclohexenone, and the protonation of 2-cyclohexenone, are concerted and both the temperature-independent KIE and SIE suggest that this reaction also proceeds by ground-state quantum tunneling. Our results demonstrate the importance of quantum tunneling in the reduction of flavins by nicotinamide coenzymes. This is the first observation of (i) three H-nuclei in an enzymic reaction being transferred by tunneling and (ii) the utilization of both passive and active dynamics within the same native enzyme.
Collapse
Affiliation(s)
- Jaswir Basran
- Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | | | | | | |
Collapse
|
58
|
Fitzpatrick TB, Amrhein N, Macheroux P. Characterization of YqjM, an Old Yellow Enzyme homolog from Bacillus subtilis involved in the oxidative stress response. J Biol Chem 2003; 278:19891-7. [PMID: 12660247 DOI: 10.1074/jbc.m211778200] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this paper, we demonstrate that a protein from Bacillus subtilis (YqjM) shares many characteristic biochemical properties with the homologous yeast Old Yellow Enzyme (OYE); the enzyme binds FMN tightly but noncovalently, preferentially uses NADPH as a source of reducing equivalents, and forms charge transfer complexes with phenolic compounds such as p-hydroxybenzaldehyde. Like yeast OYE and other members of the family, YqjM catalyzes the reduction of the double bond of an array of alpha,beta-unsaturated aldehydes and ketones including nitroester and nitroaromatic compounds. Although yeast OYE was the first member of this family to be discovered in 1933 and was the first flavoenzyme ever to be isolated, the physiological role of the family still remains obscure. The finding that alpha,beta-unsaturated compounds are substrates provoked speculation that the OYE family might be involved in reductive degradation of xenobiotics or lipid peroxidation products. Here, for the first time, we demonstrate on the protein level that whereas YqjM shows a basal level of expression in B. subtilis, the addition of the toxic xenobiotic, trinitrotoluene, leads to a rapid induction of the protein in vivo denoting a role in detoxification. Moreover, we show that YqjM is rapidly induced in response to oxidative stress as exerted by hydrogen peroxide, demonstrating a potential physiological role for this enigmatic class of proteins.
Collapse
Affiliation(s)
- Teresa B Fitzpatrick
- ETH-Zürich, Institut für Pflanzenwissenschaften, Universitätstrasse 2, Switzerland.
| | | | | |
Collapse
|
59
|
Parales RE, Bruce NC, Schmid A, Wackett LP. Biodegradation, biotransformation, and biocatalysis (b3). Appl Environ Microbiol 2002; 68:4699-709. [PMID: 12324310 PMCID: PMC126401 DOI: 10.1128/aem.68.10.4699-4709.2002] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- R E Parales
- Department of Microbiology and Center for Biocatalysis and Bioprocessing, The University of Iowa, Iowa City, Iowa, USA.
| | | | | | | |
Collapse
|
60
|
Mullan A, Quinn JP, McGrath JW. Enhanced phosphate uptake and polyphosphate accumulation in Burkholderia cepacia grown under low pH conditions. MICROBIAL ECOLOGY 2002; 44:69-77. [PMID: 12187377 DOI: 10.1007/s00248-002-3004-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2001] [Accepted: 12/04/2001] [Indexed: 05/23/2023]
Abstract
Of bacterial cells in a sample of activated sludge, 34% contained detectable intracellular polyphosphate inclusions following Neisser staining, when grown on glucose/mineral salts medium at pH 5.5; at pH 7.5 only 7% of cells visibly accumulated polyphosphate. In a sludge isolate of Burkholderia cepacia chosen for further study, maximal removal of phosphate and accumulation of polyphosphate occurred at pH 5.5; levels were up to 220% and 330% higher, respectively, than in cells grown at pH 7.5. During the early stationary phase of growth at pH 5.5 a maximum level of intracellular polyphosphate that comprised 13.6% of cellular dry weight was reached. Polyphosphate kinase activity was detected in actively growing cells only when cultured at pH 5.5. The phenomenon of acid-stimulated phosphate uptake and polyphosphate accumulation in this environmental bacterial population parallels observations previously made by us in the yeast Candida humicola and may thus represent a widespread microbial response to low external pH values.
Collapse
Affiliation(s)
- A Mullan
- School of Biology and Biochemistry and QUESTOR Centre, The Queen's University of Belfast, Northern Ireland
| | | | | |
Collapse
|
61
|
Khan H, Harris RJ, Barna T, Craig DH, Bruce NC, Munro AW, Moody PCE, Scrutton NS. Kinetic and structural basis of reactivity of pentaerythritol tetranitrate reductase with NADPH, 2-cyclohexenone, nitroesters, and nitroaromatic explosives. J Biol Chem 2002; 277:21906-12. [PMID: 11923299 DOI: 10.1074/jbc.m200637200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reaction of pentaerythritol tetranitrate reductase with reducing and oxidizing substrates has been studied by stopped-flow spectrophotometry, redox potentiometry, and X-ray crystallography. We show in the reductive half-reaction of pentaerythritol tetranitrate (PETN) reductase that NADPH binds to form an enzyme-NADPH charge transfer intermediate prior to hydride transfer from the nicotinamide coenzyme to FMN. In the oxidative half-reaction, the two-electron-reduced enzyme reacts with several substrates including nitroester explosives (glycerol trinitrate and PETN), nitroaromatic explosives (trinitrotoluene (TNT) and picric acid), and alpha,beta-unsaturated carbonyl compounds (2-cyclohexenone). Oxidation of the flavin by the nitroaromatic substrate TNT is kinetically indistinguishable from formation of its hydride-Meisenheimer complex, consistent with a mechanism involving direct nucleophilic attack by hydride from the flavin N5 atom at the electron-deficient aromatic nucleus of the substrate. The crystal structures of complexes of the oxidized enzyme bound to picric acid and TNT are consistent with direct hydride transfer from the reduced flavin to nitroaromatic substrates. The mode of binding the inhibitor 2,4-dinitrophenol (2,4-DNP) is similar to that observed with picric acid and TNT. In this position, however, the aromatic nucleus is not activated for hydride transfer from the flavin N5 atom, thus accounting for the lack of reactivity with 2,4-DNP. Our work with PETN reductase establishes further a close relationship to the Old Yellow Enzyme family of proteins but at the same time highlights important differences compared with the reactivity of Old Yellow Enzyme. Our studies provide a structural and mechanistic rationale for the ability of PETN reductase to react with the nitroaromatic explosive compounds TNT and picric acid and for the inhibition of enzyme activity with 2,4-DNP.
Collapse
Affiliation(s)
- Huma Khan
- Department of Biochemistry and Centre for Chemical Biology, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Williams RE, Bruce NC. 'New uses for an Old Enzyme'--the Old Yellow Enzyme family of flavoenzymes. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1607-1614. [PMID: 12055282 DOI: 10.1099/00221287-148-6-1607] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Richard E Williams
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK1
| | - Neil C Bruce
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK1
| |
Collapse
|
63
|
Rosser SJ, Basran A, Travis ER, French CE, Bruce NC. Microbial transformations of explosives. ADVANCES IN APPLIED MICROBIOLOGY 2002; 49:1-35. [PMID: 11757347 DOI: 10.1016/s0065-2164(01)49008-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- S J Rosser
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, United Kingdom
| | | | | | | | | |
Collapse
|
64
|
Affiliation(s)
- C E French
- Institute of Cell and Molecular Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK.
| | | | | |
Collapse
|
65
|
Ternan NG, McMullan G. Utilisation of aminomethane sulfonate by Chromohalobacter marismortui VH1. FEMS Microbiol Lett 2002; 207:49-53. [PMID: 11886750 DOI: 10.1111/j.1574-6968.2002.tb11027.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Chromohalobacter marismortui VH1 was screened for its ability to utilise organosulfonate compounds at a range of NaCl concentrations. Only aminomethane sulfonate, of seven sulfonates tested, was utilised. Length of lag phase during growth on aminomethane sulfonate, as either nitrogen and/or sulfur source, increased with increasing NaCl concentration. Cell yields increased linearly with increasing aminomethane sulfonate concentration up to 5 mM. Resting cells pregrown on aminomethane sulfonate as sole nitrogen source exhibited carbon-sulfur bond cleaving [0.123 nmol sulfate accumulated h(-1) (mg cells)(-1)] and sulfite-oxidising [0.185 nmol sulfate accumulated h(-1) (mg cells)(-1)] activities. C. marismortui VH1 is capable of sulfur-starvation deregulated metabolism of aminomethane sulfonate under high salt conditions.
Collapse
Affiliation(s)
- Nigel G Ternan
- Environmental Biotechnology Research Group, School of Biological and Environmental Sciences, University of Ulster, Cromore Road, Coleraine, Co. Londonderry BT52 1SA, UK.
| | | |
Collapse
|
66
|
Ternan NG, McMullan G. Iminodiacetate and nitrilotriacetate degradation by Kluyveromyces marxianus IMB3. Biochem Biophys Res Commun 2002; 290:802-5. [PMID: 11785972 DOI: 10.1006/bbrc.2001.6233] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The thermotolerant yeast Kluyveromyces marxianus IMB3 was capable of utilising either iminodiacetate or nitrilotriacetate as a sole source of nitrogen for growth. Cell extracts contained iminodiacetate dehydrogenase and nitrilotriacetate monooxygenase activities, suggesting the presence in the yeast of orthologues of these bacterial enzymes. The activities were not detectable in complete medium-growth cells, nor in nitrogen-starved cells, suggesting an inducible biodedgradation pathway for biodegradation of these xenobiotics, which has not been previously reported in a eukaryotic cell system. This observation emphasises the hitherto unrealised importance of yeast strains in the biodegradation of xenobiotics in the environment.
Collapse
Affiliation(s)
- Nigel G Ternan
- School of Biological and Environmental Sciences, University of Ulster, Coleraine County, Londonderry, BT52 1SA, United Kingdom.
| | | |
Collapse
|
67
|
McGrath JW, Cleary S, Mulla A, Quinn JP. Acid-stimulated phosphate uptake by activated sludge microorganisms under aerobic laboratory conditions. WATER RESEARCH 2001; 35:4317-4322. [PMID: 11763033 DOI: 10.1016/s0043-1354(01)00164-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Activated sludge inocula taken from five different wastewater treatment plants were grown aerobically under laboratory conditions on mineral salts medium containing either glucose or skimmed milk powder as carbon source. Cultures showed increases of between 50% and 143% in levels of phosphate uptake from the medium when the growth pH was 5.5 rather than 7.5. Of 100 individual sludge microbial isolates studied, 34 demonstrated such acid-stimulated luxury phosphate uptake; the optimum pH for the process was shown to lie between 5.0 and 6.5. Enhanced phosphate removal by these isolates was accompanied by increases of between 2 and 10.5-fold in their polyphosphate content; this was visualised as intracellular inclusions. Acid-stimulated luxury phosphate uptake by environmental microorganisms is a previously-unrecognised phenomenon that may have application in novel technologies for nutrient removal from wastewaters.
Collapse
Affiliation(s)
- J W McGrath
- School of Biology and Biochemistry, The Queen's University of Belfast, Medical Biology Centre, Northern Ireland, UK.
| | | | | | | |
Collapse
|
68
|
Marshall SJ, White GF. Complete denitration of nitroglycerin by bacteria isolated from a washwater soakaway. Appl Environ Microbiol 2001; 67:2622-6. [PMID: 11375172 PMCID: PMC92916 DOI: 10.1128/aem.67.6.2622-2626.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four axenic bacterial species capable of biodegrading nitroglycerin (glycerol trinitrate [GTN]) were isolated from soil samples taken from a washwater soakaway at a disused GTN manufacturing plant. The isolates were identified by 16S rRNA gene sequence homology as Pseudomonas putida, an Arthrobacter species, a Klebsiella species, and a Rhodococcus species. Each of the isolates utilized GTN as its sole nitrogen source and removed nitro groups sequentially from GTN to produce glycerol dinitrates and mononitrates (GMN), with the exception of the Arthrobacter strain, which achieved removal of only the first nitro group within the time course of the experiment. The Klebsiella strain exhibited a distinct preference for removal of the central nitro group from GTN, while the other five strains exhibited no such regioselectivity. All strains which removed a second nitro group from glycerol 1,2-dinitrate showed regiospecific removal of the end nitro group, thereby producing glycerol 2-mononitrate. Most significant was the finding that the Rhodococcus species was capable of removing the final nitro group from GMN and thus achieved complete biodegradation of GTN. Such complete denitration of GTN has previously been shown only in mixed bacterial populations and in cultures of Penicillium corylophilum Dierckx supplemented with an additional carbon and nitrogen source. Hence, to the best of our knowledge, this is the first report of a microorganism that can achieve complete denitration of GTN.
Collapse
Affiliation(s)
- S J Marshall
- School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom.
| | | |
Collapse
|
69
|
Barna TM, Khan H, Bruce NC, Barsukov I, Scrutton NS, Moody PC. Crystal structure of pentaerythritol tetranitrate reductase: "flipped" binding geometries for steroid substrates in different redox states of the enzyme. J Mol Biol 2001; 310:433-47. [PMID: 11428899 DOI: 10.1006/jmbi.2001.4779] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pentaerythritol tetranitrate reductase (PETN reductase) degrades high explosive molecules including nitrate esters, nitroaromatics and cyclic triazine compounds. The enzyme also binds a variety of cyclic enones, including steroids; some steroids act as substrates whilst others are inhibitors. Understanding the basis of reactivity with cyclic enones requires structural information for the enzyme and key complexes formed with steroid substrates and inhibitors. The crystal structure of oxidised and reduced PETN reductase at 1.5 A resolution establishes a close structural similarity to the beta/alpha-barrel flavoenzyme, old yellow enzyme. In complexes of oxidised PETN reductase with progesterone (an inhibitor), 1,4-androstadiene-3,17-dione and prednisone (both substrates) the steroids are stacked over the si-face of the flavin in an orientation different from that reported for old yellow enzyme. The specifically reducible 1,2 unsaturated bonds in 1,4-androstadiene-3,17-dione and prednisone are not optimally aligned with the flavin N5 in oxidised enzyme complexes. These structures suggest either relative "flipping" or shifting of the steroid with respect to the flavin when bound in different redox forms of the enzyme. Deuterium transfer from nicotinamide coenzyme to 1,4-androstadiene-3,17-dione via the enzyme bound FMN indicates 1alpha addition at the steroid C2 atom. These studies rule out lateral motion of the steroid and indicate that the steroid orientation is "flipped" in different redox states of the enzyme.
Collapse
Affiliation(s)
- T M Barna
- Department of Biochemistry, University of Leicester, Leicester, LE1 7RH, UK
| | | | | | | | | | | |
Collapse
|
70
|
McGrath JW, Quinn JP. Intracellular accumulation of polyphosphate by the yeast Candida humicola G-1 in response to acid pH. Appl Environ Microbiol 2000; 66:4068-73. [PMID: 10966430 PMCID: PMC92260 DOI: 10.1128/aem.66.9.4068-4073.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2000] [Accepted: 05/30/2000] [Indexed: 11/20/2022] Open
Abstract
Cells of a newly isolated environmental strain of Candida humicola accumulated 10-fold more polyphosphate (polyP), during active growth, when grown in complete glucose-mineral salts medium at pH 5.5 than when grown at pH 7.5. Neither phosphate starvation, nutrient limitation, nor anaerobiosis was required to induce polyP formation. An increase in intracellular polyP was accompanied by a 4.5-fold increase in phosphate uptake from the medium and sixfold-higher levels of cellular polyphosphate kinase activity. This novel accumulation of polyP by C. humicola G-1 in response to acid pH provides further evidence as to the importance of polyP in the physiological adaptation of microbial cells during growth and development and in their response to environmental stresses.
Collapse
Affiliation(s)
- J W McGrath
- School of Biology and Biochemistry, The Queen's University of Belfast, Belfast, Northern Ireland.
| | | |
Collapse
|
71
|
Hayes VE, Ternan NG, McMullan G. Organophosphonate metabolism by a moderately halophilic bacterial isolate. FEMS Microbiol Lett 2000; 186:171-5. [PMID: 10802166 DOI: 10.1111/j.1574-6968.2000.tb09099.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A Gram-negative halophile isolated from soil beneath a road gritting salt pile grew optimally at 10% (w/v) NaCl and was shown most likely to be Chromohalobacter marismortui or Pseudomonas beijerinckii on the basis of 16S rRNA analysis. The strain utilised phosphonoacetate, 2-aminoethyl-, 3-aminopropyl-, 4-aminobutyl-, methyl- and ethyl-phosphonates as phosphorus sources for growth. Differences were observed in the growth rate on different phosphonates and the range of phosphonates utilised at elevated NaCl concentrations, possibly as a result of differentially-induced transport mechanisms. An assay of cell-free extracts of 2-aminoethylphosphonate (2AEP) grown cells showed no detectable 2AEP:pyruvate aminotransferase or phosphonoacetaldehyde hydrolase activity.
Collapse
Affiliation(s)
- V E Hayes
- School of Environmental Sciences, University of Ulster, Cromore Road, Coleraine, UK
| | | | | |
Collapse
|
72
|
Ternan NG, McMullan G. The utilization of 4-aminobutylphosphonate as sole nitrogen source by a strain of Kluyveromyces fragilis. FEMS Microbiol Lett 2000; 184:237-40. [PMID: 10713427 DOI: 10.1111/j.1574-6968.2000.tb09020.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A strain of the yeast Kluyveromyces fragilis was screened for its ability to utilize a range of synthetic and natural organophosphonate compounds as the sole source of phosphorus, nitrogen or carbon. Only 4-aminobutylphosphonate was utilized as sole nitrogen source with protein yields increasing proportionally with substrate concentrations up to 10 mM. No 4-aminobutylphosphonate metabolizing enzyme activity was detectable in cell-free extracts prepared from K. fragilis pregrown on 2.5 mM 4-aminobutylphosphonate. None of the organophosphonates tested served as a source of carbon or phosphorus for K. fragilis.
Collapse
Affiliation(s)
- N G Ternan
- School of Environmental Studies, University of Ulster, Coleraine, UK.
| | | |
Collapse
|
73
|
Blehert DS, Fox BG, Chambliss GH. Cloning and sequence analysis of two Pseudomonas flavoprotein xenobiotic reductases. J Bacteriol 1999; 181:6254-63. [PMID: 10515912 PMCID: PMC103757 DOI: 10.1128/jb.181.20.6254-6263.1999] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes encoding flavin mononucleotide-containing oxidoreductases, designated xenobiotic reductases, from Pseudomonas putida II-B and P. fluorescens I-C that removed nitrite from nitroglycerin (NG) by cleavage of the nitroester bond were cloned, sequenced, and characterized. The P. putida gene, xenA, encodes a 39,702-Da monomeric, NAD(P)H-dependent flavoprotein that removes either the terminal or central nitro groups from NG and that reduces 2-cyclohexen-1-one but did not readily reduce 2,4,6-trinitrotoluene (TNT). The P. fluorescens gene, xenB, encodes a 37,441-Da monomeric, NAD(P)H-dependent flavoprotein that exhibits fivefold regioselectivity for removal of the central nitro group from NG and that transforms TNT but did not readily react with 2-cyclohexen-1-one. Heterologous expression of xenA and xenB was demonstrated in Escherichia coli DH5alpha. The transcription initiation sites of both xenA and xenB were identified by primer extension analysis. BLAST analyses conducted with the P. putida xenA and the P. fluorescens xenB sequences demonstrated that these genes are similar to several other bacterial genes that encode broad-specificity flavoprotein reductases. The prokaryotic flavoprotein reductases described herein likely shared a common ancestor with old yellow enzyme of yeast, a broad-specificity enzyme which may serve a detoxification role in antioxidant defense systems.
Collapse
Affiliation(s)
- D S Blehert
- Department of Bacteriology, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
74
|
French CE, Rosser SJ, Davies GJ, Nicklin S, Bruce NC. Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat Biotechnol 1999; 17:491-4. [PMID: 10331811 DOI: 10.1038/8673] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plants offer many advantages over bacteria as agents for bioremediation; however, they typically lack the degradative capabilities of specially selected bacterial strains. Transgenic plants expressing microbial degradative enzymes could combine the advantages of both systems. To investigate this possibility in the context of bioremediation of explosive residues, we generated transgenic tobacco plants expressing pentaerythritol tetranitrate reductase, an enzyme derived from an explosive-degrading bacterium that enables degradation of nitrate ester and nitroaromatic explosives. Seeds from transgenic plants were able to germinate and grow in the presence of 1 mM glycerol trinitrate (GTN) or 0.05 mM trinitrotoluene, at concentrations that inhibited germination and growth of wild-type seeds. Transgenic seedlings grown in liquid medium with 1 mM GTN showed more rapid and complete denitration of GTN than wild-type seedlings. This example suggests that transgenic plants expressing microbial degradative genes may provide a generally applicable strategy for bioremediation of organic pollutants in soil.
Collapse
Affiliation(s)
- C E French
- Institute of Biotechnology, University of Cambridge, UK
| | | | | | | | | |
Collapse
|
75
|
Accashian JV, Vinopal RT, Kim BJ, Smets BF. Aerobic growth on nitroglycerin as the sole carbon, nitrogen, and energy source by a mixed bacterial culture. Appl Environ Microbiol 1998; 64:3300-4. [PMID: 9726874 PMCID: PMC106724 DOI: 10.1128/aem.64.9.3300-3304.1998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitroglycerin (glycerol trinitrate [GTN]), an explosive and vasodilatory compound, was metabolized by mixed microbial cultures from aeration tank sludge previously exposed to GTN. Aerobic enrichment cultures removed GTN rapidly in the absence of a supplemental carbon source. Complete denitration of GTN, provided as the sole C and N source, was observed in aerobic batch cultures and proceeded stepwise via the dinitrate and mononitrate isomers, with successive steps occurring at lower rates. The denitration of all glycerol nitrate esters was found to be concomitant, and 1, 2-glycerol dinitrate (1,2-GDN) and 2-glycerol mononitrate (2-GMN) were the primary GDN and GMN isomers observed. Denitration of GTN resulted in release of primarily nitrite-N, indicating a reductive denitration mechanism. Biomass growth at the expense of GTN was verified by optical density and plate count measurements. The kinetics of GTN biotransformation were 10-fold faster than reported for complete GTN denitration under anaerobic conditions. A maximum specific growth rate of 0.048 +/- 0.005 h-1 (mean +/- standard deviation) was estimated for the mixed culture at 25 degreesC. Evidence of GTN toxicity was observed at GTN concentrations above 0. 3 mM. To our knowledge, this is the first report of complete denitration of GTN used as a primary growth substrate by a bacterial culture under aerobic conditions.
Collapse
Affiliation(s)
- J V Accashian
- Environmental Engineering Program, Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269-2037, USA
| | | | | | | |
Collapse
|
76
|
French CE, Nicklin S, Bruce NC. Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl Environ Microbiol 1998; 64:2864-8. [PMID: 9687442 PMCID: PMC106784 DOI: 10.1128/aem.64.8.2864-2868.1998] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterobacter cloacae PB2 was originally isolated on the basis of its ability to utilize nitrate esters, such as pentaerythritol tetranitrate (PETN) and glycerol trinitrate, as the sole nitrogen source for growth. The enzyme responsible is an NADPH-dependent reductase designated PETN reductase. E. cloacae PB2 was found to be capable of slow aerobic growth with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. Dinitrotoluenes were not produced and could not be used as nitrogen sources. Purified PETN reductase was found to reduce TNT to its hydride-Meisenheimer complex, which was further reduced to the dihydride-Meisenheimer complex. Purified PETN reductase and recombinant Escherichia coli expressing PETN reductase were able to liberate nitrogen as nitrite from TNT. The ability to remove nitrogen from TNT suggests that PB2 or recombinant organisms expressing PETN reductase may be useful for bioremediation of TNT-contaminated soil and water.
Collapse
Affiliation(s)
- C E French
- Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, United Kingdom
| | | | | |
Collapse
|
77
|
Phosphoenolpyruvate phosphomutase activity in an L-phosphonoalanine-mineralizing strain of burkholderia cepacia. Appl Environ Microbiol 1998; 64:2291-4. [PMID: 9603854 PMCID: PMC106318 DOI: 10.1128/aem.64.6.2291-2294.1998] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A strain of Burkholderia cepacia isolated by enrichment culture utilized L-2-amino-3-phosphonopropionic acid (phosphonoalanine) at concentrations up to 20 mM as a carbon, nitrogen, and phosphorus source in a phosphate-insensitive manner. Cells contained phosphoenolpyruvate phosphomutase activity, presumed to be responsible for cleavage of the C---P bond of phosphonopyruvate, the transamination product of L-phosphonoalanine; this was inducible in the presence of phosphonoalanine.
Collapse
|
78
|
Snape JR, Walkley NA, Morby AP, Nicklin S, White GF. Purification, properties, and sequence of glycerol trinitrate reductase from Agrobacterium radiobacter. J Bacteriol 1997; 179:7796-802. [PMID: 9401040 PMCID: PMC179744 DOI: 10.1128/jb.179.24.7796-7802.1997] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glycerol trinitrate (GTN) reductase, which enables Agrobacterium radiobacter to utilize GTN and related explosives as sources of nitrogen for growth, was purified and characterized, and its gene was cloned and sequenced. The enzyme was a 39-kDa monomeric protein which catalyzed the NADH-dependent reductive scission of GTN (Km = 23 microM) to glycerol dinitrates (mainly the 1,3-isomer) with a pH optimum of 6.5, a temperature optimum of 35 degrees C, and no dependence on metal ions for activity. It was also active on pentaerythritol tetranitrate (PETN), on isosorbide dinitrate, and, very weakly, on ethyleneglycol dinitrate, but it was inactive on isopropyl nitrate, hexahydro-1,3,5-trinitro-1,3,5-triazine, 2,4,6-trinitrotoluene, ammonium ions, nitrate, or nitrite. The amino acid sequence deduced from the DNA sequence was homologous (42 to 51% identity and 61 to 69% similarity) to those of PETN reductase from Enterobacter cloacae, N-ethylmaleimide reductase from Escherichia coli, morphinone reductase from Pseudomonas putida, and old yellow enzyme from Saccharomyces cerevisiae, placing the GTN reductase in the alpha/beta barrel flavoprotein group of proteins. GTN reductase and PETN reductase were very similar in many respects except in their distinct preferences for NADH and NADPH cofactors, respectively.
Collapse
Affiliation(s)
- J R Snape
- School of Molecular and Medical Biosciences, University of Wales Cardiff, United Kingdom
| | | | | | | | | |
Collapse
|
79
|
Blehert DS, Knoke KL, Fox BG, Chambliss GH. Regioselectivity of nitroglycerin denitration by flavoprotein nitroester reductases purified from two Pseudomonas species. J Bacteriol 1997; 179:6912-20. [PMID: 9371434 PMCID: PMC179628 DOI: 10.1128/jb.179.22.6912-6920.1997] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Two species of Pseudomonas capable of utilizing nitroglycerin (NG) as a sole nitrogen source were isolated from NG-contaminated soil and identified as Pseudomonas putida II-B and P. fluorescens I-C. While 9 of 13 laboratory bacterial strains that presumably had no previous exposure to NG could degrade low concentrations of NG (0.44 mM), the natural isolates tolerated concentrations of NG that were toxic to the lab strains (1.76 mM and higher). Whole-cell studies revealed that the two natural isolates produced different mixtures of the isomers of dinitroglycerol (DNG) and mononitroglycerol (MNG). A monomeric, flavin mononucleotide-containing NG reductase was purified from each natural isolate. These enzymes catalyzed the NADPH-dependent denitration of NG, yielding nitrite. Apparent kinetic constants were determined for both reductases. The P. putida enzyme had a Km for NG of 52 +/- 4 microM, a Km for NADPH of 28 +/- 2 microM, and a Vmax of 124 +/- 6 microM x min(-1), while the P. fluorescens enzyme had a Km for NG of 110 +/- 10 microM, a Km for NADPH of 5 +/- 1 microM, and a Vmax of 110 +/- 11 microM x min(-1). Anaerobic titration experiments confirmed the stoichiometry of NADPH consumption, changes in flavin oxidation state, and multiple steps of nitrite removal from NG. The products formed during time-dependent denitration reactions were consistent with a single enzyme being responsible for the in vivo product distributions. Simulation of the product formation kinetics by numerical integration showed that the P. putida enzyme produced an approximately 2-fold molar excess of 1,2-DNG relative to 1,3-DNG. This result could be fortuitous or could possibly be consistent with a random removal of the first nitro group from either the terminal (C-1 and C-3) positions or middle (C-2) position. However, during the denitration of 1,2-DNG, a 1.3-fold selectivity for the C-1 nitro group was determined. Comparable simulations of the product distributions from the P. fluorescens enzyme showed that NG was denitrated with a 4.6-fold selectivity for the C-2 position. Furthermore, a 2.4-fold selectivity for removal of the nitro group from the C-2 position of 1,2-DNG was also determined. The MNG isomers were not effectively denitrated by either purified enzyme, which suggests a reason why NG could not be used as a sole carbon source by the isolated organisms.
Collapse
Affiliation(s)
- D S Blehert
- Department of Bacteriology, College of Agricultural and Life Sciences, University of Wisconsin, Madison 53706, USA
| | | | | | | |
Collapse
|
80
|
Zhang YZ, Sundaram ST, Sharma A, Brodman BW. Biodegradation of glyceryl trinitrate by Penicillium corylophilum Dierckx. Appl Environ Microbiol 1997; 63:1712-4. [PMID: 9143106 PMCID: PMC168466 DOI: 10.1128/aem.63.5.1712-1714.1997] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Penicillium corylophilum Dierckx, isolated from a contaminated water wet, double-base propellant, was able to completely degrade glyceryl trinitrate (GTN) in a buffered medium (pH 7.0) containing glucose and ammonium nitrate. In the presence of 12 mg of initial fungal inoculum, GTN (48.5 to 61.6 mumol) was quantitatively transformed in a stepwise process to glyceryl dinitrate (GDN) and glyceryl mononitrate (GMN) within 48 h followed by a decrease in the GDN content with a concomitant increase in the GMN level. GDN was totally transformed to GMN within 168 h, and the complete degradation of GMN was achieved within 336 h. The presence of glucose and ammonium nitrate in the growth medium was essential for completion of the degradation of GTN and its metabolites. Complete degradation of GTN by a fungal culture has not been previously reported in the literature.
Collapse
Affiliation(s)
- Y Z Zhang
- Geo-Centers, Inc., Lake Hopatcong, New Jersey 07849, USA
| | | | | | | |
Collapse
|
81
|
Goel A, Kumar G, Payne GF, Dube SK. Plant cell biodegradation of a xenobiotic nitrate ester, nitroglycerin. Nat Biotechnol 1997; 15:174-7. [PMID: 9035145 DOI: 10.1038/nbt0297-174] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The ability of plants to metabolize the xenobiotic nitrate ester, glycerol trinitrate (GTN, nitroglycerin), was examined using cultured plant cells and plant cell extracts. Intact cells rapidly degrade GTN with the initial formation of glycerol dinitrate (GDN) and the later formation of glycerol mononitrate (GMN). A material balance analysis of these intermediates indicates little, if any, formation of reduced, conjugated or cell-bound carbonaceous metabolites. Cell extracts were shown to be capable of degrading GTN with the simultaneous formation of GDN in stoichiometric amounts. The intermediates observed, and the timing of their appearance, are consistent with a sequential denitration pathway that has been reported for the microbial degradation of nitrate esters. The degradative activities of plant cells are only tenfold less than those reported for bacterial GTN degradation. These results suggests that plants may serve a direct degradative function for the phytoremediation of sites contaminated by organic nitrate esters.
Collapse
Affiliation(s)
- A Goel
- Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, MD 21228, USA
| | | | | | | |
Collapse
|
82
|
French CE, Nicklin S, Bruce NC. Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2. J Bacteriol 1996; 178:6623-7. [PMID: 8932320 PMCID: PMC178550 DOI: 10.1128/jb.178.22.6623-6627.1996] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pentaerythritol tetranitrate reductase, which reductively liberates nitrite from nitrate esters, is related to old yellow enzyme. Pentaerythritol tetranitrate reductase follows a ping-pong mechanism with competitive substrate inhibition by NADPH, is strongly inhibited by steroids, and is capable of reducing the unsaturated bond of 2-cyclohexen-1-one.
Collapse
Affiliation(s)
- C E French
- Institute of Biotechnology, University of Cambridge, United Kingdom
| | | | | |
Collapse
|