51
|
Twarog C, Fattah S, Heade J, Maher S, Fattal E, Brayden DJ. Intestinal Permeation Enhancers for Oral Delivery of Macromolecules: A Comparison between Salcaprozate Sodium (SNAC) and Sodium Caprate (C 10). Pharmaceutics 2019; 11:E78. [PMID: 30781867 PMCID: PMC6410172 DOI: 10.3390/pharmaceutics11020078] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Salcaprozate sodium (SNAC) and sodium caprate (C10) are two of the most advanced intestinal permeation enhancers (PEs) that have been tested in clinical trials for oral delivery of macromolecules. Their effects on intestinal epithelia were studied for over 30 years, yet there is still debate over their mechanisms of action. C10 acts via openings of epithelial tight junctions and/or membrane perturbation, while for decades SNAC was thought to increase passive transcellular permeation across small intestinal epithelia based on increased lipophilicity arising from non-covalent macromolecule complexation. More recently, an additional mechanism for SNAC associated with a pH-elevating, monomer-inducing, and pepsin-inhibiting effect in the stomach for oral delivery of semaglutide was advocated. Comparing the two surfactants, we found equivocal evidence for discrete mechanisms at the level of epithelial interactions in the small intestine, especially at the high doses used in vivo. Evidence that one agent is more efficacious compared to the other is not convincing, with tablets containing these PEs inducing single-digit highly variable increases in oral bioavailability of payloads in human trials, although this may be adequate for potent macromolecules. Regarding safety, SNAC has generally regarded as safe (GRAS) status and is Food and Drug Administration (FDA)-approved as a medical food (Eligen®-Vitamin B12, Emisphere, Roseland, NJ, USA), whereas C10 has a long history of use in man, and has food additive status. Evidence for co-absorption of microorganisms in the presence of either SNAC or C10 has not emerged from clinical trials to date, and long-term effects from repeat dosing beyond six months have yet to be assessed. Since there are no obvious scientific reasons to prefer SNAC over C10 in orally delivering a poorly permeable macromolecule, then formulation, manufacturing, and commercial considerations are the key drivers in decision-making.
Collapse
Affiliation(s)
- Caroline Twarog
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sarinj Fattah
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Joanne Heade
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sam Maher
- School of Pharmacy, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland.
| | - Elias Fattal
- School of Pharmacy, Institut Galien, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, 92290 Châtenay-Malabry, France.
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
52
|
Oliveira GR, Oliveira WK, Andrade C, Melo ADB, Luciano FB, Macedo REF, Costa LB. Natural antimicrobials for control of
Salmonella
Enteritidis in feed and in vitro model of the chicken digestive process. J Anim Physiol Anim Nutr (Berl) 2019; 103:756-765. [DOI: 10.1111/jpn.13070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 12/07/2018] [Accepted: 01/09/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Geovane R. Oliveira
- Programa de Pós‐graduação em Ciência Animal Pontifícia Universidade Católica do Paraná, PUCPR Curitiba Brazil
| | - Willian K. Oliveira
- Programa de Pós‐graduação em Ciência Animal Pontifícia Universidade Católica do Paraná, PUCPR Curitiba Brazil
| | - Carla Andrade
- Programa de Pós‐graduação em Ciência Animal Pontifícia Universidade Católica do Paraná, PUCPR Curitiba Brazil
| | - Antonio Diego B. Melo
- Programa de Pós‐graduação em Ciência Animal Pontifícia Universidade Católica do Paraná, PUCPR Curitiba Brazil
| | - Fernando B. Luciano
- Programa de Pós‐graduação em Ciência Animal Pontifícia Universidade Católica do Paraná, PUCPR Curitiba Brazil
| | - Renata E. F. Macedo
- Programa de Pós‐graduação em Ciência Animal Pontifícia Universidade Católica do Paraná, PUCPR Curitiba Brazil
| | - Leandro B. Costa
- Programa de Pós‐graduação em Ciência Animal Pontifícia Universidade Católica do Paraná, PUCPR Curitiba Brazil
| |
Collapse
|
53
|
V T Nair D, Venkitanarayanan K, Kollanoor Johny A. Antibiotic-Resistant Salmonella in the Food Supply and the Potential Role of Antibiotic Alternatives for Control. Foods 2018; 7:E167. [PMID: 30314348 PMCID: PMC6210005 DOI: 10.3390/foods7100167] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 01/21/2023] Open
Abstract
Salmonella enterica is one of the most ubiquitous enteropathogenic bacterial species on earth, and comprises more than 2500 serovars. Widely known for causing non-typhoidal foodborne infections (95%), and enteric (typhoid) fever in humans, Salmonella colonizes almost all warm- and cold-blooded animals, in addition to its extra-animal environmental strongholds. The last few decades have witnessed the emergence of highly virulent and antibiotic-resistant Salmonella, causing greater morbidity and mortality in humans. The emergence of several Salmonella serotypes resistant to multiple antibiotics in food animals underscores a significant food safety hazard. In this review, we discuss the various antibiotic-resistant Salmonella serotypes in food animals and the food supply, factors that contributed to their emergence, their antibiotic resistance mechanisms, the public health implications of their spread through the food supply, and the potential antibiotic alternatives for controlling them.
Collapse
Affiliation(s)
- Divek V T Nair
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108 USA.
| | | | - Anup Kollanoor Johny
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108 USA.
| |
Collapse
|
54
|
De Keyser K, Dierick N, Kanto U, Hongsapak T, Buyens G, Kuterna L, Vanderbeke E. Medium-chain glycerides affect gut morphology, immune- and goblet cells in post-weaning piglets: In vitro fatty acid screening with Escherichia coli and in vivo consolidation with LPS challenge. J Anim Physiol Anim Nutr (Berl) 2018; 103:221-230. [PMID: 30280433 DOI: 10.1111/jpn.12998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/01/2018] [Accepted: 08/26/2018] [Indexed: 01/14/2023]
Abstract
The influence of medium-chain glycerides on performance and gastrointestinal well-being in weaning piglets was assessed. First, caproic (C6), caprylic (C8) and capric (C10) acid activity against Escherichia coli was screened in vitro. Pig flora of the whole small intestine was used as inoculum. Seven in vitro incubations were done in duplicate at pH = 3 and 5: C10 (15 mM), C8 (12 mM), C6 (15, 12, 10 mM), a non-incubated-negative control and incubated negative control. Culture suspensions were plated on E. coli-selective agar. Controls showed bacterial growth. C6 and C8 showed no growth at both pH-values, where C10 showed growth at pH = 5. Secondly, an in vivo study was done with 80 weaned piglets over 42 days, housed in pens of eight animals (five pens/treatment), fed a basal diet containing broken rice/soya bean meal/fish meal and supplemented with C6 and C8 in medium-chain glyceride form (MCT6/8, 0.175%) or antibiotic growth promoter (AGP, 0.020%) (Kasetsart University, Thailand) serving as control. Feed intake, daily gain and feed-to-gain ratio did not differ between MCT6/8 and AGP. Per replicate, two random selected piglets were challenged intravenously with E. coli-lipopolysaccharide (LPS) or saline solution (S) at Days 21 and 28. All challenged animals were sacrificed; blood and digestive tract samples (jejunum/ileum) were collected at Day 35. LPS challenge consistently reduced villus height and crypt depth for MCT6/8 and AGP. However, LPS-challenged piglets supplemented with MCT6/8 restored villus height, where AGP did not. MCT6/8 piglets had higher serum IgA, more jejunal IgA-positive plasma cells and goblet cells than AGP. At the ileal level, results were similar, though less pronounced. The present study offers new insight in the benefits of MCT6/8 over AGP in the post-weaning period. There is in vitro anti-microbial action of C6 and C8 on E. coli. In vivo, MCT6/8 also has protective effects in the small intestine that may result in growth promotion.
Collapse
Affiliation(s)
| | - Noël Dierick
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Uthai Kanto
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Nakhon Pathom, Thailand
| | - Tassanan Hongsapak
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Nakhon Pathom, Thailand
| | | | | | | |
Collapse
|
55
|
Omonijo FA, Kim S, Guo T, Wang Q, Gong J, Lahaye L, Bodin JC, Nyachoti M, Liu S, Yang C. Development of Novel Microparticles for Effective Delivery of Thymol and Lauric Acid to Pig Intestinal Tract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9608-9615. [PMID: 30141924 DOI: 10.1021/acs.jafc.8b02808] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Antibiotics have been widely supplemented in feeds at subtherapeutic concentrations to prevent postweaning diarrhea and increase the overall productivity of pigs. However, the emergence of antimicrobial-resistant bacteria worldwide has made it urgent to minimize the use of in-feed antibiotics. The development of promising alternatives to in-feed antibiotics is crucial for maintaining the sustainability of swine production. Both medium-chain fatty acids (MCFA) and essential oils exhibit great potential to postweaning diarrhea; however, their direct inclusion has compromised efficacy because of several factors including low stability, poor palatability, and low availability in the lower gut. Therefore, the objective of this study was to develop a formulation of microparticles to deliver a model of essential oil (thymol) and MCFA (lauric acid). The composite microparticles were produced by the incorporation of starch and alginate through a melt-granulation process. The release of thymol and lauric acid from the microparticles was in vitro determined using simulated salivary fluid (SSF), simulated gastric fluid (SGF), and simulated intestinal fluid (SIF), consecutively. The microparticles prepared with 2% alginate solution displayed a slow release of thymol and lauric acid in the SSF (21.2 ± 2.3%; 36 ± 1.1%), SGF (73.7 ± 6.9%; 54.8 ± 1.7%), and SIF (99.1 ± 1.2%; 99.1 ± 0.6%), respectively, whereas, the microparticles without alginate showed a rapid release of thymol and lauric acid from the SSF (79.9 ± 11.8%; 84.9 ± 9.4%), SGF (92.5 ± 3.5%; 75.8 ± 5.9%), and SIF (93.3 ± 9.4%; 93.3 ± 4.6%), respectively. The thymol and lauric acid in the developed microparticles with or without alginate both exhibited excellent stabilities (>90%) during being stored at 4 °C for 12 weeks and after being stored at room temperature for 2 weeks. These results evidenced that the approach developed in the present study could be potentially employed to deliver thymol and lauric acid to the lower gut of pigs, although further in vivo investigations are necessary to validate the efficacy of the microparticles.
Collapse
Affiliation(s)
- Faith A Omonijo
- Department of Animal Science , University of Manitoba , Winnipeg , Manitoba , Canada R3T 2N2
| | - Seungil Kim
- Biomedical Engineering , University of Manitoba , Winnipeg , Manitoba , Canada R3T 2N2
| | - Tracy Guo
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario , Canada N1G 5C9
| | - Qi Wang
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario , Canada N1G 5C9
| | - Joshua Gong
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario , Canada N1G 5C9
| | - Ludovic Lahaye
- Jefo Nutrition Inc. , Saint-Hyacinthe , Quebec , Canada J2S 7B6
| | | | - Martin Nyachoti
- Department of Animal Science , University of Manitoba , Winnipeg , Manitoba , Canada R3T 2N2
| | - Song Liu
- Biomedical Engineering , University of Manitoba , Winnipeg , Manitoba , Canada R3T 2N2
- Department of Biosystems Engineering , University of Manitoba , Winnipeg , Manitoba , Canada R3T 2N2
| | - Chengbo Yang
- Department of Animal Science , University of Manitoba , Winnipeg , Manitoba , Canada R3T 2N2
| |
Collapse
|
56
|
Hassan YI, Lahaye L, Gong MM, Peng J, Gong J, Liu S, Gay CG, Yang C. Innovative drugs, chemicals, and enzymes within the animal production chain. Vet Res 2018; 49:71. [PMID: 30060767 PMCID: PMC6066918 DOI: 10.1186/s13567-018-0559-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/19/2018] [Indexed: 12/28/2022] Open
Abstract
The alarming number of recently reported human illnesses with bacterial infections resistant to multiple antibacterial agents has become a serious concern in recent years. This phenomenon is a core challenge for both the medical and animal health communities, since the use of antibiotics has formed the cornerstone of modern medicine for treating bacterial infections. The empirical benefits of using antibiotics to address animal health issues in animal agriculture (using therapeutic doses) and increasing the overall productivity of animals (using sub-therapeutic doses) are well established. The use of antibiotics to enhance profitability margins in the animal production industry is still practiced worldwide. Although many technical and economic reasons gave rise to these practices, the continued emergence of antimicrobial resistant bacteria is furthering the need to reduce the use of medically important antibiotics. This will require improving on-farm management and biosecurity practices, and the development of effective antibiotic alternatives that will reduce the dependence on antibiotics within the animal industry in the foreseeable future. A number of approaches are being closely scrutinized and optimized to achieve this goal, including the development of promising antibiotic alternatives to control bacterial virulence through quorum-sensing disruption, the use of synthetic polymers and nanoparticles, the exploitation of recombinant enzymes/proteins (such as glucose oxidases, alkaline phosphatases and proteases), and the use of phytochemicals. This review explores the most recent approaches within this context and provides a summary of practical mitigation strategies for the extensive use of antibiotics within the animal production chain in addition to several future challenges that need to be addressed.
Collapse
Affiliation(s)
- Yousef I. Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON Canada
| | | | - Max M. Gong
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705 USA
| | - Jian Peng
- College of Animal Science, Huazhong Agricultural University, Wuhan, China
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON Canada
| | - Song Liu
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB Canada
| | - Cyril G. Gay
- Office of National Programs, Animal Production and Protection, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705 USA
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB Canada
| |
Collapse
|
57
|
Wang H, Li X, Wang Y, Tao Y, Lu S, Zhu X, Li D. Improvement of n-caproic acid production with Ruminococcaceae bacterium CPB6: selection of electron acceptors and carbon sources and optimization of the culture medium. Microb Cell Fact 2018; 17:99. [PMID: 29940966 PMCID: PMC6019802 DOI: 10.1186/s12934-018-0946-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/16/2018] [Indexed: 12/02/2022] Open
Abstract
Background Global energy and resource shortages make it necessary to quest for renewable resources. n-Caproic acid (CA) production based on carboxylate platform by anaerobic fermentation is booming. Recently, a novel Ruminococcaceae bacterium CPB6 is shown to be a potential biotransformation factory for CA production from lactate-containing wastewater. However, little is known about the effects of different electron acceptors (EAs) on the fermentative products of strain CPB6, as well as the optimum medium for CA production. Results In this study, batch experiments were performed to investigate the fermentative products of strain CPB6 in a lactate medium supplemented with different EAs and sugars. Supplementation of acetate, butyrate and sucrose dramatically increased cell growth and CA production. The addition of propionate or pentanoate resulted in the production of C5 or C7 carboxylic acid, respectively. Further, a Box–Behnken experiment was conducted to optimize the culture medium for CA production. The result indicated that a medium containing 13.30 g/L sucrose, 22.35 g/L lactate and 16.48 g/L butyrate supported high-titer CA production (16.73 g/L) with a maximum productivity of 6.50 g/L/day. Conclusions This study demonstrated that strain CPB6 could produce C6–C7 carboxylic acids from lactate (as electron donor) with C2–C5 short-chain carboxylic acids (as EAs), but CA (C6 carboxylic acid) was the most major and potential product. Butyrate and sucrose were the most significant EA and carbon source respectively for CA production from lactate by strain CPB6. High titer of CA can be produced from a synthetic substrate containing sucrose, lactate and butyrate. The work provided significant implications for improving CA production in industry-scale.![]() Electronic supplementary material The online version of this article (10.1186/s12934-018-0946-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Yong Tao
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Shaowen Lu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaoyu Zhu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Daping Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
58
|
Polycarpo GV, Andretta I, Kipper M, Cruz-Polycarpo VC, Dadalt JC, Rodrigues PHM, Albuquerque R. Meta-analytic study of organic acids as an alternative performance-enhancing feed additive to antibiotics for broiler chickens. Poult Sci 2018; 96:3645-3653. [PMID: 28938776 PMCID: PMC5850820 DOI: 10.3382/ps/pex178] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/12/2017] [Indexed: 12/30/2022] Open
Abstract
The effect of organic acids as an alternative to antibiotics on the performance of broiler chickens was evaluated by meta-analysis, identifying and quantifying the main factors that influence results. A total of 51,960 broilers from 121 articles published between 1991 and 2016 were used. Interactions of additives [non-supplemented group (control), organic acids, and growth promoter antibiotics] with microbial challenge (with or without inoculation of pathogenic microorganisms) were studied on performance variables. Moreover, the effects of organic acids, used individually or in blends, were evaluated. Relative values of average daily gain (ADG) and average daily feed intake (ADFI) were obtained in relation to control: ΔADG and ΔADFI, respectively. Analysis of variance-covariance revealed lower ADG with organic acids when compared to antibiotics (P < 0.05). There was a significant interaction between the additives and the challenge on feed conversion ratio (FCR) (P < 0.01) and on viability (P < 0.05). Without challenge, organic acids improved broilers’ FCR (P < 0.01), presenting results similar to antibiotics (P > 0.05). Under challenge, the organic acids were again effective on FCR (−5.67% in relation to control, P < 0.05), but they did not match antibiotics (−13.40% in relation to control, P < 0.01). Viability was improved only under challenge conditions, and only by antibiotics (+4.39% in relation to control, P < 0.05). ADG (P < 0.05) and FCR (P < 0.01) were increased by blends of organic acids, but not by the organic acids used alone (P > 0.05). ADFI and production factor were not influenced by the treatments (P > 0.05). ΔADFI of organic-acid supplemented group showed a linear influence on ΔADG, which increases 0.64% at every 1% increase in ΔADFI. In conclusion, organic acids can be utilized as performance enhancing, but the results are lower than those found with antibiotics, particularly under microbial challenge. The blends of organic acids provide better results than the utilization of one organic acid alone.
Collapse
Affiliation(s)
- G V Polycarpo
- São Paulo State University (UNESP), College of Agricultural and Technological Sciences, Campus of Dracena-SP, 17900-000, Brazil
| | - I Andretta
- Federal University of Rio Grande do Sul, College of Agronomy, Department of Animal Science, Campus of Porto Alegre-RS, 91540-000, Brazil
| | - M Kipper
- Federal University of Rio Grande do Sul, College of Agronomy, Department of Animal Science, Campus of Porto Alegre-RS, 91540-000, Brazil
| | - V C Cruz-Polycarpo
- São Paulo State University (UNESP), College of Agricultural and Technological Sciences, Campus of Dracena-SP, 17900-000, Brazil
| | - J C Dadalt
- University of São Paulo (USP), College of Veterinary Medicine and Animal Science (FMVZ), Department of Animal Nutrition and Production (VNP), Campus of Pirassununga-SP, 13635-900, Brazil
| | - P H M Rodrigues
- University of São Paulo (USP), College of Veterinary Medicine and Animal Science (FMVZ), Department of Animal Nutrition and Production (VNP), Campus of Pirassununga-SP, 13635-900, Brazil
| | - R Albuquerque
- University of São Paulo (USP), College of Veterinary Medicine and Animal Science (FMVZ), Department of Animal Nutrition and Production (VNP), Campus of Pirassununga-SP, 13635-900, Brazil
| |
Collapse
|
59
|
Tagawa K, Choi Y, Ra SG, Yoshikawa T, Kumagai H, Maeda S. Resistance training-induced decrease in central arterial compliance is associated with decreased subendocardial viability ratio in healthy young men. Appl Physiol Nutr Metab 2017; 43:510-516. [PMID: 29253352 DOI: 10.1139/apnm-2017-0449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
High-intensity resistance training decreases central arterial compliance (CAC). Subendocardial viability ratio (SEVR) is a useful tool that reflects the balance between coronary perfusion and left ventricular afterload. Animal studies have demonstrated that decreased CAC is associated with SEVR deterioration. Therefore, resistance training-induced decrease in CAC may be associated with changes in SEVR. The objective of the present study was to investigate the association between SEVR and CAC using both cross-sectional and longitudinal (i.e., resistance training) study designs. To achieve this, we first conducted a cross-sectional study to investigate the association between SEVR and CAC in 89 young men. Thereafter, a longitudinal study was performed to examine the effects of resistance training on SEVR and CAC in young men. A total of 28 young men were divided into 2 groups: control (n = 13) and training (n = 15). In the training group, subjects underwent supervised resistance training for 4 weeks (5 sets of 10 repetitions at 75% of 1-repetition maximum, 3 times/week). CAC and SEVR were then measured in all subjects. In the cross-sectional study, SEVR was significantly positively correlated with CAC, whereas resistance training significantly decreased both SEVR and CAC. Moreover, training-induced changes in CAC were significantly correlated with changes in SEVR. Thus, these results suggest that resistance training-induced decrease in CAC is associated with decreased SEVR in young men.
Collapse
Affiliation(s)
- Kaname Tagawa
- a Division of Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan
| | - Youngju Choi
- b Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan
| | - Song-Gyu Ra
- c Faculty of Sports and Health Science, Fukuoka University, Japan
| | - Toru Yoshikawa
- a Division of Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan
| | - Hiroshi Kumagai
- d Faculty of Health and Sports Science, Juntendo University, Japan
| | - Seiji Maeda
- b Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan
| |
Collapse
|
60
|
Baltić B, Starčević M, Đorđević J, Mrdović B, Marković R. Importance of medium chain fatty acids in animal nutrition. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1755-1315/85/1/012048] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
61
|
Evans NP, Collins DA, Pierson FW, Mahsoub HM, Sriranganathan N, Persia ME, Karnezos TP, Sims MD, Dalloul RA. Investigation of Medium Chain Fatty Acid Feed Supplementation for Reducing Salmonella Typhimurium Colonization in Turkey Poults. Foodborne Pathog Dis 2017; 14:531-536. [PMID: 28696788 PMCID: PMC5646746 DOI: 10.1089/fpd.2016.2273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Studies indicate that persistent Salmonella colonization occurs in poultry that are infected early in life, leading to both food safety and public health concerns. Development of improved preharvest Salmonella management strategies is needed to reduce poultry product contamination. The objective of this study was to evaluate the efficacy of a product containing medium chain fatty acids (MCFA) for reducing early Salmonella colonization in turkey poults. Day-of-hatch turkeys were provided a standard starter diet supplemented with MCFA at 0 (negative and positive controls), 1.5, 3, 4.5, or 6 lbs/ton of feed. Positive control and MCFA treated birds were also crop-gavaged with 108 colony forming units (CFU) of bioluminescent Salmonella Typhimurium. Gastrointestinal tissue samples were collected at 3 days postinoculation for bioluminescence imaging (Meckel's diverticulum to the cloaca) and selective enumeration (cecal contents). Quantification of bioluminescence indicated that the 4.5 and 6 lbs/ton MCFA groups had significantly less colonization than the positive control group (p = 0.0412 and p < 0.0001, respectively). Similarly, significantly lower numbers (1-log10 CFU/g reduction) of Salmonella were observed in the ceca of the 6 lbs/ton MCFA group compared to the positive control group (p = 0.0153). These findings indicate that incorporation of MCFA in turkey diets can significantly reduce early Salmonella colonization. In addition, this study highlights the utility of bioluminescence imaging as a screening methodology for assessing the efficacy of treatments that may reduce Salmonella in poultry.
Collapse
Affiliation(s)
- Nicholas P. Evans
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - David A. Collins
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Frank William Pierson
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Hassan M. Mahsoub
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic and State University, Blacksburg, Virginia
- Department of Poultry Production, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Nammalwar Sriranganathan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Mike E. Persia
- Department of Animal and Poultry Sciences, College of Agriculture and Life Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia
| | | | - Michael D. Sims
- Virginia Diversified Research Corporation, Harrisonburg, Virginia
| | - Rami A. Dalloul
- Department of Animal and Poultry Sciences, College of Agriculture and Life Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia
| |
Collapse
|
62
|
|
63
|
Dev Kumar G, Micallef SA. Susceptibility of Salmonella enterica Isolates from Tomato Farm Environments to Fatty Acids Naturally Found on Tomato Fruit. Foodborne Pathog Dis 2017; 14:293-301. [PMID: 28398868 DOI: 10.1089/fpd.2016.2239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica subsp. enterica can colonize tomato fruit as it interacts with fruit surface compounds. The exometabolome of tomato fruit contains a mixture of compounds, including fatty acids, which could affect Salmonella fitness. Fatty acids detected in fruit exudates were investigated for Salmonella inhibition. Pelargonic, lauric, myristic, palmitic, margaric, stearic, and oleic acids were suspended in water dissolved in dimethyl sulfoxide (DMSO) or emulsified in water and quillaja saponin to assess how bioavailability impacted Salmonella growth. The minimum inhibitory concentrations of fatty acids were determined using a resazurin assay. Quillaja saponin emulsion and DMSO solution of pelargonic acid were inhibitory to Salmonella at 31.25 mM. Lauric and myristic acid emulsions inhibited growth at 1 M concentrations in quillaja emulsions and 62.5 mM in DMSO. Lauric and myristic acids significantly affected growth of Salmonella Newport, Javiana, and Typhimurium (p ≤ 0.05). Growth curve analysis using the Baranyi model revealed reduced maxima populations for all treatments (p ≤ 0.001) and shorter lag phase durations for Salmonella Newport with lauric acid (p < 0.01) and Salmonella Javiana with lauric (p < 0.001) and myristic (p < 0.001) acids. Salmonella Newport and Javiana exhibited an accelerated growth rate with lauric acid (p < 0.001) as a result of early stationary phase transition (shorter log phase). In myristic acid-amended media, Salmonella Javiana also displayed a faster growth rate (p < 0.001). Pelargonic acid (31.25 mM) treatment of Salmonella cells resulted in a drop in culturable cells to below detection in an hour. Microscopic analysis with Cyto-dye and propidium iodide of bacterial cells treated with pelargonic acid indicated a mixture of live and dead cells, with cell lysis of some cells. A subset of cells exhibited elongation-possibly indicating filament formation, a known antibiotic stress response. The results suggest that fatty acids present in tomato fruit surface exudates may exert a restrictive effect on Salmonella growth on fruit.
Collapse
Affiliation(s)
- Govindaraj Dev Kumar
- 1 Department of Plant Science and Landscape Architecture, University of Maryland , College Park, Maryland
| | - Shirley A Micallef
- 1 Department of Plant Science and Landscape Architecture, University of Maryland , College Park, Maryland.,2 Center for Food Safety and Security Systems, University of Maryland , College Park, Maryland
| |
Collapse
|
64
|
Abstract
Salmonella Enteritidis (SE) is the predominant cause of the food-borne salmonellosis in humans, in part because this serotype has the unique ability to contaminate chicken eggs without causing discernible illness in the infected birds. Attempts to develop effective vaccines and eradicate SE from chickens are undermined by significant limitations in our current understanding of the genetic basis of pathogenesis of SE in this reservoir host. In this chapter, we summarize the infection kinetics and provide an overview of the current understanding of genetic factors underlying SE infection in the chicken host. We also discuss the important knowledge gaps that, if addressed, will improve our understanding of the complex biology of SE in young chickens and in egg laying hens.
Collapse
|
65
|
Vermeulen K, Verspreet J, Courtin CM, Haesebrouck F, Ducatelle R, Van Immerseel F. Reduced particle size wheat bran is butyrogenic and lowers Salmonella colonization, when added to poultry feed. Vet Microbiol 2016; 198:64-71. [PMID: 28062009 DOI: 10.1016/j.vetmic.2016.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/06/2016] [Indexed: 12/22/2022]
Abstract
Feed additives, including prebiotics, are commonly used alternatives to antimicrobial growth promoters to improve gut health and performance in broilers. Wheat bran is a highly concentrated source of (in)soluble fiber which is partly degraded by the gut microbiota. The aim of the present study was to investigate the potential of wheat bran as such to reduce colonization of the cecum and shedding of Salmonella bacteria in vivo. Also, the effect of particle size was evaluated. Bran with an average reduced particle size of 280μm decreased levels of cecal Salmonella colonization and shedding shortly after infection when compared to control groups and groups receiving bran with larger particle sizes. In vitro fermentation experiments revealed that bran with smaller particle size was fermented more efficiently, with a significantly higher production of butyric and propionic acid, compared to the control fermentation and fermentation of a larger fraction. Fermentation products derived from bran with an average particle size of 280μm downregulated the expression of hilA, an important invasion-related gene of Salmonella. This downregulation was reflected in an actual lowered invasive potential when Salmonella bacteria were pretreated with the fermentation products derived from the smaller bran fraction. These data suggest that wheat bran with reduced particle size can be a suitable feed additive to help control Salmonella infections in broilers. The mechanism of action most probably relies on a more efficient fermentation of this bran fraction and the consequent increased production of short chain fatty acids (SCFA). Among these SCFA, butyric and propionic acid are known to reduce the invasion potential of Salmonella bacteria.
Collapse
Affiliation(s)
- K Vermeulen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - J Verspreet
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 22 box2463, B-3001 Leuven, Belgium
| | - C M Courtin
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 22 box2463, B-3001 Leuven, Belgium
| | - F Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - R Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - F Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| |
Collapse
|
66
|
Anti-inflammatory and antioxidant effect of Kerabala: a value-added ayurvedic formulation from virgin coconut oil inhibits pathogenesis in adjuvant-induced arthritis. Inflammopharmacology 2016; 25:41-53. [DOI: 10.1007/s10787-016-0298-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
|
67
|
Peng M, Biswas D. Short chain and polyunsaturated fatty acids in host gut health and foodborne bacterial pathogen inhibition. Crit Rev Food Sci Nutr 2016; 57:3987-4002. [PMID: 27438132 DOI: 10.1080/10408398.2016.1203286] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mengfei Peng
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
- Biological Sciences Program Molecular and Cellular Biology Concentration, University of Maryland, College Park, Maryland, USA
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
- Biological Sciences Program Molecular and Cellular Biology Concentration, University of Maryland, College Park, Maryland, USA
- Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
68
|
Subtherapeutic tetracycline concentrations aggravateSalmonellaTyphimurium infection by increasing bacterial virulence. J Antimicrob Chemother 2016; 71:2158-66. [DOI: 10.1093/jac/dkw152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/04/2016] [Indexed: 12/23/2022] Open
|
69
|
Effects of feed access after hatch and inclusion of fish oil and medium chain fatty acids in a pre-starter diet on broiler chicken growth performance and humoral immunity. Animal 2016; 10:1409-16. [PMID: 26948094 DOI: 10.1017/s1751731116000288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Delayed feed and water access is known to impair growth performance of day old broiler chickens. Although effects of feed access on growth performance and immune function of broilers have been examined before, effects of dietary composition and its potential interaction with feed access are hardly investigated. This experiment aimed to determine whether moment of first feed and water access after hatch and pre-starter composition (0 to 7 days) affect growth rate and humoral immune function in broiler chickens. Direct fed chickens received feed and water directly after placement in the grow-out facility, whilst delayed fed chickens only after 48 h. Direct and delayed fed chickens received a control pre-starter diet, or a diet containing medium chain fatty acids (MCFA) or fish oil. At 21 days, chickens were immunized by injection of sheep red blood cells. The mortality rate depended on an interaction between feed access and pre-starter composition (P=0.014). Chickens with direct feed access fed the control pre-starter diet had a higher risk for mortality than chickens with delayed feed access fed the control pre-starter diet (16.4% v. 4.2%) whereas the other treatment groups were in-between. BW gain and feed intake till 25 days in direct fed chickens were higher compared with delayed fed chickens, whilst gain to feed ratio was lower. Within the direct fed chickens, the control pre-starter diet resulted in the highest BW at 28 days and the MCFA pre-starter diet the lowest (Δ=2.4%), whereas this was opposite for delayed fed chickens (Δ=3.0%; P=0.033). Provision of MCFA resulted in a 4.6% higher BW gain and a higher gain to feed ratio compared with other pre-starter diets, but only during the period it was provided (2 to 7 days). Minor treatment effects were found for humoral immune response by measuring immunoglobulins, agglutination titers, interferon gamma (IFN- γ ), and complement activity. Concluding, current inclusion levels of fish oil (5 g/kg) and MCFA (30 g/kg) in the pre-starter diet appear to have limited (carryover) effects on growth and development, as well as on humoral immune function.
Collapse
|
70
|
Intestinal Long-Chain Fatty Acids Act as a Direct Signal To Modulate Expression of the Salmonella Pathogenicity Island 1 Type III Secretion System. mBio 2016; 7:e02170-15. [PMID: 26884427 PMCID: PMC4752608 DOI: 10.1128/mbio.02170-15] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Salmonella enterica serovar Typhimurium uses the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS) to induce inflammatory diarrhea and bacterial uptake into intestinal epithelial cells. The expression of hilA, encoding the transcriptional activator of the T3SS structural genes, is directly controlled by three AraC-like regulators, HilD, HilC, and RtsA, each of which can activate hilD, hilC, rtsA, and hilA genes, forming a complex feed-forward regulatory loop. Expression of the SPI1 genes is tightly controlled by numerous regulatory inputs to ensure proper timing in production of the T3SS apparatus. Loss of FadD, an acyl coenzyme A (acyl-CoA) synthetase required for degradation of long-chain fatty acids (LCFAs), was known to decrease hilA expression. We show that free external LCFAs repress expression of hilA independently of FadD and the LCFA degradation pathway. Genetic and biochemical evidence suggests that LCFAs act directly to block primarily HilD activity. Further analyses show that in the absence of FadD, hilA expression is downregulated due to endogenous production of free LCFAs, which are excreted into the culture medium via TolC and then transported back into the bacterial cell via FadL. A fadL mutant is more virulent than the wild-type strain in mouse oral competition assays independently of LCFA degradation, showing that, in the host, dietary LCFAs serve as a signal for proper regulation of SPI1 expression, rather than an energy source. To cause disease, Salmonella must respond to diverse environmental cues to express its invasion machinery at the appropriate location in the host intestine. We show that host intestinal free long-chain fatty acids (LCFAs) affect Salmonella invasion by reducing expression of the SPI1 type III secretion system, acting primarily via the AraC-like activator HilD. Degradation of LCFAs is not required for this regulation, showing that free LCFAs serve as a cue to proper intestinal localization to invade host epithelial cells and not as a nutrient source.
Collapse
|
71
|
Upadhyaya I, Upadhyay A, Yin HB, Nair MS, Bhattaram VK, Karumathil D, Kollanoor-Johny A, Khan MI, Darre MJ, Curtis PA, Venkitanarayanan K. Reducing Colonization and Eggborne Transmission ofSalmonellaEnteritidis in Layer Chickens by In-Feed Supplementation of Caprylic Acid. Foodborne Pathog Dis 2015; 12:591-7. [DOI: 10.1089/fpd.2014.1931] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Indu Upadhyaya
- Department of Animal Science, University of Connecticut, Storrs, Connecticut
| | - Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, Connecticut
| | - Hsin-Bai Yin
- Department of Animal Science, University of Connecticut, Storrs, Connecticut
| | - Meera S. Nair
- Department of Animal Science, University of Connecticut, Storrs, Connecticut
| | - Varun K. Bhattaram
- Department of Animal Science, University of Connecticut, Storrs, Connecticut
| | - Deepti Karumathil
- Department of Animal Science, University of Connecticut, Storrs, Connecticut
| | | | - Mazhar I. Khan
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut
| | - Michael J. Darre
- Department of Animal Science, University of Connecticut, Storrs, Connecticut
| | - Patricia A. Curtis
- Auburn University Food Systems Institute, Auburn University, Auburn, Alabama
| | | |
Collapse
|
72
|
Lv S, Si W, Yu S, Li Z, Wang X, Chen L, Zhang W, Liu S. Characteristics of invasion-reduced hilA gene mutant of Salmonella Enteritidis in vitro and in vivo. Res Vet Sci 2015; 101:63-8. [PMID: 26267091 DOI: 10.1016/j.rvsc.2015.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 03/30/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
Abstract
Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) is a facultative intracellular pathogen that causes huge losses in poultry industry and also food poisoning in humans due to its being a food-borne pathogen. Functions of Invasion-related genes need to be explored, as invasion is a key step for Salmonella infection. In this study, a transposon mutant library of Salmonella Enteritidis isolate SM6 was constructed and screened for the invasion-related genes via incubation with Caco-2 cells. Three stably attenuated mutants were identified for significantly reduced invasion with insertions all in hilA (hyperinvasive locus A) gene. We constructed and evaluated the hilA deletion mutant in vivo and in vitro. SM6△hilA showed significantly reduced ability to invade Caco-2 cells and decreased pathogenicity in chicks. However, the bacterial load and pathological damage in the cecum were significantly higher than those in the SM6 in vivo. Present results provide new evidences for pathogenicity research on Salmonella Enteritidis.
Collapse
Affiliation(s)
- Shuang Lv
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Disease of Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, China
| | - Wei Si
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Disease of Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, China
| | - Shenye Yu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Disease of Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, China
| | - Zhaoli Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Disease of Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, China
| | - Xiumei Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Disease of Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, China
| | - Liping Chen
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Disease of Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Disease of Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Disease of Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, China.
| |
Collapse
|
73
|
Yuniwarti EYW, Asmara W, Artama WT, Tabbu CR. Virgin Coconut Oil Supplementation Increased the Survival of Avian Influenza Virus (H5N1) Infected Chicken. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajpsaj.2015.106.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
74
|
Li Y, Zhang H, Yang L, Zhang L, Wang T. Effect of medium-chain triglycerides on growth performance, nutrient digestibility, plasma metabolites and antioxidant capacity in weanling pigs. ACTA ACUST UNITED AC 2015; 1:12-18. [PMID: 29767040 PMCID: PMC5884474 DOI: 10.1016/j.aninu.2015.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/09/2015] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate the effect of medium-chain triglycerides (MCTs) on growth performance, nutrient digestibility, plasma metabolites and antioxidant capacity in weanling pigs. A total of 160 weanling (Duroc × Landrace × Yorkshire) pigs (age: 21 ± 1 d; body weight: 7.50 ± 0.28 kg) were randomly allotted to 4 treatments, receiving the following diets for 28 d: control diet [containing 3.5% soybean oil (SO)], MCT1 diet (containing 0.7% MCTs and 2.8% SO), MCT2 diet (containing 1.4% MCTs and 2.1% SO) and MCT3 diet (containing 2.1% MCTs and 1.4% SO). Dietary inclusion of MCTs improved the average daily gain and feed efficiency (FE) of pigs compared with the control during the first 2 weeks post-weaning (P < 0.05). A similar positive effect was also observed for the overall FE in MCT2 group (P < 0.05). Compared with the control, apparent total tract digestibility (ATTD) of ether extract was improved by MCT2 and MCT3 treatment from day 12–14 post-weaning (P < 0.05). In addition, MCT2 treatment also exerted a beneficial effect on the ATTD of dry matter (P < 0.05). The increased total protein concentration and decreased urea nitrogen and malondialdehyde levels of plasma were observed in both MCT2 and MCT3 groups on day 14 post-weaning (P < 0.05). In conclusion, MCTs could improve growth performance, nutrients utilization, and antioxidant ability of weanling piglets.
Collapse
Affiliation(s)
- Yue Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
75
|
Khosravinia H. Effect of dietary supplementation of medium-chain fatty acids on growth performance and prevalence of carcass defects in broiler chickens raised in different stocking densities. J APPL POULTRY RES 2015. [DOI: 10.3382/japr/pfu001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
76
|
Skřivanová E, Hovorková P, Čermák L, Marounek M. Potential Use of Caprylic Acid in Broiler Chickens: Effect on Salmonella Enteritidis. Foodborne Pathog Dis 2015; 12:62-7. [DOI: 10.1089/fpd.2014.1833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Eva Skřivanová
- Institute of Animal Science, Department of Physiology of Nutrition and Quality of Animal Products, Prague, Czech Republic
- Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Petra Hovorková
- Institute of Animal Science, Department of Physiology of Nutrition and Quality of Animal Products, Prague, Czech Republic
- Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Ladislav Čermák
- Institute of Animal Science, Department of Physiology of Nutrition and Quality of Animal Products, Prague, Czech Republic
| | - Milan Marounek
- Institute of Animal Science, Department of Physiology of Nutrition and Quality of Animal Products, Prague, Czech Republic
- Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
77
|
Grilli E, Bari R, Piva A, Edrington TS, Pitta DW, Pinchak WE, Nisbet DJ, Callaway TR. Organic Acid Blend with Pure Botanical Product Treatment ReducesEscherichia coliandSalmonellaPopulations in Pure Culture and inIn VitroMixed Ruminal Microorganism Fermentations. Foodborne Pathog Dis 2015; 12:56-61. [DOI: 10.1089/fpd.2014.1826] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ester Grilli
- DIMEVET, Università di Bologna, Ozzano Emilia, Italy
| | - Riccardo Bari
- DIMEVET, Università di Bologna, Ozzano Emilia, Italy
| | - Andrea Piva
- DIMEVET, Università di Bologna, Ozzano Emilia, Italy
| | - Tom S. Edrington
- Food and Feed Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, College Station, Texas
| | | | | | - David J. Nisbet
- Food and Feed Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, College Station, Texas
| | - Todd R. Callaway
- Food and Feed Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, College Station, Texas
| |
Collapse
|
78
|
Application of Molecular Approaches for Understanding Foodborne Salmonella Establishment in Poultry Production. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/813275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Salmonellosis in the United States is one of the most costly foodborne diseases. Given that Salmonella can originate from a wide variety of environments, reduction of this organism at all stages of poultry production is critical. Salmonella species can encounter various environmental stress conditions which can dramatically influence their survival and colonization. Current knowledge of Salmonella species metabolism and physiology in relation to colonization is traditionally based on studies conducted primarily with tissue culture and animal infection models. Consequently, while there is some information about environmental signals that control Salmonella growth and colonization, much still remains unknown. Genetic tools for comprehensive functional genomic analysis of Salmonella offer new opportunities for not only achieving a better understanding of Salmonella pathogens but also designing more effective intervention strategies. Now the function(s) of each single gene in the Salmonella genome can be directly assessed and previously unknown genetic factors that are required for Salmonella growth and survival in the poultry production cycle can be elucidated. In particular, delineating the host-pathogen relationships involving Salmonella is becoming very helpful for identifying optimal targeted gene mutagenesis strategies to generate improved vaccine strains. This represents an opportunity for development of novel vaccine approaches for limiting Salmonella establishment in early phases of poultry production. In this review, an overview of Salmonella issues in poultry, a general description of functional genomic technologies, and their specific application to poultry vaccine developments are discussed.
Collapse
|
79
|
Milbradt EL, Zamae JR, Araújo Júnior JP, Mazza P, Padovani CR, Carvalho VR, Sanfelice C, Rodrigues DM, Okamoto AS, Andreatti Filho RL. Control of Salmonella Enteritidis in turkeys using organic acids and competitive exclusion product. J Appl Microbiol 2014; 117:554-63. [PMID: 24797347 DOI: 10.1111/jam.12537] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/14/2014] [Accepted: 04/23/2014] [Indexed: 11/30/2022]
Abstract
AIM To evaluate the use of organic acids (OAs) and competitive exclusion (CE) product administered continuously in the feed and transiently in drinking water on the control of Salmonella enterica subspecie enterica serotype Enteritidis (SE) prior to slaughter. METHODS AND RESULTS The influence of treatments were evaluated on pH, population of the lactic acid bacteria (LAB) and bacteria of the family Enterobacteriaceae, concentration of volatile fatty acids and SE colonization in the crop and caecum. The birds were challenged with SE 24 h before being slaughtered, and then, the caeca and crop were removed and subjected to SE counts. Continuous administration of OAs reduced the population of bacteria from the Enterobacteriaceae family in both crop and caecum, positively influenced the butyric acid concentration and reduced SE colonization in the caecum. The diet supplemented with CE product positively influenced the quantity of LAB in the crop and caecum, elevated the butyric acid concentration and reduced both Enterobacteriaceae quantity and SE colonization in the caecum. There was no effect from administering the treatments via drinking water on the variables measured. CONCLUSIONS Continuous supplementation in feed with OAs and CE product reduced SE colonization of the caeca. SIGNIFICANCE AND IMPACT OF THE STUDY Supplementation of OAs and CE product in diet to turkeys can reduce the SE load, potentially leading to a lower contamination risk of meat during slaughter.
Collapse
Affiliation(s)
- E L Milbradt
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Babu US, Raybourne RB. Impact of dietary components on chicken immune system andSalmonellainfection. Expert Rev Anti Infect Ther 2014; 6:121-35. [DOI: 10.1586/14787210.6.1.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
81
|
Shetty SA, Marathe NP, Lanjekar V, Ranade D, Shouche YS. Comparative genome analysis of Megasphaera sp. reveals niche specialization and its potential role in the human gut. PLoS One 2013; 8:e79353. [PMID: 24260205 PMCID: PMC3832451 DOI: 10.1371/journal.pone.0079353] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/30/2013] [Indexed: 12/16/2022] Open
Abstract
With increasing number of novel bacteria being isolated from the human gut ecosystem, there is a greater need to study their role in the gut ecosystem and their effect on the host health. In the present study, we carried out in silico genome-wide analysis of two novel Megasphaera sp. isolates NM10 (DSM25563) and BL7 (DSM25562), isolated from feces of two healthy individuals and validated the key features by in vitro studies. The analysis revealed the general metabolic potential, adaptive features and the potential effects of these isolates on the host. The comparative genome analysis of the two human gut isolates NM10 and BL7 with ruminal isolate Megasphaera elsdenii (DSM20460) highlighted the differential adaptive features for their survival in human gut. The key findings include features like bile resistance, presence of various sensory and regulatory systems, stress response systems, membrane transporters and resistance to antibiotics. Comparison of the “glycobiome” based on the genomes of the ruminal isolate with the human gut isolates NM10 and BL revealed the presence of diverse and unique sets of Carbohydrate-Active enzymes (CAZymes) amongst these isolates, with a higher collection of CAZymes in the human gut isolates. This could be attributed to the difference in host diet and thereby the environment, consequently suggesting host specific adaptation in these isolates. In silico analysis of metabolic potential predicted the ability of these isolates to produce important metabolites like short chain fatty acids (butyrate, acetate, formate, and caproate), vitamins and essential amino acids, which was further validated by in vitro experiments. The ability of these isolates to produce important metabolites advocates for a potential healthy influence on the host. Further in vivo studies including transcriptomic and proteomic analysis will be required for better understanding the role and impact of these Megasphaera sp. isolates NM10 and BL7 on the human host.
Collapse
Affiliation(s)
- Sudarshan Anand Shetty
- Microbial Culture Collection, National Centre for Cell Science, Pune, Maharashtra, India
| | | | | | - Dilip Ranade
- Agharkar Research Institute, Pune, Maharashtra, India
| | - Yogesh S. Shouche
- Microbial Culture Collection, National Centre for Cell Science, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
82
|
Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 2013; 26:308-41. [PMID: 23554419 DOI: 10.1128/cmr.00066-12] [Citation(s) in RCA: 498] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a primary enteric pathogen infecting both humans and animals. Infection begins with the ingestion of contaminated food or water so that salmonellae reach the intestinal epithelium and trigger gastrointestinal disease. In some patients the infection spreads upon invasion of the intestinal epithelium, internalization within phagocytes, and subsequent dissemination. In that case, antimicrobial therapy, based on fluoroquinolones and expanded-spectrum cephalosporins as the current drugs of choice, is indicated. To accomplish the pathogenic process, the Salmonella chromosome comprises several virulence mechanisms. The most important virulence genes are those located within the so-called Salmonella pathogenicity islands (SPIs). Thus far, five SPIs have been reported to have a major contribution to pathogenesis. Nonetheless, further virulence traits, such as the pSLT virulence plasmid, adhesins, flagella, and biofilm-related proteins, also contribute to success within the host. Several regulatory mechanisms which synchronize all these elements in order to guarantee bacterial survival have been described. These mechanisms govern the transitions from the different pathogenic stages and drive the pathogen to achieve maximal efficiency inside the host. This review focuses primarily on the virulence armamentarium of this pathogen and the extremely complicated regulatory network controlling its success.
Collapse
|
83
|
Liu Y, Ho KK, Su J, Gong H, Chang AC, Lu S. Potassium transport of Salmonella is important for type III secretion and pathogenesis. MICROBIOLOGY-SGM 2013; 159:1705-1719. [PMID: 23728623 DOI: 10.1099/mic.0.068700-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Intracellular cations are essential for the physiology of all living organisms including bacteria. Cations such as potassium ion (K(+)), sodium ion (Na(+)) and proton (H(+)) are involved in nearly all aspects of bacterial growth and survival. K(+) is the most abundant cation and its homeostasis in Escherichia coli and Salmonella is regulated by three major K(+) transporters: high affinity transporter Kdp and low affinity transporters Kup and Trk. Previous studies have demonstrated the roles of cations and cation transport in the physiology of Escherichia coli; their roles in the virulence and physiology of pathogenic bacteria are not well characterized. We have previously reported that the Salmonella K(+) transporter Trk is important for the secretion of effector proteins of the type III secretion system (TTSS) of Salmonella pathogenicity island 1 (SPI-1). Here we further explore the role of Salmonella cation transport in virulence in vitro and pathogenesis in animal models. Impairment of K(+) transport through deletion of K(+) transporters or exposure to the chemical modulators of cation transport, gramicidin and valinomycin, results in a severe defect in the TTSS of SPI-1, and this defect in the TTSS was not due to a failure to regulate intrabacterial pH or ATP. Our results also show that K(+) transporters are critical to the pathogenesis of Salmonella in mice and chicks and are involved in multiple growth and virulence characteristics in vitro, including protein secretion, motility and invasion of epithelial cells. These results suggest that cation transport of the pathogenic bacterium Salmonella, especially K(+) transport, contributes to its virulence in addition to previously characterized roles in maintaining homeostasis of bacteria.
Collapse
Affiliation(s)
- Yehao Liu
- Department of Bioscience and Technology, School of Life Science, Nanjing University, Nanjing, Jiangsu, PR China
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Katharina Kim Ho
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Jing Su
- Department of Bioscience and Technology, School of Life Science, Nanjing University, Nanjing, Jiangsu, PR China
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Hao Gong
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Alexander C Chang
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Sangwei Lu
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
84
|
Harrison LM, Balan KV, Babu US. Dietary fatty acids and immune response to food-borne bacterial infections. Nutrients 2013; 5:1801-22. [PMID: 23698167 PMCID: PMC3708349 DOI: 10.3390/nu5051801] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 04/22/2013] [Accepted: 04/27/2013] [Indexed: 01/18/2023] Open
Abstract
Functional innate and acquired immune responses are required to protect the host from pathogenic bacterial infections. Modulation of host immune functions may have beneficial or deleterious effects on disease outcome. Different types of dietary fatty acids have been shown to have variable effects on bacterial clearance and disease outcome through suppression or activation of immune responses. Therefore, we have chosen to review research across experimental models and food sources on the effects of commonly consumed fatty acids on the most common food-borne pathogens, including Salmonella sp., Campylobacter sp., Shiga toxin-producing Escherichia coli, Shigella sp., Listeria monocytogenes, and Staphylococcus aureus. Altogether, the compilation of literature suggests that no single fatty acid is an answer for protection from all food-borne pathogens, and further research is necessary to determine the best approach to improve disease outcomes.
Collapse
Affiliation(s)
- Lisa M Harrison
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA.
| | | | | |
Collapse
|
85
|
Bowen Yoho W, Swank V, Eastridge M, O’Diam K, Daniels K. Jersey calf performance in response to high-protein, high-fat liquid feeds with varied fatty acid profiles: Intake and performance. J Dairy Sci 2013; 96:2494-2506. [DOI: 10.3168/jds.2012-6099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/26/2012] [Indexed: 11/19/2022]
|
86
|
Venkitanarayanan K, Kollanoor-Johny A, Darre MJ, Donoghue AM, Donoghue DJ. Use of plant-derived antimicrobials for improving the safety of poultry products. Poult Sci 2013; 92:493-501. [PMID: 23300319 DOI: 10.3382/ps.2012-02764] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Salmonella Enteritidis and Campylobacter jejuni are the 2 major foodborne pathogens transmitted through poultry products. Chickens are the reservoir hosts of these pathogens, with their intestinal colonization being the most significant factor causing contamination of meat and eggs. Effective preslaughter strategies for reducing the colonization of birds with these pathogens are critical to improve the microbiological safety of poultry products. An antimicrobial treatment that can be applied through feed represents the most practical and economically viable method for adoption on farms. Additionally, a natural and safe antimicrobial will be better accepted by producers without concerns for toxicity. This symposium talk discussed the potential use of plant-derived, GRAS (generally recognized as safe)-status molecules, caprylic acid, trans-cinnamaldehyde, eugenol, carvacrol, and thymol as feed supplements for reducing cecal populations of Salmonella Enteritidis and C. jejuni in chickens. Additionally, the effect of plant molecules on Salmonella virulence genes critical for cecal colonization in chickens was also discussed.
Collapse
Affiliation(s)
- K Venkitanarayanan
- Department of Animal Science, University of Connecticut, Storrs 06269, USA.
| | | | | | | | | |
Collapse
|
87
|
Iranloye B, Oludare G, Olubiyi M. Anti-diabetic and antioxidant effects of virgin coconut oil in alloxan induced diabetic male Sprague Dawley rats. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jdm.2013.34034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
88
|
Kollanoor-Johny A, Upadhyay A, Baskaran S, Upadhyaya I, Mooyottu S, Mishra N, Darre M, Khan M, Donoghue A, Donoghue D, Venkitanarayanan K. Effect of therapeutic supplementation of the plant compounds trans-cinnamaldehyde and eugenol on Salmonella enterica serovar Enteritidis colonization in market-age broiler chickens. J APPL POULTRY RES 2012. [DOI: 10.3382/japr.2012-00540] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
89
|
Sunkara LT, Jiang W, Zhang G. Modulation of antimicrobial host defense peptide gene expression by free fatty acids. PLoS One 2012; 7:e49558. [PMID: 23166711 PMCID: PMC3499459 DOI: 10.1371/journal.pone.0049558] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 10/12/2012] [Indexed: 01/21/2023] Open
Abstract
Routine use of antibiotics at subtherapeutic levels in animal feed drives the emergence of antimicrobial resistance. Development of antibiotic-alternative approaches to disease control and prevention for food animals is imperatively needed. Previously, we showed that butyrate, a major species of short-chain fatty acids (SCFAs) fermented from undigested fiber by intestinal microflora, is a potent inducer of endogenous antimicrobial host defense peptide (HDP) genes in the chicken (PLoS One 2011, 6: e27225). In the present study, we further revealed that, in chicken HD11 macrophages and primary monocytes, induction of HDPs is largely in an inverse correlation with the aliphatic hydrocarbon chain length of free fatty acids, with SCFAs being the most potent, medium-chain fatty acids moderate and long-chain fatty acids marginal. Additionally, three SCFAs, namely acetate, propionate, and butyrate, exerted a strong synergy in augmenting HDP gene expression in chicken cells. Consistently, supplementation of chickens with a combination of three SCFAs in water resulted in a further reduction of Salmonella enteritidis in the cecum as compared to feeding of individual SCFAs. More importantly, free fatty acids enhanced HDP gene expression without triggering proinflammatory interleukin-1β production. Taken together, oral supplementation of SCFAs is capable of boosting host immunity and disease resistance, with potential for infectious disease control and prevention in animal agriculture without relying on antibiotics.
Collapse
Affiliation(s)
- Lakshmi T. Sunkara
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Weiyu Jiang
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
90
|
Michiels J, Missotten J, Rasschaert G, Dierick N, Heyndrickx M, De Smet S. Effect of organic acids on Salmonella colonization and shedding in weaned piglets in a seeder model. J Food Prot 2012; 75:1974-83. [PMID: 23127706 DOI: 10.4315/0362-028x.jfp-12-210] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Piglets (n = 128) weaned at 21 days of age were used in a 35-day seeder model to evaluate the effects of dietary additives differing in active ingredients, chemical, and physical formulation, and dose on Salmonella colonization and shedding and intestinal microbial populations. Treatments were a negative control (basal diet), the positive control (challenged, basal diet), and six treatments similar to the positive control but supplemented with the following active ingredients (dose excluding essential oils or natural extracts): triglycerides with butyric acid (1.30 g kg(-1)); formic and citric acids and essential oils (2.44 g kg(-1)); coated formic, coated sorbic, and benzoic acids (2.70 g kg(-1)); salts of formic, sorbic, acetic, and propionic acids, their free acids, and natural extracts (2.92 g kg(-1)); triglycerides with caproic and caprylic acids and coated oregano oil (1.80 g kg(-1)); and caproic, caprylic, lauric, and lactic acids (1.91 g kg(-1)). On day 6, half the piglets (seeder pigs) in each group were orally challenged with a Salmonella Typhimurium nalidixic acid-resistant strain (4 × 10(9) and 1.2 × 10(9) log CFU per pig in replicate experiments 1 and 2, respectively). Two days later, they were transferred to pens with an equal number of contact pigs. Salmonella shedding was determined 2 days after challenge exposure and then on a weekly basis. On day 34 or 35, piglets were euthanized to sample tonsils, ileocecal lymph nodes, and ileal and cecal digesta contents. The two additives, both containing short-chain fatty acids and one of them also containing benzoic acid and the other one also containing essential oils, and supplemented at more than 2.70 g kg(-1), showed evidence of reducing Salmonella fecal shedding and numbers of coliforms and Salmonella in cecal digesta. However, colonization of tonsils and ileocecal lymph nodes by Salmonella was not affected. Supplementing butyric acid and medium-chain fatty acids at the applied dose failed to inhibit Salmonella contamination in the current experimental setup.
Collapse
|
91
|
Guri A, Griffiths M, Khursigara CM, Corredig M. The effect of milk fat globules on adherence and internalization of Salmonella Enteritidis to HT-29 cells. J Dairy Sci 2012; 95:6937-45. [PMID: 23021758 DOI: 10.3168/jds.2012-5734] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/19/2012] [Indexed: 12/16/2022]
Abstract
Milk fat globules were extracted from bovine and goat milk and incubated with HT-29 human adenocarcinoma cells to assess the attachment and internalization of Salmonella Enteritidis. Because the expression of bacterial adhesins is highly affected by the presence of antibiotic, the attachment was studied with and without antibiotic in the cell growth medium. Although no inhibitory effect of the fat globules was observed in the presence of the antibiotic, milk fat globules significantly inhibited the binding and internalization of Salmonella in medium free of antibiotic. The fat globules from both bovine and goat milk markedly reduced bacterial binding and invasion compared with controls, and the cells treated with goat milk-derived fat globules demonstrated greater protective properties than those derived from bovine milk. The effect of heat treatment on bovine fat globules was also investigated, and it was shown that the fat globules from heated milk had a higher degree of inhibition than those from unheated milk.
Collapse
Affiliation(s)
- A Guri
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | |
Collapse
|
92
|
Carvalho EB, Maga EA, Quetz JS, Lima IFN, Magalhães HYF, Rodrigues FAR, Silva AVA, Prata MMG, Cavalcante PA, Havt A, Bertolini M, Bertolini LR, Lima AAM. Goat milk with and without increased concentrations of lysozyme improves repair of intestinal cell damage induced by enteroaggregative Escherichia coli. BMC Gastroenterol 2012; 12:106. [PMID: 22883300 PMCID: PMC3439704 DOI: 10.1186/1471-230x-12-106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 07/31/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Enteroaggregative Escherichia coli (EAEC) causes diarrhea, malnutrition and poor growth in children. Human breast milk decreases disease-causing bacteria by supplying nutrients and antimicrobial factors such as lysozyme. Goat milk with and without human lysozyme (HLZ) may improve the repair of intestinal barrier function damage induced by EAEC. This work investigates the effect of the milks on intestinal barrier function repair, bacterial adherence in Caco-2 and HEp-2 cells, intestinal cell proliferation, migration, viability and apoptosis in IEC-6 cells in the absence or presence of EAEC. METHODS Rat intestinal epithelial cells (IEC-6, ATCC, Rockville, MD) were used for proliferation, migration and viability assays and human colon adenocarcinoma (Caco-2, ATCC, Rockville, MD) and human larynx carcinoma (HEp-2, ATCC, Rockville, MD) cells were used for bacterial adhesion assays. Goats expressing HLZ in their milk were generated and express HLZ in milk at concentration of 270 μg/ml. Cells were incubated with pasteurized milk from either transgenic goats expressing HLZ or non-transgenic control goats in the presence and absence of EAEC strain 042 (O44:H18). RESULTS Cellular proliferation was significantly greater in the presence of both HLZ transgenic and control goat milk compared to cells with no milk. Cellular migration was significantly decreased in the presence of EAEC alone but was restored in the presence of milk. Milk from HLZ transgenic goats had significantly more migration compared to control milk. Both milks significantly reduced EAEC adhesion to Caco-2 cells and transgenic milk resulted in less colonization than control milk using a HEp-2 assay. Both milks had significantly increased cellular viability as well as less apoptosis in both the absence and presence of EAEC. CONCLUSIONS These data demonstrated that goat milk is able to repair intestinal barrier function damage induced by EAEC and that goat milk with a higher concentration of lysozyme offers additional protection.
Collapse
Affiliation(s)
- Eunice B Carvalho
- Department of Physiology and Pharmacology & INCT-Biomedicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Kollanoor-Johny A, Mattson T, Baskaran S, Amalaradjou M, Hoagland T, Darre M, Khan M, Schreiber D, Donoghue A, Donoghue D, Venkitanarayanan K. Caprylic acid reduces Salmonella Enteritidis populations in various segments of digestive tract and internal organs of 3- and 6-week-old broiler chickens, therapeutically ,. Poult Sci 2012; 91:1686-94. [DOI: 10.3382/ps.2011-01716] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
94
|
Van Parys A, Boyen F, Verbrugghe E, Leyman B, Bram F, Haesebrouck F, Pasmans F. Salmonella Typhimurium induces SPI-1 and SPI-2 regulated and strain dependent downregulation of MHC II expression on porcine alveolar macrophages. Vet Res 2012; 43:52. [PMID: 22694285 PMCID: PMC3403916 DOI: 10.1186/1297-9716-43-52] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 06/13/2012] [Indexed: 11/10/2022] Open
Abstract
Foodborne salmonellosis is one of the most important bacterial zoonotic diseases worldwide. Salmonella Typhimurium is the serovar most frequently isolated from persistently infected slaughter pigs in Europe. Circumvention of the host's immune system by Salmonella might contribute to persistent infection of pigs. In the present study, we found that Salmonella Typhimurium strain 112910a specifically downregulated MHC II, but not MHC I, expression on porcine alveolar macrophages in a Salmonella pathogenicity island (SPI)-1 and SPI-2 dependent way. Salmonella induced downregulation of MHC II expression and intracellular proliferation of Salmonella in macrophages were significantly impaired after opsonization with Salmonella specific antibodies prior to inoculation. Furthermore, the capacity to downregulate MHC II expression on macrophages differed significantly among Salmonella strains, independently of strain specific differences in invasion capacity, Salmonella induced cytotoxicity and altered macrophage activation status. The fact that strain specific differences in MHC II downregulation did not correlate with the extent of in vitro SPI-1 or SPI-2 gene expression indicates that other factors are involved in MHC II downregulation as well. Since Salmonella strain dependent interference with the pig's immune response through downregulation of MHC II expression might indicate that certain Salmonella strains are more likely to escape serological detection, our findings are of major interest for Salmonella monitoring programs primarily based on serology.
Collapse
Affiliation(s)
- Alexander Van Parys
- Ghent University, Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Avian Diseases, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | | | | | | | | | | | | |
Collapse
|
95
|
Attenuated Salmonella typhimurium SV4089 as a potential carrier of oral DNA vaccine in chickens. J Biomed Biotechnol 2012; 2012:264986. [PMID: 22701301 PMCID: PMC3373249 DOI: 10.1155/2012/264986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/10/2012] [Indexed: 11/18/2022] Open
Abstract
Attenuated Salmonella has been used as a carrier for DNA vaccine. However, in vitro and in vivo studies on the bacteria following transfection of plasmid DNA were poorly studied. In this paper, eukaryotic expression plasmids encoding avian influenza virus (AIV) subtype H5N1 genes, pcDNA3.1/HA, NA, and NP, were transfected into an attenuated Salmonella enteric typhimurium SV4089. In vitro stability of the transfected plasmids into Salmonella were over 90% after 100 generations. The attenuated Salmonella were able to invade MCF-7 (1.2%) and MCF-10A (0.5%) human breast cancer cells. Newly hatched specific-pathogen-free (SPF) chicks were inoculated once by oral gavage with 10(9) colony-forming unit (CFU) of the attenuated Salmonella. No abnormal clinical signs or deaths were recorded after inoculation. Viable bacteria were detected 3 days after inoculation by plating from spleen, liver, and cecum. Fluorescent in situ hybridization (FISH) and polymerase chain reaction (PCR) were carried out for confirmation. Salmonella was not detected in blood cultures although serum antibody immune responses to Salmonella O antiserum group D1 factor 1, 9, and 12 antigens were observed in all the inoculated chickens after 7 days up to 35 days. Our results showed that live attenuated S. typhimurium SV4089 harboring pcDNA3.1/HA, NA, and NP may provide a unique alternative as a carrier for DNA oral vaccine in chickens.
Collapse
|
96
|
Short chain fatty acids (propionic and hexanoic) decrease Staphylococcus aureus internalization into bovine mammary epithelial cells and modulate antimicrobial peptide expression. Vet Microbiol 2012; 155:324-31. [DOI: 10.1016/j.vetmic.2011.08.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/20/2011] [Accepted: 08/25/2011] [Indexed: 01/12/2023]
|
97
|
Reduction of Salmonella enterica serovar enteritidis colonization in 20-day-old broiler chickens by the plant-derived compounds trans-cinnamaldehyde and eugenol. Appl Environ Microbiol 2012; 78:2981-7. [PMID: 22327574 DOI: 10.1128/aem.07643-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The efficacies of trans-cinnamaldehyde (TC) and eugenol (EG) for reducing Salmonella enterica serovar Enteritidis colonization in broiler chickens were investigated. In three experiments for each compound, 1-day-old chicks (n = 75/experiment) were randomly assigned to five treatment groups (n = 15/treatment group): negative control (-ve S. Enteritidis, -ve TC, or EG), compound control (-ve S. Enteritidis, +ve 0.75% [vol/wt] TC or 1% [vol/wt] EG), positive control (+ve S. Enteritidis, -ve TC, or EG), low-dose treatment (+ve S. Enteritidis, +ve 0.5% TC, or 0.75% EG), and high-dose treatment (+ve S. Enteritidis, +ve 0.75% TC, or 1% EG). On day 0, birds were tested for the presence of any inherent Salmonella (n = 5/experiment). On day 8, birds were inoculated with ∼8.0 log(10) CFU S. Enteritidis, and cecal colonization by S. Enteritidis was ascertained (n = 10 chicks/experiment) after 24 h (day 9). Six birds from each treatment group were euthanized on days 7 and 10 after inoculation, and cecal S. Enteritidis numbers were determined. TC at 0.5 or 0.75% and EG at 0.75 or 1% consistently reduced (P < 0.05) S. Enteritidis in the cecum (≥3 log(10) CFU/g) after 10 days of infection in all experiments. Feed intake and body weight were not different for TC treatments (P > 0.05); however, EG supplementation led to significantly lower (P < 0.05) body weights. Follow-up in vitro experiments revealed that the subinhibitory concentrations (SICs, the concentrations that did not inhibit Salmonella growth) of TC and EG reduced the motility and invasive abilities of S. Enteritidis and downregulated expression of the motility genes flhC and motA and invasion genes hilA, hilD, and invF. The results suggest that supplementation with TC and EG through feed can reduce S. Enteritidis colonization in chickens.
Collapse
|
98
|
|
99
|
Doyle MP, Erickson MC. Opportunities for mitigating pathogen contamination during on-farm food production. Int J Food Microbiol 2012; 152:54-74. [DOI: 10.1016/j.ijfoodmicro.2011.02.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/03/2011] [Accepted: 02/28/2011] [Indexed: 10/18/2022]
|
100
|
Verbrugghe E, Boyen F, Van Parys A, Van Deun K, Croubels S, Thompson A, Shearer N, Leyman B, Haesebrouck F, Pasmans F. Stress induced Salmonella Typhimurium recrudescence in pigs coincides with cortisol induced increased intracellular proliferation in macrophages. Vet Res 2011; 42:118. [PMID: 22151081 PMCID: PMC3256119 DOI: 10.1186/1297-9716-42-118] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/07/2011] [Indexed: 01/31/2023] Open
Abstract
Salmonella Typhimurium infections in pigs often result in the development of carriers that intermittently excrete Salmonella in very low numbers. During periods of stress, for example transport to the slaughterhouse, recrudescence of Salmonella may occur, but the mechanism of this stress related recrudescence is poorly understood. Therefore, the aim of the present study was to determine the role of the stress hormone cortisol in Salmonella recrudescence by pigs. We showed that a 24 h feed withdrawal increases the intestinal Salmonella Typhimurium load in pigs, which is correlated with increased serum cortisol levels. A second in vivo trial demonstrated that stress related recrudescence of Salmonella Typhimurium in pigs can be induced by intramuscular injection of dexamethasone. Furthermore, we found that cortisol, but not epinephrine, norepinephrine and dopamine, promotes intracellular proliferation of Salmonella Typhimurium in primary porcine alveolar macrophages, but not in intestinal epithelial cells and a transformed cell line of porcine alveolar macrophages. A microarray based transcriptomic analysis revealed that cortisol did not directly affect the growth or the gene expression or Salmonella Typhimurium in a rich medium, which implies that the enhanced intracellular proliferation of the bacterium is probably caused by an indirect effect through the cell. These results highlight the role of cortisol in the recrudescence of Salmonella Typhimurium by pigs and they provide new evidence for the role of microbial endocrinology in host-pathogen interactions.
Collapse
Affiliation(s)
- Elin Verbrugghe
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|