51
|
Pagliardini J, Hubmann G, Bideaux C, Alfenore S, Nevoigt E, Guillouet SE. Quantitative evaluation of yeast's requirement for glycerol formation in very high ethanol performance fed-batch process. Microb Cell Fact 2010; 9:36. [PMID: 20492645 PMCID: PMC2887396 DOI: 10.1186/1475-2859-9-36] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 05/21/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glycerol is the major by-product accounting for up to 5% of the carbon in Saccharomyces cerevisiae ethanolic fermentation. Decreasing glycerol formation may redirect part of the carbon toward ethanol production. However, abolishment of glycerol formation strongly affects yeast's robustness towards different types of stress occurring in an industrial process. In order to assess whether glycerol production can be reduced to a certain extent without jeopardizing growth and stress tolerance, the yeast's capacity to synthesize glycerol was adjusted by fine-tuning the activity of the rate-controlling enzyme glycerol 3-phosphate dehydrogenase (GPDH). Two engineered strains whose specific GPDH activity was significantly reduced by two different degrees were comprehensively characterized in a previously developed Very High Ethanol Performance (VHEP) fed-batch process. RESULTS The prototrophic strain CEN.PK113-7D was chosen for decreasing glycerol formation capacity. The fine-tuned reduction of specific GPDH activity was achieved by replacing the native GPD1 promoter in the yeast genome by previously generated well-characterized TEF promoter mutant versions in a gpd2Delta background. Two TEF promoter mutant versions were selected for this study, resulting in a residual GPDH activity of 55 and 6%, respectively. The corresponding strains were referred to here as TEFmut7 and TEFmut2. The genetic modifications were accompanied to a strong reduction in glycerol yield on glucose; the level of reduction compared to the wild-type was 61% in TEFmut7 and 88% in TEFmut2. The overall ethanol production yield on glucose was improved from 0.43 g g(-1) in the wild type to 0.44 g g(-1) measured in TEFmut7 and 0.45 g g(-1) in TEFmut2. Although maximal growth rate in the engineered strains was reduced by 20 and 30%, for TEFmut7 and TEFmut2 respectively, strains' ethanol stress robustness was hardly affected; i.e. values for final ethanol concentration (117 +/- 4 g L(-1)), growth-inhibiting ethanol concentration (87 +/- 3 g L(-1)) and volumetric ethanol productivity (2.1 +/- 0.15 g l(-1) h(-1)) measured in wild-type remained virtually unchanged in the engineered strains. CONCLUSIONS This work demonstrates the power of fine-tuned pathway engineering, particularly when a compromise has to be found between high product yield on one hand and acceptable growth, productivity and stress resistance on the other hand. Under the conditions used in this study (VHEP fed-batch), the two strains with "fine-tuned" GPD1 expression in a gpd2Delta background showed slightly better ethanol yield improvement than previously achieved with the single deletion strains gpd1Delta or gpd2Delta. Although glycerol reduction is known to be even higher in a gpd1Delta gpd2Delta double deletion strain, our strains could much better cope with process stress as reflected by better growth and viability.
Collapse
Affiliation(s)
- Julien Pagliardini
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Av de Rangueil, F-31077 Toulouse, France
| | | | | | | | | | | |
Collapse
|
52
|
Saliola M, D'Amici S, Sponziello M, Mancini P, Tassone P, Falcone C. The transdehydrogenase genes KlNDE1 and KlNDI1 regulate the expression of KlGUT2 in the yeast Kluyveromyces lactis. FEMS Yeast Res 2010; 10:518-26. [PMID: 20491935 DOI: 10.1111/j.1567-1364.2010.00631.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
KlNDE1 and KlNDI1 code for two inner mitochondrial membrane transdehydrogenases involved in the maintenance of the intracellular NAD(P)H redox balance. The function of these genes during the utilization of fermentative and respiratory carbon sources was studied. During growth in glucose, deletion of KlNDE1 and KlNDI1 led to an altered kinetic of ethanol and glycerol accumulation compared with the wild type; in addition, KlndiDelta was unable to grow in respiratory substrates. Northern analysis and GFP-fusion experiments showed that KlNDE1 and KlNDI1 regulate the expression of KlGUT2, a component of the glycerol-3-phosphate shuttle. Moreover, both genes seem to be involved in the biogenesis of the mitochondrial tubular network.
Collapse
Affiliation(s)
- Michele Saliola
- Department of Cell and Developmental Biology, University of Rome La Sapienza, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
53
|
Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.11.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
54
|
Cao L, Kong Q, Zhang A, Chen X. Overexpression of SYM1 in a gpdDelta mutant of Saccharomyces cerevisiae with modified ammonium assimilation for optimization of ethanol production. J Taiwan Inst Chem Eng 2010. [DOI: 10.1016/j.jtice.2009.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
55
|
Xue C, Zhao X, Bai F. Effect of the size of yeast flocs and zinc supplementation on continuous ethanol fermentation performance and metabolic flux distribution under very high concentration conditions. Biotechnol Bioeng 2010; 105:935-44. [DOI: 10.1002/bit.22610] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
56
|
Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol 2009; 76:190-5. [PMID: 19915031 DOI: 10.1128/aem.01772-09] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In anaerobic cultures of wild-type Saccharomyces cerevisiae, glycerol production is essential to reoxidize NADH produced in biosynthetic processes. Consequently, glycerol is a major by-product during anaerobic production of ethanol by S. cerevisiae, the single largest fermentation process in industrial biotechnology. The present study investigates the possibility of completely eliminating glycerol production by engineering S. cerevisiae such that it can reoxidize NADH by the reduction of acetic acid to ethanol via NADH-dependent reactions. Acetic acid is available at significant amounts in lignocellulosic hydrolysates of agricultural residues. Consistent with earlier studies, deletion of the two genes encoding NAD-dependent glycerol-3-phosphate dehydrogenase (GPD1 and GPD2) led to elimination of glycerol production and an inability to grow anaerobically. However, when the E. coli mhpF gene, encoding the acetylating NAD-dependent acetaldehyde dehydrogenase (EC 1.2.1.10; acetaldehyde+NAD++coenzyme A<-->acetyl coenzyme A+NADH+H+), was expressed in the gpd1Delta gpd2Delta strain, anaerobic growth was restored by supplementation with 2.0 g liter(-1) acetic acid. The stoichiometry of acetate consumption and growth was consistent with the complete replacement of glycerol formation by acetate reduction to ethanol as the mechanism for NADH reoxidation. This study provides a proof of principle for the potential of this metabolic engineering strategy to improve ethanol yields, eliminate glycerol production, and partially convert acetate, which is a well-known inhibitor of yeast performance in lignocellulosic hydrolysates, to ethanol. Further research should address the kinetic aspects of acetate reduction and the effect of the elimination of glycerol production on cellular robustness (e.g., osmotolerance).
Collapse
|
57
|
Ehsani M, Fernández MR, Biosca JA, Dequin S. Reversal of coenzyme specificity of 2,3-butanediol dehydrogenase fromSaccharomyces cerevisaeand in vivo functional analysis. Biotechnol Bioeng 2009; 104:381-9. [DOI: 10.1002/bit.22391] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
58
|
Interruption of glycerol pathway in industrial alcoholic yeasts to improve the ethanol production. Appl Microbiol Biotechnol 2008; 82:287-92. [PMID: 19018525 DOI: 10.1007/s00253-008-1777-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/27/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022]
Abstract
The two homologous genes GPD1 and GPD2, encoding two isoenzymes of NAD(+)-dependent glycerol-3-phosphate dehydrogenase in industrial yeast Saccharomyces cerevisiae CICIMY0086, had been deleted. The obtained two kinds of mutants gpd1Delta and gpd2Delta were studied under alcoholic fermentation conditions. gpd1Delta mutants exhibited a 4.29% (relative to the amount of substrate consumed) decrease in glycerol production and 6.83% (relative to the amount of substrate consumed) increased ethanol yield while gpd2Delta mutants exhibited a 7.95% (relative to the amount of substrate consumed) decrease in glycerol production and 7.41% (relative to the amount of substrate consumed) increased ethanol yield compared with the parental strain. The growth rate of the two mutants were slightly lower than that of the wild type under the exponential phase whereas ANG1 (gpd1Delta) and the decrease in glycerol production was not accompanied by any decline in the protein content of the strain ANG1 (gpd1Delta) but a slight decrease in the strain ANG2 (gpd2Delta). Meanwhile, dramatic decrease of acetate acid formation was observed in strain ANG1 (gpd1Delta) and ANG2 (gpd2Delta) compared to the parental strain. Therefore, it is possible to improve the ethanol yield by interruption of glycerol pathway in industrial alcoholic yeast.
Collapse
|
59
|
Graff S, Chaumeil JC, Boy P, Lai-Kuen R, Charrueau C. Influence of pH conditions on the viability of Saccharomyces boulardii yeast. J GEN APPL MICROBIOL 2008; 54:221-7. [PMID: 18802321 DOI: 10.2323/jgam.54.221] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Saccharomyces boulardii is a probiotic with proven health benefits. However its survival is challenged by gastrointestinal transit, and a ratio between 1 and 3% of living yeast is recovered in the feces after oral administration. The aim of the study was to determine to what extent the yeast was sensitive to gastrointestinal pH conditions. Therefore we explored the survival of different concentrations of S. boulardii in conditions mimicking the stomach pH (pH 1.1 0.1 N HCl) and the intestinal pH (pH 6.8 phosphate buffer) in vitro. The probiotic being commercialized as a freeze-dried powder obtained from an aqueous suspension, both forms were evaluated. In phosphate buffer pH 6.8, the viability remained stable for both forms of S. boulardii for 6 h. In HCl pH 1.1, viability of both forms (200 mg L(-1)) significantly decreased from 5 min. Observation under scanning/transmission electron microscopy showed morphological damages and rupture of the yeast wall. Threshold value from which S. boulardii viability was unaltered was pH 4. At the highest concentration of 200 g L(-1), the initial pH value of 1.1 rose to 3.2, exerting a protective effect. In conclusion, although the yeast in aqueous suspension was less sensitive than the freeze-dried yeast to acidic conditions, a gastric protection for improvement of oral bioavailability of viable S. boulardii appears necessary.
Collapse
Affiliation(s)
- Sandrine Graff
- Laboratoire de Pharmacie Galénique EA 2498, Faculté des Sciences Pharmaceutiques et Biologiques, Paris Cedex, France.
| | | | | | | | | |
Collapse
|
60
|
Yan H, Jia LH, Lin YP, Jiang N. Glycerol accumulation in the dimorphic yeastSaccharomycopsis fibuligera: cloning of two glycerol 3-phosphate dehydrogenase genes, one of which is markedly induced by osmotic stress. Yeast 2008; 25:609-21. [DOI: 10.1002/yea.1606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
61
|
Saliola M, Sponziello M, D'Amici S, Lodi T, Falcone C. Characterization of KlGUT2, a gene of the glycerol-3-phosphate shuttle, in Kluyveromyces lactis. FEMS Yeast Res 2008; 8:697-705. [PMID: 18503541 DOI: 10.1111/j.1567-1364.2008.00386.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
KlGUT2 encodes the mitochondrial component of the glycerol-3-phosphate shuttle in Kluyveromyces lactis, a dehydrogenase involved in the maintenance of the NADH redox balance and in glycerol utilization. Deletion of KlGUT2 led to glycerol accumulation during growth in glucose and growth retardation in ethanol. In addition, KlGUT2 deletion altered the expression of other mitochondrial dehydrogenases that contribute to the maintenance of the intracellular redox balance, suggesting a rerouting of ethanol oxidation from the cytoplasm to the mitochondria. Finally, Northern analysis showed that KlGUT2 has two transcripts: one constitutively expressed and dependent on HGT1, the high-affinity hexose transporter gene, and the other induced under respiratory conditions.
Collapse
Affiliation(s)
- Michele Saliola
- Department of Cell and Developmental Biology, University of Rome La Sapienza, Piazzale Aldo Moro, Rome, Italy.
| | | | | | | | | |
Collapse
|
62
|
Graff S, Chaumeil JC, Boy P, Lai-Kuen R, Charrueau C. Formulations for protecting the probiotic Saccharomyces boulardii from degradation in acidic condition. Biol Pharm Bull 2008; 31:266-72. [PMID: 18239285 DOI: 10.1248/bpb.31.266] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Saccharomyces boulardii is a nonpathogenic yeast with proven health benefits, some of them depending on its viability. However, the living yeast is sensitive to environmental conditions and its viability is less than 1% in the faeces after oral administration. Therefore, we assessed the survival conditions of S. boulardii in aqueous suspension and in its freeze-dried form and we formulated microspheres with the former and tablets with the latter in order to preserve the viability of the probiotic. While the viability of the yeast in aqueous suspension could be maintained for one year at -20 degrees C and +5 degrees C, increasing the temperature led to almost total mortality within 14 d at +40 degrees C and 4 d at +60 degrees C. The viability of the freeze-dried yeast was preserved for one year at +25 degrees C without moisture. With 75% relative humidity, the mortality was significant at 28 d at +25 degrees C and almost total within 1 d at +60 degrees C. In vitro, whereas less than 1% of non-encapsulated or non-tabletted S. boulardii survived after 120 min at pH 1.1, both formulations in microspheres and direct compression enabled to protect the yeast from degradation in HCl and to release it viable at pH 6.8. However, despite a similar release profile from both dosage forms, the compression led to a significant decrease in the viability of the freeze-dried yeast. In conclusion, although both formulations are efficient in protecting S. boulardii in acidic condition, microspheres provide a higher entrapment efficiency and a faster release of the viable probiotic in intestinal condition than matrix tablets.
Collapse
Affiliation(s)
- Sandrine Graff
- Laboratoire de Pharmacie Galénique EA 2498, Université Paris Descartes, Paris, France.
| | | | | | | | | |
Collapse
|
63
|
Thanvanthri Gururajan V, Van Rensburg P, Hahn-Hägerdal B, Pretorius IS, Cordero Otero RR. Development and characterisation of a recombinantSaccharomyces cerevisiae mutant strain with enhanced xylose fermentation properties. ANN MICROBIOL 2007. [DOI: 10.1007/bf03175361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
64
|
Camarasa C, Faucet V, Dequin S. Role in anaerobiosis of the isoenzymes for Saccharomyces cerevisiae fumarate reductase encoded by OSM1 and FRDS1. Yeast 2007; 24:391-401. [PMID: 17345583 DOI: 10.1002/yea.1467] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Saccharomyces cerevisiae possesses both a cytoplasmic and a mitochondrial fumarate reductase, encoded by FRDS1 and OSM1, respectively. While previous studies have shown that mutants lacking FRDS1 and OSM1 cannot grow under anaerobiosis (Arikawa et al., 1998), the physiological role of fumarate reductase (FR) remains poorly understood. Here, we report that an osm1 frds1 mutant is unable to grow anaerobically, even with glutamate as a sole nitrogen source, when succinate can be produced by the TCA oxidative branch. We also show that the growth of the mutant is not restored by adding acetoin, an alternative sink for NADH oxidation, but it is at least partly restored by the addition of oxygen or menadione, which can oxidize FADH(2) in addition to NADH. These data indicate that the growth inhibition of the mutant is due to an inability to reoxidize FAD, rather than an indirect effect on NADH or an inability to produce succinate per se. During anaerobic growth, FRDS1 expression was two to eight times higher than that of OSM1, and fumarate reductase activity was higher in the osm1 mutant than in the frds1 mutant. FRDS1 expression was induced by anaerobiosis, and this induction was abolished in a rox1 mutant. We conclude that the formation of succinate is strictly required for the reoxidation of FADH(2) during anaerobiosis, and that it is regulated through the control of FRDS1 expression when oxygen is limiting. Based on these data, we discuss the potential role of fumarate reductase in the regeneration of the FAD-prosthetic group of essential flavoproteins.
Collapse
Affiliation(s)
- Carole Camarasa
- UMR1083 Sciences pour l'Oenologie, INRA, 2 Place Viala, F-34060 Montpellier, France.
| | | | | |
Collapse
|
65
|
Kong QX, Zhang AL, Cao LM, Chen X. Over-expressing GLT1 in a gpd2Δ mutant of Saccharomyces cerevisiae to improve ethanol production. Appl Microbiol Biotechnol 2007; 75:1361-6. [PMID: 17505823 DOI: 10.1007/s00253-007-0948-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 03/09/2007] [Accepted: 03/11/2007] [Indexed: 11/28/2022]
Abstract
We constructed two recombinant strains of Saccharomyces cerevisiae in which the GPD2 gene was deleted using a one-step gene replacement method to minimize formation of glycerol and improve ethanol production. In addition, we also over-expressed the GLT1 gene by a two-step gene replacement method to overcome the redox-imbalancing problem in the genetically modified strains. The result of anaerobic batch fermentations showed that the rate of growth and glucose consumption of the KAM-5 (MATalpha ura3 gpd2Delta::RPT) strain were slower than the original strain, and the KAM-13 (MATalpha ura3 gpd2Delta::RPT P ( PGK ) -GLT1) strain, however, was indistinguishable compared to the original strain using the same criteria, as analyzed. On the other hand, when compared to the original strain, there were 32 and 38% reduction in glycerol formation for KAM-5 and KAM-13, respectively. Ethanol production increased by 8.6% for KAM-5 and 13.4% for KAM-13. Dramatic reduction in acetate and pyruvic acid was also observed in both mutants compared to the original strains. Although gene GPD2 is responsible for the glycerol synthesis, the mutant KAM-13, in which glycerol formation was substantially reduced, was able to cope and maintain osmoregulation and redox balance and have increased ethanol production under anaerobic fermentations. The result verified the proposed concept of increasing ethanol production in S. cerevisiae by genetic engineering of glycerol synthesis and over-expressing the GLT1 gene along with reconstituted nicotinamide adenine dinucleotide metabolism.
Collapse
Affiliation(s)
- Qing-Xue Kong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | |
Collapse
|
66
|
Brandberg T, Gustafsson L, Franzén CJ. The impact of severe nitrogen limitation and microaerobic conditions on extended continuous cultivations of Saccharomyces cerevisiae with cell recirculation. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.05.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
67
|
Modig T, Granath K, Adler L, Lidén G. Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress. Appl Microbiol Biotechnol 2007; 75:289-96. [PMID: 17221190 DOI: 10.1007/s00253-006-0821-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 12/18/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
Glycerol formation is vital for reoxidation of nicotinamide adenine dinucleotide (reduced form; NADH) under anaerobic conditions and for the hyperosmotic stress response in the yeast Saccharomyces cerevisiae. However, relatively few studies have been made on hyperosmotic stress under anaerobic conditions. To study the combined effect of salt stress and anaerobic conditions, industrial and laboratory strains of S. cerevisiae were grown anaerobically on glucose in batch-cultures containing 40 g/l NaCl. The time needed for complete glucose conversion increased considerably, and the specific growth rates decreased by 80-90% when the cells were subjected to the hyperosmotic conditions. This was accompanied by an increased yield of glycerol and other by-products and reduced biomass yield in all strains. The slowest fermenting strain doubled its glycerol yield (from 0.072 to 0.148 g/g glucose) and a nearly fivefold increase in acetate formation was seen. In more tolerant strains, a lower increase was seen in the glycerol and in the acetate, succinate and pyruvate yields. Additionally, the NADH-producing pathway from acetaldehyde to acetate was analysed by overexpressing the stress-induced gene ALD3. However, this had no or very marginal effect on the acetate and glycerol yields. In the control experiments, the production of NADH from known sources well matched the glycerol formation. This was not the case for the salt stress experiments in which the production of NADH from known sources was insufficient to explain the formed glycerol.
Collapse
Affiliation(s)
- Tobias Modig
- Department of Chemical Engineering, Lund University, Box 124, 221 00, Lund, Sweden.
| | | | | | | |
Collapse
|
68
|
Kong QX, Gu JG, Cao LM, Zhang AL, Chen X, Zhao XM. Improved production of ethanol by deleting FPS1 and over-expressing GLT1 in Saccharomyces cerevisiae. Biotechnol Lett 2006; 28:2033-8. [PMID: 17043906 DOI: 10.1007/s10529-006-9185-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 08/04/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
To improve ethanol production in Saccharomyces cerevisiae, two yeast strains were constructed. In the mutant KAM-3, the FPS1 gene, which encodes a channel protein responsible for glycerol export, was deleted. The mutant KAM-11 had the GLT1 gene (encoding glutamate synthase) placed under the PGK1 promoter while having the FPS1 deletion. Growth rate and biomass concentration remained virtually unchanged with the mutant KAM-11, compared to that of the parent. Over-expression of GLT1 by the PGK1 promoter along with FPS1 deletion resulted in a 14% higher ethanol production and a 30% lower glycerol formation compared to the parental strain under anaerobic fermentation conditions. Furthermore, acetate and pyruvic acid formation was also reduced in order for cells to maintain redox balance.
Collapse
Affiliation(s)
- Qing-Xue Kong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | | | | | | | | | | |
Collapse
|
69
|
Kong QX, Cao LM, Zhang AL, Chen X. Overexpressing GLT1 in gpd1Delta mutant to improve the production of ethanol of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2006; 73:1382-6. [PMID: 17021874 DOI: 10.1007/s00253-006-0610-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 07/20/2006] [Accepted: 08/08/2006] [Indexed: 11/24/2022]
Abstract
To improve ethanol production in Saccharomyces cerevisiae, two yeast strains were constructed. In the mutant, KAM-4, the GPD1 gene, which encodes a glycerol 3-phosphate dehydrogenase of S. cerevisiae to synthesize glycerol, was deleted. The mutant KAM-12 had the GLT1 gene (encodes glutamate synthase) placed under the PGK1 promoter while harboring the GPD1 deletion. Notably, overexpression of GLT1 by the PGK1 promoter along with GPD1 deletion resulted in a 10.8% higher ethanol production and a 25.0% lower glycerol formation compared to the wild type in anaerobic fermentations. The growth rate of KAM-4 was slightly lower than that of the wild type under the exponential phase whereas KAM-12 and the wild type were indistinguishable in the biomass concentration at the end of growth period. Meanwhile, dramatic reduction of formation of acetate and pyruvic acid was observed in all the mutants compared to the wild type.
Collapse
Affiliation(s)
- Qing-Xue Kong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | | | | | | |
Collapse
|
70
|
Nevoigt E, Kohnke J, Fischer CR, Alper H, Stahl U, Stephanopoulos G. Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Appl Environ Microbiol 2006; 72:5266-73. [PMID: 16885275 PMCID: PMC1538763 DOI: 10.1128/aem.00530-06] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The strong overexpression or complete deletion of a gene gives only limited information about its control over a certain phenotype or pathway. Gene function studies based on these methods are therefore incomplete. To effect facile manipulation of gene expression across a full continuum of possible expression levels, we recently created a library of mutant promoters. Here, we provide the detailed characterization of our yeast promoter collection comprising 11 mutants of the strong constitutive Saccharomyces cerevisiae TEF1 promoter. The activities of the mutant promoters range between about 8% and 120% of the activity of the unmutated TEF1 promoter. The differences in reporter gene expression in the 11 mutants were independent of the carbon source used, and real-time PCR confirmed that these differences were due to varying levels of transcription (i.e., caused by varying promoter strengths). In addition to a CEN/ARS plasmid-based promoter collection, we also created promoter replacement cassettes. They enable genomic integration of our mutant promoter collection upstream of any given yeast gene, allowing detailed genotype-phenotype characterizations. To illustrate the utility of the method, the GPD1 promoter of S. cerevisiae was replaced by five TEF1 promoter mutants of different strengths, which allowed analysis of the impact of glycerol 3-phosphate dehydrogenase activity on the glycerol yield.
Collapse
Affiliation(s)
- Elke Nevoigt
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
71
|
Granath K, Modig T, Forsmark A, Adler L, Lidén G. The YIG1 (YPL201c) encoded protein is involved in regulating anaerobic glycerol metabolism in Saccharomyces cerevisiae. Yeast 2006; 22:1257-68. [PMID: 16358322 DOI: 10.1002/yea.1307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Under anaerobic conditions S. cerevisiae produces glycerol to regenerate NAD(+) from the excess NADH produced in cell metabolism. We here report on the role of an uncharacterized protein, Yig1p (Ypl201cp), in anaerobic glycerol production. Yig1p was previously shown to interact in two-hybrid tests with the GPP1 and GPP2 encoded glycerol 3-phosphatase (Gpp), and we here demonstrate that strains overexpressing YIG1 show strongly decreased Gpp activity and content of the major phosphatase, Gpp1p. However, cells overexpressing YIG1 exhibited only slightly decreased GPP1 transcript levels, suggesting that Yig1p modulates expression on both transcriptional and post-transcriptional levels. In agreement with such a role, a GFP-tagged derivate of Yig1p was localized to both the cytosol and the nucleus. Deletion or overexpression of YIG1 did not, however, significantly affect growth yield or glycerol yield in anaerobic batch cultures, which is consistent with the previously proposed low flux control exerted at the Gpp level.
Collapse
Affiliation(s)
- K Granath
- Department of Cell and Molecular Biology--Microbiology, Göteborg University, Box 462, SE-405 30 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
72
|
Nilsson A, Gorwa-Grauslund MF, Hahn-Hägerdal B, Lidén G. Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Appl Environ Microbiol 2006; 71:7866-71. [PMID: 16332761 PMCID: PMC1317483 DOI: 10.1128/aem.71.12.7866-7871.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A decreased fermentation rate due to inhibition is a significant problem for economic conversion of acid-pretreated lignocellulose hydrolysates to ethanol, since the inhibition gives rise to a requirement for separate detoxification steps. Together with acetic acid, the sugar degradation products furfural and 5-hydroxymethyl furfural are the inhibiting compounds found at the highest concentrations in hydrolysates. These aldehydes have been shown to affect both the specific growth rate and the rate of fermentation by yeast. Two strains of Saccharomyces cerevisiae with different abilities to ferment inhibiting hydrolysates were evaluated in fermentations of a dilute acid hydrolysate from spruce, and the reducing activities for furfural and 5-hydroxymethyl furfural were determined. Crude cell extracts of a hydrolysate-tolerant strain (TMB3000) converted both furfural and 5-hydroxymethyl furfural to the corresponding alcohol at a rate that was severalfold higher than the rate observed for cell extracts of a less tolerant strain (CBS 8066), thereby confirming that there is a correlation between the fermentation rate in a lignocellulosic hydrolysate and the bioconversion capacity of a strain. The in vitro NADH-dependent furfural reduction capacity of TMB3000 was three times higher than that of CBS 8066 (1,200 mU/mg protein and 370 mU/mg protein, respectively) in fed-batch experiments. Furthermore, the inhibitor-tolerant strain TMB3000 displayed a previously unknown NADH-dependent reducing activity for 5-hydroxymethyl furfural (400 mU/mg protein during fed-batch fermentation of hydrolysates). No corresponding activity was found in strain CBS 8066 (<2 mU/mg). The ability to reduce 5-hydroxymethyl furfural is an important characteristic for the development of yeast strains with increased tolerance to lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Anneli Nilsson
- Department of Chemical Engineering, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | | | | | | |
Collapse
|
73
|
Physiological responses of pressed baker’s yeast cells pre-treated with citric, malic and succinic acids. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-004-3136-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
74
|
Krantz M, Nordlander B, Valadi H, Johansson M, Gustafsson L, Hohmann S. Anaerobicity prepares Saccharomyces cerevisiae cells for faster adaptation to osmotic shock. EUKARYOTIC CELL 2004; 3:1381-90. [PMID: 15590813 PMCID: PMC539022 DOI: 10.1128/ec.3.6.1381-1390.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 09/13/2004] [Indexed: 11/20/2022]
Abstract
Yeast cells adapt to hyperosmotic shock by accumulating glycerol and altering expression of hundreds of genes. This transcriptional response of Saccharomyces cerevisiae to osmotic shock encompasses genes whose products are implicated in protection from oxidative damage. We addressed the question of whether osmotic shock caused oxidative stress. Osmotic shock did not result in the generation of detectable levels of reactive oxygen species (ROS). To preclude any generation of ROS, osmotic shock treatments were performed in anaerobic cultures. Global gene expression response profiles were compared by employing a novel two-dimensional cluster analysis. The transcriptional profiles following osmotic shock under anaerobic and aerobic conditions were qualitatively very similar. In particular, it appeared that expression of the oxidative stress genes was stimulated upon osmotic shock even if there was no apparent need for their function. Interestingly, cells adapted to osmotic shock much more rapidly under anaerobiosis, and the signaling as well as the transcriptional response was clearly attenuated under these conditions. This more rapid adaptation is due to an enhanced glycerol production capacity in anaerobic cells, which is caused by the need for glycerol production in redox balancing. Artificially enhanced glycerol production led to an attenuated response even under aerobic conditions. These observations demonstrate the crucial role of glycerol accumulation and turgor recovery in determining the period of osmotic shock-induced signaling and the profile of cellular adaptation to osmotic shock.
Collapse
Affiliation(s)
- Marcus Krantz
- Department of Cell and Molecular Biology/Microbiology, Göteborg University, Box 462, S-405 30 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
75
|
Neves L, Oliveira R, Lucas C. Yeast orthologues associated with glycerol transport and metabolism. FEMS Yeast Res 2004; 5:51-62. [PMID: 15381122 DOI: 10.1016/j.femsyr.2004.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 04/16/2004] [Accepted: 06/02/2004] [Indexed: 10/26/2022] Open
Abstract
Glycerol is a key compound in the regulation of several metabolic pathways in Saccharomyces cerevisiae. From this yeast most of the genes involved in glycerol consumption, production and transport are now available. Some of the mechanisms involving glycerol metabolism and transport are common to other yeasts. This work presents a search for GPD1/2, GUT1, GUP1/2 and FPS1 orthologues in a series of hemiascomycetous yeasts. All the genes cloned were able to complement S. cerevisiae mutant phenotypes and presented a high degree of similarity to the corresponding genes in this yeast. A phylogenetic analysis is presented. The allocation of GUP genes in the membrane bound O-acyl transferases (MBOAT) family is suggested as more consistent than their inclusion in the TC-DB/glycerol uptake family.
Collapse
Affiliation(s)
- Luisa Neves
- Centro de Biologia da Universidade do Minho (CB-UM)/Departamento de Biologia, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | |
Collapse
|
76
|
Katz M, Frejd T, Hahn-Hägerdal B, Gorwa-Grauslund MF. Efficient anaerobic whole cell stereoselective bioreduction with recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 2004; 84:573-82. [PMID: 14574691 DOI: 10.1002/bit.10824] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this study we investigate the NADPH-dependent stereoselective reduction of the bicyclic diketone bicyclo[2.2.2]octane-2,6-dione (BCO2,6D) to the chiral ketoalcohol (1R,4S,6S)-6-hydroxybicyclo[2.2.2]octane-2-one (BCO2one6ol). Our aim was to develop a whole cell batch process for reduction of carbonyl substrates with (i) a high cosubstrate yield (formed product/consumed cosubstrate) and (ii) a high conversion rate under anaerobic conditions with Saccharomyces cerevisiae as biocatalyst and glucose as cosubstrate. Five open reading frames (ORFs), YMR226c, YDR368w, YOR120w, YGL157w, and YGL039w, encoding reductases involved in the conversion of BCO2,6D were identified using cell-free extract from strains belonging to the ExClone collection (yeast ORF expression clones; ResGen, Invitrogen Corp., UK). We report the one-step purification and characterization of three major BCO2,6D reductases, YMR226cp, YDR368wp (YPR1p), and YOR120wp (GCY1p). The reductases were overexpressed under a strong constitutive promoter and the impact on cosubstrate yield, conversion time, glucose consumption rate, and reduction rate was investigated when reductases were overexpressed either alone or in combination with low phosphoglucose isomerase activity (encoded by YBR196c). Combining overexpression of BCO2,6D reductase with reduced glycolytic rate (low phosphoglucose isomerase activity) offers a fast whole cell stereoselective bioreduction system useful for facilitated anaerobic batch conversions.
Collapse
Affiliation(s)
- Michael Katz
- Department of Applied Microbiology, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | | | | | | |
Collapse
|
77
|
Valadi A, Granath K, Gustafsson L, Adler L. Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production. J Biol Chem 2004; 279:39677-85. [PMID: 15210723 DOI: 10.1074/jbc.m403310200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During anaerobiosis Saccharomyces cerevisiae strongly increases glycerol production to provide for non-respiratory oxidation of NADH to NAD(+). We here report that respiratory-deficient cells become strictly dependent on the Gpd2p isoform of the NAD(+)-linked glycerol-3-phosphate dehydrogenase (Gpd). The growth inhibition of respiratory incompetent cox18Delta cells lacking GPD2 is reversed by the addition of acetoin, an alternative sink for NADH oxidation. Growth is also restored by addition of lysine or glutamic acid/glutamine, the synthesis of which involves production of mitochondrial NADH. Lysine produced a stronger growth stimulating effect than glutamic acid consistent with an upregulated expression of the IDP3 gene for peroxisomal synthesis of the glutamate precursor alpha-ketoglutarate. Gpd2p is known to be a cytosolic protein but possesses a classical mitochondrial presequence, which we show is sufficient for mitochondrial targeting. A partial mitochondrial localization of Gpd2p will provide for establishment of intramitochondrial redox balance under non-respiratory conditions. Gpd1p, the other Gpd isoform, is partly cytosolic and partly peroxisomal and becomes more strictly peroxisomal in respiratory-deficient mutants. The different cellular distribution of Gpd1p and Gpd2p thus appears to be the main reason Gpd1p cannot substitute for Gpd2p in cox18Deltagpd2Delta cells, despite similar kinetic characteristics of the two iso-enzymes.
Collapse
Affiliation(s)
- Asa Valadi
- Department of Cell and Molecular Biology/Microbiology, Box 462, SE-405 30 Göteborg, Sweden
| | | | | | | |
Collapse
|
78
|
Wang ZX, Zhuge J, Fang H, Prior BA. Glycerol production by microbial fermentation: a review. Biotechnol Adv 2004; 19:201-23. [PMID: 14538083 DOI: 10.1016/s0734-9750(01)00060-x] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Microbial production of glycerol has been known for 150 years, and glycerol was produced commercially during World War I. Glycerol production by microbial synthesis subsequently declined since it was unable to compete with chemical synthesis from petrochemical feedstocks due to the low glycerol yields and the difficulty with extraction and purification of glycerol from broth. As the cost of propylene has increased and its availability has decreased especially in developing countries and as glycerol has become an attractive feedstock for production of various chemicals, glycerol production by fermentation has become more attractive as an alternative route. Substantial overproduction of glycerol by yeast from monosaccharides can be obtained by: (1) forming a complex between acetaldehyde and bisulfite ions thereby retarding ethanol production and restoring the redox balance through glycerol synthesis; (2) growing yeast cultures at pH values near 7 or above; or (3) using osmotolerant yeasts. In recent years, significant improvements have been made in the glycerol production using osmotolerant yeasts on a commercial scale in China. The most outstanding achievements include: (1) isolation of novel osmotolerant yeast strains producing up to 130 g/L glycerol with yields up to 63% and the productivities up to 32 g/(L day); (2) glycerol yields, productivities and concentrations in broth up to 58%, 30 g/(L day) and 110-120 g/L, respectively, in an optimized aerobic fermentation process have been attained on a commercial scale; and (3) a carrier distillation technique with a glycerol distillation efficiency greater than 90% has been developed. As glycerol metabolism has become better understood in yeasts, opportunities will arise to construct novel glycerol overproducing microorganisms by metabolic engineering.
Collapse
Affiliation(s)
- Z X Wang
- Research Center of Industrial Microorganisms and Research and Design Center of Glycerol Fermentation, School of Biotechnology, Wuxi University of Light Industry, China.
| | | | | | | |
Collapse
|
79
|
Valadi H, Valadi A, Ansell R, Gustafsson L, Adler L, Norbeck J, Blomberg A. NADH-reductive stress in Saccharomyces cerevisiae induces the expression of the minor isoform of glyceraldehyde-3-phosphate dehydrogenase (TDH1). Curr Genet 2003; 45:90-5. [PMID: 14652693 DOI: 10.1007/s00294-003-0469-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 10/23/2003] [Accepted: 10/29/2003] [Indexed: 10/26/2022]
Abstract
A strain of Saccharomyces cerevisiae lacking the GPD2 gene, encoding one of the glycerol-3-phosphate dehydrogenases, grows slowly under anaerobic conditions, due to reductive stress caused by the accumulation of cytoplasmic NADH. We used 2D-PAGE to study the effect on global protein expression of reductive stress in the anaerobically grown gpd2Delta strain. The most striking response was a strongly elevated expression of Tdh1p, the minor isoform of glyceraldehyde-3-phosphate dehydrogenase. This increased expression could be reversed by the addition of acetoin, a NADH-specific redox sink, which furthermore largely restored anaerobic growth of the gpd2Delta strain. Additional deletion of the TDH1 gene (but not of TDH2 or TDH3) improved anaerobic growth of the gpd2Delta strain. We therefore propose that TDH1 has properties not displayed by the other TDH isogenes and that its expression is regulated by reductive stress caused by an excess of cytoplasmic NADH.
Collapse
Affiliation(s)
- Hadi Valadi
- Department of Chemistry and Bioscience/Molecular Biotechnology, Chalmers University of Technology, 405-30 Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
80
|
Costenoble R, Adler L, Niklasson C, Lidén G. Engineering of the metabolism of Saccharomyces cerevisiae for anaerobic production of mannitol. FEMS Yeast Res 2003; 3:17-25. [PMID: 12702242 DOI: 10.1111/j.1567-1364.2003.tb00134.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Under anaerobic conditions, Saccharomyces cerevisiae uses NADH-dependent glycerol-3-phosphate dehydrogenase (Gpd1p and Gpd2p) to re-oxidize excess NADH, yielding substantial amounts of glycerol. In a Deltagpd1 Deltagpd2 double-null mutant, the necessary NAD+ regeneration through glycerol production is no longer possible, and this mutant does not grow under anaerobic conditions. The excess NADH formed can potentially be used to drive other NADH-dependent reactions or pathways. To investigate this possibility, a double-null mutant was transformed with a heterologous gene (mtlD) from Escherichia coli, coding for NADH-dependent mannitol-1-phosphate dehydrogenase. Expression of this gene in S. cerevisiae should result in NADH oxidation by the NADH-requiring formation of mannitol-1-phosphate from fructose-6-phosphate. The strain was characterized using step-change experiments, in which, during the exponential growth phase, the inlet gas was changed from air to nitrogen. It was found that the mutant produced mannitol only under anaerobic conditions. However, anaerobic growth was not regained, which was probably due to the excessive accumulation of mannitol in the cells.
Collapse
Affiliation(s)
- Roeland Costenoble
- Chemical Reaction Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | | | | | | |
Collapse
|
81
|
Franzén CJ. Metabolic flux analysis of RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae. Yeast 2003; 20:117-32. [PMID: 12518316 DOI: 10.1002/yea.956] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Microaerobic ethanol production by Saccharomyces cerevisiae CBS 8066 was investigated at different growth rates in respiratory quotient (RQ)-controlled continuous culture. The RQ was controlled by changing the inlet gas composition by a feedback controller while keeping other parameters constant. The ethanol yield increased slightly from the anaerobic values with decreasing RQ, reaching a broad maximum at RQ 20 to 12. There was little or no glycerol production at RQ values below 17 over a wide range of dilution rates. Metabolic flux analysis revealed that a decrease in the ethanol yield at RQ 6 coincided with the cyclic, oxidative operation of the TCA cycle reactions. The model indicated that respiratory dissimilation of glucose only occurs when the oxygen uptake rate is high enough to completely substitute for glycerol formation. The cytosolic and the mitochondrial NADH balances were important for determining the flux distributions. The smallest deviations between estimated and measured product yields were obtained when the unknown co-factor requirements of a limited number of biosynthetic reactions were chosen so that the amount of excess NADH formed in biosynthesis was minimized. The biomass yield was positively correlated with the net amount of NADH reoxidized in respiration and glycerol formation, indicating that the turnover of excess NADH from biosynthesis is an important factor influencing the biomass yield under oxygen-limiting conditions.
Collapse
Affiliation(s)
- Carl Johan Franzén
- Department of Chemical Engineering and Environmental Science, Chalmers University of Technology, S-412 96 Göteborg, Sweden.
| |
Collapse
|
82
|
Remize F, Cambon B, Barnavon L, Dequin S. Glycerol formation during wine fermentation is mainly linked to Gpd1p and is only partially controlled by the HOG pathway. Yeast 2003; 20:1243-53. [PMID: 14618562 DOI: 10.1002/yea.1041] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Glycerol 3-phosphate dehydrogenase, a key enzyme in the production of glycerol, is encoded by GPD1 and GPD2. The isoforms encoded by these genes have different functions, in osmoregulation and redox balance, respectively. We investigated the roles of GPD1, GPD2 and HOG1-the kinase involved in the response to osmotic stress-in glycerol production during wine fermentation. We found that the deletion of GPD2 in a wine yeast-derived strain did not affect growth or fermentation performance and reduced glycerol production by only 20%. In contrast, a gpd1delta mutant displayed a prolonged lag phase, and produced 40% less glycerol than the wild-type strain. The deletion of HOG1 resulted in a slight decrease in growth rate and a 20% decrease in glycerol production, indicating that the HOG pathway operates under wine fermentation conditions. However, the hog1delta mutant was not as severely affected as the gpd1delta mutant during the first few hours of fermentation, and continued to express GPD1 strongly. The hog1delta mutant was able to increase glycerol production in response to high sugar concentration (15-28% glucose), to almost the same extent as the wild-type, whereas this response was totally abolished in the gpd1delta mutant. These data show that Gpd1p plays a major role in glycerol formation, particularly during the first few hours of exposure to high sugar concentration, and that GPD2 is only of little significance in anaerobic fermentation by wine yeast. The results also demonstrate that the HOG pathway exerts only limited control over GPD1 expression and glycerol production during wine fermentation.
Collapse
Affiliation(s)
- F Remize
- UMR Sciences pour l'Oenologie, Microbiologie et de Technologie des Fermentations, INRA, 2 Place Viala, F-34060 Montpellier cedex 1, France
| | | | | | | |
Collapse
|
83
|
Hohmann S. Osmotic adaptation in yeast--control of the yeast osmolyte system. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 215:149-87. [PMID: 11952227 DOI: 10.1016/s0074-7696(02)15008-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The yeast Saccharomyces cerevisiae (baker's yeast or budding yeast) is an excellent eukaryotic model system for cellular biology with a well-explored, completely sequenced genome. Yeast cells possess robust systems for osmotic adaptation. Central to the response to high osmolarity is the HOG pathway, one of the best-explored MAP kinase pathways. This pathway controls via different transcription factors the expression of more than 150 genes. In addition, osmotic responses are also controlled by protein kinase A via a general stress response pathway and by presently unknown signaling systems. The HOG pathway partially controls expression of genes encoding enzymes in glycerol production. Glycerol is the main yeast osmolyte, and its production is essential for growth in a high osmolarity medium. Upon hypo-osmotic shock, yeast cells transiently stimulate another MAP kinase pathway, the so-called PKC pathway, which appears to orchestrate the assembly of the cell surface and the cell wall. In addition, yeast cells show signs of a regulated volume decrease by rapidly exporting glycerol through Fps1p. This unusual MIP channel is gated by osmotic changes and thereby plays a key role in controlling the intracellular osmolyte content. Yeast cells also possess two aquaporins, Aqy1p and Aqy2p. The production of both proteins is strictly regulated, suggesting that these water channels play very specific roles in yeast physiology. Aqy1p appears to be developmentally regulated. Given the strong yeast research community and the excellent tools of genetics and functional genomics available, we expect yeast to be the best-explored cellular organism for several years ahead, and osmotic responses are a focus of interest for numerous yeast researchers.
Collapse
Affiliation(s)
- Stefan Hohmann
- Department of Cell and Molecular Biology, Göteborg University, Sweden
| |
Collapse
|
84
|
Cronwright GR, Rohwer JM, Prior BA. Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 2002; 68:4448-56. [PMID: 12200299 PMCID: PMC124078 DOI: 10.1128/aem.68.9.4448-4456.2002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2002] [Accepted: 06/20/2002] [Indexed: 11/20/2022] Open
Abstract
Glycerol, a major by-product of ethanol fermentation by Saccharomyces cerevisiae, is of significant importance to the wine, beer, and ethanol production industries. To gain a clearer understanding of and to quantify the extent to which parameters of the pathway affect glycerol flux in S. cerevisiae, a kinetic model of the glycerol synthesis pathway has been constructed. Kinetic parameters were collected from published values. Maximal enzyme activities and intracellular effector concentrations were determined experimentally. The model was validated by comparing experimental results on the rate of glycerol production to the rate calculated by the model. Values calculated by the model agreed well with those measured in independent experiments. The model also mimics the changes in the rate of glycerol synthesis at different phases of growth. Metabolic control analysis values calculated by the model indicate that the NAD(+)-dependent glycerol 3-phosphate dehydrogenase-catalyzed reaction has a flux control coefficient (C(J)v1) of approximately 0.85 and exercises the majority of the control of flux through the pathway. Response coefficients of parameter metabolites indicate that flux through the pathway is most responsive to dihydroxyacetone phosphate concentration (R(J)DHAP= 0.48 to 0.69), followed by ATP concentration (R(J)ATP = -0.21 to -0.50). Interestingly, the pathway responds weakly to NADH concentration (R(J)NADH = 0.03 to 0.08). The model indicates that the best strategy to increase flux through the pathway is not to increase enzyme activity, substrate concentration, or coenzyme concentration alone but to increase all of these parameters in conjunction with each other.
Collapse
Affiliation(s)
- Garth R Cronwright
- Department of Microbiology, Stellenbosch University, Matieland 7602, South Africa.
| | | | | |
Collapse
|
85
|
Taherzadeh MJ, Adler L, Lidén G. Strategies for enhancing fermentative production of glycerol—a review. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(02)00069-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
86
|
Abstract
The ability to adapt to altered availability of free water is a fundamental property of living cells. The principles underlying osmoadaptation are well conserved. The yeast Saccharomyces cerevisiae is an excellent model system with which to study the molecular biology and physiology of osmoadaptation. Upon a shift to high osmolarity, yeast cells rapidly stimulate a mitogen-activated protein (MAP) kinase cascade, the high-osmolarity glycerol (HOG) pathway, which orchestrates part of the transcriptional response. The dynamic operation of the HOG pathway has been well studied, and similar osmosensing pathways exist in other eukaryotes. Protein kinase A, which seems to mediate a response to diverse stress conditions, is also involved in the transcriptional response program. Expression changes after a shift to high osmolarity aim at adjusting metabolism and the production of cellular protectants. Accumulation of the osmolyte glycerol, which is also controlled by altering transmembrane glycerol transport, is of central importance. Upon a shift from high to low osmolarity, yeast cells stimulate a different MAP kinase cascade, the cell integrity pathway. The transcriptional program upon hypo-osmotic shock seems to aim at adjusting cell surface properties. Rapid export of glycerol is an important event in adaptation to low osmolarity. Osmoadaptation, adjustment of cell surface properties, and the control of cell morphogenesis, growth, and proliferation are highly coordinated processes. The Skn7p response regulator may be involved in coordinating these events. An integrated understanding of osmoadaptation requires not only knowledge of the function of many uncharacterized genes but also further insight into the time line of events, their interdependence, their dynamics, and their spatial organization as well as the importance of subtle effects.
Collapse
Affiliation(s)
- Stefan Hohmann
- Department of Cell and Molecular Biology/Microbiology, Göteborg University, S-405 30 Göteborg, Sweden.
| |
Collapse
|
87
|
Wahlbom CF, Hahn-Hägerdal B. Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 2002; 78:172-8. [PMID: 11870608 DOI: 10.1002/bit.10188] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The electron acceptors acetoin, acetaldehyde, furfural, and 5-hydroxymethylfurfural (HMF) were added to anaerobic batch fermentation of xylose by recombinant, xylose utilising Saccharomyces cerevisiae TMB 3001. The intracellular fluxes during xylose fermentation before and after acetoin addition were calculated with metabolic flux analysis. Acetoin halted xylitol excretion and decreased the flux through the oxidative pentose phosphate pathway. The yield of ethanol increased from 0.62 mol ethanol/mol xylose to 1.35 mol ethanol/mol xylose, and the cell more than doubled its specific ATP production after acetoin addition compared to fermentation of xylose only. This did, however, not result in biomass growth. The xylitol excretion was also decreased by furfural and acetaldehyde but was unchanged by HMF. Thus, furfural present in lignocellulosic hydrolysate can be beneficial for ethanolic fermentation of xylose. Enzymatic analyses showed that the reduction of acetoin and furfural required NADH, whereas the reduction of HMF required NADPH. The enzymatic activity responsible for furfural reduction was considerably higher than for HMF reduction and also in situ furfural conversion was higher than HMF conversion.
Collapse
Affiliation(s)
- C Fredrik Wahlbom
- Department of Applied Microbiology, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | | |
Collapse
|
88
|
Kerscher SJ, Eschemann A, Okun PM, Brandt U. External alternative NADH:ubiquinone oxidoreductase redirected to the internal face of the mitochondrial inner membrane rescues complex I deficiency in Yarrowia lipolytica. J Cell Sci 2001; 114:3915-21. [PMID: 11719558 DOI: 10.1242/jcs.114.21.3915] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alternative NADH:ubiquinone oxidoreductases are single subunit enzymes capable of transferring electrons from NADH to ubiquinone without contributing to the proton gradient across the respiratory membrane. The obligately aerobic yeast Yarrowia lipolytica has only one such enzyme, encoded by the NDH2 gene and located on the external face of the mitochondrial inner membrane. In sharp contrast to ndh2 deletions, deficiencies in nuclear genes for central subunits of proton pumping NADH:ubiquinone oxidoreductases (complex I) are lethal. We have redirected NDH2 to the internal face of the mitochondrial inner membrane by N-terminally attaching the mitochondrial targeting sequence of NUAM, the largest subunit of complex I. Lethality of complex I mutations was rescued by the internal, but not the external version of alternative NADH:ubiquinone oxidoreductase. Internal NDH2 also permitted growth in the presence of complex I inhibitors such as 2-decyl-4-quinazolinyl amine (DQA). Functional expression of NDH2 on both sides of the mitochondrial inner membrane indicates that alternative NADH:ubiquinone oxidoreductase requires no additional components for catalytic activity. Our findings also demonstrate that shuttle mechanisms for the transfer of redox equivalents from the matrix to the cytosolic side of the mitochondrial inner membrane are insufficient in Y. lipolytica.
Collapse
Affiliation(s)
- S J Kerscher
- Universitätsklinikum Frankfurt, Institut für Biochemie I, D-60590 Frankfurt am Main, Federal Republic of Germany.
| | | | | | | |
Collapse
|
89
|
Remize F, Barnavon L, Dequin S. Glycerol export and glycerol-3-phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae. Metab Eng 2001; 3:301-12. [PMID: 11676566 DOI: 10.1006/mben.2001.0197] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycerol, one of the most important by-products of alcoholic fermentation, has positive effects on the sensory properties of fermented beverages. It was recently shown that the most direct approach for increasing glycerol formation is to overexpress GPD1, which encodes the glycerol-3-phosphate dehydrogenase (GPDH) isoform Gpd1p. We aimed to identify other steps in glycerol synthesis or transport that limit glycerol flux during glucose fermentation. We showed that the overexpression of GPD2, encoding the other isoform of glycerol-3-phosphate dehydrogenase (Gpd2p), is equally as effective as the overexpression of GPD1 in increasing glycerol production (3.3-fold increase compared to the wild-type strain) and has similar effects on yeast metabolism. In contrast, overexpression of GPP1, encoding glycerol 3-phosphatase (Gpp1p), did not enhance glycerol production. Strains that simultaneously overexpress GPD1 and GPP1 did not produce higher amounts of glycerol than a GPD1-overexpressing strain. These results demonstrate that GPDH, but not the glycerol 3-phosphatase, is rate-limiting for glycerol production. The channel protein Fps1p mediates glycerol export. It has recently been shown that mutants lacking a region in the N-terminal domain of Fps1p constitutively release glycerol. We showed that cells producing truncated Fps1p constructs during glucose fermentation compensate for glycerol loss by increasing glycerol production. Interestingly, the strain with a deregulated Fps1 glycerol channel had a different phenotype to the strain overexpressing GPD genes and showed poor growth during fermentation. Overexpression of GPD1 in this strain increased the amount of glycerol produced but led to a pronounced growth defect.
Collapse
Affiliation(s)
- F Remize
- UMR Sciences pour l'Oenologie, Microbiologie et Technologie des Fermentations, INRA, 2 Place Viala, F-34060 Montpellier Cedex 1, France
| | | | | |
Collapse
|
90
|
Nilsson A, Taherzadeh MJ, Lidén G. Use of dynamic step response for control of fed-batch conversion of lignocellulosic hydrolyzates to ethanol. J Biotechnol 2001; 89:41-53. [PMID: 11472798 DOI: 10.1016/s0168-1656(01)00283-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Optimization of fed-batch conversion of lignocellulosic hydrolyzates by the yeast Saccharomyces cerevisiae was studied. The feed rate was controlled using a step response strategy, in which the carbon dioxide evolution rate was used as input variable. The performance of the control strategy was examined using both an untreated and a detoxified dilute acid hydrolyzate, and the performance was compared to that obtained with a synthetic medium. In batch cultivation of the untreated hydrolyzate, only 23% of the hexose sugars were assimilated. However, by using the feed-back controlled fed-batch technique, it was possible to obtain complete conversion of the hexose sugars. Furthermore, the maximal specific ethanol productivity (q(E,max)) increased more than 10-fold, from 0.06 to 0.70 g g(-1) h(-1). In addition, the viability of the yeast cells decreased by more than 99% in batch cultivation, whereas a viability of more than 40% could be maintained during fed-batch cultivation. In contrast to untreated hydrolyzate, it was possible to convert the sugars in the detoxified hydrolyzate also in batch cultivation. However, a 50% higher specific ethanol productivity was obtained using fed-batch cultivation. During batch cultivation of both untreated and detoxified hydrolyzate a gradual decrease in specific ethanol productivity was observed. This decrease could largely be avoided in fed-batch cultivations.
Collapse
Affiliation(s)
- A Nilsson
- Department of Chemical Engineering II, Lund University of Technology, P.O. Box 124, SE-22100 Lund, Sweden.
| | | | | |
Collapse
|
91
|
Pahlman AK, Granath K, Ansell R, Hohmann S, Adler L. The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J Biol Chem 2001; 276:3555-63. [PMID: 11058591 DOI: 10.1074/jbc.m007164200] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have characterized the strongly homologous GPP1/RHR2 and GPP2/HOR2 genes, encoding isoforms of glycerol 3-phosphatase. Mutants lacking both GPP1 and GPP2 are devoid of glycerol 3-phosphatase activity and produce only a small amount of glycerol, confirming the essential role for this enzyme in glycerol biosynthesis. Overproduction of Gpp1p and Gpp2p did not significantly enhance glycerol production, indicating that glycerol phosphatase is not rate-limiting for glycerol production. Previous studies have shown that expression of both GPP1 and GPP2 is induced under hyperosmotic stress and that induction partially depends on the HOG (high osmolarity glycerol) pathway. We here show that expression of GPP1 is strongly decreased in strains having low protein kinase A activity, although it is still responsive to osmotic stress. The gpp1Delta/gpp2Delta double mutant is hypersensitive to high osmolarity, whereas the single mutants remain unaffected, indicating GPP1 and GPP2 substitute well for each other. Transfer to anaerobic conditions does not affect expression of GPP2, whereas GPP1 is transiently induced, and mutants lacking GPP1 show poor anaerobic growth. All gpp mutants show increased levels of glycerol 3-phosphate, which is especially pronounced when gpp1Delta and gpp1Delta/gpp2Delta mutants are transferred to anaerobic conditions. The addition of acetaldehyde, a strong oxidizer of NADH, leads to decreased glycerol 3-phosphate levels and restored anaerobic growth of the gpp1Delta/gpp2Delta mutant, indicating that the anaerobic accumulation of NADH causes glycerol 3-phosphate to reach growth-inhibiting levels. We also found the gpp1Delta/gpp2Delta mutant is hypersensitive to the superoxide anion generator, paraquat. Consistent with a role for glycerol 3-phosphatase in protection against oxidative stress, expression of GPP2 is induced in the presence of paraquat. This induction was only marginally affected by the general stress-response transcriptional factors Msn2p/4p or protein kinase A activity. We conclude that glycerol metabolism plays multiple roles in yeast adaptation to altered growth conditions, explaining the complex regulation of glycerol biosynthesis genes.
Collapse
Affiliation(s)
- A K Pahlman
- Department of Cell and Molecular Biology, Microbiology, Göteborg University, Box 463, SE 40530 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
92
|
Bakker BM, Overkamp KM, Kötter P, Luttik MA, Pronk JT. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 2001; 25:15-37. [PMID: 11152939 DOI: 10.1111/j.1574-6976.2001.tb00570.x] [Citation(s) in RCA: 365] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In Saccharomyces cerevisiae, reduction of NAD(+) to NADH occurs in dissimilatory as well as in assimilatory reactions. This review discusses mechanisms for reoxidation of NADH in this yeast, with special emphasis on the metabolic compartmentation that occurs as a consequence of the impermeability of the mitochondrial inner membrane for NADH and NAD(+). At least five mechanisms of NADH reoxidation exist in S. cerevisiae. These are: (1) alcoholic fermentation; (2) glycerol production; (3) respiration of cytosolic NADH via external mitochondrial NADH dehydrogenases; (4) respiration of cytosolic NADH via the glycerol-3-phosphate shuttle; and (5) oxidation of intramitochondrial NADH via a mitochondrial 'internal' NADH dehydrogenase. Furthermore, in vivo evidence indicates that NADH redox equivalents can be shuttled across the mitochondrial inner membrane by an ethanol-acetaldehyde shuttle. Several other redox-shuttle mechanisms might occur in S. cerevisiae, including a malate-oxaloacetate shuttle, a malate-aspartate shuttle and a malate-pyruvate shuttle. Although key enzymes and transporters for these shuttles are present, there is as yet no consistent evidence for their in vivo activity. Activity of several other shuttles, including the malate-citrate and fatty acid shuttles, can be ruled out based on the absence of key enzymes or transporters. Quantitative physiological analysis of defined mutants has been important in identifying several parallel pathways for reoxidation of cytosolic and intramitochondrial NADH. The major challenge that lies ahead is to elucidate the physiological function of parallel pathways for NADH oxidation in wild-type cells, both under steady-state and transient-state conditions. This requires the development of techniques for accurate measurement of intracellular metabolite concentrations in separate metabolic compartments.
Collapse
Affiliation(s)
- B M Bakker
- Kluyver Laboratory of Biotechnology, Delft University of Technology, The Netherlands
| | | | | | | | | |
Collapse
|
93
|
Abstract
The yeast Saccharomyces cerevisiae produces large amounts of glycerol as an osmoregulator during hyperosmotic stress and as a redox sink at low oxygen availability. NAD(+)-dependent glycerol-3-phosphate dehydrogenase in S. cerevisiae is present in two isoforms, coded for by two different genes, GPD1 and GPD2. Mutants for either one or both of these genes were investigated under carefully controlled static and dynamic conditions in continuous cultures at low oxygen transfer rates. Our results show that S. cerevisiae controls the production of glycerol in response to hypoxic conditions by regulating the expression of several genes. At high demand for NADH reoxidation, a strong induction was seen not only of the GPD2 gene, but also of GPP1, encoding one of the molecular forms of glycerol-3-phosphatase. Induction of the GPP1 gene appears to play a decisive role at elevated growth rates. At low demand for NADH reoxidation via glycerol formation, the GPD1, GPD2, GPP1, and GPP2 genes were all expressed at basal levels. The dynamics of the gene induction and the glycerol formation at low demand for NADH reoxidation point to an important role of the Gpd1p; deletion of the GPD1 gene strongly altered the expression patterns of the GPD2 and GPP1 genes under such conditions. Furthermore, our results indicate that GCY1 and DAK1, tentatively encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, may be involved in the redox regulation of S. cerevisiae.
Collapse
Affiliation(s)
- R Costenoble
- Department of Chemical Reaction Engineering, Chalmers University of Technology, SE-412 96 Goteborg, Sweden
| | | | | | | | | |
Collapse
|
94
|
Estruch F. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 2000; 24:469-86. [PMID: 10978547 DOI: 10.1111/j.1574-6976.2000.tb00551.x] [Citation(s) in RCA: 412] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The transcriptional response to environmental changes is a major topic in both basic and applied research. From a basic point of view, to understand this response includes unravelling how the stress signal is sensed and transduced to the nucleus, to identify which genes are induced under each stress condition and, finally, to establish the phenotypic consequences of this induction in stress tolerance. The possibility of using genetic approaches has made the yeast Saccharomyces cerevisiae a compelling model to study stress response at a molecular level. Moreover, this information can be used to isolate and characterise stress-related proteins in higher eukaryotes and to design strategies to increase stress resistance in organisms of industrial interest. In this review the progress made in recent years is discussed.
Collapse
Affiliation(s)
- F Estruch
- Departamento de Bioquímica y Biología Molecular, Universitat de Valencia, Burjassot, Spain.
| |
Collapse
|
95
|
Kerscher SJ. Diversity and origin of alternative NADH:ubiquinone oxidoreductases. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:274-83. [PMID: 11004440 DOI: 10.1016/s0005-2728(00)00162-6] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mitochondria from various organisms, especially plants, fungi and many bacteria contain so-called alternative NADH:ubiquinone oxidoreductases that catalyse the same redox reaction as respiratory chain complex I, but do not contribute to the generation of transmembrane proton gradients. In eucaryotes, these enzymes are associated with the mitochondrial inner membrane, with their NADH reaction site facing either the mitochondrial matrix (internal alternative NADH:ubiquinone oxidoreductases) or the cytoplasm (external alternative NADH:ubiquinone oxidoreductases). Some of these enzymes also accept NADPH as substrate, some require calcium for activity. In the past few years, the characterisation of several alternative NADH:ubiquinone oxidoreductases on the DNA and on the protein level, of substrate specificities, mitochondrial import and targeting to the mitochondrial inner membrane has greatly improved our understanding of these enzymes. The present review will, with an emphasis on yeast model systems, illuminate various aspects of the biochemistry of alternative NADH:ubiquinone oxidoreductases, address recent developments and discuss some of the questions still open in the field.
Collapse
Affiliation(s)
- S J Kerscher
- Universitätsklinkum Frankfurt, Institut für Biochemie I, ZBC, Theodor-Stern-Kai 7, Haus 25B, D-60590, Frankfurt am Main, Germany.
| |
Collapse
|
96
|
Nissen TL, Hamann CW, Kielland-Brandt MC, Nielsen J, Villadsen J. Anaerobic and aerobic batch cultivations ofSaccharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast 2000. [DOI: 10.1002/(sici)1097-0061(20000330)16:5%3c463::aid-yea535%3e3.0.co;2-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
97
|
Nissen TL, Hamann CW, Kielland-Brandt MC, Nielsen J, Villadsen J. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast 2000; 16:463-74. [PMID: 10705374 DOI: 10.1002/(sici)1097-0061(20000330)16:5<463::aid-yea535>3.0.co;2-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Glycerol is formed as a by-product in production of ethanol and baker's yeast during fermentation of Saccharomyces cerevisiae under anaerobic and aerobic growth conditions, respectively. One physiological role of glycerol formation by yeast is to reoxidize NADH, formed in synthesis of biomass and secondary fermentation products, to NAD(+). The objective of this study was to evaluate whether introduction of a new pathway for reoxidation of NADH, in a yeast strain where glycerol synthesis had been impaired, would result in elimination of glycerol production and lead to increased yields of ethanol and biomass under anaerobic and aerobic growth conditions, respectively. This was done by deletion of GPD1 and GPD2, encoding two isoenzymes of glycerol 3-phosphate dehydrogenase, and expression of a cytoplasmic transhydrogenase from Azotobacter vinelandii, encoded by cth. In anaerobic batch fermentations of strain TN5 (gpd2-Delta1), formation of glycerol was significantly impaired, which resulted in reduction of the maximum specific growth rate from 0.41/h in the wild-type to 0.08/h. Deletion of GPD2 also resulted in a reduced biomass yield, but did not affect formation of the remaining products. The modest effect of the GPD1 deletion under anaerobic conditions on the maximum specific growth rate and product yields clearly showed that Gdh2p is the important factor in glycerol formation during anaerobic growth. Strain TN6 (gpd1-Delta1 gpd2-Delta1) was unable to grow under anaerobic conditions due to the inability of the strain to reoxidize NADH to NAD(+) by synthesis of glycerol. Also, strain TN23 (gpd1-Delta1 gpd2-Delta1 YEp24-PGKp-cth-PGKt) was unable to grow anaerobically, leading to the conclusion that the NAD(+) pool became limiting in biomass synthesis before the nucleotide levels favoured a transhydrogenase reaction that could convert NADH and NADP(+) to NADPH and NAD(+). Deletion of either GPD1 or GPD2 in the wild-type resulted in a dramatic reduction of the glycerol yields in the aerobic batch cultivations of strains TN4 (gpd1-Delta1) and TN5 (gpd2-Delta1) without serious effects on the maximum specific growth rates or the biomass yields. Deletion of both GPD1 and GPD2 in strain TN6 (gpd1-Delta1 gpd2-Delta1) resulted in a dramatic reduction in the maximum specific growth rate and in biomass formation. Expression of the cytoplasmic transhydrogenase in the double mutant, resulting in TN23, gave a further decrease in micromax from 0.17/h in strain TN6 to 0.09/h in strain TN23, since the transhydrogenase reaction was in the direction from NADPH and NADP(+) to NADH and NADP(+). Thus, it was not possible to introduce an alternative pathway for reoxidation of NADH in the cytoplasm by expression of the transhydrogenase from A. vinelandii in a S. cerevisiae strain with a double deletion in GPD1 and GPD2.
Collapse
Affiliation(s)
- T L Nissen
- Department of Yeast Genetics, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark
| | | | | | | | | |
Collapse
|
98
|
Remize F, Sablayrolles JM, Dequin S. Re-assessment of the influence of yeast strain and environmental factors on glycerol production in wine. J Appl Microbiol 2000; 88:371-8. [PMID: 10747217 DOI: 10.1046/j.1365-2672.2000.00964.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Increasing glycerol production is of concern for wine-makers in improving the quality of certain wines. We have compared the impact of strain and relevant environmental factors influencing glycerol production under the same conditions, i.e. standardized conditions simulating enological fermentation. The glycerol production of 19 industrial wine strains ranged from 6.4 to 8.9 g l-1 and varied significantly between strains. The production of acetate and succinate was also found to differ substantially depending on the strain but no significant strain-dependent variation was observed for acetaldehyde. Interestingly, high glycerol production was not correlated to high production of acetate or acetaldehyde, which are undesirable in wine. A detailed study with two low or two high glycerol-producing strains showed that temperature and the initial concentration of nitrogen had little effect on the amount of glycerol formed, although agitation or a nitrogen source composed mainly of ammoniacal nitrogen slightly enhanced glycerol production. The influence of environmental factors remained minor while the predominant factor for glycerol variability in wine was attributed to the strain. Taking into account wine-making constraints, the results indicate that achieving a high glycerol content in wine requires the selection or improvement of yeast strains rather than the control of growth and cultivation conditions.
Collapse
Affiliation(s)
- F Remize
- Laboratoire de Microbiologie et Technologie des Fermentations, INRA-IPV,Montpellier, France
| | | | | |
Collapse
|
99
|
Nissen TL, Kielland-Brandt MC, Nielsen J, Villadsen J. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng 2000; 2:69-77. [PMID: 10935936 DOI: 10.1006/mben.1999.0140] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethanol is still one of the most important products originating from the biotechnological industry with respect to both value and amount. In addition to ethanol, a number of byproducts are formed during an anaerobic fermentation of Saccharomyces cerevisiae. One of the most important of these compounds, glycerol, is produced by yeast to reoxidize NADH, formed in synthesis of biomass and secondary fermentation products, to NAD+. The purpose of this study was to evaluate whether a reduced formation of surplus NADH and an increased consumption of ATP in biosynthesis would result in a decreased glycerol yield and an increased ethanol yield in anaerobic cultivations of S. cerevisiae. A yeast strain was constructed in which GLN1, encoding glutamine synthetase, and GLT1, encoding glutamate synthase, were overexpressed, and GDH1, encoding the NADPH-dependent glutamate dehydrogenase, was deleted. Hereby the normal NADPH-consuming synthesis of glutamate from ammonium and 2-oxoglutarate was substituted by a new pathway in which ATP and NADH were consumed. The resulting strain TN19 (gdh1-A1 PGK1p-GLT1 PGK1p-GLN1) had a 10% higher ethanol yield and a 38% lower glycerol yield compared to the wild type in anaerobic batch fermentations. The maximum specific growth rate of strain TN19 was slightly lower than the wild-type value, but earlier results suggest that this can be circumvented by increasing the specific activities of Gln1p and Glt1p even more. Thus, the results verify the proposed concept of increasing the ethanol yield in S. cerevisiae by metabolic engineering of pathways involved in biomass synthesis.
Collapse
Affiliation(s)
- T L Nissen
- Department of Yeast Genetics, Carlsberg Laboratory, Copenhagen Valby, Denmark
| | | | | | | |
Collapse
|
100
|
Kerscher SJ, Okun JG, Brandt U. A single external enzyme confers alternative NADH:ubiquinone oxidoreductase activity in Yarrowia lipolytica. J Cell Sci 1999; 112 ( Pt 14):2347-54. [PMID: 10381390 DOI: 10.1242/jcs.112.14.2347] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NADH:ubiquinone oxidoreductases catalyse the first step within the diverse pathways of mitochondrial NADH oxidation. In addition to the energy-conserving form commonly called complex I, fungi and plants contain much simpler alternative NADH:ubiquinone oxido-reductases that catalyze the same reaction but do not translocate protons across the inner mitochondrial membrane. Little is known about the distribution and function of these enzymes. We have identified YLNDH2 as the only gene encoding an alternative NADH:ubiquinone oxidoreductase (NDH2) in the obligate aerobic yeast Yarrowia lipolytica. Cells carrying a deletion of YLNDH2 were fully viable; full inhibition by piericidin A indicated that complex I activity was the sole NADH:ubiquinone oxidoreductase activity left in the deletion strains. Studies with intact mitochondria revealed that NDH2 in Y. lipolytica is oriented towards the external face of the mitochondrial inner membrane. This is in contrast to the situation seen in Saccharomyces cerevisiae, Neurospora crassa and in green plants, where internal alternative NADH:ubiquinone oxidoreductases have been reported. Phylogenetic analysis of known NADH:ubiquinone oxidoreductases suggests that during evolution conversion of an ancestral external alternative NADH:ubiquinone oxidoreductase to an internal enzyme may have paved the way for the loss of complex I in fermenting yeasts like S. cerevisiae.
Collapse
Affiliation(s)
- S J Kerscher
- Institut für Biochemie I, Zentrum der Biologischen Chemie, Universitätsklinikum Frankfurt, D-60590 Frankfurt am Main, Germany
| | | | | |
Collapse
|