51
|
Bai D, Nakao R, Ito A, Uematsu H, Senpuku H. Immunoreactive antigens recognized in serum samples from mice intranasally immunized with Porphyromonas gingivalis outer membrane vesicles. Pathog Dis 2014; 73:ftu006. [PMID: 25743469 DOI: 10.1093/femspd/ftu006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Outer membrane vesicles (OMVs) of the periodontopathic bacterium Porphyromonas gingivalis contain a wide range of virulence factors including lipopolysaccharide (LPS), fimbriae and gingipains. We have recently reported strong immunogenicity of OMVs using an intranasal vaccine mouse model. In the present study, we performed sub-immunoproteome analysis of OMV-immunized mouse serum samples from six different mice in order to identify immunodominant antigens. The combination of two-dimensional (2D) gel electrophoresis and mass spectrometry analysis identified OMV proteins of 53 spots on a 2D map, and it was notable that OMV proteins were largely distributed within a low pH range, in marked contrast to the ubiquitous distribution of outer membrane proteins. Western blot using the six serum samples after 2D electrophoresis revealed that all showed immunoreactivity to some diffuse signals at extremely low pH, which was similar to the distribution of immunoreactive signals when the A-LPS antibody was used. Mass spectrometry analysis also demonstrated that the signals corresponded to a wide range of virulence factors including A-LPS-modified proteins such as gingipains. Absorption of serum with LPS resulted in a dramatic reduction of immmunoreactivity. We conclude that LPS and A-LPS-modified proteins in OMVs carry immunodominant determinants and eventually elicit P. gingivalis-specific antibodies in mice.
Collapse
Affiliation(s)
- Dongying Bai
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan Department of Gerodontology, Graduate school of Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Ryoma Nakao
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Akihiro Ito
- Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroshi Uematsu
- Department of Gerodontology, Graduate school of Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
52
|
Kulkarni HM, Jagannadham MV. Biogenesis and multifaceted roles of outer membrane vesicles from Gram-negative bacteria. Microbiology (Reading) 2014; 160:2109-2121. [DOI: 10.1099/mic.0.079400-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Outer membrane vesicles (OMVs) released from Gram-negative bacteria consist of lipids, proteins, lipopolysaccharides and other molecules. OMVs are associated with several biological functions such as horizontal gene transfer, intracellular and intercellular communication, transfer of contents to host cells, and eliciting an immune response in host cells. Although hypotheses have been made concerning the mechanism of biogenesis of these vesicles, research on OMV formation is far from complete. The roles of outer membrane components, bacterial quorum sensing molecules and some specific proteins in OMV biogenesis have been studied. This review discusses the different models that have been proposed for OMV biogenesis, along with details of the biological functions of OMVs and the likely scope of future research.
Collapse
Affiliation(s)
- Heramb M. Kulkarni
- CSIR – Centre for Cellular and Molecular Biology, Tarnaka, Hyderabad-500007, India
| | | |
Collapse
|
53
|
Li C, Li B, Dong Z, Gao L, He X, Liao L, Hu C, Wang Q, Jin Y. Lipopolysaccharide differentially affects the osteogenic differentiation of periodontal ligament stem cells and bone marrow mesenchymal stem cells through Toll-like receptor 4 mediated nuclear factor κB pathway. Stem Cell Res Ther 2014; 5:67. [PMID: 24887697 PMCID: PMC4076620 DOI: 10.1186/scrt456] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/19/2014] [Indexed: 01/09/2023] Open
Abstract
Introduction Periodontitis is initiated and sustained by bacteria. However, the mechanism of bacteria induced periodontitis is still unknown. We hypothesized that bacterial components can affect the functions of stem cells in the periodontium. In this study, we comparatively investigated the influence of Lipopolysaccharide (LPS) on the osteogenesis potential of human periodontal ligament stem cells (PDLSCs) and bone marrow mesenchymal stem cells (BMMSCs). Methods Human PDLSCs and BMMSCs were harvested and mineralized nodule formation was assessed by alizarin red S staining. Expression level of osteogenic related gene was detected by quantitative RT-PCR (qRT-PCR). The expression of Toll-like receptor 4 (TLR4) and its downstream signaling pathway were examined by western blot. The role of TLR4 and related signaling pathway in LPS impairing the osteogenic potential of human PDLSCs and BMMSCs were also studied by alizarin red S staining and qRT-PCR. Experimental periodontitis was induced in adult Sprague–Dawley rats and the alveolar bone loss was measured by micro computed tomography analysis. The expression of alkaline phosphatase (ALP) was assessed by immunohistochemistry and the number of osteoclasts was shown by Tartrate-resistant acid phosphatase (TRAP) staining. Results LPS decreased the osteogenic differentiation of human PDLSCs through TLR4 regulated nuclear factor (NF)-κB pathway, but not for BMMSCs. Blocking TLR4 or NF-κB signaling partially reversed the decreased osteogenic potential of PDLSCs and prevented the alveolar bone loss caused by LPS experimental periodontitis in rats. The ALP expression in the periodontal ligament was elevated after treatment with anti-TLR4 antibody or pyrrolidinedithiocarbamate, whereas there was no statistical significance among groups for the number of osteoclasts. Conclusions These data suggest that LPS can activate TLR4 regulated NF-κB pathway of human PDLSCs, thus decreasing their osteogenic potential. Blockage of TLR4 or NF-κB pathway might provide a new approach for periodontitis treatment.
Collapse
|
54
|
Nakao R, Kikushima K, Higuchi H, Obana N, Nomura N, Bai D, Ohnishi M, Senpuku H. A novel approach for purification and selective capture of membrane vesicles of the periodontopathic bacterium, Porphyromonas gingivalis: membrane vesicles bind to magnetic beads coated with epoxy groups in a noncovalent, species-specific manner. PLoS One 2014; 9:e95137. [PMID: 24830438 PMCID: PMC4022494 DOI: 10.1371/journal.pone.0095137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/24/2014] [Indexed: 02/03/2023] Open
Abstract
Membrane vesicles (MVs) of Porphyromonas gingivalis are regarded as an offensive weapon of the bacterium, leading to tissue deterioration in periodontal disease. Therefore, isolation of highly purified MVs is indispensable to better understand the pathophysiological role of MVs in the progression of periodontitis. MVs are generally isolated by a conventional method based on ultracentrifugation of the bacterial culture supernatant. However, the resulting MVs are often contaminated with co-precipitating bacterial appendages sheared from the live bacteria. Here, we report an intriguing property of P. gingivalis MVs–their ability to bind superparamagnetic beads coated with epoxy groups (SB-Epoxy). Analysis of fractions collected during the purification revealed that all MVs of five tested P. gingivalis stains bound to SB-Epoxy. In contrast, free fimbriae in the crude MV preparation did not bind to the SB-Epoxy. The SB-Epoxy-bound MVs were easily dissociated from the SB-Epoxy using a mild denaturation buffer. These results suggest that the surface chemistry conferred by epoxy on the beads is responsible for the binding, which is mediated by noncovalent bonds. Both the structural integrity and purity of the isolated MVs were confirmed by electron microscopy. The isolated MVs also caused cell detachment from culture dishes at a physiologically relevant concentration. Assays of competitive binding between the SB-Epoxy and mixtures of MVs from five bacterial species demonstrated that only P. gingivalis MVs could be selectively eliminated from the mixtures. We suggest that this novel approach enables efficient purification and selective elimination of P. gingivalis MVs.
Collapse
Affiliation(s)
- Ryoma Nakao
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail:
| | - Kenji Kikushima
- Department of Science, The University of Tokyo, Tokyo, Japan
| | - Hideo Higuchi
- Department of Science, The University of Tokyo, Tokyo, Japan
| | - Nozomu Obana
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Dongying Bai
- Department of Gerodontology, Graduate school of Tokyo Medical and Dental University, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
55
|
Amano A, Kuboniwa M, Takeuchi H. Transcellular invasive mechanisms of Porphyromonas gingivalis in host–parasite interactions. J Oral Biosci 2014. [DOI: 10.1016/j.job.2014.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
56
|
Polymicrobial infection and bacterium-mediated epigenetic modification of DNA tumor viruses contribute to pathogenesis. mBio 2014; 5:e01015-14. [PMID: 24781742 PMCID: PMC4010825 DOI: 10.1128/mbio.01015-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The human body plays host to a wide variety of microbes, commensal and pathogenic. In addition to interacting with their host, different microbes, such as bacteria and viruses, interact with each other, sometimes in ways that exacerbate disease. In particular, gene expression of a number of viruses, including Kaposi’s sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV), and human immunodeficiency virus (HIV), is known to be regulated by epigenetic modifications induced by bacteria. These viruses establish latent infection in their host cells and can be reactivated by bacterial products. Viral reactivation has been suggested to contribute to periodontal disease and AIDS. In addition, bacterium-virus interactions may play a role in cancers, such as Kaposi’s sarcoma, gastric cancer, and head and neck cancer. It is important to consider the effects of coexisting bacterial infections when studying viral diseases in vivo.
Collapse
|
57
|
Membrane Vesicles as a Novel Strategy for Shedding Encrusted Cell Surfaces. MINERALS 2014. [DOI: 10.3390/min4010074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
58
|
Nakao R, Takashiba S, Kosono S, Yoshida M, Watanabe H, Ohnishi M, Senpuku H. Effect of Porphyromonas gingivalis outer membrane vesicles on gingipain-mediated detachment of cultured oral epithelial cells and immune responses. Microbes Infect 2014; 16:6-16. [DOI: 10.1016/j.micinf.2013.10.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 01/27/2023]
|
59
|
Murakami Y, Masuda T, Imai M, Iwami J, Nakamura H, Noguchi T, Yoshimura F. Analysis of Major Virulence Factors inPorphyromonas gingivalisunder Various Culture Temperatures Using Specific Antibodies. Microbiol Immunol 2013; 48:561-9. [PMID: 15322335 DOI: 10.1111/j.1348-0421.2004.tb03552.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Porphyromonas gingivalis is implicated in the occurrence of adult periodontitis. We have previously identified major outer membrane proteins from P. gingivalis, which include representative virulence factors such as gingipains, a 75 kDa major protein, RagA, RagB, and putative porin. Fimbriae, another important virulence factor, exist on the cell surface. In this study, we identified major supernatant proteins. They were fimbrilin, the 75 kDa major protein, gingipains and their adhesin domains. Microscopic examination showed that supernatant proteins formed vesicle-like and fimbrial structures. To learn more about the character of this bacterium, we examined effects of growth temperature on localization and expression of these virulence factors. In general, localization of major virulence factors did not change at the various growth temperatures used. Most of the 75 kDa major protein, RagA, RagB, and putative porin were found in the envelope fraction, not in cell-free culture supernatant. Gingipains were found in both the envelope fraction and supernatant. More than 80% of fimbriae were associated with cells, less than 20% migrated to the supernatant. Most fimbriae existed in the whole cell lysate, although there was a small amount in the envelope fraction. When the growth temperature was increased, expression of fimbriae, gingipains, the 75 kDa major protein, RagA, and RagB decreased. However, temperature had almost no effect on expression of putative porin. The tendency for expression of major virulence factors to decrease at higher temperatures may enable P. gingivalis to survive under hostile conditions.
Collapse
Affiliation(s)
- Yukitaka Murakami
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| | | | | | | | | | | | | |
Collapse
|
60
|
Nogueira-Filho G, Rosa BT, Santos PF, Tunes UR, Freire SM, Meyer R, Darveau RP. Whole-blood cultures from patients with chronic periodontitis respond differently to Porphyromonas gingivalis but not Escherichia coli lipopolysaccharide. J Periodontol 2013; 85:e18-23. [PMID: 24001045 DOI: 10.1902/jop.2013.120735] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Porphyromonas gingivalis lipid A heterogeneity modulates cytokine expression in human cells. This study investigates the effects of two lipid A isoforms of P. gingivalis, lipopolysaccharide (LPS)1435/1449 and LPS1690, on the secretion of proinflammatory and regulatory cytokines in total blood cultures from patients with and without chronic periodontitis (CP). METHODS A cross-sectional study was conducted in 38 systemically healthy individuals divided in two groups: 1) the CP group (n = 19), in which patients were diagnosed with CP; and 2) the no periodontitis (NP) group (n = 19), which included control patients without CP. Blood samples were collected from all patients, and whole-blood cell cultures (WBCCs) were stimulated for 48 hours with P. gingivalis LPS1435/1449 and LPS1690 and Escherichia coli LPS. Unstimulated WBCCs served as negative controls. The secretion of interferon-γ (IFN-γ), interleukin-10 (IL-10), and transforming growth factor-β (TGF-β) was detected in WBCC supernatants by enzyme-linked immunosorbent assays. RESULTS E. coli LPS significantly increased the expression of all cytokines in WBCCs from both the NP and CP groups when compared to non-stimulated cells (control treatment). P. gingivalis LPS preparations increased IFN-γ levels in the CP group but not in the NP group when compared with controls (P <0.05). P. gingivalis LPS preparations also increased IL-10 and TGF-β levels in both CP and NP groups, but P. gingivalis LPS1690 showed a three-fold increase on IL-10 production in the NP group (P <0.05) when compared to P. gingivalis LPS1435/144. CONCLUSIONS These data demonstrate that WBCC cell populations obtained from healthy individuals and patients with CP may differ in the cytokine response to P. gingivalis but not E. coli LPS. This is consistent with the notion that CP alters the systemic WBCC response and that this can be detected by the different P. gingivalis LPS structures.
Collapse
|
61
|
|
62
|
Yamaguchi M, Noiri Y, Kuboniwa M, Yamamoto R, Asahi Y, Maezono H, Hayashi M, Ebisu S. Porphyromonas gingivalisbiofilms persist after chlorhexidine treatment. Eur J Oral Sci 2013; 121:162-8. [DOI: 10.1111/eos.12050] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Mikiyo Yamaguchi
- Department of Restorative Dentistry and Endodontology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Yuichiro Noiri
- Department of Restorative Dentistry and Endodontology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Reiko Yamamoto
- Department of Restorative Dentistry and Endodontology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Yoko Asahi
- Department of Restorative Dentistry and Endodontology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Hazuki Maezono
- Department of Restorative Dentistry and Endodontology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Shigeyuki Ebisu
- Department of Restorative Dentistry and Endodontology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| |
Collapse
|
63
|
Herath TDK, Darveau RP, Seneviratne CJ, Wang CY, Wang Y, Jin L. Tetra- and penta-acylated lipid A structures of Porphyromonas gingivalis LPS differentially activate TLR4-mediated NF-κB signal transduction cascade and immuno-inflammatory response in human gingival fibroblasts. PLoS One 2013; 8:e58496. [PMID: 23554896 PMCID: PMC3595299 DOI: 10.1371/journal.pone.0058496] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/05/2013] [Indexed: 12/21/2022] Open
Abstract
Background Porphyromonas gingivalis is a major pathogen of periodontal disease that affects a majority of adults worldwide. Increasing evidence shows that periodontal disease is linked to various systemic diseases like diabetes and cardiovascular disease, by contributing to increased systemic levels of inflammation. Lipopolysaccharides (LPS), as a key virulent attribute of P. gingivalis, possesses significant amount of lipid A heterogeneity containing tetra- (LPS1435/1449) and penta-acylated (LPS1690) structures. Hitherto, the exact molecular mechanism of P. gingivalis LPS involved in periodontal pathogenesis remains unclear, due to limited understanding of the specific receptors and signaling pathways involved in LPS-host cell interactions. Methodology/Principal Findings This study systematically investigated the effects of P. gingivalis LPS1435/1449 and LPS1690 on the expression of TLR2 and TLR4 signal transduction and the activation of pro-inflammatory cytokines IL-6 and IL-8 in human gingival fibroblasts (HGFs). We found that LPS1435/1449 and LPS1690 differentially modulated TLR2 and TLR4 expression. NF-κB pathway was significantly activated by LPS1690 but not by LPS1435/1449. In addition, LPS1690 induced significant expression of NF-κB and p38 MPAK pathways-related genes, such as NFKBIA, NFKB1, IKBKB, MAP2K4 and MAPK8. Notably, the pro-inflammatory genes including GM-CSF, CXCL10, G-CSF, IL-6, IL-8 and CCL2 were significantly upregulated by LPS1690 while down-regulated by LPS1435/1449. Blocking assays confirmed that TLR4-mediated NF-κB signaling was vital in LPS1690-induced expression of IL-6 and IL-8 in HGFs. Conclusions/Significance The present study suggests that the tetra- and penta-acylated lipid A structures of P. gingivalis LPS differentially activate TLR4-mediated NF-κB signaling pathway, and significantly modulate the expression of IL-6 and IL-8 in HGFs. The ability to alter the lipid A structure of LPS could be one of the strategies carried-out by P. gingivalis to evade innate host defense in gingival tissues, thereby contributing to periodontal pathogenesis.
Collapse
Affiliation(s)
- Thanuja D. K. Herath
- Faculty of Dentistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Richard P. Darveau
- School of Dentistry, University of Washington, Seattle, Washington, United States of America
| | - Chaminda J. Seneviratne
- Faculty of Dentistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Cun-Yu Wang
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yu Wang
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lijian Jin
- Faculty of Dentistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
64
|
Porphyromonas gingivalis Outer Membrane Vesicles Mediate Coaggregation and Piggybacking of Treponema denticola and Lachnoanaerobaculum saburreum. Int J Dent 2013; 2013:305476. [PMID: 23365576 PMCID: PMC3556864 DOI: 10.1155/2013/305476] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/28/2012] [Indexed: 11/17/2022] Open
Abstract
Porphyromonas gingivalis sheds outer membrane vesicles that contain several virulence factors, including adhesins. In this study, we investigated the ability of P. gingivalis outer membrane vesicles to mediate the coaggregation and piggybacking of Treponema denticola and Lachnoanaerobaculum saburreum. Marked coaggregation between T. denticola and L. saburreum occurred in the presence of P. gingivalis outer membrane vesicles. Sucrose was an effective chemoattractant for the motile species T. denticola. The addition of outer membrane vesicles to a mixture of T. denticola and L. saburreum significantly increased the number of nonmotile bacteria that migrated into a sucrose-filled capillary tube immersed in the bacterial mixture. Under optimal conditions, the number of nonmotile L. saburreum in the capillary tube increased approximately 5-fold, whereas no increase occurred when boiled vesicles were used. This study showed that P. gingivalis outer membrane vesicles mediate coaggregation between T. denticola and L. saburreum and that nonmotile bacteria can be translocated by piggybacking on spirochetes.
Collapse
|
65
|
Abstract
The production of outer membrane vesicles (OMVs) is a widespread phenomenon employed by bacteria to secrete cell envelope components into the environment. A contribution of Legionella pneumophila OMVs to the pathogenesis of Legionnaires' disease is likely due to the high number of virulence-related proteins in the vesicles. OMVs are isolated from the supernatant of liquid cultures of L. pneumophila. After low-speed centrifugation, residual bacteria and cell fragments are eliminated by passing the supernatant through a filter. OMVs are pelleted by ultracentrifugation and resuspended in buffer. The isolated OMVs can be analyzed for their molecular components and their interactions with host structures, bacterial cells, or surfaces.
Collapse
Affiliation(s)
- Jens Jäger
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | |
Collapse
|
66
|
Thornton RF, Murphy EC, Kagawa TF, O'Toole PW, Cooney JC. The effect of environmental conditions on expression of Bacteroides fragilis and Bacteroides thetaiotaomicron C10 protease genes. BMC Microbiol 2012; 12:190. [PMID: 22943521 PMCID: PMC3462683 DOI: 10.1186/1471-2180-12-190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 08/23/2012] [Indexed: 01/07/2023] Open
Abstract
Background Bacteroides fragilis and Bacteroides thetaiotaomicron are members of the normal human intestinal microbiota. However, both organisms are capable of causing opportunistic infections, during which the environmental conditions to which the bacteria are exposed change dramatically. To further explore their potential for contributing to infection, we have characterized the expression in B. thetaiotaomicron of four homologues of the gene encoding the C10 cysteine protease SpeB, a potent extracellular virulence factor produced by Streptococcus pyogenes. Results We identified a paralogous set of genes (btp genes) in the B. thetaiotaomicron genome, that were related to C10 protease genes we recently identified in B. fragilis. Similar to C10 proteases found in B. fragilis, three of the B. thetaiotaomicron homologues were transcriptionally coupled to genes encoding small proteins that are similar in structural architecture to Staphostatins, protease inhibitors associated with Staphopains in Staphylococcus aureus. The expression of genes for these C10 proteases in both B. fragilis and B. thetaiotaomicron was found to be regulated by environmental stimuli, in particular by exposure to oxygen, which may be important for their contribution to the development of opportunistic infections. Conclusions Genes encoding C10 proteases are increasingly identified in operons which also contain genes encoding proteins homologous to protease inhibitors. The Bacteroides C10 protease gene expression levels are responsive to different environmental stimuli suggesting they may have distinct roles in the bacterial-host interaction.
Collapse
|
67
|
Madrigal AG, Barth K, Papadopoulos G, Genco CA. Pathogen-mediated proteolysis of the cell death regulator RIPK1 and the host defense modulator RIPK2 in human aortic endothelial cells. PLoS Pathog 2012; 8:e1002723. [PMID: 22685397 PMCID: PMC3369954 DOI: 10.1371/journal.ppat.1002723] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 04/13/2012] [Indexed: 01/07/2023] Open
Abstract
Porphyromonas gingivalis is the primary etiologic agent of periodontal disease that is associated with other human chronic inflammatory diseases, including atherosclerosis. The ability of P. gingivalis to invade and persist within human aortic endothelial cells (HAEC) has been postulated to contribute to a low to moderate chronic state of inflammation, although how this is specifically achieved has not been well defined. In this study, we demonstrate that P. gingivalis infection of HAEC resulted in the rapid cleavage of receptor interacting protein 1 (RIPK1), a mediator of tumor necrosis factor (TNF) receptor-1 (TNF-R1)-induced cell activation or death, and RIPK2, a key mediator of both innate immune signaling and adaptive immunity. The cleavage of RIPK1 or RIPK2 was not observed in cells treated with apoptotic stimuli, or cells stimulated with agonists to TNF-R1, nucleotide oligomerization domain receptor 1(NOD1), NOD2, Toll-like receptor 2 (TLR2) or TLR4. P. gingivalis-induced cleavage of RIPK1 and RIPK2 was inhibited in the presence of a lysine-specific gingipain (Kgp) inhibitor. RIPK1 and RIPK2 cleavage was not observed in HAEC treated with an isogenic mutant deficient in the lysine-specific gingipain, confirming a role for Kgp in the cleavage of RIPK1 and RIPK2. Similar proteolysis of poly (ADP-ribose) polymerase (PARP) was observed. We also demonstrated direct proteolysis of RIPK2 by P. gingivalis in a cell-free system which was abrogated in the presence of a Kgp-specific protease inhibitor. Our studies thus reveal an important role for pathogen-mediated modification of cellular kinases as a potential strategy for bacterial persistence within target host cells, which is associated with low-grade chronic inflammation, a hallmark of pathogen-mediated chronic inflammatory disorders.
Collapse
Affiliation(s)
- Andrés G. Madrigal
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Kenneth Barth
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - George Papadopoulos
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Caroline Attardo Genco
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
68
|
Mann EE, Wozniak DJ. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 2012; 36:893-916. [PMID: 22212072 DOI: 10.1111/j.1574-6976.2011.00322.x] [Citation(s) in RCA: 398] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/18/2011] [Accepted: 12/19/2011] [Indexed: 11/27/2022] Open
Abstract
Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure-function relationships, regulation, and the role of individual matrix molecules in niche biology.
Collapse
Affiliation(s)
- Ethan E Mann
- Department of Microbial Infection and Immunity, Department of Microbiology, Center for Microbial Interface Biology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | | |
Collapse
|
69
|
|
70
|
Nakao R, Hasegawa H, Ochiai K, Takashiba S, Ainai A, Ohnishi M, Watanabe H, Senpuku H. Outer membrane vesicles of Porphyromonas gingivalis elicit a mucosal immune response. PLoS One 2011; 6:e26163. [PMID: 22022548 PMCID: PMC3193504 DOI: 10.1371/journal.pone.0026163] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/21/2011] [Indexed: 12/11/2022] Open
Abstract
We previously reported that mutation of galE in Porphyromonas gingivalis has pleiotropic effects, including a truncated lipopolysaccharide (LPS) O-antigen and deglycosylation of the outer membrane protein OMP85 homolog. In the present study, further analysis of the galE mutant revealed that it produced little or no outer membrane vesicles (OMVs). Using three mouse antisera raised against whole cells of the P. gingivalis wild type strain, we performed ELISAs to examine the reactivity of these antisera with whole cells of the wild type or the galE mutant. All three antisera had significantly lower reactivity against the galE mutant compared to wild type. OMVs, but not LPS, retained the immunodominant determinant of P. gingivalis, as determined by ELISAs (with wild type LPS or OMVs as antigen) and absorption assays. In addition, we assessed the capacity of OMVs as a vaccine antigen by intranasal immunization to BALB/c mice. Synthetic double-stranded RNA polyriboinosinic polyribocytidylic acid [Poly (I∶C)], an agonist of Toll-like receptor 3 (TLR3), was used as the mucosal adjuvant. Vaccination with OMV elicited dramatically high levels of P. gingivalis-specific IgA in nasal washes and saliva, as well as serum IgG and IgA. In conclusion, the OMVs of P. gingivalis have an important role in mucosal immunogenicity as well as in antigenicity. We propose that P. gingivalis OMV is an intriguing immunogen for development of a periodontal disease vaccine.
Collapse
Affiliation(s)
- Ryoma Nakao
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruo Watanabe
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail:
| |
Collapse
|
71
|
Parker H, Keenan JI. Composition and function of Helicobacter pylori outer membrane vesicles. Microbes Infect 2011; 14:9-16. [PMID: 21911076 DOI: 10.1016/j.micinf.2011.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/07/2011] [Accepted: 08/09/2011] [Indexed: 01/26/2023]
Abstract
The gastric pathogen Helicobacter pylori sheds outer membrane vesicles (OMV) that possess many of the surface elements of the bacterium. Here we review current knowledge on the composition of H. pylori OMV and discuss evidence for their potential roles in bacterial survival and pathogenesis.
Collapse
Affiliation(s)
- Heather Parker
- Department of Pathology, University of Otago, PO Box 4345, Christchurch, New Zealand
| | | |
Collapse
|
72
|
Elicitation of epithelial cell-derived immune effectors by outer membrane vesicles of nontypeable Haemophilus influenzae. Infect Immun 2011; 79:4361-9. [PMID: 21875967 DOI: 10.1128/iai.05332-11] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Outer membrane vesicles (OMVs) are produced by all Gram-negative microorganisms studied to date. The contributions of OMVs to biological processes are diverse and include mediation of bacterial stress responses, selective packaging and secretion of virulence determinants, modulation of the host immune response, and contributions to biofilm formation and stability. First characterized as transformasomes in Haemophilus, these membranous blebs facilitate transfer of DNA among bacteria. Nontypeable Haemophilus influenzae (NTHI), an opportunistic pathogen of the upper and lower respiratory tracts, produces OMVs in vivo, but there is a paucity of information regarding both the composition and role of OMVs during NTHI colonization and pathogenesis. We demonstrated that purified NTHI vesicles are 20 to 200 nm in diameter and contain DNA, adhesin P5, IgA endopeptidase, serine protease, and heme utilization protein, suggesting a multifaceted role in virulence. NTHI OMVs can bind to human pharyngeal epithelial cells, resulting in a time- and temperature-dependent aggregation on the host cell surface, with subsequent internalization. OMVs colocalize with the endocytosis protein caveolin, indicating that internalization is mediated by caveolae, which are cholesterol-rich lipid raft domains. Upon interaction with epithelial cells, NTHI OMVs stimulate significant release of the immunomodulatory cytokine interleukin-8 (IL-8) as well as the antimicrobial peptide LL-37. Thus, we demonstrated that NTHI OMVs contain virulence-associated proteins that dynamically interact with and invade host epithelial cells. Beyond their ability to mediate DNA transfer in Haemophilus, OMV stimulation of host immunomodulatory cytokine and antimicrobial peptide release supports a dynamic role for vesiculation in NTHI pathogenesis and clinically relevant disease progression.
Collapse
|
73
|
Maldonado R, Wei R, Kachlany SC, Kazi M, Balashova NV. Cytotoxic effects of Kingella kingae outer membrane vesicles on human cells. Microb Pathog 2011; 51:22-30. [PMID: 21443941 PMCID: PMC3096010 DOI: 10.1016/j.micpath.2011.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 11/20/2022]
Abstract
Kingella kingae is an emerging pathogen causing osteoarticular infections in pediatric patients. Electron microscopy of K. kingae clinical isolates revealed the heterogeneously-sized membranous structures blebbing from the outer membrane that were classified as outer membrane vesicles (OMVs). OMVs purified from the secreted fraction of a septic arthritis K. kingae isolate were characterized. Among several major proteins, K. kingae OMVs contained virulence factors RtxA toxin and PilC2 pilus adhesin. RtxA was also found secreted as a soluble protein in the extracellular environment indicating that the bacterium may utilize different mechanisms for the toxin delivery. OMVs were shown to be hemolytic and possess some leukotoxic activity while high leukotoxicity was detected in the non-hemolytic OMV-free component of the secreted fraction. OMVs were internalized by human osteoblasts and synovial cells. Upon interaction with OMVs, the cells produced increased levels of human granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 6 (IL-6) suggesting that these cytokines might be involved in the signaling response of infected joint and bone tissues during natural K. kingae infection. This study is the first report of OMV production by K. kingae and demonstrates that OMVs are a complex virulence factor of the organism causing cytolytic and inflammatory effects on host cells.
Collapse
Affiliation(s)
| | | | - SC Kachlany
- Department of Oral Biology, New Jersey Dental School, University of Medicine Dentistry of New Jersey, Newark, NJ 07103, USA
| | - M Kazi
- Department of Oral Biology, New Jersey Dental School, University of Medicine Dentistry of New Jersey, Newark, NJ 07103, USA
| | - NV Balashova
- Department of Oral Biology, New Jersey Dental School, University of Medicine Dentistry of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
74
|
Groeger S, Domann E, Gonzales JR, Chakraborty T, Meyle J. B7-H1 and B7-DC receptors of oral squamous carcinoma cells are upregulated by Porphyromonas gingivalis. Immunobiology 2011; 216:1302-10. [PMID: 21723642 DOI: 10.1016/j.imbio.2011.05.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 05/05/2011] [Accepted: 05/07/2011] [Indexed: 12/11/2022]
Abstract
The up-regulation of the B7-H1 receptors in host cells might influence the chronicity of inflammatory disorders that frequently precede the development of human cancers. B7-H1 expression has been detected in the majority of human cancers, leading to anergy and apoptosis of activated T cells, and enabling tumor cells to overcome host response. Porphyromonas gingivalis (P. gingivalis), a putative periodontal pathogen, is an etiologic agent of periodontitis and expresses a variety of virulence factors. In this study, the expression of B7-H1 and B7-DC receptors on squamous cell carcinoma cells SCC-25 and BHY and primary human gingival keratinocytes (PHGK) was analyzed after infection with two virulent P. gingivalis strains in vitro. After 48h, the cells were stained with antibodies for human B7-H1 and B7-DC and further analyzed by flow cytometry. RNA was extracted and gene expression of B7-H1 or B7-DC was quantified by real time PCR. After infection with P. gingivalis, both B7-H1 and B7-DC receptors were up-regulated. The mean fluorescence intensity (MFI) increased from 4.5 to 9.9 (B7-H1) and from 6.9 to 15.0 (B7-DC) (p<0.05, respectively) in SCC-25 cells. PHGK showed an increase from 4.8 to 12.4 (B7-H1) and from 5.5 to 15.6 (B7-DC) (p<0.05, respectively). Streptococcus salivarius K12, a commensal bacterium, caused no up-regulation. After 24h, the expression of B7H1 and B7-DC mRNA in infected cells, normalized to GAPDH and in relation to non-infected cells, was 6.4 fold (B7-H1) and 8.6 fold (B7-DC) higher. In PHGK B7-H1/DC mRNA expression increased 8.2 fold (B7-H1) and 5.9 fold (B7DC) (p<0.05) respectively. The results of the study demonstrate that in contrast to S. salivarius K12 virulent P. gingivalis strains are able to induce the expression of the B7-H1 and B7-DC receptors in squamous carcinoma cells and human gingival keratinocytes, which might facilitate immune evasion by oral cancers.
Collapse
Affiliation(s)
- Sabine Groeger
- Zentrum fuer Zahn-, Mund- und Kieferheilkunde, Justus-Liebig-Universitaet Giessen, Department of Periodontology, Schlangenzahl 14, 35392 Giessen, Germany.
| | | | | | | | | |
Collapse
|
75
|
Diverse effects of Porphyromonas gingivalis on human osteoclast formation. Microb Pathog 2011; 51:149-55. [PMID: 21539907 DOI: 10.1016/j.micpath.2011.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/12/2011] [Accepted: 04/20/2011] [Indexed: 11/21/2022]
Abstract
Porphyromonas gingivalis is associated with periodontitis, a chronic inflammatory disease of the tooth-supporting tissues. A major clinical symptom is alveolar bone loss due to excessive resorption by osteoclasts. P. gingivalis may influence osteoclast formation in diverse ways; by interacting directly with osteoclast precursors that likely originate from peripheral blood, or indirectly by activating gingival fibroblasts, cells that can support osteoclast formation. In the present study we investigated these possibilities. Conditioned medium from viable or dead P. gingivalis, or from gingival fibroblasts challenged with viable or dead P. gingivalis were added to human mononuclear osteoclast precursors. After 21 days of culture the number of multinucleated (≥3 nuclei) tartrate resistant acid phosphatase (TRACP)-positive cells was determined as a measure for osteoclast formation. Conditioned medium from viable P. gingivalis, and from fibroblasts with viable P. gingivalis stimulated osteoclast formation (1.6-fold increase p < 0.05). Conditioned medium from dead bacteria had no effect on osteoclast formation, whereas conditioned medium from fibroblasts with dead bacteria stimulated formation (1.4-fold increase, p < 0.05). Inhibition of P. gingivalis LPS activity by Polymyxin B reduced the stimulatory effect of conditioned medium. Interestingly, when RANKL and M-CSF were added to cultures, conditioned media inhibited osteoclast formation (0.6-0.7-fold decrease, p < 0.05). Our results indicate that P. gingivalis influences osteoclast formation in vitro in different ways. Directly, by bacterial factors, likely LPS, or indirectly, by cytokines produced by gingival fibroblasts in response to P. gingivalis. Depending on the presence of RANKL and M-CSF, the effect of P. gingivalis is either stimulatory or inhibitory.
Collapse
|
76
|
Oishi S, Miyashita M, Kiso A, Kikuchi Y, Ueda O, Hirai K, Shibata Y, Fujimura S. Cellular locations of proteinases and association with vesicles in Porphyromonas gingivalis. Eur J Med Res 2010; 15:397-402. [PMID: 20952349 PMCID: PMC3351907 DOI: 10.1186/2047-783x-15-9-397] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We found that locations of arginine-specific gingipain (RGP) in the cellular fractions in the crude extract, envelope, vesicles, and culture supernatants were 48%, 16%, 17%, and 31%, respectively, and the corresponding values of lysine-specific gingipain (KGP) were 47%, 10%, 7%, and 36%, respectively. Although the molecular mass of RGP in the culture supernatant had been determined as 43 kDa, and that of KGP had been as 48 kDa, molecular masses of both proteinases solubilized from the vesicles were estimated to be over 1,500 kDa, since they eluted in the void volume of the column in the gel filtration on Sephacryl S-300. There was no reduction of molecular size by the following treatment with SDS, high-concentration NaCl, or urea. Interestingly, the occurrence of the macromolecular forms could not observed in other enzymes tested such as monopeptidyl, dipeptidyl, and tripeptidyl peptidases, as well as alkaline phosphatase. Therefore, occurrence of the macromolecular forms may be restricted to the proteinases. When the vesicle and culture supernatants containing free RGP and KGP were mixed and incubated, neither RGP nor KGP seemed to bind to vesicles. RGP bound to the vesicle was found to be more stable to heat treatment than the free form, suggesting that association of RGP with the vesicle caused heat stability of this enzyme.
Collapse
Affiliation(s)
- S Oishi
- Department of Oral Health, Graduate School of Oral Medicine, Shiojiri-Nagano, Japan
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 2010; 64:163-84. [PMID: 20825345 DOI: 10.1146/annurev.micro.091208.073413] [Citation(s) in RCA: 1074] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gram-negative bacteria produce outer membrane vesicles (OMVs) that contain biologically active proteins and perform diverse biological processes. Unlike other secretion mechanisms, OMVs enable bacteria to secrete insoluble molecules in addition to and in complex with soluble material. OMVs allow enzymes to reach distant targets in a concentrated, protected, and targeted form. OMVs also play roles in bacterial survival: Their production is a bacterial stress response and important for nutrient acquisition, biofilm development, and pathogenesis. Key characteristics of OMV biogenesis include outward bulging of areas lacking membrane-peptidoglycan bonds, the capacity to upregulate vesicle production without also losing outer membrane integrity, enrichment or exclusion of certain proteins and lipids, and membrane fission without direct energy from ATP/GTP hydrolysis. Comparisons of similar budding mechanisms from diverse biological domains have provided new insight into evaluating mechanisms for outer membrane vesiculation.
Collapse
Affiliation(s)
- Adam Kulp
- Department of Biochemistry, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
78
|
Imayoshi R, Cho T, Kaminishi H. NO production in RAW264 cells stimulated with Porphyromonas gingivalis extracellular vesicles. Oral Dis 2010; 17:83-9. [DOI: 10.1111/j.1601-0825.2010.01708.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
79
|
Haurat MF, Aduse-Opoku J, Rangarajan M, Dorobantu L, Gray MR, Curtis MA, Feldman MF. Selective sorting of cargo proteins into bacterial membrane vesicles. J Biol Chem 2010; 286:1269-76. [PMID: 21056982 DOI: 10.1074/jbc.m110.185744] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In contrast to the well established multiple cellular roles of membrane vesicles in eukaryotic cell biology, outer membrane vesicles (OMV) produced via blebbing of prokaryotic membranes have frequently been regarded as cell debris or microscopy artifacts. Increasingly, however, bacterial membrane vesicles are thought to play a role in microbial virulence, although it remains to be determined whether OMV result from a directed process or from passive disintegration of the outer membrane. Here we establish that the human oral pathogen Porphyromonas gingivalis has a mechanism to selectively sort proteins into OMV, resulting in the preferential packaging of virulence factors into OMV and the exclusion of abundant outer membrane proteins from the protein cargo. Furthermore, we show a critical role for lipopolysaccharide in directing this sorting mechanism. The existence of a process to package specific virulence factors into OMV may significantly alter our current understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- M Florencia Haurat
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | | | | | | | | | |
Collapse
|
80
|
Anderson HC, Mulhall D, Garimella R. Role of extracellular membrane vesicles in the pathogenesis of various diseases, including cancer, renal diseases, atherosclerosis, and arthritis. J Transl Med 2010; 90:1549-57. [PMID: 20805791 DOI: 10.1038/labinvest.2010.152] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Extracellular membrane vesicles (MVs) 30-1000 nm in diameter and of varying cellular origins are increasingly recognized for their participation in a range of processes, including the pathogenesis of various diseases, such as: (1) atherosclerosis, (2) thromboembolism, (3) osteoarthritis (OA), (4) chronic renal disease and pulmonary hypertension, (5) tissue invasion and metastasis by cancer cells, (6) gastric ulcers and bacterial infections, and (7) periodontitis. MVs are derived from many different cell types and intracellular mechanisms, and perform different metabolic functions or roles, depending on the cell of origin.The presence of a metabolically active, outer membrane is a distinguishing feature of all MVs, regardless of their cell type of origin and irrespective of terminologies applied to them such as exosomes, microparticles, or matrix vesicles. The MV membrane provides one of the few protected and controlled internal microenvironments outside cells in which specific metabolic objectives of the host cell may be pursued vigorously at a distance from the host cell. MVs are also involved in various forms of normal and abnormal intercellular communication. Evidence is emerging that circulating MVs are good predictors of the severity of several diseases. In addition, recently, the role of MVs in inducing immunity against cancer cells and bacterial infections has become a topic of interest to researchers in the area of therapeutics. The main objective of this review is to list and briefly describe the increasingly well-defined roles of MVs in selected diseases in which they seem to have a significant role in pathogenesis.
Collapse
Affiliation(s)
- H Clarke Anderson
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160-7410, USA.
| | | | | |
Collapse
|
81
|
Abstract
Porphyromonas gingivalis has been implicated in the etiology of adult periodontitis. In this study, we examined the viability of Drosophila melanogaster as a new model for examining P. gingivalis-host interactions. P. gingivalis (W83) infection of Drosophila resulted in a systemic infection that killed in a dose-dependent manner. Differences in the virulence of several clinically prevalent P. gingivalis strains were observed in the Drosophila killing model, and the results correlated well with studies in mammalian infection models and human epidemiologic studies. P. gingivalis pathobiology in Drosophila did not result from uncontrolled growth of the bacterium in the Drosophila hemolymph (blood) or overt damage to Drosophila tissues. P. gingivalis killing of Drosophila was multifactorial, involving several bacterial factors that are also involved in virulence in mammals. The results from this study suggest that many aspects of P. gingivalis pathogenesis in mammals are conserved in Drosophila, and thus the Drosophila killing model should be useful for characterizing P. gingivalis-host interactions and, potentially, polymicrobe-host interactions.
Collapse
|
82
|
Dashper SG, Seers CA, Tan KH, Reynolds EC. Virulence factors of the oral spirochete Treponema denticola. J Dent Res 2010; 90:691-703. [PMID: 20940357 DOI: 10.1177/0022034510385242] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is compelling evidence that treponemes are involved in the etiology of several chronic diseases, including chronic periodontitis as well as other forms of periodontal disease. There are interesting parallels with other chronic diseases caused by treponemes that may indicate similar virulence characteristics. Chronic periodontitis is a polymicrobial disease, and recent animal studies indicate that co-infection of Treponema denticola with other periodontal pathogens can enhance alveolar bone resorption. The bacterium has a suite of molecular determinants that could enable it to cause tissue damage and subvert the host immune response. In addition to this, it has several non-classic virulence determinants that enable it to interact with other pathogenic bacteria and the host in ways that are likely to promote disease progression. Recent advances, especially in molecular-based methodologies, have greatly improved our knowledge of this bacterium and its role in disease.
Collapse
Affiliation(s)
- S G Dashper
- Cooperative Research Centre for Oral Health, Melbourne Dental School and Bio21 Institute, The University of Melbourne, 720 Swanston Street, Victoria 3010, Australia
| | | | | | | |
Collapse
|
83
|
|
84
|
Hijiya T, Shibata Y, Hayakawa M, Abiko Y. A monoclonal antibody against fimA type II Porphyromonas gingivalis inhibits IL-8 production in human gingival fibroblasts. Hybridoma (Larchmt) 2010; 29:201-4. [PMID: 20568993 DOI: 10.1089/hyb.2009.0109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The periodontal pathogen Porphyromans gingivalis is classified into six groups (types I-V and Ib) based on the genotype of the fimbriae A (fimA) gene. Among genotypes, fimA type II strains are thought to be most strongly related to advanced periodontitis. The present study was undertaken to develop passive immunotherapy monoclonal antibodies (MAbs) against periodontitis, which are capable of inhibiting virulency and were constructed through the immunization of outer membrane vesicles (OMV) fraction of fimAII strain, TDC60, using mouse hybridoma technology. MAbs that recognized OMV by ELISA assay were identified, and 28 clones were screened by Western blot analysis. After purifying these MAbs using protein G column, the effect of the MAb on IL-8 production from human gingival fibroblasts by OMV was examined. We selected MAb TDC4-33H, which strongly inhibited the IL-8 production with a higher MAb production rate. Since the MAb showed an individual ladder-like profile against OMV by Western blotting, we further examined the reactivity against lipopolysaccharides (LPS) from TDC60, W83 (fimAIV), and ATCC33277 (fimAI). As a result, MAb TDC4-33H recognized all LPSs. Moreover, MAb TDC4-33H significantly inhibited the LPS-stimulated IL-8 production in human gingival fibroblasts. These findings suggest that MAb TDC4-33H reacts with LPS and may be useful for passive immunotherapy through neutralizing IL-8 production in gingival fibroblasts by P. gingivalis LPS.
Collapse
Affiliation(s)
- Takahiro Hijiya
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | | | | | | |
Collapse
|
85
|
Kuboniwa M, Inaba H, Amano A. Genotyping to distinguish microbial pathogenicity in periodontitis. Periodontol 2000 2010; 54:136-59. [DOI: 10.1111/j.1600-0757.2010.00352.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
86
|
A Porphyromonas gingivalis mutant defective in a putative glycosyltransferase exhibits defective biosynthesis of the polysaccharide portions of lipopolysaccharide, decreased gingipain activities, strong autoaggregation, and increased biofilm formation. Infect Immun 2010; 78:3801-12. [PMID: 20624909 DOI: 10.1128/iai.00071-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative anaerobic bacterium Porphyromonas gingivalis is a major pathogen in periodontal disease, one of the biofilm-caused infectious diseases. The bacterium possesses potential virulence factors, including fimbriae, proteinases, hemagglutinin, lipopolysaccharide (LPS), and outer membrane vesicles, and some of these factors are associated with biofilm formation; however, the precise mechanism of biofilm formation is still unknown. Colonial pigmentation of the bacterium on blood agar plates is related to its virulence. In this study, we isolated a nonpigmented mutant that had an insertion mutation within the new gene PGN_1251 (gtfB) by screening a transposon insertion library. The gene shares homology with genes encoding glycosyltransferase 1 of several bacteria. The gtfB mutant was defective in biosynthesis of both LPSs containing O side chain polysaccharide (O-LPS) and anionic polysaccharide (A-LPS). The defect in the gene resulted in a complete loss of surface-associated gingipain proteinases, strong autoaggregation, and a marked increase in biofilm formation, suggesting that polysaccharide portions of LPSs influence attachment of gingipain proteinases to the cell surface, autoaggregation, and biofilm formation of P. gingivalis.
Collapse
|
87
|
Núñez MJ, Novío S, Balboa J, Seoane J, Suárez JA, Freire-Garabal M. Effects of resveratrol on expression of vascular endothelial growth factor in human gingival fibroblasts stimulated by periodontal pathogens. Acta Odontol Scand 2010; 68:239-47. [PMID: 20507262 DOI: 10.3109/00016357.2010.494269] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the effects of resveratrol, a naturally occurring polyphenol, on the expression of vascular endothelial growth factor (VEGF) in human gingival fibroblast culture in response to vesicles and outer membrane proteins from periodontopathic bacteria. MATERIAL AND METHODS Human gingival fibroblasts were stimulated with vesicles and outer membrane proteins from Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. In human gingival fibroblast cultures treated with or without resveratrol, VEGF production was evaluated by means of enzyme-linked immunosorbent assay and VEGF mRNA expression by means of reverse transcription polymerase chain reaction analysis. Vascular permeability enhancement was measured by the leakage of intravenously injected dye at the injection site of supernatant from cultures of human gingival fibroblasts stimulated by vesicles and outer membrane proteins. RESULTS Resveratrol significantly inhibited the increased production of VEGF by human gingival fibroblasts in response to vesicles and outer membrane proteins from periodontopathic bacteria, as shown by the detection of these proteins and their mRNA in vitro. Moreover, resveratrol treatment significantly decreased vascular permeability enhancement induced by supernatant from human gingival fibroblast cultures stimulated by vesicles and outer membrane proteins. CONCLUSIONS Overall, these findings suggest that resveratrol inhibits production of VEGF by stimulated human gingival fibroblasts and can inhibit vascular permeability, suggesting a therapeutic role for it in pathogenic bacteria-induced periodontal inflammation.
Collapse
Affiliation(s)
- María J Núñez
- Department of Nursing, University of Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
88
|
Amano A, Takeuchi H, Furuta N. Outer membrane vesicles function as offensive weapons in host-parasite interactions. Microbes Infect 2010; 12:791-8. [PMID: 20685339 DOI: 10.1016/j.micinf.2010.05.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 05/18/2010] [Accepted: 05/20/2010] [Indexed: 02/04/2023]
Abstract
Outer membrane vesicles (OMVs), ubiquitously shed from Gram-negative bacteria, contain various virulence factors such as toxins, proteases, adhesins, and lipopolysaccharide, which are utilized to establish a colonization niche, modulate host defense and response, and impair host cell function. Thus, OMVs can be considered as a type of bacterial offensive weapon. This review discusses the entry mechanism of OMVs into host cells as well as their etiological roles in host-parasite interactions.
Collapse
Affiliation(s)
- Atsuo Amano
- Department of Oral Frontier Biology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-Osaka 565-0871, Japan.
| | | | | |
Collapse
|
89
|
|
90
|
Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 2010; 74:81-94. [PMID: 20197500 DOI: 10.1128/mmbr.00031-09] [Citation(s) in RCA: 700] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Outer membrane (OM) vesicles are ubiquitously produced by Gram-negative bacteria during all stages of bacterial growth. OM vesicles are naturally secreted by both pathogenic and nonpathogenic bacteria. Strong experimental evidence exists to categorize OM vesicle production as a type of Gram-negative bacterial virulence factor. A growing body of data demonstrates an association of active virulence factors and toxins with vesicles, suggesting that they play a role in pathogenesis. One of the most popular and best-studied pathogenic functions for membrane vesicles is to serve as natural vehicles for the intercellular transport of virulence factors and other materials directly into host cells. The production of OM vesicles has been identified as an independent bacterial stress response pathway that is activated when bacteria encounter environmental stress, such as what might be experienced during the colonization of host tissues. Their detection in infected human tissues reinforces this theory. Various other virulence factors are also associated with OM vesicles, including adhesins and degradative enzymes. As a result, OM vesicles are heavily laden with pathogen-associated molecular patterns (PAMPs), virulence factors, and other OM components that can impact the course of infection by having toxigenic effects or by the activation of the innate immune response. However, infected hosts can also benefit from OM vesicle production by stimulating their ability to mount an effective defense. Vesicles display antigens and can elicit potent inflammatory and immune responses. In sum, OM vesicles are likely to play a significant role in the virulence of Gram-negative bacterial pathogens.
Collapse
|
91
|
Amano A, Furuta N, Tsuda K. Host membrane trafficking for conveyance of intracellular oral pathogens. Periodontol 2000 2010; 52:84-93. [PMID: 20017797 DOI: 10.1111/j.1600-0757.2009.00309.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
92
|
Voegel TM, Warren JG, Matsumoto A, Igo MM, Kirkpatrick BC. Localization and characterization of Xylella fastidiosa haemagglutinin adhesins. MICROBIOLOGY-SGM 2010; 156:2172-2179. [PMID: 20378647 DOI: 10.1099/mic.0.037564-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Xylella fastidiosa is a gram-negative, xylem-inhabiting, plant-pathogenic bacterium responsible for several important diseases including Pierce's disease (PD) of grapevines. The bacteria form biofilms in grapevine xylem that contribute to the occlusion of the xylem vessels. X. fastidiosa haemagglutinin (HA) proteins are large afimbrial adhesins that have been shown to be crucial for biofilm formation. Little is known about the mechanism of X. fastidiosa HA-mediated cell-cell aggregation or the localization of the adhesins on the cell. We generated anti-HA antibodies and show that X. fastidiosa HAs are present in the outer membrane and secreted both as soluble proteins and in membrane vesicles. Furthermore, the HA pre-proteins are processed from the predicted molecular mass of 360 kDa to a mature 220 kDa protein. Based on this information, we are evaluating a novel form of potential resistance against PD by generating HA-expressing transgenic grapevines.
Collapse
Affiliation(s)
- Tanja M Voegel
- Department of Plant Pathology, University of California, Davis, CA 951616, USA
- Center for Applied Biosciences, University of Freiburg, Germany
| | - Jeremy G Warren
- Department of Plant Pathology, University of California, Davis, CA 951616, USA
| | - Ayumi Matsumoto
- Department of Microbiology, University of California, Davis, CA 951616, USA
| | - Michele M Igo
- Department of Microbiology, University of California, Davis, CA 951616, USA
| | - Bruce C Kirkpatrick
- Department of Plant Pathology, University of California, Davis, CA 951616, USA
| |
Collapse
|
93
|
Frias A, Manresa A, de Oliveira E, López-Iglesias C, Mercade E. Membrane vesicles: a common feature in the extracellular matter of cold-adapted antarctic bacteria. MICROBIAL ECOLOGY 2010; 59:476-86. [PMID: 20127086 DOI: 10.1007/s00248-009-9622-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 11/17/2009] [Indexed: 05/14/2023]
Abstract
Many Gram-negative, cold-adapted bacteria from the Antarctic environment produce large amounts of extracellular matter, which has potential biotechnology applications. We examined the ultrastructure of extracellular matter from five Antarctic bacteria (Shewanella livingstonensis NF22(T), Shewanella vesiculosa M7(T), Pseudoalteromonas sp. M4.2, Psychrobacter fozii NF23(T), and Marinobacter guineae M3B(T)) by transmission electron microscopy after high-pressure freezing and freeze substitution. All analyzed extracellular matter appeared as a netlike mesh composed of a capsular polymer around cells and large numbers of membrane vesicles (MVs), which have not yet been described for members of the genera Psychrobacter and Marinobacter. MVs showed the typical characteristics described for these structures, and seemed to be surrounded by the same capsular polymer as that found around the cells. The analysis of MV proteins from Antarctic strains by SDS-PAGE showed different banding profiles in MVs compared to the outer membrane, suggesting some kind of protein sorting during membrane vesicle formation. For the psychrotolerant bacterium, S. livingstonensis NF22(T), the growth temperature seemed to influence the amount and morphology of MVs. In an initial attempt to elucidate the functions of MVs for this psychrotolerant bacterium, we conducted a proteomic analysis on membrane vesicles from S. livingstonensis NF22(T) obtained at 4 and 18 degrees C. At both temperatures, MVs were highly enriched in outer membrane proteins and periplasmic proteins related to nutrient processing and transport in Gram-negative bacteria suggesting that MVs could be related with nutrient sensing and bacterial survival. Differences were observed in the expression of some proteins depending on incubation temperature but further studies will be necessary to define their roles and implications in the survival of bacteria in the extreme Antarctic environment.
Collapse
Affiliation(s)
- Alina Frias
- Laboratori de Microbiologia, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XIII s/n, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
94
|
Dixon DR, Jeffrey NR, Dubey VS, Leung KP. Antimicrobial peptide inhibition of Porphyromonas gingivalis 381-induced hemagglutination is improved with a synthetic decapeptide. Peptides 2009; 30:2161-7. [PMID: 19666067 DOI: 10.1016/j.peptides.2009.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 01/01/2023]
Abstract
The effects of various antimicrobial peptides (AMPs) on disrupting the hemagglutinating ability of cellular components of the putative oral pathogen Porphyromonas gingivalis were examined. AMP inhibition of P. gingivalis 381-induced hemagglutination using vesicles (VES) or outer membrane (OM) preparations was determined within standardized hemagglutination assays using various mammalian erythrocytes. A synthetic decapeptide (KSL-W) and its truncated peptide analogs were evaluated and compared with selected classes of AMPs derived from naturally occurring innate defense peptides. All tested AMPs were effective in disrupting P. gingivalis-induced hemagglutination among tested erythrocytes, with the exception of magainin I and the truncated KSL-W analogs. LL-37 was generally the most potent followed by histatin 5. The synthetic decapeptide (KSL-W) was found to be similar to the histatin 8 peptide in terms of inhibitory effect. In addition, co-application assays (with selected oral-related AMPs+/-KSL-W) were employed to determine if co-application procedures would improve hemagglutination abrogation above that of oral-related AMPs alone. These experiments revealed that the KSL-W peptide improved hemagglutination inhibition above that of each of the oral-related peptides (histatin 5 and 8, LL-37) alone. Among mammalian erythrocytes, significant peptide-induced hemagglutination was observed for the cathelicidin class AMPs, LL-37 and indolicidin (>or=25 and >or=100 microM respectively). In contrast, KSL-W did not induce erythrocyte agglutination throughout any concentration range tested (0.1-1000 microM). Our results suggest that several AMPs are effective in disrupting P. gingivalis 381-induced hemagglutination and that the co-application of a small, synthetically derived peptide may serve to augment the role of local host AMPs engaged in innate defense.
Collapse
Affiliation(s)
- Douglas R Dixon
- Microbiology and Immunology Branch, US Army Dental and Trauma Research Detachment, Walter Reed Army Institute of Research, Great Lakes Naval Training Station, Great Lakes, IL 60088, USA.
| | | | | | | |
Collapse
|
95
|
Entry of Porphyromonas gingivalis outer membrane vesicles into epithelial cells causes cellular functional impairment. Infect Immun 2009; 77:4761-70. [PMID: 19737899 DOI: 10.1128/iai.00841-09] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including proteases termed gingipains (Arg-gingipain [Rgp] and Lys-gingipain [Kgp]). We recently showed that P. gingivalis MVs swiftly enter host epithelial cells via an endocytosis pathway and are finally sorted to lytic compartments. However, it remains unknown whether MV entry impairs cellular function. Herein, we analyzed cellular functional impairment following entry of P. gingivalis into epithelial cells, including HeLa and immortalized human gingival epithelial (IHGE) cells. After being taken up by endocytic vacuoles, MVs degraded the cellular transferrin receptor (TfR) and integrin-related signaling molecules, such as paxillin and focal adhesion kinase (FAK), which resulted in depletion of intracellular transferrin and inhibition of cellular migration. Few Rgp-null MVs entered the cells, and these negligibly degraded TfR, whereas paxillin and FAK degradation was significant. In contrast, Kgp-null MVs clearly entered the cells and degraded TfR, while they scarcely degraded paxillin and FAK. In addition, both wild-type and Kgp-null MVs significantly impaired cellular migration, whereas the effect of Rgp-null MVs was limited. Our findings suggest that, following entry of P. gingivalis MVs into host cells, MV-associated gingipains degrade cellular functional molecules such as TfR and paxillin/FAK, resulting in cellular impairment, indicating that P. gingivalis MVs are potent vehicles for transmission of virulence factors into host cells and are involved in the etiology of periodontitis.
Collapse
|
96
|
Porphyromonas gingivalis outer membrane vesicles enter human epithelial cells via an endocytic pathway and are sorted to lysosomal compartments. Infect Immun 2009; 77:4187-96. [PMID: 19651865 DOI: 10.1128/iai.00009-09] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including major fimbriae and proteases termed gingipains, although it is not confirmed whether MVs enter host cells. In this study, we analyzed the mechanisms involved in the interactions of P. gingivalis MVs with human epithelial cells. Our results showed that MVs swiftly adhered to HeLa and immortalized human gingival epithelial cells in a fimbria-dependent manner and then entered via a lipid raft-dependent endocytic pathway. The intracellular MVs were subsequently routed to early endosome antigen 1-associated compartments and then were sorted to lysosomal compartments within 90 min, suggesting that intracellular MVs were ultimately degraded by the cellular digestive machinery. However, P. gingivalis MVs remained there for over 24 h and significantly induced acidified compartment formation after being taken up by the cellular digestive machinery. In addition, MV entry was shown to be mediated by a novel pathway for transmission of bacterial products into host cells, a Rac1-regulated pinocytic pathway that is independent of caveolin, dynamin, and clathrin. Our findings indicate that P. gingivalis MVs efficiently enter host cells via an endocytic pathway and survive within the endocyte organelles for an extended period, which provides better understanding of the role of MVs in the etiology of periodontitis.
Collapse
|
97
|
Devine DA, Handley PS. The Relationship between Coaggregation Properties and Surface Structures ofBacteroides intermedins. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910608909140230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- D. A. Devine
- Department of Cell and Structural Biology, Stopford Building, Manchester University, Oxford Road, Manchester, MB 9PT, UK
| | - P. S. Handley
- Department of Cell and Structural Biology, Stopford Building, Manchester University, Oxford Road, Manchester, MB 9PT, UK
| |
Collapse
|
98
|
Seddon SV, Shah HN. The Distribution of Hydrolytic Enzymes Among Gram-negative Bacteria Associated with Periodontitis. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910608909140216] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- S. V. Seddon
- Department of Oral Microbiology, The London Hospital Medical College, Turner Street, Whitechapel, London, E1 2AD, UK
- Microbial Pathogenicity Research Group, Division of Communicable Diseases, Clinical Research Centre, Watford Road, Harrow, Middlesex, HA1 3UJ, UK
| | - H. N. Shah
- Department of Oral Microbiology, The London Hospital Medical College, Turner Street, Whitechapel, London, E1 2AD, UK
| |
Collapse
|
99
|
Shah HN, Gharbia SE, Kowlessur D, Wilkie E, Brocklehurst K. Gingivain; A Cysteine Proteinase Isolated fromPorphyromonas gingivalis. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910609109140282] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- H. N. Shah
- Department of Oral Microbiology, The London Hospital Medical College, University of London, Turner Street, London, E1 2AD, UK
| | - S. E. Gharbia
- Department of Oral Microbiology, The London Hospital Medical College, University of London, Turner Street, London, E1 2AD, UK
| | - D. Kowlessur
- Department of Biochemistry, Queen Mary and Westfield College, University of London, Mile End Road, London, E1 4NS, UK
| | - E. Wilkie
- Department of Biochemistry, Queen Mary and Westfield College, University of London, Mile End Road, London, E1 4NS, UK
| | - K. Brocklehurst
- Department of Biochemistry, Queen Mary and Westfield College, University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
100
|
Mullaney E, Brown PA, Smith SM, Botting CH, Yamaoka YY, Terres AM, Kelleher DP, Windle HJ. Proteomic and functional characterization of the outer membrane vesicles from the gastric pathogen Helicobacter pylori. Proteomics Clin Appl 2009; 3:785-796. [DOI: 10.1002/prca.200800192] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 01/14/2009] [Accepted: 01/19/2009] [Indexed: 12/28/2022]
Abstract
AbstractThe gastric pathogen Helicobacter pylori causes a spectrum of gastro‐duodenal diseases, which may be mediated in part by the outer membrane vesicles (OMVs) constitutively shed by the pathogen. We aimed to determine the proteome of H. pylori OMV to help evaluate the mechanisms whereby these structures confer their known immuno‐modulatory and cytotoxic activities to host cells, as such disease‐associated activities are also conferred by the bacterium from which the vesicles are derived. We also evaluated the effect of the OMV on gastric/colonic epithelial cells, duodenal explants and neutrophils. A proteomic analysis of the OMV proteins separated by SDS‐PAGE from two strains of H. pylori (J99 and NCTC 11637) was undertaken and 162 OMV‐associated proteins were identified in J99 and 91 in NCTC 11637 by LC‐MS/MS. The vesicles are rich in membrane proteins, porins, adhesins and several molecules known to modulate chemokine secretion, cell proliferation and other host cellular processes. Further, the OMVs are also vehicles for the carriage of the cytotoxin‐associated gene A cytotoxin in addition to the previously documented toxin, vacuolating cytotoxin. Taken together, it is evident from the proteome of H. pylori OMV that these structures are equipped with the molecules required to interact with host cells in a manner not dissimilar from the intact pathogen.
Collapse
|