51
|
Swiatlo E, Ware D. Novel vaccine strategies with protein antigens of Streptococcus pneumoniae. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2003; 38:1-7. [PMID: 12900048 DOI: 10.1016/s0928-8244(03)00146-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Infections caused by Streptococcus pneumoniae (pneumococcus) are a major cause of mortality throughout the world. This organism is primarily a commensal in the upper respiratory tract of humans, but can cause pneumonia in high-risk persons and disseminate from the lungs by invasion of the bloodstream. Currently, prevention of pneumococcal infections is by immunization with vaccines which contain capsular polysaccharides from the most common serotypes causing invasive disease. However, there are more than 90 antigenically distinct serotypes and there is concern that serotypes not included in the vaccines may become more prevalent in the face of continued use of polysaccharide vaccines. Also, certain high-risk groups have poor immunological responses to some of the polysaccharides in the vaccine formulations. Protein antigens that are conserved across all capsular serotypes would induce more effective and durable humoral immune responses and could potentially protect against all clinically relevant pneumococcal capsular types. This review provides a summary of work on pneumococcal proteins that are being investigated as components for future generations of improved pneumococcal vaccines.
Collapse
Affiliation(s)
- Edwin Swiatlo
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS, USA.
| | | |
Collapse
|
52
|
Abstract
As individuals advance in age, the risk of infection, bacteremia, and mortality caused by Streptococcus pneumoniae rises. Retrospective data demonstrate that the licensed penumococcal polysaccharide vaccine (PPV) is effective in older persons in reducing serotype-specific invasive disease. PPV demonstrates good immunogenicity in older adults, generally comparable to that in younger subjects, although certain cohorts respond less well. The response to PPV is T cell independent, however, and does not elicit immunologic memory. The duration of the anti-capsular polysaccharide antibody response appears to wane as early as 3 years after vaccination. In older persons, revaccination induces an antibody response, although it may not be as strong as that from the initial vaccine. While revaccination of older adults has been recommended, clinical efficacy has not yet been proven. Measures of antibody function may be at least as important in determining protection as are quantitative antibody levels. Additional studies of immunogenicity, particularly regarding revaccination, will facilitate the design of an optimal pneumococcal vaccination policy. Research into conjugate- and protein-based pneumococcal vaccines, which elicit T-cell-dependent responses and induce immunologic memory, is needed in older persons. In the meantime, administering to PPV to recommended groups should be a public health priority.
Collapse
Affiliation(s)
- Andrew S Artz
- The Institute for Advanced Studies in Aging and Geriatric Medicine, Washington, D.C., USA.
| | | | | |
Collapse
|
53
|
Sutcliffe IC, Harrington DJ. Pattern searches for the identification of putative lipoprotein genes in Gram-positive bacterial genomes. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2065-2077. [PMID: 12101295 DOI: 10.1099/00221287-148-7-2065] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
N-terminal lipidation is a major mechanism by which bacteria can tether proteins to membranes and one which is of particular importance to Gram-positive bacteria due to the absence of a retentive outer membrane. Lipidation is directed by the presence of a cysteine-containing 'lipobox' within the lipoprotein signal peptide sequence and this feature has greatly facilitated the identification of putative lipoproteins by gene sequence analysis. The properties of lipoprotein signal peptides have been described previously by the Prosite pattern PS00013. Here, a dataset of 33 experimentally verified Gram-positive bacterial lipoproteins (excluding those from Mollicutes) has been identified by an extensive literature review. The signal peptide features of these lipoproteins have been analysed to create a refined pattern, G+LPP, which is more specific for the identification of Gram-positive bacterial lipoproteins. The ability of this pattern to identify probable lipoprotein sequences is demonstrated by a search of the genome of Streptococcus pyogenes, in comparison with sequences identified using PS00013. Greater discrimination against likely false-positives was evident from the use of G+LPP compared with PS00013. These data confirm the likely abundance of lipoproteins in Gram-positive bacterial genomes, with at least 25 probable lipoproteins identified in S. pyogenes
Collapse
Affiliation(s)
- Iain C Sutcliffe
- Fleming Building, Institute of Pharmacy, Chemistry and Biomedical Sciences, University of Sunderland, Sunderland SR2 3SD, UK1
| | | |
Collapse
|
54
|
Glass JI, Belanger AE, Robertson GT. Streptococcus pneumoniae as a genomics platform for broad-spectrum antibiotic discovery. Curr Opin Microbiol 2002; 5:338-42. [PMID: 12057692 DOI: 10.1016/s0959-4388(02)90328-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Streptococcus pneumoniae is a useful tool for the discovery of broad-spectrum antibiotics because of its genetic malleability and importance as a pathogen. Recent publications of complete chromosomal DNA sequences for S. pneumoniae facilitate rapid and effective use of genomics-based technology to identify essential genes encoding new targets for antibacterial drugs. These methods include computational comparative genomics, gene disruption studies to determine essentiality or identify essential genes, and gene expression analysis using microarrays and gel-based proteomics. We review how genomics has transformed the use of the pneumococcus for the pursuit of new antibiotics, and made it the best species for the identification and validation of new antibiotic targets.
Collapse
Affiliation(s)
- John I Glass
- Infectious Diseases Research and Clinical Investigation, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | |
Collapse
|
55
|
Meiring HD, van der Heeft E, ten Hove GJ, de Jong APJM. Nanoscale LC-MS(n): technical design and applications to peptide and protein analysis. J Sep Sci 2002. [DOI: 10.1002/1615-9314(20020601)25:9<557::aid-jssc557>3.0.co;2-f] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
56
|
|
57
|
Lifshitz S, Dagan R, Shani-Sekler M, Grossman N, Fleminger G, Friger M, Nebenzahl YM. Age-dependent preference in human antibody responses to Streptococcus pneumoniae polypeptide antigens. Clin Exp Immunol 2002; 127:344-53. [PMID: 11876760 PMCID: PMC1906324 DOI: 10.1046/j.1365-2249.2002.01745.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2001] [Indexed: 11/20/2022] Open
Abstract
Vulnerability to Streptococcus pneumoniae is most pronounced in children. The microbial virulence factors and the features of the host immune response contributing to this phenomenon are not completely understood. In the current study, the humoral immune response to separated Strep. pneumoniae surface proteins and the ability to interfere with Strep. pneumoniae adhesion to cultured epithelial cells were analysed in adults and in children. Sera collected from healthy adults recognized Strep. pneumoniae separated lectin and nonlectin surface proteins in Western blot analysis and inhibited on average 80% of Strep. pneumoniae adhesion to epithelial cells in a concentration-dependent manner. However, sera longitudinally collected from healthy children attending day care centres from 18 months of age and over the course of the following 2 years revealed: (a) development of antibodies to previously unrecognized Strep. pneumoniae surface proteins with age; (b) a quantitative increase in antibody responses, measured by densitometry, towards separated Strep. pneumoniae surface proteins with age; and (c) inhibition of Strep. pneumoniae adhesion to epithelial cells, which was 50% on average at 18 months of age, increased significantly to an average level of 80% inhibition at 42 months of age equalling adult sera inhibitory values. The results obtained in the current study, from the longitudinally collected sera from healthy children with documented repeated Strep. pneumoniae colonization, show that repeated exposures are insufficient to elicit an immune response to Strep. pneumoniae proteins at 18 months of age. This inability to recognize Strep. pneumoniae surface proteins may stem from the inefficiency of T-cell-dependent B-cell responses at this age and/or from the low immunogenicity of the proteins.
Collapse
Affiliation(s)
- S Lifshitz
- Paediatric Infectious Disease Unit, Soroka University Medical Centre, Tel Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
58
|
|
59
|
Hoskins J, Alborn WE, Arnold J, Blaszczak LC, Burgett S, DeHoff BS, Estrem ST, Fritz L, Fu DJ, Fuller W, Geringer C, Gilmour R, Glass JS, Khoja H, Kraft AR, Lagace RE, LeBlanc DJ, Lee LN, Lefkowitz EJ, Lu J, Matsushima P, McAhren SM, McHenney M, McLeaster K, Mundy CW, Nicas TI, Norris FH, O'Gara M, Peery RB, Robertson GT, Rockey P, Sun PM, Winkler ME, Yang Y, Young-Bellido M, Zhao G, Zook CA, Baltz RH, Jaskunas SR, Rosteck PR, Skatrud PL, Glass JI. Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol 2001; 183:5709-17. [PMID: 11544234 PMCID: PMC95463 DOI: 10.1128/jb.183.19.5709-5717.2001] [Citation(s) in RCA: 571] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2001] [Accepted: 07/13/2001] [Indexed: 01/30/2023] Open
Abstract
Streptococcus pneumoniae is among the most significant causes of bacterial disease in humans. Here we report the 2,038,615-bp genomic sequence of the gram-positive bacterium S. pneumoniae R6. Because the R6 strain is avirulent and, more importantly, because it is readily transformed with DNA from homologous species and many heterologous species, it is the principal platform for investigation of the biology of this important pathogen. It is also used as a primary vehicle for genomics-based development of antibiotics for gram-positive bacteria. In our analysis of the genome, we identified a large number of new uncharacterized genes predicted to encode proteins that either reside on the surface of the cell or are secreted. Among those proteins there may be new targets for vaccine and antibiotic development.
Collapse
Affiliation(s)
- J Hoskins
- Infectious Diseases Research and Clinical Investigation, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Whitney CG, Schaffner W, Butler JC. Rethinking recommendations for use of pneumococcal vaccines in adults. Clin Infect Dis 2001; 33:662-75. [PMID: 11486289 DOI: 10.1086/322676] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2000] [Revised: 03/09/2001] [Indexed: 01/19/2023] Open
Abstract
Streptococcus pneumoniae remains a major cause of disease worldwide; the emergence of antibiotic-resistant strains emphasizes the importance of disease prevention by use of vaccines. Recent studies have provided information that is useful for the evaluation of current vaccine recommendations. Recommendations target most people who are at high risk for invasive pneumococcal disease. However, higher risk has also been identified for African Americans and smokers, but these groups are not specifically targeted by current recommendations. The vaccine is effective against invasive disease in immunocompetent people, although studies in immunocompromised subjects have found few subgroups in which the vaccine appears to be effective. Questions with regard to optimal timing and indications for revaccination remain a challenge, because the duration of protection and effectiveness of revaccination remain unknown. New pneumococcal vaccines appear promising but will need to be tested against the performance of the polysaccharide vaccine. Improving delivery of the currently available pneumococcal polysaccharide vaccine to adults who will benefit should be a high priority.
Collapse
Affiliation(s)
- C G Whitney
- Respiratory Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | |
Collapse
|
61
|
Abstract
The pneumococcus is one of the longest-known pathogens. It has been instrumental to our understanding of biology in many ways, such as in the discovery of the Gram strain and the identification of nucleic acid as the hereditary material. Despite major advances in our understanding of pneumococcal pathogenesis, the need for vaccines and antibiotics to combat this pathogen is still vital. Genomics is beginning to uncover new virulence factors to advance this process, and it is enabling the development of DNA chip technology, which will permit the analysis of gene expression in specific tissues and in virulence regulatory circuits.
Collapse
Affiliation(s)
- S K Hollingshead
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | |
Collapse
|
62
|
Overweg K, Pericone CD, Verhoef GG, Weiser JN, Meiring HD, De Jong AP, De Groot R, Hermans PW. Differential protein expression in phenotypic variants of Streptococcus pneumoniae. Infect Immun 2000; 68:4604-10. [PMID: 10899862 PMCID: PMC98388 DOI: 10.1128/iai.68.8.4604-4610.2000] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/1999] [Accepted: 04/26/2000] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae undergoes spontaneous phase variation resulting in opaque and transparent colony forms. Differences in colony opacity correlate with differences in virulence: the transparent variants are more capable of colonizing the nasopharynx, whereas the opaque variants show increased virulence during systemic infections. To gain insight into the pathogenesis of pneumococcal disease at the molecular level, protein expression patterns of the phenotypic variants of two pneumococcal strains were compared by high-resolution two-dimensional protein electrophoresis. In comparison with transparent variants, the opaque variants reduced the expression of two proteins and overexpressed one protein. The proteins were identified by mass spectrometric analysis. The protein overexpressed in the opaque phenotype revealed significant homology to elongation factor Ts of Helicobacter pylori. One of the two proteins that were underexpressed in the opaque variants revealed significant homology to the proteinase maturation protein PrtM of Lactocobacillus paracasei, a member of the family of peptidyl-prolyl cis/trans isomerases. A consensus lipoprotein signal sequence suggests that the putative proteinase maturation protein A, designated PpmA, is located at the surface of the pneumococcus and may play a role in the maturation of surface or secreted proteins. The second underexpressed protein was identified as pyruvate oxidase, SpxB. The lower SpxB expression in opaque variants most probably explains the reduced production of hydrogen peroxide, a reaction product of SpxB, in this variant. Since a spxB-defective pneumococcal mutant has decreased ability to colonize the nasopharynx (B. Spellerberg, D. R. Cundell, J. Sandros, B. J. Pearce, I. Idanpaan-Heikkila, C. Rosenow, and H. R. Masure, 1996. Mol. Microbiol. 19:803-813, 1996), our data suggest that SpxB plays an important role in enhancing the ability of transparent variants to efficiently colonize the nasopharynx.
Collapse
Affiliation(s)
- K Overweg
- Department of Pediatrics, Sophia Children's Hospital, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|