51
|
Chand Dakal T, Giudici P, Solieri L. Contrasting Patterns of rDNA Homogenization within the Zygosaccharomyces rouxii Species Complex. PLoS One 2016; 11:e0160744. [PMID: 27501051 PMCID: PMC4976873 DOI: 10.1371/journal.pone.0160744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/25/2016] [Indexed: 11/18/2022] Open
Abstract
Arrays of repetitive ribosomal DNA (rDNA) sequences are generally expected to evolve as a coherent family, where repeats within such a family are more similar to each other than to orthologs in related species. The continuous homogenization of repeats within individual genomes is a recombination process termed concerted evolution. Here, we investigated the extent and the direction of concerted evolution in 43 yeast strains of the Zygosaccharomyces rouxii species complex (Z. rouxii, Z. sapae, Z. mellis), by analyzing two portions of the 35S rDNA cistron, namely the D1/D2 domains at the 5’ end of the 26S rRNA gene and the segment including the internal transcribed spacers (ITS) 1 and 2 (ITS regions). We demonstrate that intra-genomic rDNA sequence variation is unusually frequent in this clade and that rDNA arrays in single genomes consist of an intermixing of Z. rouxii, Z. sapae and Z. mellis-like sequences, putatively evolved by reticulate evolutionary events that involved repeated hybridization between lineages. The levels and distribution of sequence polymorphisms vary across rDNA repeats in different individuals, reflecting four patterns of rDNA evolution: I) rDNA repeats that are homogeneous within a genome but are chimeras derived from two parental lineages via recombination: Z. rouxii in the ITS region and Z. sapae in the D1/D2 region; II) intra-genomic rDNA repeats that retain polymorphisms only in ITS regions; III) rDNA repeats that vary only in their D1/D2 domains; IV) heterogeneous rDNA arrays that have both polymorphic ITS and D1/D2 regions. We argue that an ongoing process of homogenization following allodiplodization or incomplete lineage sorting gave rise to divergent evolutionary trajectories in different strains, depending upon temporal, structural and functional constraints. We discuss the consequences of these findings for Zygosaccharomyces species delineation and, more in general, for yeast barcoding.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Paolo Giudici
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
- * E-mail:
| |
Collapse
|
52
|
Heberling T, Davis L, Gedeon J, Morgan C, Gedeon T. A Mechanistic Model for Cooperative Behavior of Co-transcribing RNA Polymerases. PLoS Comput Biol 2016; 12:e1005069. [PMID: 27517607 PMCID: PMC4982667 DOI: 10.1371/journal.pcbi.1005069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/20/2016] [Indexed: 11/19/2022] Open
Abstract
In fast-transcribing prokaryotic genes, such as an rrn gene in Escherichia coli, many RNA polymerases (RNAPs) transcribe the DNA simultaneously. Active elongation of RNAPs is often interrupted by pauses, which has been observed to cause RNAP traffic jams; yet some studies indicate that elongation seems to be faster in the presence of multiple RNAPs than elongation by a single RNAP. We propose that an interaction between RNAPs via the torque produced by RNAP motion on helically twisted DNA can explain this apparent paradox. We have incorporated the torque mechanism into a stochastic model and simulated transcription both with and without torque. Simulation results illustrate that the torque causes shorter pause durations and fewer collisions between polymerases. Our results suggest that the torsional interaction of RNAPs is an important mechanism in maintaining fast transcription times, and that transcription should be viewed as a cooperative group effort by multiple polymerases.
Collapse
Affiliation(s)
- Tamra Heberling
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Lisa Davis
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Jakub Gedeon
- Computer Science Department, Montana State University, Bozeman, Montana, United States of America
| | - Charles Morgan
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Tomáš Gedeon
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
53
|
Comparative Genomics of Interreplichore Translocations in Bacteria: A Measure of Chromosome Topology? G3-GENES GENOMES GENETICS 2016; 6:1597-606. [PMID: 27172194 PMCID: PMC4889656 DOI: 10.1534/g3.116.028274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Genomes evolve not only in base sequence but also in terms of their architecture, defined by gene organization and chromosome topology. Whereas genome sequence data inform us about the changes in base sequences for a large variety of organisms, the study of chromosome topology is restricted to a few model organisms studied using microscopy and chromosome conformation capture techniques. Here, we exploit whole genome sequence data to study the link between gene organization and chromosome topology in bacteria. Using comparative genomics across ∼250 pairs of closely related bacteria we show that: (a) many organisms show a high degree of interreplichore translocations throughout the chromosome and not limited to the inversion-prone terminus (ter) or the origin of replication (oriC); (b) translocation maps may reflect chromosome topologies; and (c) symmetric interreplichore translocations do not disrupt the distance of a gene from oriC or affect gene expression states or strand biases in gene densities. In summary, we suggest that translocation maps might be a first line in defining a gross chromosome topology given a pair of closely related genome sequences.
Collapse
|
54
|
Valdivia-Anistro JA, Eguiarte-Fruns LE, Delgado-Sapién G, Márquez-Zacarías P, Gasca-Pineda J, Learned J, Elser JJ, Olmedo-Alvarez G, Souza V. Variability of rRNA Operon Copy Number and Growth Rate Dynamics of Bacillus Isolated from an Extremely Oligotrophic Aquatic Ecosystem. Front Microbiol 2016; 6:1486. [PMID: 26779143 PMCID: PMC4700252 DOI: 10.3389/fmicb.2015.01486] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/09/2015] [Indexed: 12/28/2022] Open
Abstract
The ribosomal RNA (rrn) operon is a key suite of genes related to the production of protein synthesis machinery and thus to bacterial growth physiology. Experimental evidence has suggested an intrinsic relationship between the number of copies of this operon and environmental resource availability, especially the availability of phosphorus (P), because bacteria that live in oligotrophic ecosystems usually have few rrn operons and a slow growth rate. The Cuatro Ciénegas Basin (CCB) is a complex aquatic ecosystem that contains an unusually high microbial diversity that is able to persist under highly oligotrophic conditions. These environmental conditions impose a variety of strong selective pressures that shape the genome dynamics of their inhabitants. The genus Bacillus is one of the most abundant cultivable bacterial groups in the CCB and usually possesses a relatively large number of rrn operon copies (6–15 copies). The main goal of this study was to analyze the variation in the number of rrn operon copies of Bacillus in the CCB and to assess their growth-related properties as well as their stoichiometric balance (N and P content). We defined 18 phylogenetic groups within the Bacilli clade and documented a range of from six to 14 copies of the rrn operon. The growth dynamic of these Bacilli was heterogeneous and did not show a direct relation to the number of operon copies. Physiologically, our results were not consistent with the Growth Rate Hypothesis, since the copies of the rrn operon were decoupled from growth rate. However, we speculate that the diversity of the growth properties of these Bacilli as well as the low P content of their cells in an ample range of rrn copy number is an adaptive response to oligotrophy of the CCB and could represent an ecological mechanism that allows these taxa to coexist. These findings increase the knowledge of the variability in the number of copies of the rrn operon in the genus Bacillus and give insights about the physiology of this bacterial group under extreme oligotrophic conditions.
Collapse
Affiliation(s)
- Jorge A Valdivia-Anistro
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México Coyoacán, Mexico
| | - Luis E Eguiarte-Fruns
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México Coyoacán, Mexico
| | - Gabriela Delgado-Sapién
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México Coyoacán, Mexico
| | | | - Jaime Gasca-Pineda
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México Coyoacán, Mexico
| | - Jennifer Learned
- School of Life Sciences, Arizona State University, Tempe AZ, USA
| | - James J Elser
- School of Life Sciences, Arizona State University, Tempe AZ, USA
| | - Gabriela Olmedo-Alvarez
- Laboratorio de Bacteriología Molecular, Departamento de Ingeniería Genética, CINVESTAV - Unidad Irapuato Irapuato, Mexico
| | - Valeria Souza
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México Coyoacán, Mexico
| |
Collapse
|
55
|
Yano K, Masuda K, Akanuma G, Wada T, Matsumoto T, Shiwa Y, Ishige T, Yoshikawa H, Niki H, Inaoka T, Kawamura F. Growth and sporulation defects in Bacillus subtilis mutants with a single rrn operon can be suppressed by amplification of the rrn operon. Microbiology (Reading) 2016; 162:35-45. [DOI: 10.1099/mic.0.000207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Koichi Yano
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Kenta Masuda
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Genki Akanuma
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Tetsuya Wada
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Takashi Matsumoto
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
| | - Yuh Shiwa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
| | - Taichiro Ishige
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
| | - Hironori Niki
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies, Sokendai, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Takashi Inaoka
- Microbial Function Laboratory, National Food Research Institute, National Agriculture Research Organization, Tsukuba-shi Kannondai 2-1-12, Ibaraki 305-8642, Japan
| | - Fujio Kawamura
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| |
Collapse
|
56
|
Maeda M, Shimada T, Ishihama A. Strength and Regulation of Seven rRNA Promoters in Escherichia coli. PLoS One 2015; 10:e0144697. [PMID: 26717514 PMCID: PMC4696680 DOI: 10.1371/journal.pone.0144697] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 11/23/2015] [Indexed: 11/18/2022] Open
Abstract
The model prokaryote Escherichia coli contains seven copies of the rRNA operon in the genome. The presence of multiple rRNA operons is an advantage for increasing the level of ribosome, the key apparatus of translation, in response to environmental conditions. The complete sequence of E. coli genome, however, indicated the micro heterogeneity between seven rRNA operons, raising the possibility in functional heterogeneity and/or differential mode of expression. The aim of this research is to determine the strength and regulation of the promoter of each rRNA operon in E. coli. For this purpose, we used the double-fluorescent protein reporter pBRP system that was developed for accurate and precise determination of the promoter strength of protein-coding genes. For application of this promoter assay vector for measurement of the rRNA operon promoters devoid of the signal for translation, a synthetic SD sequence was added at the initiation codon of the reporter GFP gene, and then approximately 500 bp-sequence upstream each 16S rRNA was inserted in front of this SD sequence. Using this modified pGRS system, the promoter activity of each rrn operon was determined by measuring the rrn promoter-directed GFP and the reference promoter-directed RFP fluorescence, both encoded by a single and the same vector. Results indicated that: the promoter activity was the highest for the rrnE promoter under all growth conditions analyzed, including different growth phases of wild-type E. coli grown in various media; but the promoter strength of other six rrn promoters was various depending on the culture conditions. These findings altogether indicate that seven rRNA operons are different with respect to the regulation mode of expression, conferring an advantage to E. coli through a more fine-tuned control of ribosome formation in a wide range of environmental situations. Possible difference in the functional role of each rRNA operon is also discussed.
Collapse
Affiliation(s)
- Michihisa Maeda
- Meiji University, Faculty of Agriculture Chemistry, Kawasaki, Kanagawa 214–8571, Japan
| | - Tomohiro Shimada
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuda, Yokohama 226–8503, Japan
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184–8584, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184–8584, Japan
- * E-mail:
| |
Collapse
|
57
|
Abedpour N, Kollmann M. Resource constrained flux balance analysis predicts selective pressure on the global structure of metabolic networks. BMC SYSTEMS BIOLOGY 2015; 9:88. [PMID: 26597226 PMCID: PMC4657269 DOI: 10.1186/s12918-015-0232-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022]
Abstract
Background A universal feature of metabolic networks is their hourglass or bow-tie structure on cellular level. This architecture reflects the conversion of multiple input nutrients into multiple biomass components via a small set of precursor metabolites. However, it is yet unclear to what extent this structural feature is the result of natural selection. Results We extend flux balance analysis to account for limited cellular resources. Using this model, optimal structure of metabolic networks can be calculated for different environmental conditions. We observe a significant structural reshaping of metabolic networks for a toy-network and E. coli core metabolism if we increase the share of invested resources for switching between different nutrient conditions. Here, hub nodes emerge and the optimal network structure becomes bow-tie-like as a consequence of limited cellular resource constraint. We confirm this theoretical finding by comparing the reconstructed metabolic networks of bacterial species with respect to their lifestyle. Conclusions We show that bow-tie structure can give a system-level fitness advantage to organisms that live in highly competitive and fluctuating environments. Here, limitation of cellular resources can lead to an efficiency-flexibility tradeoff where it pays off for the organism to shorten catabolic pathways if they are frequently activated and deactivated. As a consequence, generalists that shuttle between diverse environmental conditions should have a more predominant bow-tie structure than specialists that visit just a few isomorphic habitats during their life cycle. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0232-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nima Abedpour
- Mathematische Modellierung biologischer Systeme, Heinrich-Heine-Universität, Universitätsstraße 1, Düsseldorf, 40225, Germany.
| | - Markus Kollmann
- Mathematische Modellierung biologischer Systeme, Heinrich-Heine-Universität, Universitätsstraße 1, Düsseldorf, 40225, Germany.
| |
Collapse
|
58
|
Nemergut DR, Knelman JE, Ferrenberg S, Bilinski T, Melbourne B, Jiang L, Violle C, Darcy JL, Prest T, Schmidt SK, Townsend AR. Decreases in average bacterial community rRNA operon copy number during succession. ISME JOURNAL 2015; 10:1147-56. [PMID: 26565722 PMCID: PMC5029226 DOI: 10.1038/ismej.2015.191] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 07/27/2015] [Accepted: 09/25/2015] [Indexed: 02/01/2023]
Abstract
Trait-based studies can help clarify the mechanisms driving patterns of microbial community assembly and coexistence. Here, we use a trait-based approach to explore the importance of rRNA operon copy number in microbial succession, building on prior evidence that organisms with higher copy numbers respond more rapidly to nutrient inputs. We set flasks of heterotrophic media into the environment and examined bacterial community assembly at seven time points. Communities were arrayed along a geographic gradient to introduce stochasticity via dispersal processes and were analyzed using 16 S rRNA gene pyrosequencing, and rRNA operon copy number was modeled using ancestral trait reconstruction. We found that taxonomic composition was similar between communities at the beginning of the experiment and then diverged through time; as well, phylogenetic clustering within communities decreased over time. The average rRNA operon copy number decreased over the experiment, and variance in rRNA operon copy number was lowest both early and late in succession. We then analyzed bacterial community data from other soil and sediment primary and secondary successional sequences from three markedly different ecosystem types. Our results demonstrate that decreases in average copy number are a consistent feature of communities across various drivers of ecological succession. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, ranging from cells to populations and communities, with implications for both microbial ecology and evolution.
Collapse
Affiliation(s)
- Diana R Nemergut
- Department of Biology, Duke University, Durham, NC, USA.,Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA
| | - Joseph E Knelman
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA.,Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Scott Ferrenberg
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.,U.S. Geological Survey, Canyonlands Research Station, Moab, UT, USA
| | - Teresa Bilinski
- Department of Biological Sciences, St Edward's University, Austin, TX, USA
| | - Brett Melbourne
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Lin Jiang
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Cyrille Violle
- Centre d'Ecologie Fonctionnelle et Evolutive, Montpellier, France
| | - John L Darcy
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Tiffany Prest
- Department of Biology, Duke University, Durham, NC, USA
| | - Steven K Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Alan R Townsend
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| |
Collapse
|
59
|
Bacterial clade with the ribosomal RNA operon on a small plasmid rather than the chromosome. Proc Natl Acad Sci U S A 2015; 112:14343-7. [PMID: 26534993 DOI: 10.1073/pnas.1514326112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
rRNA is essential for life because of its functional importance in protein synthesis. The rRNA (rrn) operon encoding 16S, 23S, and 5S rRNAs is located on the "main" chromosome in all bacteria documented to date and is frequently used as a marker of chromosomes. Here, our genome analysis of a plant-associated alphaproteobacterium, Aureimonas sp. AU20, indicates that this strain has its sole rrn operon on a small (9.4 kb), high-copy-number replicon. We designated this unusual replicon carrying the rrn operon on the background of an rrn-lacking chromosome (RLC) as the rrn-plasmid. Four of 12 strains close to AU20 also had this RLC/rrn-plasmid organization. Phylogenetic analysis showed that those strains having the RLC/rrn-plasmid organization represented one clade within the genus Aureimonas. Our finding introduces a previously unaddressed viewpoint into studies of genetics, genomics, and evolution in microbiology and biology in general.
Collapse
|
60
|
Complete Genome Sequence of Pelosinus fermentans JBW45, a Member of a Remarkably Competitive Group of Negativicutes in the Firmicutes Phylum. GENOME ANNOUNCEMENTS 2015; 3:3/5/e01090-15. [PMID: 26404608 PMCID: PMC4582584 DOI: 10.1128/genomea.01090-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The genome of Pelosinus fermentans JBW45, isolated from a chromium-contaminated site in Hanford, Washington, USA, has been completed with PacBio sequencing. Nine copies of the rRNA gene operon and multiple transposase genes with identical sequences resulted in breaks in the original draft genome and may suggest genomic instability of JBW45.
Collapse
|
61
|
Tamarit D, Ellegaard KM, Wikander J, Olofsson T, Vásquez A, Andersson SGE. Functionally Structured Genomes in Lactobacillus kunkeei Colonizing the Honey Crop and Food Products of Honeybees and Stingless Bees. Genome Biol Evol 2015; 7:1455-73. [PMID: 25953738 PMCID: PMC4494060 DOI: 10.1093/gbe/evv079] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Lactobacillus kunkeei is the most abundant bacterial species in the honey crop and food products of honeybees. The 16 S rRNA genes of strains isolated from different bee species are nearly identical in sequence and therefore inadequate as markers for studies of coevolutionary patterns. Here, we have compared the 1.5 Mb genomes of ten L. kunkeei strains isolated from all recognized Apis species and another two strains from Meliponini species. A gene flux analysis, including previously sequenced Lactobacillus species as outgroups, indicated the influence of reductive evolution. The genome architecture is unique in that vertically inherited core genes are located near the terminus of replication, whereas genes for secreted proteins and putative host-adaptive traits are located near the origin of replication. We suggest that these features have resulted from a genome-wide loss of genes, with integrations of novel genes mostly occurring in regions flanking the origin of replication. The phylogenetic analyses showed that the bacterial topology was incongruent with the host topology, and that strains of the same microcluster have recombined frequently across the host species barriers, arguing against codiversification. Multiple genotypes were recovered in the individual hosts and transfers of mobile elements could be demonstrated for strains isolated from the same host species. Unlike other bacteria with small genomes, short generation times and multiple rRNA operons suggest that L. kunkeei evolves under selection for rapid growth in its natural growth habitat. The results provide an extended framework for reductive genome evolution and functional genome organization in bacteria.
Collapse
Affiliation(s)
- Daniel Tamarit
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Sweden
| | - Kirsten M Ellegaard
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Sweden
| | - Johan Wikander
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Sweden
| | - Tobias Olofsson
- Medical Microbiology, Department of Laboratory Medicine, Lund University, Sweden
| | - Alejandra Vásquez
- Medical Microbiology, Department of Laboratory Medicine, Lund University, Sweden
| | - Siv G E Andersson
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Sweden
| |
Collapse
|
62
|
Genomic location of the major ribosomal protein gene locus determines Vibrio cholerae global growth and infectivity. PLoS Genet 2015; 11:e1005156. [PMID: 25875621 PMCID: PMC4395360 DOI: 10.1371/journal.pgen.1005156] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/17/2015] [Indexed: 11/23/2022] Open
Abstract
The effects on cell physiology of gene order within the bacterial chromosome are poorly understood. In silico approaches have shown that genes involved in transcription and translation processes, in particular ribosomal protein (RP) genes, localize near the replication origin (oriC) in fast-growing bacteria suggesting that such a positional bias is an evolutionarily conserved growth-optimization strategy. Such genomic localization could either provide a higher dosage of these genes during fast growth or facilitate the assembly of ribosomes and transcription foci by keeping physically close the many components of these macromolecular machines. To explore this, we used novel recombineering tools to create a set of Vibrio cholerae strains in which S10-spec-α (S10), a locus bearing half of the ribosomal protein genes, was systematically relocated to alternative genomic positions. We show that the relative distance of S10 to the origin of replication tightly correlated with a reduction of S10 dosage, mRNA abundance and growth rate within these otherwise isogenic strains. Furthermore, this was accompanied by a significant reduction in the host-invasion capacity in Drosophila melanogaster. Both phenotypes were rescued in strains bearing two S10 copies highly distal to oriC, demonstrating that replication-dependent gene dosage reduction is the main mechanism behind these alterations. Hence, S10 positioning connects genome structure to cell physiology in Vibrio cholerae. Our results show experimentally for the first time that genomic positioning of genes involved in the flux of genetic information conditions global growth control and hence bacterial physiology and potentially its evolution. Increasing evidence indicates that nucleoid spatiotemporal organization is crucial for bacterial physiology since these microorganism lack compartmentalized nucleus. However, it is still unclear how gene order within the chromosome can influence cell physiology. Here, by systematically relocating ribosomal protein genes to different genomic positions in Vibrio cholerae, we revealed drastic differences in growth rate and infectivity of this isogenic strain set. We show that genomic positioning of ribosomal protein genes is crucial for physiology by providing replication-dependent higher dosage. Therefore it might play a key role in genome evolution of bacterial species. This work will contribute to discover genomic rules governing cell physiology which will be essential in the context of the creation of new artificial life forms.
Collapse
|
63
|
Using a sequential regimen to eliminate bacteria at sublethal antibiotic dosages. PLoS Biol 2015; 13:e1002104. [PMID: 25853342 PMCID: PMC4390231 DOI: 10.1371/journal.pbio.1002104] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/11/2015] [Indexed: 11/19/2022] Open
Abstract
We need to find ways of enhancing the potency of existing antibiotics, and, with this in mind, we begin with an unusual question: how low can antibiotic dosages be and yet bacterial clearance still be observed? Seeking to optimise the simultaneous use of two antibiotics, we use the minimal dose at which clearance is observed in an in vitro experimental model of antibiotic treatment as a criterion to distinguish the best and worst treatments of a bacterium, Escherichia coli. Our aim is to compare a combination treatment consisting of two synergistic antibiotics to so-called sequential treatments in which the choice of antibiotic to administer can change with each round of treatment. Using mathematical predictions validated by the E. coli treatment model, we show that clearance of the bacterium can be achieved using sequential treatments at antibiotic dosages so low that the equivalent two-drug combination treatments are ineffective. Seeking to treat the bacterium in testing circumstances, we purposefully study an E. coli strain that has a multidrug pump encoded in its chromosome that effluxes both antibiotics. Genomic amplifications that increase the number of pumps expressed per cell can cause the failure of high-dose combination treatments, yet, as we show, sequentially treated populations can still collapse. However, dual resistance due to the pump means that the antibiotics must be carefully deployed and not all sublethal sequential treatments succeed. A screen of 136 96-h-long sequential treatments determined five of these that could clear the bacterium at sublethal dosages in all replicate populations, even though none had done so by 24 h. These successes can be attributed to a collateral sensitivity whereby cross-resistance due to the duplicated pump proves insufficient to stop a reduction in E. coli growth rate following drug exchanges, a reduction that proves large enough for appropriately chosen drug switches to clear the bacterium. A laboratory treatment model shows that the sequentially alternating use of two antibiotics can be optimized to outperform combination treatments at the equivalent dose. So-called “cocktail” treatments are often proposed as a way of enhancing the potency of antibiotics, based on the idea that multiple drugs can synergise when used together as part of a single combined therapy. We investigated whether any other multidrug deployment strategies are as effective as—or perhaps even better than—synergistic antibiotic combinations at reducing bacterial densities. “Collateral sensitivities” between antibiotics are frequently observed; this is when measures taken by a bacterium to counter the presence of one antibiotic sensitise it to the subsequent use of another. Our approach was to see if we could exploit these sensitivities by first deploying one drug, then removing it and instead deploying another, and then repeating this process. This is not an entirely new idea, and there is a precedence for this form of treatment that has been trialled in the clinic for Helicobacter pylori infection. The idea we pursued here is an extension of “sequential treatment”; we investigated whether with two antibiotics and n rounds of treatment, if we search within the set of all possible 2n “sequential treatments”—including the two single-drug monotherapies—there might be treatments within that set that are more effective than the equivalent two-drug cocktail. Using a simple in vitro treatment model, we show that some sequential-in-time antibiotic treatments are successful under conditions that cause the failure of the cocktail treatment when implemented at the equivalent dosage.
Collapse
|
64
|
diCenzo GC, Finan TM. Genetic redundancy is prevalent within the 6.7 Mb Sinorhizobium meliloti genome. Mol Genet Genomics 2015; 290:1345-56. [PMID: 25638282 DOI: 10.1007/s00438-015-0998-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/17/2015] [Indexed: 01/09/2023]
Abstract
Biological pathways are frequently identified via a genetic loss-of-function approach. While this approach has proven to be powerful, it is imperfect as illustrated by well-studied pathways continuing to have missing steps. One potential limiting factor is the masking of phenotypes through genetic redundancy. The prevalence of genetic redundancy in bacterial species has received little attention, although isolated examples of functionally redundant gene pairs exist. Here, we made use of a strain of Sinorhizobium meliloti whose genome was reduced by 45 % through the complete removal of a megaplasmid and a chromid (3 Mb of the 6.7 Mb genome was removed) to begin quantifying the level of genetic redundancy within a large bacterial genome. A mutagenesis of the strain with the reduced genome identified a set of transposon insertions precluding growth of this strain on minimal medium. Transfer of these mutations to the wild-type background revealed that 10-15 % of these chromosomal mutations were located within duplicated genes, as they did not prevent growth of cells with the full genome. The functionally redundant genes were involved in a variety of metabolic pathways, including central carbon metabolism, transport, and amino acid biosynthesis. These results indicate that genetic redundancy may be prevalent within large bacterial genomes. Failing to account for redundantly encoded functions in loss-of-function studies will impair our understanding of a broad range of biological processes and limit our ability to use synthetic biology in the construction of designer cell factories.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada
| | | |
Collapse
|
65
|
Unthan S, Baumgart M, Radek A, Herbst M, Siebert D, Brühl N, Bartsch A, Bott M, Wiechert W, Marin K, Hans S, Krämer R, Seibold G, Frunzke J, Kalinowski J, Rückert C, Wendisch VF, Noack S. Chassis organism from Corynebacterium glutamicum--a top-down approach to identify and delete irrelevant gene clusters. Biotechnol J 2015; 10:290-301. [PMID: 25139579 PMCID: PMC4361050 DOI: 10.1002/biot.201400041] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/25/2014] [Accepted: 08/19/2014] [Indexed: 01/05/2023]
Abstract
For synthetic biology applications, a robust structural basis is required, which can be constructed either from scratch or in a top-down approach starting from any existing organism. In this study, we initiated the top-down construction of a chassis organism from Corynebacterium glutamicum ATCC 13032, aiming for the relevant gene set to maintain its fast growth on defined medium. We evaluated each native gene for its essentiality considering expression levels, phylogenetic conservation, and knockout data. Based on this classification, we determined 41 gene clusters ranging from 3.7 to 49.7 kbp as target sites for deletion. 36 deletions were successful and 10 genome-reduced strains showed impaired growth rates, indicating that genes were hit, which are relevant to maintain biological fitness at wild-type level. In contrast, 26 deleted clusters were found to include exclusively irrelevant genes for growth on defined medium. A combinatory deletion of all irrelevant gene clusters would, in a prophage-free strain, decrease the size of the native genome by about 722 kbp (22%) to 2561 kbp. Finally, five combinatory deletions of irrelevant gene clusters were investigated. The study introduces the novel concept of relevant genes and demonstrates general strategies to construct a chassis suitable for biotechnological application.
Collapse
Affiliation(s)
- Simon Unthan
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systems BiotechnologyForschungszentrum Jülich, Jülich, Germany
| | - Meike Baumgart
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systemic MicrobiologyForschungszentrum Jülich, Jülich, Germany
| | - Andreas Radek
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systems BiotechnologyForschungszentrum Jülich, Jülich, Germany
| | - Marius Herbst
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld UniversityBielefeld, Germany
| | - Daniel Siebert
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld UniversityBielefeld, Germany
| | - Natalie Brühl
- Institute of Biochemistry, University of CologneCologne, Germany
| | - Anna Bartsch
- Institute of Biochemistry, University of CologneCologne, Germany
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systemic MicrobiologyForschungszentrum Jülich, Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systems BiotechnologyForschungszentrum Jülich, Jülich, Germany
| | - Kay Marin
- Evonik Degussa GmbHHalle/Westphalia, Germany
| | | | - Reinhard Krämer
- Institute of Biochemistry, University of CologneCologne, Germany
| | - Gerd Seibold
- Institute of Biochemistry, University of CologneCologne, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systemic MicrobiologyForschungszentrum Jülich, Jülich, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| | - Christian Rückert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| | - Volker F Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld UniversityBielefeld, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systems BiotechnologyForschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
66
|
Gyorfy Z, Draskovits G, Vernyik V, Blattner FF, Gaal T, Posfai G. Engineered ribosomal RNA operon copy-number variants of E. coli reveal the evolutionary trade-offs shaping rRNA operon number. Nucleic Acids Res 2015; 43:1783-94. [PMID: 25618851 PMCID: PMC4330394 DOI: 10.1093/nar/gkv040] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ribosomal RNA (rrn) operons, characteristically present in several copies in bacterial genomes (7 in E. coli), play a central role in cellular physiology. We investigated the factors determining the optimal number of rrn operons in E. coli by constructing isogenic variants with 5–10 operons. We found that the total RNA and protein content, as well as the size of the cells reflected the number of rrn operons. While growth parameters showed only minor differences, competition experiments revealed a clear pattern: 7–8 copies were optimal under conditions of fluctuating, occasionally rich nutrient influx and lower numbers were favored in stable, nutrient-limited environments. We found that the advantages of quick adjustment to nutrient availability, rapid growth and economic regulation of ribosome number all contribute to the selection of the optimal rrn operon number. Our results suggest that the wt rrn operon number of E. coli reflects the natural, ‘feast and famine’ life-style of the bacterium, however, different copy numbers might be beneficial under different environmental conditions. Understanding the impact of the copy number of rrn operons on the fitness of the cell is an important step towards the creation of functional and robust genomes, the ultimate goal of synthetic biology.
Collapse
Affiliation(s)
- Zsuzsanna Gyorfy
- Institute of Biochemistry, Synthetic and Systems Biology Unit, Biological Research Centre of the Hungarian Academy of Sciences, Szeged 6726, Hungary
| | - Gabor Draskovits
- Institute of Biochemistry, Synthetic and Systems Biology Unit, Biological Research Centre of the Hungarian Academy of Sciences, Szeged 6726, Hungary
| | - Viktor Vernyik
- Institute of Biochemistry, Synthetic and Systems Biology Unit, Biological Research Centre of the Hungarian Academy of Sciences, Szeged 6726, Hungary
| | | | - Tamas Gaal
- Dept. of Bacteriology, Univ. of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gyorgy Posfai
- Institute of Biochemistry, Synthetic and Systems Biology Unit, Biological Research Centre of the Hungarian Academy of Sciences, Szeged 6726, Hungary
| |
Collapse
|
67
|
Complete Genome Sequence of Pelosinus sp. Strain UFO1 Assembled Using Single-Molecule Real-Time DNA Sequencing Technology. GENOME ANNOUNCEMENTS 2014; 2:2/5/e00881-14. [PMID: 25189589 PMCID: PMC4155594 DOI: 10.1128/genomea.00881-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pelosinus species can reduce metals such as Fe(III), U(VI), and Cr(VI) and have been isolated from diverse geographical regions. Five draft genome sequences have been published. We report the complete genome sequence for Pelosinus sp. strain UFO1 using only PacBio DNA sequence data and without manual finishing.
Collapse
|
68
|
Arunasri K, Adil M, Khan PAA, Shivaji S. Global gene expression analysis of long-term stationary phase effects in E. coli K12 MG1655. PLoS One 2014; 9:e96701. [PMID: 24858919 PMCID: PMC4032248 DOI: 10.1371/journal.pone.0096701] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/11/2014] [Indexed: 12/27/2022] Open
Abstract
Global gene expression was monitored in long-term stationary phase (LSP) cells of E. coli K12 MG1655 and compared with stationary phase (SP) cells that were sub-cultured without prolonged delay to get an insight into the survival strategies of LSP cells. The experiments were carried out using both LB medium and LB supplemented with 10% of glycerol. In both the media the LSP cells showed decreased growth rate compared to SP cells. DNA microarray analysis of LSP cells in both the media resulted in the up- and down-regulation of several genes in LSP cells compared to their respective SP cells in the corresponding media. In LSP cells grown in LB 204 genes whereas cells grown in LB plus glycerol 321 genes were differentially regulated compared to the SP cells. Comparison of these differentially regulated genes indicated that irrespective of the medium used for growth in LSP cells expression of 95 genes (22 genes up-regulated and 73 down-regulated) were differentially regulated. These 95 genes could be associated with LSP status of the cells and are likely to influence survival and growth characteristics of LSP cells. This is indeed so since the up- and down-regulated genes include genes that protect E. coli LSP cells from stationary phase stress and genes that would help to recover from stress when transferred into fresh medium. The growth phenotype in LSP cells could be attributed to up-regulation of genes coding for insertion sequences that confer beneficial effects during starvation, genes coding for putative transposases and simultaneous down-regulation of genes coding for ribosomal protein synthesis, transport-related genes, non-coding RNA genes and metabolic genes. As yet we still do not know the role of several unknown genes and genes coding for hypothetical proteins which are either up- or down-regulated in LSP cells compared to SP cells.
Collapse
Affiliation(s)
| | - Mohammed Adil
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Sisinthy Shivaji
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- * E-mail:
| |
Collapse
|
69
|
Mechergui A, Achour W, Ben Hassen A. Comparison of 16S rRNA sequencing with biochemical testing for species-level identification of clinical isolates of Neisseria spp. World J Microbiol Biotechnol 2014; 30:2181-8. [PMID: 24671298 DOI: 10.1007/s11274-014-1637-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
We aimed to compare accuracy of genus and species level identification of Neisseria spp. using biochemical testing and 16S rRNA sequence analysis. These methods were evaluated using 85 Neisseria spp. clinical isolates initially identified to the genus level by conventional biochemical tests and API NH system (Bio-Mérieux(®)). In 34 % (29/85), more than one possibility was given by 16S rRNA sequence analysis. In 6 % (5/85), one of the possibilities offered by 16S rRNA gene sequencing, agreed with the result given by biochemical testing. In 4 % (3/85), the same species was given by both methods. 16S rRNA gene sequencing results did not correlate well with biochemical tests.
Collapse
Affiliation(s)
- Arij Mechergui
- Service des Laboratoires (UR12ES02), Centre National de Greffe de Moelle Osseuse, Rue Djebel-Lakdhar, Bab Saadoun, 1006, Tunis, Tunisia,
| | | | | |
Collapse
|
70
|
Chaw RC, Zhao Y, Wei J, Ayoub NA, Allen R, Atrushi K, Hayashi CY. Intragenic homogenization and multiple copies of prey-wrapping silk genes in Argiope garden spiders. BMC Evol Biol 2014; 14:31. [PMID: 24552485 PMCID: PMC3933166 DOI: 10.1186/1471-2148-14-31] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/14/2014] [Indexed: 11/15/2022] Open
Abstract
Background Spider silks are spectacular examples of phenotypic diversity arising from adaptive molecular evolution. An individual spider can produce an array of specialized silks, with the majority of constituent silk proteins encoded by members of the spidroin gene family. Spidroins are dominated by tandem repeats flanked by short, non-repetitive N- and C-terminal coding regions. The remarkable mechanical properties of spider silks have been largely attributed to the repeat sequences. However, the molecular evolutionary processes acting on spidroin terminal and repetitive regions remain unclear due to a paucity of complete gene sequences and sampling of genetic variation among individuals. To better understand spider silk evolution, we characterize a complete aciniform spidroin gene from an Argiope orb-weaving spider and survey aciniform gene fragments from congeneric individuals. Results We present the complete aciniform spidroin (AcSp1) gene from the silver garden spider Argiope argentata (Aar_AcSp1), and document multiple AcSp1 loci in individual genomes of A. argentata and the congeneric A. trifasciata and A. aurantia. We find that Aar_AcSp1 repeats have >98% pairwise nucleotide identity. By comparing AcSp1 repeat amino acid sequences between Argiope species and with other genera, we identify regions of conservation over vast amounts of evolutionary time. Through a PCR survey of individual A. argentata, A. trifasciata, and A. aurantia genomes, we ascertain that AcSp1 repeats show limited variation between species whereas terminal regions are more divergent. We also find that average dN/dS across codons in the N-terminal, repetitive, and C-terminal encoding regions indicate purifying selection that is strongest in the N-terminal region. Conclusions Using the complete A. argentata AcSp1 gene and spidroin genetic variation between individuals, this study clarifies some of the molecular evolutionary processes underlying the spectacular mechanical attributes of aciniform silk. It is likely that intragenic concerted evolution and functional constraints on A. argentata AcSp1 repeats result in extreme repeat homogeneity. The maintenance of multiple AcSp1 encoding loci in Argiope genomes supports the hypothesis that Argiope spiders require rapid and efficient protein production to support their prolific use of aciniform silk for prey-wrapping and web-decorating. In addition, multiple gene copies may represent the early stages of spidroin diversification.
Collapse
Affiliation(s)
- R Crystal Chaw
- Department of Biology, University of California, 900 University Avenue, Riverside 92507, Riverside, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
71
|
Jin DJ, Cagliero C, Zhou YN. Role of RNA polymerase and transcription in the organization of the bacterial nucleoid. Chem Rev 2013; 113:8662-82. [PMID: 23941620 PMCID: PMC3830623 DOI: 10.1021/cr4001429] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ding Jun Jin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| | - Cedric Cagliero
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| | - Yan Ning Zhou
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| |
Collapse
|
72
|
Yano K, Wada T, Suzuki S, Tagami K, Matsumoto T, Shiwa Y, Ishige T, Kawaguchi Y, Masuda K, Akanuma G, Nanamiya H, Niki H, Yoshikawa H, Kawamura F. Multiple rRNA operons are essential for efficient cell growth and sporulation as well as outgrowth in Bacillus subtilis. Microbiology (Reading) 2013; 159:2225-2236. [DOI: 10.1099/mic.0.067025-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Koichi Yano
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Tetsuya Wada
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Shota Suzuki
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Kazumi Tagami
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Takashi Matsumoto
- Genome Research Center, Nodai Research Institute, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
| | - Yuh Shiwa
- Genome Research Center, Nodai Research Institute, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
| | - Taichiro Ishige
- Genome Research Center, Nodai Research Institute, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
| | - Yasuhiro Kawaguchi
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Kenta Masuda
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Genki Akanuma
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hideaki Nanamiya
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hironori Niki
- Department of Genetics, Graduate University for Advanced Studies, Sokendai, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
- Genome Research Center, Nodai Research Institute, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
| | - Fujio Kawamura
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| |
Collapse
|
73
|
Gomes C, Martínez-Puchol S, Durand D, Lluque A, Mosquito S, Ochoa TJ, Ruiz J. Which mechanisms of azithromycin resistance are selected when efflux pumps are inhibited? Int J Antimicrob Agents 2013; 42:307-11. [PMID: 23871456 DOI: 10.1016/j.ijantimicag.2013.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
Abstract
The aim of this study was to develop in vitro azithromycin (AZM)-resistant mutants of Escherichia coli and Shigella spp. in the presence of Phe-Arg β-naphthylamide (PAβN) and to observe which AZM resistance mechanisms other than efflux pumps were inhibited by PAβN emerge. The frequency of mutation ranged between <6.32 × 10(-10) and 5.22 × 10(-7) for E. coli and between <5.32 × 10(-10) and 1.69 × 10(-7) for Shigella spp. The E. coli mutants showed an increase in the AZM minimum inhibitory concentration (MIC) up to 128-fold, whilst the Shigella spp. mutants presented increases in MIC levels of up to 8-fold. In one mutant, the insertion of nucleotides encoding the amino acid sequence IMPRAS was found in the rplV gene. Increases in OmpW expression were observed in all E. coli mutants compared with their respective parental isolates. The combination of antibiotics and efflux pump inhibitors appears to be a good option to reduce the frequency of mutation in clinical isolates.
Collapse
Affiliation(s)
- Cláudia Gomes
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic - Universitat de Barcelona), Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
74
|
Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding. Nat Struct Mol Biol 2013; 20:843-50. [DOI: 10.1038/nsmb.2615] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/15/2013] [Indexed: 12/23/2022]
|
75
|
Gomes C, Pons MJ, Magallon-Tejada A, Durand D, Lluque A, Mosquito S, Riveros M, Mercado E, Prada A, Ochoa TJ, Ruiz J. In VitroDevelopment and Analysis ofEscherichia coliandShigella boydiiAzithromycin–Resistant Mutants. Microb Drug Resist 2013; 19:88-93. [DOI: 10.1089/mdr.2012.0036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cláudia Gomes
- Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Maria J. Pons
- Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Ariel Magallon-Tejada
- Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - David Durand
- Institute of Tropical Medicine Alexander von Humboldt, University Cayetano Heredia, Peru
| | - Angela Lluque
- Institute of Tropical Medicine Alexander von Humboldt, University Cayetano Heredia, Peru
| | - Susan Mosquito
- Institute of Tropical Medicine Alexander von Humboldt, University Cayetano Heredia, Peru
| | - Maribel Riveros
- Institute of Tropical Medicine Alexander von Humboldt, University Cayetano Heredia, Peru
| | - Erik Mercado
- Institute of Tropical Medicine Alexander von Humboldt, University Cayetano Heredia, Peru
| | - Ana Prada
- Institute of Tropical Medicine Alexander von Humboldt, University Cayetano Heredia, Peru
| | - Theresa J. Ochoa
- Institute of Tropical Medicine Alexander von Humboldt, University Cayetano Heredia, Peru
- Center for Infectious Diseases, University of Texas School of Public Health, Houston, Texas
| | - Joaquim Ruiz
- Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
76
|
Byrgazov K, Vesper O, Moll I. Ribosome heterogeneity: another level of complexity in bacterial translation regulation. Curr Opin Microbiol 2013; 16:133-9. [PMID: 23415603 PMCID: PMC3653068 DOI: 10.1016/j.mib.2013.01.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
Abstract
Translation of the mRNA-encoded genetic information into proteins is catalyzed by the intricate ribonucleoprotein machine, the ribosome. Historically, the bacterial ribosome is viewed as an unchangeable entity, constantly equipped with the entire complement of RNAs and proteins. Conversely, several lines of evidence indicate the presence of functional selective ribosomal subpopulations that exhibit variations in the RNA or the protein components and modulate the translational program in response to environmental changes. Here, we summarize these findings, which raise the functional status of the ribosome from a protein synthesis machinery only to a regulatory hub that integrates environmental cues in the process of protein synthesis, thereby adding an additional level of complexity to the regulation of gene expression.
Collapse
Affiliation(s)
- Konstantin Byrgazov
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | | | | |
Collapse
|
77
|
Rosenberg A, Sinai L, Smith Y, Ben-Yehuda S. Dynamic expression of the translational machinery during Bacillus subtilis life cycle at a single cell level. PLoS One 2012; 7:e41921. [PMID: 22848659 PMCID: PMC3405057 DOI: 10.1371/journal.pone.0041921] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/26/2012] [Indexed: 11/23/2022] Open
Abstract
The ability of bacteria to responsively regulate the expression of translation components is crucial for rapid adaptation to fluctuating environments. Utilizing Bacillus subtilis (B. subtilis) as a model organism, we followed the dynamics of the translational machinery at a single cell resolution during growth and differentiation. By comprehensive monitoring the activity of the major rrn promoters and ribosomal protein production, we revealed diverse dynamics between cells grown in rich and poor medium, with the most prominent dissimilarities exhibited during deep stationary phase. Further, the variability pattern of translational activity varied among the cells, being affected by nutrient availability. We have monitored for the first time translational dynamics during the developmental process of sporulation within the two distinct cellular compartments of forespore and mother-cell. Our study uncovers a transient forespore specific increase in expression of translational components. Finally, the contribution of each rrn promoter throughout the bacterium life cycle was found to be relatively constant, implying that differential expression is not the main purpose for the existence of multiple rrn genes. Instead, we propose that coordination of the rrn operons serves as a strategy to rapidly fine tune translational activities in a synchronized fashion to achieve an optimal translation level for a given condition.
Collapse
Affiliation(s)
- Alex Rosenberg
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University, Hadassah-Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lior Sinai
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University, Hadassah-Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoav Smith
- Genomic Data Analysis Unit, The Hebrew University- Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sigal Ben-Yehuda
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University, Hadassah-Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
78
|
Jangid K, Parameswaran PS, Shouche YS. A variant quorum sensing system in Aeromonas veronii MTCC 3249. SENSORS 2012; 12:3814-30. [PMID: 22666003 PMCID: PMC3355384 DOI: 10.3390/s120403814] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/17/2012] [Accepted: 03/20/2012] [Indexed: 11/16/2022]
Abstract
We have investigated the quorum sensing control in Aeromonas veronii MTCC 3249, originally isolated as A. culicicola from the midgut of Culex quinquefasciatus. Based on biosensor assays, the bacterium showed constant production of multiple acyl-homoserine lactones (AHLs) with increasing cell-density. The luxRI gene homologs, acuR (A. culicicola transcriptional Regulator) and acuI (A. culicicola autoInducer) were successfully amplified by inverse-PCR. Sequence analysis indicated acuRI were divergent from all known quorum sensing gene homologs in Aeromonas. Two localized regions in the C-terminal autoinducer binding domain of acuR showed indels suggesting variations in autoinducer specificity. Further, only a single copy of the quorum sensing genes was detected, suggesting a tight regulation of mechanisms under its control. Chromatography and further chemical analysis identified two AHLs in the culture supernatant: 6-carboxy-HHL (homoadipyl homoserine lactone), a novel AHL, and N-tetradecanoylhomoserine lactone. The existence of a potentially variant quorum sensing system might therefore, reflect in some way the ecological strategies adopted by this bacterium in the mosquito midgut.
Collapse
Affiliation(s)
- Kamlesh Jangid
- Microbial Culture Collection, National Centre for Cell Science, Pune, Maharashtra 411007, India; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +91-20-2570-8237; Fax: +91-20-2569-2259
| | | | - Yogesh S. Shouche
- Microbial Culture Collection, National Centre for Cell Science, Pune, Maharashtra 411007, India; E-Mail:
| |
Collapse
|
79
|
Abstract
Ribosomal RNA (rRNA) genes, essential to all forms of life, have been viewed as highly conserved and evolutionarily stable, partly because very little is known about their natural variations. Here, we explored large-scale variations of rRNA genes through bioinformatic analyses of available complete bacterial genomic sequences with an emphasis on formation mechanisms and biological significance. Interestingly, we found bacterial genomes in which no 16S rRNA genes harbor the conserved core of the anti–Shine-Dalgarno sequence (5′-CCTCC-3′). This loss was accompanied by elimination of Shine-Dalgarno–like sequences upstream of their protein-coding genes. Those genomes belong to 1 or 2 of the following categories: primary symbionts, hemotropic Mycoplasma, and Flavobacteria. We also found many rearranged rRNA genes and reconstructed their history. Conjecturing the underlying mechanisms, such as inversion, partial duplication, transposon insertion, deletion, and substitution, we were able to infer their biological significance, such as co-orientation of rRNA transcription and chromosomal replication, lateral transfer of rRNA gene segments, and spread of rRNA genes with an apparent structural defect through gene conversion. These results open the way to understanding dynamic evolutionary changes of rRNA genes and the translational machinery.
Collapse
Affiliation(s)
- Kyungtaek Lim
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
| | | | | |
Collapse
|
80
|
Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle. Proc Natl Acad Sci U S A 2011; 109:E42-50. [PMID: 22184251 DOI: 10.1073/pnas.1108229109] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In Escherichia coli crosstalk between DNA supercoiling, nucleoid-associated proteins and major RNA polymerase σ initiation factors regulates growth phase-dependent gene transcription. We show that the highly conserved spatial ordering of relevant genes along the chromosomal replichores largely corresponds both to their temporal expression patterns during growth and to an inferred gradient of DNA superhelical density from the origin to the terminus. Genes implicated in similar functions are related mainly in trans across the chromosomal replichores, whereas DNA-binding transcriptional regulators interact predominantly with targets in cis along the replichores. We also demonstrate that macrodomains (the individual structural partitions of the chromosome) are regulated differently. We infer that spatial and temporal variation of DNA superhelicity during the growth cycle coordinates oxygen and nutrient availability with global chromosome structure, thus providing a mechanistic insight into how the organization of a complete bacterial chromosome encodes a spatiotemporal program integrating DNA replication and global gene expression.
Collapse
|
81
|
Vogel RF, Pavlovic M, Ehrmann MA, Wiezer A, Liesegang H, Offschanka S, Voget S, Angelov A, Böcker G, Liebl W. Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs. Microb Cell Fact 2011; 10 Suppl 1:S6. [PMID: 21995419 PMCID: PMC3231932 DOI: 10.1186/1475-2859-10-s1-s6] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery industry. Lactobacillus sanfranciscensis is the predominant key bacterium in traditionally fermented sourdoughs. The genome of L. sanfranciscensis TMW 1.1304 isolated from an industrial sourdough fermentation was sequenced with a combined Sanger/454-pyrosequencing approach followed by gap closing by walking on fosmids. The sequencing data revealed a circular chromosomal sequence of 1,298,316 bp and two additional plasmids, pLS1 and pLS2, with sizes of 58,739 bp and 18,715 bp, which are predicted to encode 1,437, 63 and 19 orfs, respectively. The overall GC content of the chromosome is 34.71%. Several specific features appear to contribute to the ability of L. sanfranciscensis to outcompete other bacteria in the fermentation. L. sanfranciscensis contains the smallest genome within the lactobacilli and the highest density of ribosomal RNA operons per Mbp genome among all known genomes of free-living bacteria, which is important for the rapid growth characteristics of the organism. A high frequency of gene inactivation and elimination indicates a process of reductive evolution. The biosynthetic capacity for amino acids scarcely availably in cereals and exopolysaccharides reveal the molecular basis for an autochtonous sourdough organism with potential for further exploitation in functional foods. The presence of two CRISPR/cas loci versus a high number of transposable elements suggests recalcitrance to gene intrusion and high intrinsic genome plasticity.
Collapse
Affiliation(s)
- Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, 85350 Freising, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Wibberg D, Blom J, Jaenicke S, Kollin F, Rupp O, Scharf B, Schneiker-Bekel S, Sczcepanowski R, Goesmann A, Setubal JC, Schmitt R, Pühler A, Schlüter A. Complete genome sequencing of Agrobacterium sp. H13-3, the former Rhizobium lupini H13-3, reveals a tripartite genome consisting of a circular and a linear chromosome and an accessory plasmid but lacking a tumor-inducing Ti-plasmid. J Biotechnol 2011; 155:50-62. [DOI: 10.1016/j.jbiotec.2011.01.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/16/2010] [Accepted: 01/02/2011] [Indexed: 11/16/2022]
|
83
|
Kolmsee T, Delic D, Agyenim T, Calles C, Wagner R. Differential stringent control of Escherichia coli rRNA promoters: effects of ppGpp, DksA and the initiating nucleotides. MICROBIOLOGY-SGM 2011; 157:2871-2879. [PMID: 21798983 DOI: 10.1099/mic.0.052357-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcription of rRNAs in Escherichia coli is directed from seven redundant rRNA operons, which are mainly regulated by their P1 promoters. Here we demonstrate by in vivo measurements that the amounts of individual rRNAs transcribed from the different operons under normal growth vary noticeably although the structures of all the P1 promoters are very similar. Moreover, we show that starvation for amino acids does not affect the seven P1 promoters in the same way. Notably, reduction of transcription from rrnD P1 was significantly lower compared to the other P1 promoters. The presence of DksA was shown to be crucial for the ppGpp-dependent downregulation of all P1 promoters. Because rrnD P1 is the only rrn promoter starting with GTP instead of ATP, we performed studies with a mutant rrnD promoter, where the initiating G+1 is replaced by A+1. These analyses demonstrated that the ppGpp sensitivity of rrn P1 promoters depends on the nature and concentration of initiating nucleoside triphosphates (iNTPs). Our results support the notion that the seven rRNA operons are differentially regulated and underline the importance of a concerted activity between ppGpp, DksA and an adequate concentration of the respective iNTP.
Collapse
Affiliation(s)
- Tim Kolmsee
- Molekularbiologie der Bakterien, Heinrich-Heine-Universität Düsseldorf, Germany
| | - Denis Delic
- Molekularbiologie der Bakterien, Heinrich-Heine-Universität Düsseldorf, Germany
| | - Tommy Agyenim
- Molekularbiologie der Bakterien, Heinrich-Heine-Universität Düsseldorf, Germany
| | - Christian Calles
- Molekularbiologie der Bakterien, Heinrich-Heine-Universität Düsseldorf, Germany
| | - Rolf Wagner
- Molekularbiologie der Bakterien, Heinrich-Heine-Universität Düsseldorf, Germany
| |
Collapse
|
84
|
Abstract
Growth rate regulation in bacteria has been an important issue in bacterial physiology for the past 50 years. This review, using Escherichia coli as a paradigm, summarizes the mechanisms for the regulation of rRNA synthesis in the context of systems biology, particularly, in the context of genome-wide competition for limited RNA polymerase (RNAP) in the cell under different growth conditions including nutrient starvation. The specific location of the seven rrn operons in the chromosome and the unique properties of the rrn promoters contribute to growth rate regulation. The length of the rrn transcripts, coupled with gene dosage effects, influence the distribution of RNAP on the chromosome in response to growth rate. Regulation of rRNA synthesis depends on multiple factors that affect the structure of the nucleoid and the allocation of RNAP for global gene expression. The magic spot ppGpp, which acts with DksA synergistically, is a key effector in both the growth rate regulation and the stringent response induced by nutrient starvation, mainly because the ppGpp level changes in response to environmental cues. It regulates rRNA synthesis via a cascade of events including both transcription initiation and elongation, and can be explained by an RNAP redistribution (allocation) model.
Collapse
Affiliation(s)
- Ding Jun Jin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | | | | |
Collapse
|
85
|
Nørskov-Lauritsen N. Increased level of intragenomic 16S rRNA gene heterogeneity in commensal strains closely related to Haemophilus influenzae. MICROBIOLOGY-SGM 2011; 157:1050-1055. [PMID: 21310788 DOI: 10.1099/mic.0.047233-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The 16S rRNA gene sequence of strains closely related to, but excluded from, Haemophilus influenzae was investigated and a conspicuously high number of polymorphic nucleotide positions due to intragenomic 16S rRNA gene heterogeneity was observed. The average frequency of 16S rRNA gene polymorphic nucleotide positions in 31 variant strains was 7.0×10(-3), which is approximately ten times the level observed in validated strains of H. influenzae. Sixty-seven polymorphic nucleotide positions in seven strains most likely originated from the simultaneous presence of two distinct types of helix 18 as a consequence of prior recombinatorial events. The increased level of 16S rRNA gene polymorphism in commensal taxa excluded from the pathogenic species H. influenzae is unexplained. The heterogeneity imposes difficulties on rRNA gene-based classification and systematics.
Collapse
Affiliation(s)
- Niels Nørskov-Lauritsen
- Department of Clinical Microbiology, Aarhus University Hospital Skejby, DK-8200 Aarhus N, Denmark
| |
Collapse
|
86
|
Bugrysheva JV, Godfrey HP, Schwartz I, Cabello FC. Patterns and regulation of ribosomal RNA transcription in Borrelia burgdorferi. BMC Microbiol 2011; 11:17. [PMID: 21251259 PMCID: PMC3037291 DOI: 10.1186/1471-2180-11-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 01/20/2011] [Indexed: 12/16/2022] Open
Abstract
Background Borrelia burgdorferi contains one 16S and two tandem sets of 23S-5S ribosomal (r) RNA genes whose patterns of transcription and regulation are unknown but are likely to be critical for survival and persistence in its hosts. Results RT-PCR of B. burgdorferi N40 and B31 revealed three rRNA region transcripts: 16S rRNA-alanine transfer RNA (tRNAAla); tRNAIle; and both sets of 23S-5S rRNA. At 34°C, there were no differences in growth rate or in accumulation of total protein, DNA and RNA in B31 cultured in Barbour-Stoenner-Kelly (BSK)-H whether rabbit serum was present or not. At 23°C, B31 grew more slowly in serum-containing BSK-H than at 34°C. DNA per cell was higher in cells in exponential as compared to stationary phase at either temperature; protein per cell was similar at both temperatures in both phases. Similar amounts of rRNA were produced in exponential phase at both temperatures, and rRNA was down-regulated in stationary phase at either temperature. Interestingly, a relBbu deletion mutant unable to generate (p)ppGpp did not down-regulate rRNA at transition to stationary phase in serum-containing BSK-H at 34°C, similar to the relaxed phenotype of E. coli relA mutants. Conclusions We conclude that rRNA transcription in B. burgdorferi is complex and regulated both by growth phase and by the stringent response but not by temperature-modulated growth rate.
Collapse
Affiliation(s)
- Julia V Bugrysheva
- Department of Microbiology and Immunology, Basic Science Building, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
87
|
Liu JB, Amemiya T, Chang Q, Xu X, Itoh K. Real-time reverse transcription PCR analysis of trichloroethylene-regulated toluene dioxygenase expression in Pseudomonas putida F1. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2011; 46:294-300. [PMID: 21500075 DOI: 10.1080/03601234.2011.559877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Toluene dioxygenase (tod) is a multicomponent enzyme system in Pseudomonas putida F1. Tod can mediate the degradation of Trichloroethylene (TCE), a widespread pollutant. In this study, we try to explore the TCE-regulated tod expression by using real-time qRT-PCR. The minimal culture media were supplemented with glucose, toluene, or a mixture of glucose/toluene respectively as carbon and energy sources. The TCE was injected into each medium after a 12-hour incubation period. The TCE injection severely affected bacterial growth when cultured with toluene or toluene/glucose mixtures. The cell density dropped 61 % for bacteria growing in toluene and 36 % for bacteria in the glucose/toluene mixture after TCE injection, but the TCE treatment had little effect on bacteria supplied with glucose alone. The decrease in cell number was caused by the cytotoxicity of the TCE metabolized by tod. The results from the real-time qRT-PCR revealed that TCE was capable of inducing tod expression in a toluene-dependent manner and that the tod expression level increased 50 times in toluene and 3 times in the toluene/glucose mixture after 6 hours of TCE treatment. Furthermore, validation of the rpoD gene as a reference gene for P. putida F1 was performed in this study, providing a valuable foundation for future studies to use real-time qRT-PCR in the analysis of the P. putida F1 strain.
Collapse
Affiliation(s)
- Jian B Liu
- Graduate School of Environment and Information Science, Yokohama National University, Yokohama, Japan.
| | | | | | | | | |
Collapse
|
88
|
Nanamiya H, Sato M, Masuda K, Sato M, Wada T, Suzuki S, Natori Y, Katano M, Akanuma G, Kawamura F. Bacillus subtilis mutants harbouring a single copy of the rRNA operon exhibit severe defects in growth and sporulation. Microbiology (Reading) 2010; 156:2944-2952. [DOI: 10.1099/mic.0.035295-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The number of copies of rRNA genes in bacterial genomes differs greatly among bacterial species. It is difficult to determine the functional significance of the heterogeneity of each rRNA operon fully due to the existence of multiple rRNA operons and because the sequence heterogeneity among the rRNA genes is extremely low. To overcome this problem, we sequentially deleted the ten rrn operons of Bacillus subtilis and constructed seven mutant strains that each harboured a single rrn operon (either rrnA, B, D, E, I, J or O) in their genome. The growth rates and sporulation frequencies of these mutants were reduced drastically compared with those of the wild-type strain, and this was probably due to decreased levels of ribosomes in the mutants. Interestingly, the ability to sporulate varied significantly among the mutant strains. These mutants have proved to be invaluable in our initial attempts to reveal the functional significance of the heterogeneity of each rRNA operon.
Collapse
Affiliation(s)
- Hideaki Nanamiya
- Laboratory of Molecular Genetics and Research Information Center for Extremophile, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Makiko Sato
- Laboratory of Molecular Genetics and Research Information Center for Extremophile, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Kenta Masuda
- Laboratory of Molecular Genetics and Research Information Center for Extremophile, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Mikiko Sato
- Laboratory of Molecular Genetics and Research Information Center for Extremophile, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Tetsuya Wada
- Laboratory of Molecular Genetics and Research Information Center for Extremophile, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Shota Suzuki
- Laboratory of Molecular Genetics and Research Information Center for Extremophile, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Yousuke Natori
- Laboratory of Molecular Genetics and Research Information Center for Extremophile, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Masato Katano
- Laboratory of Molecular Genetics and Research Information Center for Extremophile, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Genki Akanuma
- Laboratory of Molecular Genetics and Research Information Center for Extremophile, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Fujio Kawamura
- Laboratory of Molecular Genetics and Research Information Center for Extremophile, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| |
Collapse
|
89
|
Ray AE, Connon SA, Sheridan PP, Gilbreath J, Shields M, Newby DT, Fujita Y, Magnuson TS. Intragenomic heterogeneity of the 16S rRNA gene in strain UFO1 caused by a 100-bp insertion in helix 6. FEMS Microbiol Ecol 2010; 72:343-53. [PMID: 20557571 DOI: 10.1111/j.1574-6941.2010.00868.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Two different versions of the 16S rRNA gene, one of which contained an unusual 100-bp insertion in helix 6, were detected in isolate UFO1 acquired from the Oak Ridge Integrated Field-Research Challenge (ORIFRC) site in Tennessee. rRNA was extracted from UFO1 and analyzed by reverse transcriptase-quantitative PCR with insert- and non-insert-specific primers; only the noninsert 16S rRNA gene sequence was detected. Similarly, PCR-based screening of a cDNA library (190 clones) constructed from reverse-transcribed rRNA from UFO1 did not detect any clones containing the 100-bp insert. Examination of cDNA with primers specific to the insert-bearing 16S rRNA gene, but downstream of the insert, suggests that the insert was excised from rRNA. Inspection of other 16S rRNA genes in the GenBank database revealed that a homologous insert sequence, also found in helix 6, has been reported in other environmental clones, including those acquired from ORIFRC enrichments. These findings demonstrate the existence of widely divergent copies of the 16S rRNA gene within the same organism, which may confound 16S rRNA gene-based methods of estimating microbial diversity in environmental samples.
Collapse
Affiliation(s)
- Allison E Ray
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
Since the discovery in 1899 of bifidobacteria as numerically dominant microbes in the feces of breast-fed infants, there have been numerous studies addressing their role in modulating gut microflora as well as their other potential health benefits. Because of this, they are frequently incorporated into foods as probiotic cultures. An understanding of their full interactions with intestinal microbes and the host is needed to scientifically validate any health benefits they may afford. Recently, the genome sequences of nine strains representing four species of Bifidobacterium became available. A comparative genome analysis of these genomes reveals a likely efficient capacity to adapt to their habitats, with B. longum subsp. infantis exhibiting more genomic potential to utilize human milk oligosaccharides, consistent with its habitat in the infant gut. Conversely, B. longum subsp. longum exhibits a higher genomic potential for utilization of plant-derived complex carbohydrates and polyols, consistent with its habitat in an adult gut. An intriguing observation is the loss of much of this genome potential when strains are adapted to pure culture environments, as highlighted by the genomes of B. animalis subsp. lactis strains, which exhibit the least potential for a gut habitat and are believed to have evolved from the B. animalis species during adaptation to dairy fermentation environments.
Collapse
Affiliation(s)
- Ju-Hoon Lee
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| | - Daniel J. O'Sullivan
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| |
Collapse
|
91
|
Wieland M, Berschneider B, Erlacher MD, Hartig JS. Aptazyme-mediated regulation of 16S ribosomal RNA. CHEMISTRY & BIOLOGY 2010; 17:236-42. [PMID: 20338515 DOI: 10.1016/j.chembiol.2010.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/13/2010] [Accepted: 02/11/2010] [Indexed: 01/05/2023]
Abstract
Developing artificial genetic switches in order to control gene expression via an external stimulus is an important aim in chemical and synthetic biology. Here, we expand the application range of RNA switches to the regulation of 16S rRNA function in Escherichia coli. For this purpose, we incorporated hammerhead ribozymes at several positions into orthogonalized 16S rRNA. We observed that ribosomal function is remarkably tolerant toward the incorporation of large additional RNA fragments at certain sites of the 16S rRNA. However, ribozyme-mediated cleavage results in severe reduction of 16S rRNA stability. We carried out an in vivo screen for the identification of sequences acting as ligand-responsive RNA switches, enabling thiamine-dependent switching of 16S rRNA function. In addition to expanding the regulatory toolbox, the presented artificial riboswitches should prove valuable to study aspects of rRNA folding and stability in bacteria.
Collapse
Affiliation(s)
- Markus Wieland
- Department of Chemistry, Konstanz Research School Chemical Biology and the Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
92
|
The systemic imprint of growth and its uses in ecological (meta)genomics. PLoS Genet 2010; 6:e1000808. [PMID: 20090831 PMCID: PMC2797632 DOI: 10.1371/journal.pgen.1000808] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 12/10/2009] [Indexed: 11/20/2022] Open
Abstract
Microbial minimal generation times range from a few minutes to several weeks. They are evolutionarily determined by variables such as environment stability, nutrient availability, and community diversity. Selection for fast growth adaptively imprints genomes, resulting in gene amplification, adapted chromosomal organization, and biased codon usage. We found that these growth-related traits in 214 species of bacteria and archaea are highly correlated, suggesting they all result from growth optimization. While modeling their association with maximal growth rates in view of synthetic biology applications, we observed that codon usage biases are better correlates of growth rates than any other trait, including rRNA copy number. Systematic deviations to our model reveal two distinct evolutionary processes. First, genome organization shows more evolutionary inertia than growth rates. This results in over-representation of growth-related traits in fast degrading genomes. Second, selection for these traits depends on optimal growth temperature: for similar generation times purifying selection is stronger in psychrophiles, intermediate in mesophiles, and lower in thermophiles. Using this information, we created a predictor of maximal growth rate adapted to small genome fragments. We applied it to three metagenomic environmental samples to show that a transiently rich environment, as the human gut, selects for fast-growers, that a toxic environment, as the acid mine biofilm, selects for low growth rates, whereas a diverse environment, like the soil, shows all ranges of growth rates. We also demonstrate that microbial colonizers of babies gut grow faster than stabilized human adults gut communities. In conclusion, we show that one can predict maximal growth rates from sequence data alone, and we propose that such information can be used to facilitate the manipulation of generation times. Our predictor allows inferring growth rates in the vast majority of uncultivable prokaryotes and paves the way to the understanding of community dynamics from metagenomic data. Microbial minimal generation times vary from a few minutes to several weeks. The reasons for this disparity have been thought to lie on different life-history strategies: fast-growing microbes grow extremely fast in rich media, but are less capable of dealing with stress and/or poor nutrient conditions. Prokaryotes have evolved a set of genomic traits to grow fast, including biased codon usage and transient or permanent gene multiplication for dosage effects. Here, we studied the relative role of these traits and show they can be used to predict minimal generation times from the genomic data of the vast majority of microbes that cannot be cultivated. We show that this inference can also be made with incomplete genomes and thus be applied to metagenomic data to test hypotheses about the biomass productivity of biotopes and the evolution of microbiota in the human gut after birth. Our results also allow a better understanding of the co-evolution between growth rates and genomic traits and how they can be manipulated in synthetic biology. Growth rates have been a key variable in microbial physiology studies in the last century, and we show how intimately they are linked with genome organization and prokaryotic ecology.
Collapse
|
93
|
Bollenbach T, Quan S, Chait R, Kishony R. Nonoptimal microbial response to antibiotics underlies suppressive drug interactions. Cell 2009; 139:707-18. [PMID: 19914165 DOI: 10.1016/j.cell.2009.10.025] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/15/2009] [Accepted: 10/14/2009] [Indexed: 11/30/2022]
Abstract
Suppressive drug interactions, in which one antibiotic can actually help bacterial cells to grow faster in the presence of another, occur between protein and DNA synthesis inhibitors. Here, we show that this suppression results from nonoptimal regulation of ribosomal genes in the presence of DNA stress. Using GFP-tagged transcription reporters in Escherichia coli, we find that ribosomal genes are not directly regulated by DNA stress, leading to an imbalance between cellular DNA and protein content. To test whether ribosomal gene expression under DNA stress is nonoptimal for growth rate, we sequentially deleted up to six of the seven ribosomal RNA operons. These synthetic manipulations of ribosomal gene expression correct the protein-DNA imbalance, lead to improved survival and growth, and completely remove the suppressive drug interaction. A simple mathematical model explains the nonoptimal regulation in different nutrient environments. These results reveal the genetic mechanism underlying an important class of suppressive drug interactions.
Collapse
Affiliation(s)
- Tobias Bollenbach
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
94
|
Comparison of the Biolog OmniLog Identification System and 16S ribosomal RNA gene sequencing for accuracy in identification of atypical bacteria of clinical origin. J Microbiol Methods 2009; 79:336-43. [DOI: 10.1016/j.mimet.2009.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 10/06/2009] [Accepted: 10/07/2009] [Indexed: 02/01/2023]
|
95
|
Increased RNA polymerase availability directs resources towards growth at the expense of maintenance. EMBO J 2009; 28:2209-19. [PMID: 19574956 DOI: 10.1038/emboj.2009.181] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 06/05/2009] [Indexed: 11/08/2022] Open
Abstract
Nutritionally induced changes in RNA polymerase availability have been hypothesized to be an evolutionary primeval mechanism for regulation of gene expression and several contrasting models have been proposed to explain how such 'passive' regulation might occur. We demonstrate here that ectopically elevating Escherichia coli RNA polymerase (Esigma(70)) levels causes an increased expression and promoter occupancy of ribosomal genes at the expense of stress-defense genes and amino acid biosynthetic operons. Phenotypically, cells overproducing Esigma(70) favours growth and reproduction at the expense of motility and damage protection; a response reminiscent of cells with no or diminished levels of the alarmone guanosine tetraphosphate (ppGpp). Consistently, we show that cells lacking ppGpp displayed markedly elevated levels of free Esigma(70) compared with wild-type cells and that the repression of ribosomal RNA expression and reduced growth rate of mutants with constitutively elevated levels of ppGpp can be suppressed by overproducing Esigma(70). We conclude that ppGpp modulates the levels of free Esigma(70) and that this is an integral part of the alarmone's means of regulating a trade-off between growth and maintenance.
Collapse
|
96
|
Tambong JT, Xu R, Bromfield ESP. Intercistronic heterogeneity of the 16S-23S rRNA spacer region among Pseudomonas strains isolated from subterranean seeds of hog peanut (Amphicarpa bracteata). MICROBIOLOGY-SGM 2009; 155:2630-2640. [PMID: 19406893 DOI: 10.1099/mic.0.028274-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Intercistronic heterogeneity of the 16S-23S rRNA internal transcribed spacer regions (ITS1) was investigated in 29 strains of fluorescent pseudomonads isolated from subterranean seeds of Amphicarpa bracteata (hog peanut). PCR amplification of the ITS1 region generated one or two products from the strains. Sequence analysis of the amplified fragments revealed an ITS1 fragment of about 517 bp that contained genes for tRNA(Ile) and tRNA(Ala) in all 29 strains; an additional smaller ITS1 of 279 bp without tRNA features was detected in 15 of the strains. The length difference appeared to be due to deletions of several nucleotide blocks between the 70 bp and 359 bp positions of the alignment. The end of the deletions in the variant ITS1 type coincided with the start of antiterminator box A, which is homologous to box A of other bacteria. Phylogenetic analyses using the neighbour-joining algorithm revealed two major phylogenetic clusters, one for each of the ITS1 types. Using a single specific primer set and the DNA-intercalating dye SYBR Green I for real-time PCR and melting-curve analysis produced highly informative curves with one or two recognizable melting peaks that readily distinguished between the two ITS1 types in pure cultures. The assay was used to confirm the presence of the variant ITS1 type in the Pseudomonas community in total DNA from root-zone soil and seed coats of hog peanut. Heterogeneity of the ITS1 region between species has potential for studying molecular systematics and population genetics of the genus Pseudomonas, but the presence of non-identical rRNA operons within a genome may pose problems.
Collapse
Affiliation(s)
- J T Tambong
- Environmental Health Program (Biodiversity), Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - R Xu
- Environmental Health Program (Biodiversity), Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - E S P Bromfield
- Environmental Health Program (Biodiversity), Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| |
Collapse
|
97
|
Reverse transcription of 16S rRNA to monitor ribosome-synthesizing bacterial populations in the environment. Appl Environ Microbiol 2009; 75:4589-98. [PMID: 19395563 DOI: 10.1128/aem.02970-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identification and quantification of phylogenetically defined bacterial populations in the environment are often performed using molecular tools targeting 16S rRNA. Fluorescence in situ hybridization has been used to monitor the expression and processing of rRNA by targeting the 3' tail of precursor 16S rRNA. To expand this approach, we employed reverse transcription of total RNA using primer S-D-Bact-0338-a-A-18. Length heterogeneity detected by slab gel analysis, denaturing high-performance liquid chromatography (DHPLC) was used to differentiate the 5' tail of the precursor from mature 16S rRNA, and the relative abundance of the precursor compared to the abundance of mature 16S rRNA was shown to be a sensitive indicator of the physiologic state of Acinetobacter calcoaceticus ATCC 23055(T). Our results demonstrate that this is a sensitive and reliable method with a detection limit of 10 ng of single-stranded DNA. The assay was also used to differentiate among precursor 16S rRNA levels with mixed pure cultures, as well as to examine the response of a mixed activated sludge culture exposed to fresh growth medium and the antibiotic chloramphenicol. The results of this study demonstrate that this assay is a novel reverse transcription assay that simultaneously measures the mature and precursor 16S rRNA pools for mixed bacterial populations in an engineered environment. Furthermore, collection of the reverse transcription products derived from activated sludge samples by the DHPLC approach enabled identification of the active bacterial genera. Comparison of 16S and precursor 16S rRNA clone library results indicated that the precursor 16S rRNA library is a more sensitive indicator for active bacteria in engineered environmental samples.
Collapse
|
98
|
Genome-scale reconstruction of Escherichia coli's transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization. PLoS Comput Biol 2009; 5:e1000312. [PMID: 19282977 PMCID: PMC2648898 DOI: 10.1371/journal.pcbi.1000312] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 01/29/2009] [Indexed: 11/19/2022] Open
Abstract
Metabolic network reconstructions represent valuable scaffolds for ‘-omics’ data integration and are used to computationally interrogate network properties. However, they do not explicitly account for the synthesis of macromolecules (i.e., proteins and RNA). Here, we present the first genome-scale, fine-grained reconstruction of Escherichia coli's transcriptional and translational machinery, which produces 423 functional gene products in a sequence-specific manner and accounts for all necessary chemical transformations. Legacy data from over 500 publications and three databases were reviewed, and many pathways were considered, including stable RNA maturation and modification, protein complex formation, and iron–sulfur cluster biogenesis. This reconstruction represents the most comprehensive knowledge base for these important cellular functions in E. coli and is unique in its scope. Furthermore, it was converted into a mathematical model and used to: (1) quantitatively integrate gene expression data as reaction constraints and (2) compute functional network states, which were compared to reported experimental data. For example, the model predicted accurately the ribosome production, without any parameterization. Also, in silico rRNA operon deletion suggested that a high RNA polymerase density on the remaining rRNA operons is needed to reproduce the reported experimental ribosome numbers. Moreover, functional protein modules were determined, and many were found to contain gene products from multiple subsystems, highlighting the functional interaction of these proteins. This genome-scale reconstruction of E. coli's transcriptional and translational machinery presents a milestone in systems biology because it will enable quantitative integration of ‘-omics’ datasets and thus the study of the mechanistic principles underlying the genotype–phenotype relationship. Systems biology aims to understand the interactions of cellular components in a systemic manner. Mathematical modeling is critical to the integration and analysis of these components on a conceptual as well as mechanistic level. To date, detailed genome-scale reconstructions of metabolism have become available for a growing number of organisms. Although metabolism has an important role in cells, other cellular functions need to be considered as well, such as signaling, regulation, and macromolecular synthesis. For instance, the cellular machinery required for RNA and protein synthesis consists of a complex set of proteins. Here, we show that one can collect all of the necessary information for a prokaryotic organism to create a gene-specific, fine-grained representation of the macromolecular synthesis machinery. E. coli was chosen as a model organism because of the wealth of available information. The explicit representation of transcription and translation in terms of a mass-balanced network enables a detailed, quantitative accounting of the protein synthesis capabilities of E. coli in silico. Hence, this study demonstrates the feasibility of constructing very large networks and also represents a critical step toward building cellular models of growth that can account for gene-specific protein production in a stoichiometric fashion on the genome scale.
Collapse
|
99
|
Falkinham JO. Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol 2009; 107:356-67. [PMID: 19228258 DOI: 10.1111/j.1365-2672.2009.04161.x] [Citation(s) in RCA: 381] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A majority of the Mycobacterium species, called the nontuberculous mycobacteria (NTM), are natural inhabitants of natural waters, engineered water systems, and soils. As a consequence of their ubiquitous distribution, humans are surrounded by these opportunistic pathogens. A cardinal feature of mycobacterial cells is the presence of a hydrophobic, lipid-rich outer membrane. The hydrophobicity of NTM is a major determinant of aerosolization, surface adherence, biofilm-formation, and disinfectant- and antibiotic resistance. The NTM are oligotrophs, able to grow at low carbon levels [>50 microg assimilable organic carbon (AOC) l(-1)], making them effective competitors in low nutrient, and disinfected environments (drinking water). Biofilm formation and oligotrophy lead to survival, persistence, and growth in drinking water distribution systems. In addition to their role as human and animal pathogens, the widespread distribution of NTM in the environment, coupled with their ability to degrade and metabolize a variety of complex hydrocarbons including pollutants, suggests that NTM may be agents of nutrient cycling.
Collapse
Affiliation(s)
- J O Falkinham
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0406, USA.
| |
Collapse
|
100
|
Phenotypic and genotypic analyses of clinical Fusobacterium nucleatum and Fusobacterium periodonticum isolates from the human gut. Anaerobe 2008; 14:301-9. [PMID: 19114111 DOI: 10.1016/j.anaerobe.2008.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/02/2008] [Accepted: 12/04/2008] [Indexed: 12/14/2022]
Abstract
Fusobacterium nucleatum is a Gram-negative anaerobic rod that is part of the normal human microflora, and has also been associated with various infections. Bacterial strains belonging to the species are typically heterogeneous in both phenotype and genotype, which can hinder their identification in a clinical setting. The majority of F. nucleatum isolates originate from oral sites, however the species is also a resident of the human gastrointestinal tract. The aim of this study was to compare F. nucleatum isolates from human intestinal biopsy samples to try and determine whether isolates from this site are divergent from oral isolates. We used a variety of phenotypic and genotypic markers to compare 21 F. nucleatum and Fusobacterium periodonticum isolates from the GI tract to oral isolates and recognized type strains in order to study heterogeneity within this set. 16S rDNA and rpoB gene sequence analysis allowed us to build phylogenetic trees that consistently placed isolates into distinct clusters. 16S rDNA copy number analyses using Denaturing Gradient Gel Electrophoresis (DGGE) demonstrated potential for use as a method to examine clonality amongst species. Phenotypic analyses gave variable results that were generally unhelpful in distinguishing between phylogenetic clusters. Our results suggest that a) F. periodonticum isolates are not restricted to the oral niche; b) phenotypic classification is not sufficient to subspeciate isolates; c) heterogeneity within the species is extensive but constrained; and d) F. nucleatum isolates from the gut tend to identify with the animalis subspecies.
Collapse
|