51
|
Nakano MM. Essential role of flavohemoglobin in long-term anaerobic survival of Bacillus subtilis. J Bacteriol 2006; 188:6415-8. [PMID: 16923910 PMCID: PMC1595361 DOI: 10.1128/jb.00557-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Bacillus subtilis culture incubated anaerobically in nitrate-containing medium lost viability during the first 3 days but recovered thereafter. A flavohemoglobin mutant showed very poor survival under these conditions unless the cells were prevented from carrying out nitrate respiration.
Collapse
Affiliation(s)
- Michiko M Nakano
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, 20000 NW Walker Road, Beaverton, OR 97006, USA.
| |
Collapse
|
52
|
de Been M, Francke C, Moezelaar R, Abee T, Siezen RJ. Comparative analysis of two-component signal transduction systems of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis. Microbiology (Reading) 2006; 152:3035-3048. [PMID: 17005984 DOI: 10.1099/mic.0.29137-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Members of the Bacillus cereus group are ubiquitously present in the environment and can adapt to a wide range of environmental fluctuations. In bacteria, these adaptive responses are generally mediated by two-component signal transduction systems (TCSs), which consist of a histidine kinase (HK) and its cognate response regulator (RR). With the use of in silico techniques, a complete set of HKs and RRs was recovered from eight completely sequenced B. cereus group genomes. By applying a bidirectional best-hits method combined with gene neighbourhood analysis, a footprint of these proteins was made. Around 40 HK-RR gene pairs were detected in each member of the B. cereus group. In addition, each member contained many HK and RR genes not encoded in pairs (‘orphans’). Classification of HKs and RRs based on their enzymic domains together with the analysis of two neighbour-joining trees of these domains revealed putative interaction partners for most of the ‘orphans’. Putative biological functions, including involvement in virulence and host–microbe interactions, were predicted for the B. cereus group HKs and RRs by comparing them with those of B. subtilis and other micro-organisms. Remarkably, B. anthracis appeared to lack specific HKs and RRs and was found to contain many truncated, putatively non-functional, HK and RR genes. It is hypothesized that specialization of B. anthracis as a pathogen could have reduced the range of environmental stimuli to which it is exposed. This may have rendered some of its TCSs obsolete, ultimately resulting in the deletion of some HK and RR genes.
Collapse
Affiliation(s)
- Mark de Been
- Laboratory of Food Microbiology, Wageningen University and Research Centre, Wageningen, The Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands
- Wageningen Centre for Food Sciences (WCFS), Wageningen, The Netherlands
| | - Christof Francke
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands
- Wageningen Centre for Food Sciences (WCFS), Wageningen, The Netherlands
| | - Roy Moezelaar
- Food Technology Centre, Wageningen University and Research Centre, Wageningen, The Netherlands
- Wageningen Centre for Food Sciences (WCFS), Wageningen, The Netherlands
| | - Tjakko Abee
- Laboratory of Food Microbiology, Wageningen University and Research Centre, Wageningen, The Netherlands
- Wageningen Centre for Food Sciences (WCFS), Wageningen, The Netherlands
| | - Roland J Siezen
- NIZO food research BV, Ede, The Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands
- Wageningen Centre for Food Sciences (WCFS), Wageningen, The Netherlands
| |
Collapse
|
53
|
Nakano MM, Geng H, Nakano S, Kobayashi K. The nitric oxide-responsive regulator NsrR controls ResDE-dependent gene expression. J Bacteriol 2006; 188:5878-87. [PMID: 16885456 PMCID: PMC1540067 DOI: 10.1128/jb.00486-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ResD-ResE signal transduction system is essential for aerobic and anaerobic respiration in Bacillus subtilis. ResDE-dependent gene expression is induced by oxygen limitation, but full induction under anaerobic conditions requires nitrite or nitric oxide (NO). Here we report that NsrR (formerly YhdE) is responsible for the NO-dependent up-regulation of the ResDE regulon. The null mutation of nsrR led to aerobic derepression of hmp (flavohemoglobin gene) partly in a ResDE-independent manner. In addition to its negative role in aerobic hmp expression, NsrR plays an important role under anaerobic conditions for regulation of ResDE-controlled genes, including hmp. ResDE-dependent gene expression was increased by the nsrR mutation in the absence of NO, but the expression was decreased by the mutation when NO was present. Consequently, B. subtilis cells lacking NsrR no longer sense and respond to NO (and nitrite) to up-regulate the ResDE regulon. Exposure to NO did not significantly change the cellular concentration of NsrR, suggesting that NO likely modulates the activity of NsrR. NsrR is similar to the recently described nitrite- or NO-sensitive transcription repressors present in various bacteria. NsrR likely has an Fe-S cluster, and interaction of NO with the Fe-S center is proposed to modulate NsrR activity.
Collapse
Affiliation(s)
- Michiko M Nakano
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, 20000 NW Walker Road, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|
54
|
Zhang Y, Nakano S, Choi SY, Zuber P. Mutational analysis of the Bacillus subtilis RNA polymerase alpha C-terminal domain supports the interference model of Spx-dependent repression. J Bacteriol 2006; 188:4300-11. [PMID: 16740936 PMCID: PMC1482945 DOI: 10.1128/jb.00220-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Spx protein of Bacillus subtilis exerts both positive and negative transcriptional control in response to oxidative stress by interacting with the C-terminal domain of the RNA polymerase (RNAP) alpha subunit (alphaCTD). Thus, transcription of the srf operon at the onset of competence development, which requires the ComA response regulator of the ComPA signal transduction system, is repressed by Spx-alphaCTD interaction. Previous genetic and structural analyses have determined that an Spx-binding surface resides in and around the alpha1 region of alphaCTD. Alanine-scanning mutagenesis of B. subtilis alphaCTD uncovered residue positions required for Spx function and ComA-dependent srf transcriptional activation. Analysis of srf-lacZ fusion expression, DNase I footprinting, and solid-phase promoter retention experiments indicate that Spx interferes with ComA-alphaCTD interaction and that residues Y263, C265, and K267 of the alpha1 region lie within overlapping ComA- and Spx-binding sites for alphaCTD interaction. Evidence is also presented that oxidized Spx, while enhancing interference of activator-RNAP interaction, is not essential for negative control.
Collapse
Affiliation(s)
- Ying Zhang
- EBS/OGI School of Science & Engineering, OHSU, 20000 NW Walker Rd., Beaverton, OR 97006, USA
| | | | | | | |
Collapse
|
55
|
Abstract
The Bacillus subtilis transcriptional regulator Fnr is an integral part of the regulatory cascade required for the adaptation of the bacterium to low oxygen tension. The B. subtilis Fnr regulon was defined via transcriptomic analysis in combination with bioinformatic-based binding site prediction. Four distinct groups of Fnr-dependent genes were observed. Group 1 genes (narKfnr, narGHJI, and arfM) are generally induced by Fnr under anaerobic conditions. All corresponding promoters contain an essential Fnr-binding site centered -41.5/-40.5 bp upstream of the transcriptional start point, suggesting their induction by direct Fnr interaction. Group 2 genes (alsSD, ldh lctP, ywcJ, and cydABCD) are characterized by anaerobic repression in the presence of nitrate. Mutational analysis of the Fnr-binding sites found in three of the corresponding promoters excluded their function in Fnr-mediated repression. Genetic evidence showing that group 2 genes are anaerobically repressed by nitrate reductase formation was accumulated. A possible role of the redox regulator YdiH in the regulation of group 2 genes was initially investigated. Group 3 genes are characterized by their Fnr-dependent activation in the presence of nitrate and the lack of an Fnr-binding site in their promoters. The analysis of Group 3 gene transcription (ykuNOP and ydbN) indicated that Fnr induces nitrate reductase production, which leads to the formation of the regulatory compound nitrite from nitrate. Finally, the group 4 operon acoABCL, lacking an Fnr-binding site, requires Fnr-dependent nitrate reductase formation for its general anaerobic induction. A regulatory model for the observed complex Fnr-mediated gene expression was deduced.
Collapse
Affiliation(s)
- Heike Reents
- Institute of Microbiology, Technical University of Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
56
|
Zhang W, Culley DE, Wu G, Brockman FJ. Two-Component Signal Transduction Systems of Desulfovibrio vulgaris: Structural and Phylogenetic Analysis and Deduction of Putative Cognate Pairs. J Mol Evol 2006; 62:473-87. [PMID: 16547644 DOI: 10.1007/s00239-005-0116-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 12/20/2005] [Indexed: 10/24/2022]
Abstract
A large number of two-component signal transduction systems (TCSTS) including 59 putative sensory histidine kinases (HK) and 55 response regulators (RR) were identified from the Desulfovibrio vulgaris genome. In this study, the structural and phylogenetic analyses of all putative TCSTSs in D. vulgaris were performed. The results showed that D. vulgaris contained 21 hybrid-type HKs, implying that multiple-step phosphorelay may be a common signal transduction mechanism in D. vulgaris. Despite the low sequence similarity that restricted the resolution of the phylogenetic analyses, most TCSTS components of D. vulgaris were found clustered into several subfamilies previously recognized in Escherichia coli and Bacillus subtilis. An attempt was made in this investigation to identify the possible cognate HK-RR pairs not linked on the chromosome in D. vulgaris based on similar expression patterns in response to various environmental and genetic changes. Expression levels of all HK and RR genes were measured using whole-genome microarrays. Five groups of HK-RR genes not linked on the chromosome were identified as possible cognate pairs in D. vulgaris. The results provided a preliminary list of possible cognate HK-RR pairs and constitute a basis for further exploration of interaction and physiological function of TCSTSs in D. vulgaris.
Collapse
Affiliation(s)
- Weiwen Zhang
- Microbiology Department, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | | | |
Collapse
|
57
|
Ren J, Prescott JF. The effect of mutation on Rhodococcus equi virulence plasmid gene expression and mouse virulence. Vet Microbiol 2004; 103:219-30. [PMID: 15504593 DOI: 10.1016/j.vetmic.2004.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 08/11/2004] [Accepted: 08/19/2004] [Indexed: 11/19/2022]
Abstract
An 81 kb virulence plasmid containing a pathogenicity island (PI) plays a crucial role in the pathogenesis of Rhodococcus equi pneumonia in foals but its specific function in virulence and regulation of plasmid-encoded virulence genes is unclear. Using a LacZ selection marker developed for R. equi in this study, in combination with an apramycin resistance gene, an efficient two-stage homologous recombination targeted gene mutation procedure was used to mutate three virulence plasmid genes, a LysR regulatory gene homologue (ORF4), a ResD-like two-component response regulator homologue (ORF8), and a gene (ORF10) of unknown function that is highly expressed by R. equi inside macrophages, as well as the chromosomal gene operon, phoPR. Virulence testing by liver clearance after intravenous injection in mice showed that the ORF4 and ORF8 mutants were fully attenuated, that the phoPR mutant was hypervirulent, and that virulence of the ORF10 mutant remained unchanged. A virulence plasmid DNA microarray was used to compare the plasmid gene expression profile of each of the four gene-targeted mutants against the parental R. equi strain. Changes were limited to PI genes and gene induction was observed for all mutants, suggesting that expression of virulence plasmid genes is dominated by a negative regulatory network. The finding of attenuation of ORF4 and ORF8 mutants despite enhanced transcription of vapA suggests that factors other than VapA are important for full expression of virulence. ORF1, a putative Lsr antigen gene, was strongly and similarly induced in all mutants, implying a common regulatory pathway affecting this gene for all four mutated genes. ORF8 is apparently the centre of this common pathway. Two distinct highly correlated gene induction patterns were observed, that of the ORF4 and ORF8 mutants, and that of the ORF10 and phoPR mutants. The gene induction pattern distinguishing these two groups paralleled their virulence in mice.
Collapse
Affiliation(s)
- Jun Ren
- Department of Pathobiology, University of Guelph, Guelph, Ont., Canada N1G 2W1
| | | |
Collapse
|
58
|
Härtig E, Geng H, Hartmann A, Hubacek A, Münch R, Ye RW, Jahn D, Nakano MM. Bacillus subtilis ResD induces expression of the potential regulatory genes yclJK upon oxygen limitation. J Bacteriol 2004; 186:6477-84. [PMID: 15375128 PMCID: PMC516614 DOI: 10.1128/jb.186.19.6477-6484.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the yclJK operon, which encodes a potential two-component regulatory system, is activated in response to oxygen limitation in Bacillus subtilis. Northern blot analysis and assays of yclJ-lacZ reporter gene fusion activity revealed that the anaerobic induction is dependent on another two-component signal transduction system encoded by resDE. ResDE was previously shown to be required for the induction of anaerobic energy metabolism. Electrophoretic mobility shift assays and DNase I footprinting experiments showed that the response regulator ResD binds specifically to the yclJK regulatory region upstream of the transcriptional start site. In vitro transcription experiments demonstrated that ResD is sufficient to activate yclJ transcription. The phosphorylation of ResD by its sensor kinase, ResE, highly stimulates its activity as a transcriptional activator. Multiple nucleotide substitutions in the ResD binding regions of the yclJ promoter abolished ResD binding in vitro and prevented the anaerobic induction of yclJK in vivo. A weight matrix for the ResD binding site was defined by a bioinformatic approach. The results obtained suggest the existence of a new branch of the complex regulatory system employed for the adaptation of B. subtilis to anaerobic growth conditions.
Collapse
Affiliation(s)
- Elisabeth Härtig
- Institute of Microbiology, University of Braunschweig, Braunschweig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Bronner S, Monteil H, Prévost G. Regulation of virulence determinants inStaphylococcus aureus: complexity and applications. FEMS Microbiol Rev 2004; 28:183-200. [PMID: 15109784 DOI: 10.1016/j.femsre.2003.09.003] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Revised: 05/16/2003] [Accepted: 09/15/2003] [Indexed: 11/22/2022] Open
Abstract
The virulence of Staphylococcus aureus is essentially determined by cell wall associated proteins and secreted toxins that are regulated and expressed according to growth phases and/or growth conditions. Gene expression is regulated by specific and sensitive mechanisms, most of which act at the transcriptional level. Regulatory factors constitute numerous complex networks, driving specific interactions with target gene promoters. These factors are largely regulated by two-component regulatory systems, such as the agr, saeRS, srrAB, arlSR and lytRS systems. These systems are sensitive to environmental signals and consist of a sensor histidine kinase and a response regulator protein. DNA-binding proteins, such as SarA and the recently identified SarA homologues (SarR, Rot, SarS, SarT, SarU), also regulate virulence factor expression. These homologues might be intermediates in the regulatory networks. The multiple pathways generated by these factors allow the bacterium to adapt to environmental conditions rapidly and specifically, and to develop infection. Precise knowledge of these regulatory mechanisms and how they control virulence factor expression would open up new perspectives for antimicrobial chemotherapy using key inhibitors of these systems.
Collapse
Affiliation(s)
- Stéphane Bronner
- Institut de Bactériologie, Faculté de Médecine, Université Louis Pasteur - Hôpitaux, Universitaires de Strasbourg, 3, rue Koeberlé, F-67000 Strasbourg, France
| | | | | |
Collapse
|
60
|
Zuber P. Spx-RNA polymerase interaction and global transcriptional control during oxidative stress. J Bacteriol 2004; 186:1911-8. [PMID: 15028674 PMCID: PMC374421 DOI: 10.1128/jb.186.7.1911-1918.2004] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Peter Zuber
- Department of Environmental and Biomolecular Systems, OGI School of Science & Engineering, Oregon Health & Science University, Beaverton, Oregon 97006, USA.
| |
Collapse
|
61
|
Geng H, Nakano S, Nakano MM. Transcriptional activation by Bacillus subtilis ResD: tandem binding to target elements and phosphorylation-dependent and -independent transcriptional activation. J Bacteriol 2004; 186:2028-37. [PMID: 15028686 PMCID: PMC374413 DOI: 10.1128/jb.186.7.2028-2037.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of genes involved in nitrate respiration in Bacillus subtilis is regulated by the ResD-ResE two-component signal transduction system. The membrane-bound ResE sensor kinase perceives a redox-related signal(s) and phosphorylates the cognate response regulator ResD, which enables interaction of ResD with ResD-dependent promoters to activate transcription. Hydroxyl radical footprinting analysis revealed that ResD tandemly binds to the -41 to -83 region of hmp and the -46 to -92 region of nasD. In vitro runoff transcription experiments showed that ResD is necessary and sufficient to activate transcription of the ResDE regulon. Although phosphorylation of ResD by ResE kinase greatly stimulated transcription, unphosphorylated ResD, as well as ResD with a phosphorylation site (Asp57) mutation, was able to activate transcription at a low level. The D57A mutant was shown to retain the activity in vivo to induce transcription of the ResDE regulon in response to oxygen limitation, suggesting that ResD itself, in addition to its activation through phosphorylation-mediated conformation change, senses oxygen limitation via an unknown mechanism leading to anaerobic gene activation.
Collapse
Affiliation(s)
- Hao Geng
- Department of Environmental and Biomolecular Systems, OGI School of Science & Engineering, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
62
|
Baruah A, Lindsey B, Zhu Y, Nakano MM. Mutational analysis of the signal-sensing domain of ResE histidine kinase from Bacillus subtilis. J Bacteriol 2004; 186:1694-704. [PMID: 14996800 PMCID: PMC355969 DOI: 10.1128/jb.186.6.1694-1704.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis ResD-ResE two-component regulatory system activates genes involved in nitrate respiration in response to oxygen limitation or nitric oxide (NO). The sensor kinase ResE activates the response regulator ResD through phosphorylation, which then binds to the regulatory region of genes involved in anaerobiosis to activate their transcription. ResE is composed of an N-terminal signal input domain and a C-terminal catalytic domain. The N-terminal domain contains two transmembrane subdomains and a large extracytoplasmic loop. It also has a cytoplasmic PAS subdomain between the HAMP linker and C-terminal kinase domain. In an attempt to identify the signal-sensing subdomain of ResE, a series of deletions and amino acid substitutions were generated in the N-terminal domain. The results indicated that cytoplasmic ResE lacking the transmembrane segments and the extracytoplasmic loop retains the ability to sense oxygen limitation and NO, which leads to transcriptional activation of ResDE-dependent genes. This activity was eliminated by the deletion of the PAS subdomain, demonstrating that the PAS subdomain participates in signal reception. The study also raised the possibility that the extracytoplasmic region may serve as a second signal-sensing subdomain. This suggests that the extracytoplasmic region could contribute to amplification of ResE activity leading to the robust activation of genes required for anaerobic metabolism in B. subtilis.
Collapse
Affiliation(s)
- Avanti Baruah
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, Oregon 97006, USA
| | | | | | | |
Collapse
|
63
|
Kohler C, von Eiff C, Peters G, Proctor RA, Hecker M, Engelmann S. Physiological characterization of a heme-deficient mutant of Staphylococcus aureus by a proteomic approach. J Bacteriol 2004; 185:6928-37. [PMID: 14617657 PMCID: PMC262702 DOI: 10.1128/jb.185.23.6928-6937.2003] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The high-resolution two-dimensional (2D) protein gel electrophoresis technique combined with matrix-assisted laser desorption ionization-time of flight mass spectrometry was used for identification of proteins whose levels were changed by a mutation in hemB. Cytoplasmic protein extracts obtained from the mutant and the wild type (strain COL) at different stages of growth in tryptone soya broth (exponential, transitional, and stationary growth phases) were separated on 2D protein gels. Comparison of the 2D patterns of the protein extracts of the two strains revealed major differences. Because the electron transport chain of the mutant is interrupted due to the deficiency of heme, this organism should be unable to use oxygen or nitrate as a terminal electron acceptor. Consistent with this hypothesis, proteins involved in the glycolytic pathway and related pathways (glyceraldehyde-3-phosphate dehydrogenase, enolase, and phosphoglycerate kinase) and in fermentation pathways (lactate dehydrogenase, alcohol dehydrogenase, and pyruvate formate lyase) were induced in exponentially growing cells of the mutant. These results strongly indicate that the hemB mutant generates ATP from glucose or fructose only by substrate phosphorylation. Analyses of the fermentation reactions showed that the main product was lactate. Although pyruvate formate lyase (Pfl) and pyruvate dehydrogenase were present, neither ethanol nor acetate was detected in significant amounts. Presumably, Pfl was not activated in the presence of oxygen, and pyruvate dehydrogenase might have very low activity. Transcriptional analysis of citB, encoding the aconitase, revealed that the activity of the citrate cycle enzymes was down-regulated in the hemB mutant. The arginine deiminase pathway was also induced, and it could provide ATP as well. Furthermore, the amounts of most of the extracellular virulence factors were significantly reduced by a mutation in hemB, which is consistent with previous reports.
Collapse
Affiliation(s)
- Christian Kohler
- Institut für Mikrobiologie, Universität Greifswald, 17487 Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
64
|
Abstract
We describe the identification of Rex, a novel redox-sensing repressor that appears to be widespread among Gram-positive bacteria. In Streptomyces coelicolor Rex binds to operator (ROP) sites located upstream of several respiratory genes, including the cydABCD and rex-hemACD operons. The DNA-binding activity of Rex appears to be controlled by the redox poise of the NADH/NAD+ pool. Using electromobility shift and surface plasmon resonance assays we show that NADH, but not NAD+, inhibits the DNA-binding activity of Rex. However, NAD+ competes with NADH for Rex binding, allowing Rex to sense redox poise over a range of NAD(H) concentrations. Rex is predicted to include a pyridine nucleotide-binding domain (Rossmann fold), and residues that might play key structural and nucleotide binding roles are highly conserved. In support of this, the central glycine in the signature motif (GlyXGlyXXGly) is shown to be essential for redox sensing. Rex homologues exist in most Gram-positive bacteria, including human pathogens such as Staphylococcus aureus, Listeria monocytogenes and Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Dimitris Brekasis
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | |
Collapse
|
65
|
Rahman MT, Herron LL, Kapur V, Meijer WG, Byrne BA, Ren J, Nicholson VM, Prescott JF. Partial genome sequencing of Rhodococcus equi ATCC 33701. Vet Microbiol 2003; 94:143-58. [PMID: 12781482 DOI: 10.1016/s0378-1135(03)00100-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Preliminary analysis of a partial (30% coverage) genome sequence of Rhodococcus equi has revealed a number of important features. The most notable was the extent of the homology of genes identified with those of Mycobacterium tuberculosis. The similarities in the proportion of genes devoted to fatty acid degradation and to lipid biosynthesis was a striking but not surprising finding given the relatedness of these organisms and their success as intracellular pathogens. The rapid recent improvement in understanding of virulence in M. tuberculosis and other pathogenic mycobacteria has identified a large number of genes of putative or proven importance in virulence, homologs of many of which were also identified in R. equi. Although R. equi appears to have currently unique genes, and has important differences, its similarity to M. tuberculosis supports the need to understand the basis of virulence in this organism. The partial genome sequence will be a resource for workers interested in R. equi until such time as a full genome sequence has been characterized.
Collapse
Affiliation(s)
- M T Rahman
- Department of Pathobiology, University of Guelph, Guelph, Ont. N1G 2W1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Ren J, Prescott JF. Analysis of virulence plasmid gene expression of intra-macrophage and in vitro grown Rhodococcus equi ATCC 33701. Vet Microbiol 2003; 94:167-82. [PMID: 12781484 DOI: 10.1016/s0378-1135(03)00099-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Rhodococcus equi is a soil organism that infects macrophages of foals and immunocompromised humans. Virulence in foal isolates is tightly associated with an 80kb plasmid, which includes a pathogenicity island (PI) with a virulence-associated gene family, vap. A DNA microarray containing 66 of 69 putative open reading frames (ORFs) of the virulence plasmid was developed. Virulence plasmid gene expression of R. equi grown in macrophages or under different conditions in vitro was compared against in vitro growth at 30 degrees C, pH=7. When grown in macrophages, all seven vap family genes as well as six ORFs within, but not outside, the PI were induced. Cluster analysis of the gene expression matrix assembled from different growth conditions suggested that those genes that actively responded to environmental changes divided broadly into two groups. One group, orf1, 2, 5, 6-8, 12-15, 19, and 20 (which includes all the vap genes), was induced at 37 degrees C, mostly by low iron, and to a lesser extent by the synergy of low calcium and pH=5. The second group, orf3, 9, and 10, was induced at 37 degrees C by magnesium depletion (produced by EDTA treatment of growth medium). Temperature (37 degrees C) was the most important factor inducing gene expression for the both groups. Iron restriction led to down-regulation of Group II genes and magnesium restriction led to down-regulation of Group I genes. A putative consensus IdeR binding site was identified upstream of vapA, suggesting that vapA is a member of an IdeR regulon in R. equi. Expression of genes inside macrophages was most closely but not completely mimicked by growth of bacteria at 37 degrees C, pH=5, under conditions of restricted iron, calcium and magnesium; that is, similar to environmental factors found inside macrophages.
Collapse
Affiliation(s)
- Jun Ren
- Department of Pathobiology, University of Guelph, Guelph, Ont. N1G 2W1, Canada.
| | | |
Collapse
|
67
|
Klichko VI, Miller J, Wu A, Popov SG, Alibek K. Anaerobic induction of Bacillus anthracis hemolytic activity. Biochem Biophys Res Commun 2003; 303:855-62. [PMID: 12670489 DOI: 10.1016/s0006-291x(03)00440-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A number of genes in Bacillus anthracis encode for proteins homologous to the membrane-damaging factors known as pathogenic determinants in different bacteria. B. anthracis, however, has been traditionally considered non-hemolytic, and the recently identified hemolytic genes have been suggested to be transcriptionally silent. We found that the hemolytic genes of B. anthracis, collectively designated as anthralysins (Anls), could be induced in strict anaerobic conditions. We also demonstrate that Anl genes are expressed at the early stages of infection within macrophages by vegetating bacilli after spore germination. Cooperative and synergistic enhancement of the pore-forming and phospholipase C (PLC) activities of the Anls was found in hemolytic tests on human, but not sheep, red blood cells (RBC). These findings imply Anls as B. anthracis pathogenic determinants and highlight oxygen limitation as environmental factor controlling their expression at both early and late stages of infection.
Collapse
Affiliation(s)
- Vladimir I Klichko
- Advanced Biosystems, Inc., 10900 University Boulevard, Manassas, VA 20110, USA
| | | | | | | | | |
Collapse
|
68
|
Nakano S, Nakano MM, Zhang Y, Leelakriangsak M, Zuber P. A regulatory protein that interferes with activator-stimulated transcription in bacteria. Proc Natl Acad Sci U S A 2003; 100:4233-8. [PMID: 12642660 PMCID: PMC153076 DOI: 10.1073/pnas.0637648100] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcriptional activator proteins in bacteria often operate by interaction with the C-terminal domain of the alpha-subunit of RNA polymerase (RNAP). Here we report the discovery of an "anti-alpha" factor Spx in Bacillus subtilis that blocks transcriptional activation by binding to the alpha-C-terminal domain, thereby interfering with the capacity of RNAP to respond to certain activator proteins. Spx disrupts complex formation between the activator proteins ResD and ComA and promoter-bound RNAP, and it does so by direct interaction with the alpha-subunit. ResD- and ComA-stimulated transcription requires the proteolytic elimination of Spx by the ATP-dependent protease ClpXP. Spx represents a class of transcriptional regulators that inhibit activator-stimulated transcription by interaction with alpha.
Collapse
Affiliation(s)
- Shunji Nakano
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | | | | | | |
Collapse
|
69
|
Nakano MM. Induction of ResDE-dependent gene expression in Bacillus subtilis in response to nitric oxide and nitrosative stress. J Bacteriol 2002; 184:1783-7. [PMID: 11872732 PMCID: PMC134876 DOI: 10.1128/jb.184.6.1783-1787.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of ResDE-controlled genes in Bacillus subtilis was induced by sodium nitroprusside and nitric oxide. This induction requires the sensor kinase ResE and the response regulator ResD. Among members of the ResDE regulon, only the flavohemoglobin gene was induced by nitrosative stress via both a ResDE-dependent mechanism and an unidentified ResDE-independent mechanism.
Collapse
Affiliation(s)
- Michiko M Nakano
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, Oregon 97006-8921, USA.
| |
Collapse
|
70
|
Marino M, Ramos HC, Hoffmann T, Glaser P, Jahn D. Modulation of anaerobic energy metabolism of Bacillus subtilis by arfM (ywiD). J Bacteriol 2001; 183:6815-21. [PMID: 11698370 PMCID: PMC95522 DOI: 10.1128/jb.183.23.6815-6821.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis grows under anaerobic conditions utilizing nitrate ammonification and various fermentative processes. The two-component regulatory system ResDE and the redox regulator Fnr are the currently known parts of the regulatory system for anaerobic adaptation. Mutation of the open reading frame ywiD located upstream of the respiratory nitrate reductase operon narGHJI resulted in elimination of the contribution of nitrite dissimilation to anaerobic nitrate respiratory growth. Significantly reduced nitrite reductase (NasDE) activity was detected, while respiratory nitrate reductase activity was unchanged. Anaerobic induction of nasDE expression was found to be significantly dependent on intact ywiD, while anaerobic narGHJI expression was ywiD independent. Anaerobic transcription of hmp, encoding a flavohemoglobin-like protein, and of the fermentative operons lctEP and alsSD, responsible for lactate and acetoin formation, was partially dependent on ywiD. Expression of pta, encoding phosphotransacetylase involved in fermentative acetate formation, was not influenced by ywiD. Transcription of the ywiD gene was anaerobically induced by the redox regulator Fnr via the conserved Fnr-box (TGTGA-6N-TCACT) centered 40.5 bp upstream of the transcriptional start site. Anaerobic induction of ywiD by resDE was found to be indirect via resDE-dependent activation of fnr. The ywiD gene is subject to autorepression and nitrite repression. These results suggest a ResDE --> Fnr --> YwiD regulatory cascade for the modulation of genes involved in the anaerobic metabolism of B. subtilis. Therefore, ywiD was renamed arfM for anaerobic respiration and fermentation modulator.
Collapse
Affiliation(s)
- M Marino
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
71
|
Nakano MM, Zhu Y. Involvement of ResE phosphatase activity in down-regulation of ResD-controlled genes in Bacillus subtilis during aerobic growth. J Bacteriol 2001; 183:1938-44. [PMID: 11222591 PMCID: PMC95088 DOI: 10.1128/jb.183.6.1938-1944.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ResD-ResE signal transduction system is required for aerobic and anaerobic respiration in Bacillus subtilis. The histidine sensor kinase ResE, by functioning as a kinase and a phosphatase for the cognate response regulator ResD, controls the level of phosphorylated ResD. A high level of phosphorylated ResD is postulated to cause a dramatic increase in transcription of ResDE-controlled genes under anaerobic conditions. A mutant ResE, which retains autophosphorylation and ResD phosphorylation activities but is defective in ResD dephosphorylation, allowed partially derepressed aerobic expression of the ResDE-controlled genes. The result indicates that phosphatase activity of ResE is regulated by oxygen availability and anaerobic induction of the ResDE regulon is partly due to a reduction of the ResE phosphatase activity during anaerobiosis. That elimination of phosphatase activity does not result in complete aerobic derepression suggests that the ResE kinase activity is also subject to control in response to oxygen limitation.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton, Oregon 97006, USA.
| | | |
Collapse
|
72
|
Yarwood JM, McCormick JK, Schlievert PM. Identification of a novel two-component regulatory system that acts in global regulation of virulence factors of Staphylococcus aureus. J Bacteriol 2001; 183:1113-23. [PMID: 11157922 PMCID: PMC94983 DOI: 10.1128/jb.183.4.1113-1123.2001] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have previously demonstrated that the presence of oxygen is necessary for the production of toxic shock syndrome toxin 1 (TSST-1) by Staphylococcus aureus in vitro. To investigate the mechanism by which oxygen might regulate toxin production, we identified homologs in S. aureus of the Bacillus subtilis resDE genes. The two-component regulatory system encoded by resDE, ResD-ResE, has been implicated in the global regulation of aerobic and anaerobic respiratory metabolism in B. subtilis. We have designated the S. aureus homologs srrAB (staphylococcal respiratory response). The effects of srrAB expression on expression of RNAIII (the effector molecule of the agr locus) and on production of TSST-1 (an exotoxin) and protein A (a surface-associated virulence factor) were investigated. Expression of RNAIII was inversely related to expression of srrAB. Disruption of srrB resulted in increased levels of RNAIII, while expression of srrAB in trans on a multicopy plasmid resulted in repression of RNAIII transcription, particularly in microaerobic conditions. Disruption of srrB resulted in decreased production of TSST-1 under microaerobic conditions and, to a lesser extent, under aerobic conditions as well. Overexpression of srrAB resulted in nearly complete repression of TSST-1 production in both microaerobic and aerobic conditions. Protein A production by the srrB mutant was upregulated in microaerobic conditions and decreased in aerobic conditions. Protein A production was restored to nearly wild-type levels by complementation of srrAB into the null mutant. These results indicate that the putative two-component system encoded by srrAB, SrrA-SrrB, acts in the global regulation of staphylococcal virulence factors, and may repress virulence factors under low-oxygen conditions. Furthermore, srrAB may provide a mechanistic link between respiratory metabolism, environmental signals, and regulation of virulence factors in S. aureus.
Collapse
Affiliation(s)
- J M Yarwood
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
73
|
Jubier-Maurin V, Rodrigue A, Ouahrani-Bettache S, Layssac M, Mandrand-Berthelot MA, Köhler S, Liautard JP. Identification of the nik gene cluster of Brucella suis: regulation and contribution to urease activity. J Bacteriol 2001; 183:426-34. [PMID: 11133934 PMCID: PMC94896 DOI: 10.1128/jb.183.2.426-434.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2000] [Accepted: 10/19/2000] [Indexed: 11/20/2022] Open
Abstract
Analysis of a Brucella suis 1330 gene fused to a gfp reporter, and identified as being induced in J774 murine macrophage-like cells, allowed the isolation of a gene homologous to nikA, the first gene of the Escherichia coli operon encoding the specific transport system for nickel. DNA sequence analysis of the corresponding B. suis nik locus showed that it was highly similar to that of E. coli except for localization of the nikR regulatory gene, which lies upstream from the structural nikABCDE genes and in the opposite orientation. Protein sequence comparisons suggested that the deduced nikABCDE gene products belong to a periplasmic binding protein-dependent transport system. The nikA promoter-gfp fusion was activated in vitro by low oxygen tension and metal ion deficiency and was repressed by NiCl(2) excess. Insertional inactivation of nikA strongly reduced the activity of the nickel metalloenzyme urease, which was restored by addition of a nickel excess. Moreover, the nikA mutant of B. suis was functionally complemented with the E. coli nik gene cluster, leading to the recovery of urease activity. Reciprocally, an E. coli strain harboring a deleted nik operon recovered hydrogenase activity by heterologous complementation with the B. suis nik locus. Taking into account these results, we propose that the nik locus of B. suis encodes a nickel transport system. The results further suggest that nickel could enter B. suis via other transport systems. Intracellular growth rates of the B. suis wild-type and nikA mutant strains in human monocytes were similar, indicating that nikA was not essential for this step of infection. We discuss a possible role of nickel transport in maintaining enzymatic activities which could be crucial for survival of the bacteria under the environmental conditions encountered within the host.
Collapse
Affiliation(s)
- V Jubier-Maurin
- Institut National de la Santé et de la Recherche Médicale U-431, Institut E. Bataillon, Université Montpellier II, 34095 Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
74
|
Maghnouj A, Abu-Bakr AA, Baumberg S, Stalon V, Vander Wauven C. Regulation of anaerobic arginine catabolism in Bacillus licheniformis by a protein of the Crp/Fnr family. FEMS Microbiol Lett 2000; 191:227-34. [PMID: 11024268 DOI: 10.1111/j.1574-6968.2000.tb09344.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Arginine anaerobic catabolism occurs in Bacillus licheniformis through the arginine deiminase pathway, encoded by the gene cluster arcABDC. We report here the involvement of a new protein, ArcR, in the regulation of the pathway. ArcR is a protein of the Crp/Fnr family encoded by a gene located 109 bp downstream from arcC. It binds to a palindromic sequence, very similar to an Escherichia coli Crp binding site, located upstream from arcA. Residues in the C-terminal domain of Crp that form the DNA binding motif, in particular residues Arg-180 and Glu-181 that make specific bonds with DNA, are conserved in ArcR, suggesting that the complexes formed with DNA by Crp and ArcR are similar. Moreover, the pattern of DNase I hypersensitivity sites induced by the binding of ArcR suggests that ArcR bends the DNA in the same way as Crp. From the absence of anaerobic induction following inactivation of arcR and from the existence of a binding site upstream of the arcA transcription start point, it can be inferred that ArcR is an activator of the arginine deiminase pathway.
Collapse
Affiliation(s)
- A Maghnouj
- Laboratoire de Microbiologie, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | |
Collapse
|
75
|
Zhang X, Hulett FM. ResD signal transduction regulator of aerobic respiration in Bacillus subtilis: ctaA promoter regulation. Mol Microbiol 2000; 37:1208-19. [PMID: 10972837 DOI: 10.1046/j.1365-2958.2000.02076.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A two-component signal transduction system composed of a sensor kinase, ResE, and a response regulator, ResD, encoded by resD and resE genes of the res operon (resABCDE), has a regulatory role in both aerobic and anaerobic respiration. In terms of aerobic respiration, resD functions upstream of ctaA, a gene required for haem A biogenesis and hence for the synthesis of haem A-containing cytochrome terminal oxidases. Although ResD is probably a transcription factor, there was no direct evidence that ResD protein, either phosphorylated or unphosphorylated, interacts directly with regulatory regions of ResD-controlled genes. Here, we report the overexpression and purification of ResD and ResE and their role in gene activation. ResD can be phosphorylated by ResE in vitro and is a monomer in solution in either the phosphorylated or unphosphorylated state. The binding activity of ResD to the ctaA promoter was examined by gel shift assays and DNase I footprinting assays. DNase I footprinting showed both unphosphorylated and phosphorylated ResD binding to the ctaA promoter and showed that there are three binding sites (A1, A2 and A3), two (A1 and A2) upstream of the -35 promoter region and one (A3) downstream of the -10 of the promoter. The role of each site in ctaA promoter activity and ResD binding was characterized using deletion analysis, followed by the DNase I footprinting and in vivo transcription assays of promoter-lacZ fusions. Our results showed that the concentration of ResD required to bind at each site is different and that ResD binding at the A1 site is independent of the other two ResD binding sites, but that the concentration of ResD approximately P required to protect site A2 is reduced when site A3 is present. In vivo transcription assays from promoter-lacZ fusion constructs showed that DNA containing ResD-binding site A2 was essential for promoter activity and that promoter constructs containing both binding sites A2 and A3 were sufficient for full promoter activity.
Collapse
Affiliation(s)
- X Zhang
- Laboratory for Molecular Biology, Department of Biological Sciences University of Illinois at Chicago, 900 S. Ashland Avenue (M/C 567), Chicago, IL 60607, USA
| | | |
Collapse
|
76
|
Nakano MM, Zhu Y, Lacelle M, Zhang X, Hulett FM. Interaction of ResD with regulatory regions of anaerobically induced genes in Bacillus subtilis. Mol Microbiol 2000; 37:1198-207. [PMID: 10972836 DOI: 10.1046/j.1365-2958.2000.02075.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The two-component regulatory proteins ResD and ResE are required for anaerobic nitrate respiration in Bacillus subtilis. ResD, when it undergoes ResE-dependent phosphorylation, is thought to activate transcriptionally anaerobically induced genes such as fnr, hmp and nasD. In this report, deletion analysis of the fnr, hmp and nasD promoter regions was carried out to identify cis-acting sequences required for ResDE-dependent transcription. The results suggest that the hmp and nasD promoters have multiple target sequences for ResDE-dependent regulation and that fnr has a single target site. Gel mobility shift assays and DNase I footprinting analyses were performed to determine whether ResD interacts directly with the regulatory regions of the three genes. Our results indicate that ResD specifically binds to sequences residing upstream of the hmp and nasD promoters and that phosphorylation of ResD significantly stimulates this binding. In contrast, a higher concentration of ResD is required for binding to the fnr promoter region and no stimulation of the binding by ResD phosphorylation was observed. Taken together, these results suggest that ResD activates transcription of fnr, hmp and nasD by interacting with DNA upstream of these promoters. Our results suggest that phosphorylation of ResD stimulates binding to multiple ResD binding sites, but is much less stimulatory if only a single binding site exists.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton, OR 97006, USA.
| | | | | | | | | |
Collapse
|
77
|
Ye RW, Tao W, Bedzyk L, Young T, Chen M, Li L. Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J Bacteriol 2000; 182:4458-65. [PMID: 10913079 PMCID: PMC94617 DOI: 10.1128/jb.182.16.4458-4465.2000] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis can grow under anaerobic conditions, either with nitrate or nitrite as the electron acceptor or by fermentation. A DNA microarray containing 4,020 genes from this organism was constructed to explore anaerobic gene expression patterns on a genomic scale. When mRNA levels of aerobic and anaerobic cultures during exponential growth were compared, several hundred genes were observed to be induced or repressed under anaerobic conditions. These genes are involved in a variety of cell functions, including carbon metabolism, electron transport, iron uptake, antibiotic production, and stress response. Among the highly induced genes are not only those responsible for nitrate respiration and fermentation but also those of unknown function. Certain groups of genes were specifically regulated during anaerobic growth on nitrite, while others were primarily affected during fermentative growth, indicating a complex regulatory circuitry of anaerobic metabolism.
Collapse
Affiliation(s)
- R W Ye
- Experimental Station E328/148B, DuPont Central Research and Development, Wilmington, Delaware 19880, USA.
| | | | | | | | | | | |
Collapse
|
78
|
Nakano MM, Zhu Y, Liu J, Reyes DY, Yoshikawa H, Zuber P. Mutations conferring amino acid residue substitutions in the carboxy-terminal domain of RNA polymerase alpha can suppress clpX and clpP with respect to developmentally regulated transcription in Bacillus subtilis. Mol Microbiol 2000; 37:869-84. [PMID: 10972808 DOI: 10.1046/j.1365-2958.2000.02052.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus subtilis clpX and clpP genes are the sites of pleiotropic mutations that adversely affect growth on a variety of media and impair developmental processes such as sporulation and competence development. ClpX is necessary for the post-exponential induction of genes that require the sigmaH form of RNA polymerase for transcription. Both ClpX and ClpP are required for the activation of sigmaA-dependent transcription of the srf operon that encodes surfactin synthetase and the regulatory peptide ComS, required for the development of genetic competence. Transcription of srf is activated by the two-component regulatory system ComPA in response to the peptide pheromone, ComX, which mediates cell density-dependent control. A clpX mutant, although able to produce ComX, is unable to respond to the pheromone. A mutant allele of comP, encoding a product whose activity is independent of ComX, is not able to suppress clpX with respect to srf expression, suggesting that ClpXP acts at the level of ComA-dependent activation of srf transcription initiation. Suppressor mutations of clpX (cxs-1 and cxs-2) were isolated in screens for pseudorevertants exhibiting high levels of srf expression and sigmaH-dependent transcription respectively. One mutation, cxs-1, suppressed a clpP null mutation with respect to srf transcription, but did not overcome the block conferred by clpP on competence development and sporulation. Both cxs-1 and cxs-2 mutations map to the region of the rpoA gene encoding the RNA polymerase alpha C-terminal domain (alphaCTD). The reconstruction of the cxs-1 and cxs-2 alleles of rpoA confirmed that these mutations confer the suppressor phenotype. These findings provide further support for the hypothesis that ClpX and ClpP might be intimately associated with transcription initiation in B. subtilis.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton 97006, USA
| | | | | | | | | | | |
Collapse
|
79
|
Nakano MM, Zheng G, Zuber P. Dual control of sbo-alb operon expression by the Spo0 and ResDE systems of signal transduction under anaerobic conditions in Bacillus subtilis. J Bacteriol 2000; 182:3274-7. [PMID: 10809710 PMCID: PMC94517 DOI: 10.1128/jb.182.11.3274-3277.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis sbo-alb operon contains sboA, the structural gene for the bacteriocin subtilosin, and the alb genes required for subtilosin production. Transcription from the sbo-alb promoter is highly induced by oxygen limitation. The transcriptional regulation of the sbo-alb operon is under dual control involving the transition state regulator AbrB and the two-component regulatory proteins ResD and ResE.
Collapse
Affiliation(s)
- M M Nakano
- Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
80
|
Zheng G, Hehn R, Zuber P. Mutational analysis of the sbo-alb locus of Bacillus subtilis: identification of genes required for subtilosin production and immunity. J Bacteriol 2000; 182:3266-73. [PMID: 10809709 PMCID: PMC94516 DOI: 10.1128/jb.182.11.3266-3273.2000] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis 168 derivative JH642 produces a bacteriocin, subtilosin, which possesses activity against Listeria monocytogenes. Inspection of the amino acid sequence of the presubtilosin polypeptide encoded by the gene sboA and sequence data from analysis of mature subtilosin indicate that the precursor subtilosin peptide undergoes several unique and unusual chemical modifications during its maturation process. The genes of the sbo-alb operon are believed to function in the synthesis and maturation of subtilosin. Nonpolar mutations introduced into each of the alb genes resulted in loss or reduction of subtilosin production. sboA, albA, and albF mutants showed no antilisterial activity, indicating that the products of these genes are critical for the production of active subtilosin. Mutations in albB, -C, and -D resulted in reduction of antilisterial activity and decreased immunity to subtilosin, particularly under anaerobic conditions. A new gene, sboX, encoding another bacteriocin-like product was discovered residing in a sequence overlapping the coding region of sboA. Construction of an sboX-lacZ translational fusion and analysis of its expression indicate that sboX is induced in stationary phase of anaerobic cultures of JH642. An in-frame deletion of the sboX coding sequence did not affect the antilisterial activity or production of or immunity to subtilosin. The results of this investigation show that the sbo-alb genes are required for the mechanisms of subtilosin synthesis and immunity.
Collapse
Affiliation(s)
- G Zheng
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
81
|
Cruz Ramos H, Hoffmann T, Marino M, Nedjari H, Presecan-Siedel E, Dreesen O, Glaser P, Jahn D. Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression. J Bacteriol 2000; 182:3072-80. [PMID: 10809684 PMCID: PMC94491 DOI: 10.1128/jb.182.11.3072-3080.2000] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis grows in the absence of oxygen using nitrate ammonification and various fermentation processes. Lactate, acetate, and 2,3-butanediol were identified in the growth medium as the major anaerobic fermentation products by using high-performance liquid chromatography. Lactate formation was found to be dependent on the lctEP locus, encoding lactate dehydrogenase and a putative lactate permease. Mutation of lctE results in drastically reduced anaerobic growth independent of the presence of alternative electron acceptors, indicating the importance of NADH reoxidation by lactate dehydrogenase for the overall anaerobic energy metabolism. Anaerobic formation of 2,3-butanediol via acetoin involves acetolactate synthase and decarboxylase encoded by the alsSD operon. Mutation of alsSD has no significant effect on anaerobic growth. Anaerobic acetate synthesis from acetyl coenzyme A requires phosphotransacetylase encoded by pta. Similar to the case for lctEP, mutation of pta significantly reduces anaerobic fermentative and respiratory growth. The expression of both lctEP and alsSD is strongly induced under anaerobic conditions. Anaerobic lctEP and alsSD induction was found to be partially dependent on the gene encoding the redox regulator Fnr. The observed fnr dependence might be the result of Fnr-induced arfM (ywiD) transcription and subsequent lctEP and alsSD activation by the regulator ArfM (YwiD). The two-component regulatory system encoded by resDE is also involved in anaerobic lctEP induction. No direct resDE influence on the redox regulation of alsSD was observed. The alternative electron acceptor nitrate represses anaerobic lctEP and alsSD transcription. Nitrate repression requires resDE- and fnr-dependent expression of narGHJI, encoding respiratory nitrate reductase. The gene alsR, encoding a regulator potentially responding to changes of the intracellular pH and to acetate, is essential for anaerobic lctEP and alsSD expression. In agreement with its known aerobic function, no obvious oxygen- or nitrate-dependent pta regulation was observed. A model for the regulation of the anaerobic fermentation genes in B. subtilis is proposed.
Collapse
Affiliation(s)
- H Cruz Ramos
- Unité de Régulation de l'Expression Génétique, Laboratoire de Génomique des Microorganismes Pathogènes, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Yarwood JM, Schlievert PM. Oxygen and carbon dioxide regulation of toxic shock syndrome toxin 1 production by Staphylococcus aureus MN8. J Clin Microbiol 2000; 38:1797-803. [PMID: 10790102 PMCID: PMC86591 DOI: 10.1128/jcm.38.5.1797-1803.2000] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The production of toxic shock syndrome toxin 1 (TSST-1) by Staphylococcus aureus MN8 exposed to a range of oxygen concentrations (0 to 21% [vol/vol]) was examined in batch and thin-film cultures. The response of S. aureus to this range of oxygen concentrations was studied in the absence and in the presence of 7% (vol/vol) carbon dioxide. In the absence of carbon dioxide, TSST-1 production in batch cultures increased from negligible levels in the presence of oxygen concentrations of 1% or less to 500 ng/ml in the presence of 2% oxygen and then decreased to 70 ng/ml or less in the presence of oxygen concentrations of 6% and higher. In the presence of carbon dioxide, however, toxin production increased from negligible levels in the presence of 1% oxygen to 1,900 ng/ml in the presence of 21% oxygen. In thin-film cultures, TSST-1 production increased from nearly undetectable levels under anaerobic conditions to 1 and 10 microg/ml under 21% oxygen in the absence and presence of carbon dioxide, respectively. This study demonstrates the controlling effects of both oxygen and carbon dioxide on TSST-1 production.
Collapse
Affiliation(s)
- J M Yarwood
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
83
|
Marino M, Hoffmann T, Schmid R, Möbitz H, Jahn D. Changes in protein synthesis during the adaptation of Bacillus subtilis to anaerobic growth conditions. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 1):97-105. [PMID: 10658656 DOI: 10.1099/00221287-146-1-97] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
After a shift of Bacillus subtilis from aerobic to anaerobic growth conditions, nitrate ammonification and various fermentative processes replace oxygen-dependent respiration. Cell-free extracts prepared from wild-type B. subtilis and from mutants of the regulatory loci fnr and resDE grown under aerobic and various anaerobic conditions were compared by two-dimensional gel electrophoresis. Proteins involved in the adaptation process were identified by their N-terminal sequence. Induction of cytoplasmic lactate dehydrogenase (LctE) synthesis under anaerobic fermentative conditions was dependent on fnr and resDE. Anaerobic nitrate repression of LctE formation required fnr-mediated expression of narGHJI, encoding respiratory nitrate reductase. Anaerobic induction of the flavohaemoglobin Hmp required resDE and nitrite. The general anaerobic induction of ywfl, encoding a protein of unknown function, was modulated by resDE and fnr. The ywfl gene shares its upstream region with the pta gene, encoding the fermentative enzyme acetyl-CoA:orthophosphate acetyltransferase. Anaerobic repression of the synthesis of a potential membrane-associated NADH dehydrogenase (YjlD, Ndh), and anaerobic induction of fructose-1,6-bisphosphate aldolase (FbaA) and dehydrolipoamide dehydrogenase (PhdD, Lpd) formation, did not require fnr or resDE participation. Synthesis of glycerol kinase (GlpK) was decreased under anaerobic conditions. Finally, the effect of anaerobic stress induced by the immediate shift from aerobic to strictly anaerobic conditions was analysed. The induction of various systems for the utilization of alternative carbon sources such as inositol (IoIA, IoIG, IoIH, IoII), melibiose (MeIA) and 6-phospho-alpha-glucosides (GIvA) indicated a catabolite-response-like stress reaction.
Collapse
Affiliation(s)
- Marco Marino
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany1
| | - Tamara Hoffmann
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, and Max-Planck-Institut für Terrestrische Mikrobiologie, Karl-von-Frisch-Str., 35043 Marburg, Germany2
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany1
| | - Roland Schmid
- Institut für Mikrobiologie, Universität Osnabrück, Barbarastr. 11, 49060 Osnabrück, Germany3
| | - Henrik Möbitz
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany1
| | - Dieter Jahn
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany1
| |
Collapse
|
84
|
Nakano MM, Zhu Y, Haga K, Yoshikawa H, Sonenshein AL, Zuber P. A mutation in the 3-phosphoglycerate kinase gene allows anaerobic growth of Bacillus subtilis in the absence of ResE kinase. J Bacteriol 1999; 181:7087-97. [PMID: 10559176 PMCID: PMC94185 DOI: 10.1128/jb.181.22.7087-7097.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis ResD-ResE two-component signal transduction system is essential for aerobic and anaerobic respiration. A spontaneous suppressor mutant that expresses ResD-controlled genes and grows anaerobically in the absence of the ResE histidine kinase was isolated. In addition, aerobic expression of ResD-controlled genes in the suppressed strain was constitutive and occurred at a much higher level than that observed in the wild-type strain. The suppressing mutation, which mapped to pgk, the gene encoding 3-phosphoglycerate kinase, failed to suppress a resD mutation, suggesting that the suppressing mutation creates a pathway for phosphorylation of the response regulator, ResD, which is independent of the cognate sensor kinase, ResE. The pgk-1 mutant exhibited very low but measurable 3-phosphoglycerate kinase activity compared to the wild-type strain. The results suggest that accumulation of a glycolytic intermediate, probably 1, 3-diphosphoglycerate, is responsible for the observed effect of the pgk-1 mutation on anaerobiosis of resE mutant cells.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry, Louisiana State University Medical Center, Shreveport, Louisiana 71130, USA.
| | | | | | | | | | | |
Collapse
|
85
|
Abstract
Previous characterization of Bacillus subtilis hemN, encoding a protein involved in oxygen-independent coproporphyrinogen III decarboxylation, indicated the presence of a second hemN-like gene (B. Hippler, G. Homuth, T. Hoffmann, C. Hungerer, W. Schumann, and D. Jahn, J. Bacteriol. 179:7181-7185, 1997). The corresponding hemZ gene was found to be split into the two potential open reading frames yhaV and yhaW by a sequencing error of the genome sequencing project. The hemZ gene, encoding a 501-amino-acid protein with a calculated molecular mass of 57,533 Da, complemented a Salmonella typhimurium hemF hemN double mutant under aerobic and anaerobic growth conditions. A B. subtilis hemZ mutant accumulated coproporphyrinogen III under anaerobic growth conditions. A hemN hemZ double mutant exhibited normal aerobic and anaerobic growth, indicating the presence of a third alternative oxygen-independent enzymatic system for coproporphyrinogen III oxidation. The hemY gene, encoding oxygen-dependent protoporphyrinogen IX oxidase with coproporphyrinogen III oxidase side activity, did not significantly contribute to this newly identified system. Growth behavior of hemY mutants revealed the presence of an oxygen-independent protoporphyrinogen IX oxidase in B. subtilis. A monocistronic hemZ mRNA, starting 31 bp upstream of the translational start codon, was detected. Reporter gene fusions of hemZ and hemN demonstrated a fivefold anaerobic induction of both genes under nitrate ammonifying growth conditions. No anaerobic induction was observed for fermentatively growing B. subtilis. The B. subtilis redox regulatory systems encoded by resDE, fnr, and ywiD were indispensable for the observed transcriptional induction. A redox regulation cascade proceeding from an unknown sensor via resDE, through fnr and ywiD to hemN/hemZ, is suggested for the observed coregulation of heme biosynthesis and the anaerobic respiratory energy metabolism. Finally, only hemZ was found to be fivefold induced by the presence of H(2)O(2), indicating further coregulation of heme biosynthesis with the formation of the tetrapyrrole enzyme catalase.
Collapse
Affiliation(s)
- G Homuth
- Institut für Genetik, Universität Bayreuth, 95440 Bayreuth, Germany
| | | | | | | |
Collapse
|
86
|
Fabret C, Feher VA, Hoch JA. Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J Bacteriol 1999; 181:1975-83. [PMID: 10094672 PMCID: PMC93607 DOI: 10.1128/jb.181.7.1975-1983.1999] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- C Fabret
- Division of Cellular Biology, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
87
|
Abstract
Microorganisms have evolved intricate signal transduction mechanisms that respond both to dioxygen per se and to the consequences imparted by dioxygen on the metabolism of the cell. Escherichia coli provides examples of both types of signal sensing mechanisms, including FNR and the Arc system. The factors involved in these diverse sensory systems are proving to have a pervasive impact on controlling gene expression and cellular physiology. Similar signal transduction systems are prevalent in a diverse range of microorganisms.
Collapse
Affiliation(s)
- G Sawers
- Nitrogen Fixation Laboratory, John Innes Centre, Norwich, NR4 7UH, UK.
| |
Collapse
|
88
|
Abstract
There was a long-held belief that the gram-positive soil bacterium Bacillus subtilis is a strict aerobe. But recent studies have shown that B. subtilis will grow anaerobically, either by using nitrate or nitrite as a terminal electron acceptor, or by fermentation. How B. subtilis alters its metabolic activity according to the availability of oxygen and alternative electron acceptors is but one focus of study. A two-component signal transduction system composed of a sensor kinase, ResE, and a response regulator, ResD, occupies an early stage in the regulatory pathway governing anaerobic respiration. One of the essential roles of ResD and ResE in anaerobic gene regulation is induction of fnr transcription upon oxygen limitation. FNR is a transcriptional activator for anaerobically induced genes, including those for respiratory nitrate reductase, narGHJI.B. subtilis has two distinct nitrate reductases, one for the assimilation of nitrate nitrogen and the other for nitrate respiration. In contrast, one nitrite reductase functions both in nitrite nitrogen assimilation and nitrite respiration. Unlike many anaerobes, which use pyruvate formate lyase, B. subtilis can carry out fermentation in the absence of external electron acceptors wherein pyruvate dehydrogenase is utilized to metabolize pyruvate.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130-3932, USA.
| | | |
Collapse
|
89
|
Birkey SM, Liu W, Zhang X, Duggan MF, Hulett FM. Pho signal transduction network reveals direct transcriptional regulation of one two-component system by another two-component regulator: Bacillus subtilis PhoP directly regulates production of ResD. Mol Microbiol 1998; 30:943-53. [PMID: 9988472 DOI: 10.1046/j.1365-2958.1998.01122.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus subtilis ResD-ResE two-component system is responsible for the regulation of a number of genes involved in cytochrome c biogenesis and haem A biosynthesis, and it is required for anaerobic respiration in this organism. We reported previously that the operon encoding these regulatory proteins, the resABCDE operon, is induced under several conditions, one of which is phosphate starvation. We report here that this transcription requires the PhoP-PhoR two-component system, whereas other induction conditions do not. The PhoPP response regulator directly binds to and is essential for transcriptional activation of the resABCDE operon as well as being involved in repression of the internal resDE promoter during phosphate-limited growth. The concentration of ResD in various phoP mutant strains corroborates the role of PhoP in the production of ResD. These interactions result in a regulatory network that ties together the cellular functions of respiration/energy production and phosphate starvation. Significantly, this represents the first evidence for direct involvement of one two-component system in transcription of a second two-component system.
Collapse
Affiliation(s)
- S M Birkey
- Department of Biological Sciences, University of Illinois at Chicago, 60607, USA
| | | | | | | | | |
Collapse
|
90
|
Nakano MM, Hoffmann T, Zhu Y, Jahn D. Nitrogen and oxygen regulation of Bacillus subtilis nasDEF encoding NADH-dependent nitrite reductase by TnrA and ResDE. J Bacteriol 1998; 180:5344-50. [PMID: 9765565 PMCID: PMC107582 DOI: 10.1128/jb.180.20.5344-5350.1998] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrate and nitrite reductases of Bacillus subtilis have two different physiological functions. Under conditions of nitrogen limitation, these enzymes catalyze the reduction of nitrate via nitrite to ammonia for the anabolic incorporation of nitrogen into biomolecules. They also function catabolically in anaerobic respiration, which involves the use of nitrate and nitrite as terminal electron acceptors. Two distinct nitrate reductases, encoded by narGHI and nasBC, function in anabolic and catabolic nitrogen metabolism, respectively. However, as reported herein, a single NADH-dependent, soluble nitrite reductase encoded by the nasDE genes is required for both catabolic and anabolic processes. The nasDE genes, together with nasBC (encoding assimilatory nitrate reductase) and nasF (required for nitrite reductase siroheme cofactor formation), constitute the nas operon. Data presented show that transcription of nasDEF is driven not only by the previously characterized nas operon promoter but also from an internal promoter residing between the nasC and nasD genes. Transcription from both promoters is activated by nitrogen limitation during aerobic growth by the nitrogen regulator, TnrA. However, under conditions of oxygen limitation, nasDEF expression and nitrite reductase activity were significantly induced. Anaerobic induction of nasDEF required the ResDE two-component regulatory system and the presence of nitrite, indicating partial coregulation of NasDEF with the respiratory nitrate reductase NarGHI during nitrate respiration.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, Louisiana 71130-3932, USA mnakano @bmb.ogi.edu
| | | | | | | |
Collapse
|
91
|
Abstract
Krebs cycle enzyme activity in Bacillus subtilis was examined under aerobic and anaerobic conditions. Citrate synthase and aconitase activities in cells grown anaerobically in the presence of nitrate were reduced by as much as 10- and 30-fold, respectively, from levels observed under aerobic culture conditions. The maximum level of isocitrate dehydrogenase activity during anaerobic growth was only twofold lower than that in aerobic cultures. These reductions in activity under conditions of anaerobiosis were found to be primarily the result of reduced Krebs cycle gene transcription. This repression was not dependent on either the fnr or resDE gene products, which have been shown to regulate expression of other B. subtilis genes in response to anaerobic conditions. Additionally, catabolite control proteins CcpA and CcpB were not responsible for the repression. A dyad symmetry element located between positions -73 and -59 relative to the transcription start site of the aconitase gene (citB) promoter was previously shown to be a target of catabolite repression and the binding site for a putative negative regulator during aerobic growth. The deletion of the upstream arm of the dyad symmetry region abolished the citB repression observed during anaerobic growth. Furthermore, neither citZ or citB was repressed in an anaerobically grown citB mutant, an effect that was very likely the result of citrate accumulation. These results suggest that catabolite repression and anaerobic repression of citZ and citB are regulated by a common mechanism that does not involve CcpA, CcpB, Fnr, or ResDE.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130, USA.
| | | | | |
Collapse
|
92
|
Hoffmann T, Frankenberg N, Marino M, Jahn D. Ammonification in Bacillus subtilis utilizing dissimilatory nitrite reductase is dependent on resDE. J Bacteriol 1998; 180:186-9. [PMID: 9422613 PMCID: PMC106869 DOI: 10.1128/jb.180.1.186-189.1998] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During anaerobic nitrate respiration Bacillus subtilis reduces nitrate via nitrite to ammonia. No denitrification products were observed. B. subtilis wild-type cells and a nitrate reductase mutant grew anaerobically with nitrite as an electron acceptor. Oxygen-sensitive dissimilatory nitrite reductase activity was demonstrated in cell extracts prepared from both strains with benzyl viologen as an electron donor and nitrite as an electron acceptor. The anaerobic expression of the discovered nitrite reductase activity was dependent on the regulatory system encoded by resDE. Mutation of the gene encoding the regulatory Fnr had no negative effect on dissimilatory nitrite reductase formation.
Collapse
Affiliation(s)
- T Hoffmann
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | | |
Collapse
|
93
|
Abstract
Bacillus subtilis grows anaerobically by at least two different pathways, respiration using nitrate as an electron acceptor and fermentation in the absence of electron acceptors. Regulatory mechanisms have evolved allowing cells to shift to these metabolic capabilities in response to changes in oxygen availability. These include transcriptional activation of fnr upon oxygen limitation, a process requiring the ResD-ResE two-component signal transduction system that also regulates aerobic respiration. FNR then activates transcription of other anaerobically induced genes including the narGHJI operon which encodes a respiratory nitrate reductase. Genes involved in fermentative growth are controlled by an unidentified FNR-independent regulatory pathway.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130-3932, USA.
| | | |
Collapse
|
94
|
Abstract
Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1. An important class of regulators for the anaerobic expression of the denitrification apparatus are transcription factors of the greater FNR family. Nitrate and nitric oxide, in addition to being respiratory substrates, have been identified as signaling molecules for the induction of distinct N oxide-metabolizing enzymes.
Collapse
Affiliation(s)
- W G Zumft
- Lehrstuhl für Mikrobiologie, Universität Fridericiana, Karlsruhe, Germany
| |
Collapse
|
95
|
Nakano MM, Dailly YP, Zuber P, Clark DP. Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth. J Bacteriol 1997; 179:6749-55. [PMID: 9352926 PMCID: PMC179605 DOI: 10.1128/jb.179.21.6749-6755.1997] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacillus subtilis can grow anaerobically by respiration with nitrate as a terminal electron acceptor. In the absence of external electron acceptors, it grows by fermentation. Identification of fermentation products by using in vivo nuclear magnetic resonance scans of whole cultures indicated that B. subtilis grows by mixed acid-butanediol fermentation but that no formate is produced. An ace mutant that lacks pyruvate dehydrogenase (PDH) activity was unable to grow anaerobically and produced hardly any fermentation product. These results suggest that PDH is involved in most or all acetyl coenzyme A production in B. subtilis under anaerobic conditions, unlike Escherichia coli, which uses pyruvate formate lyase. Nitrate respiration was previously shown to require the ResDE two-component signal transduction system and an anaerobic gene regulator, FNR. Also required are respiratory nitrate reductase, encoded by the narGHJI operon, and moaA, involved in biosynthesis of a molybdopterin cofactor of nitrate reductase. The resD and resDE mutations were shown to moderately affect fermentation, but nitrate reductase activity and fnr are dispensable for fermentative growth. A search for genes involved in fermentation indicated that ftsH is required, and is also needed to a lesser extent for nitrate respiration. These results show that nitrate respiration and fermentation of B. subtilis are governed by divergent regulatory pathways.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130-3932, USA.
| | | | | | | |
Collapse
|
96
|
Lee PJ, Stock AM. Characterization of the genes and proteins of a two-component system from the hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 1996; 178:5579-85. [PMID: 8824600 PMCID: PMC178394 DOI: 10.1128/jb.178.19.5579-5585.1996] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
As a step towards studying representative members of the two-component family of signal transduction proteins, we have cloned genes encoding a histidine protein kinase and a response regulator from the hyperthermophilic bacterium Thermotoga maritima. The genes have been designated HpkA and drrA, respectively. The deduced HpkA sequence contains all five characteristic histidine protein kinase motifs with the same relative order and spacing found in the mesophilic bacterial proteins. A hydropathy profile indicates that HpkA possesses only one membrane-spanning segment located at the extreme N terminus. The N-terminal region of DrrA exhibits all of the characteristics of the conserved domains of mesophilic bacterial response regulators, and the C-terminal region shows high similarity to the OmpR-PhoB subfamily of DNA-binding proteins. Recombinant T. maritima proteins, truncated HpkA lacking the putative membrane-spanning N- terminal amino acids and DrrA, were expressed in Escherichia coli. Partial purification of T. maritima proteins was achieved by heat denaturation of E. coli host proteins. In an in vitro assay, truncated HpkA protein was autophosphorylated in the presence of ATP. Thus, the N-terminal hydrophobic region is not required for kinase activity. Phosphotransfer between truncated HpkA and DrrA was demonstrated in vitro with the partially purified proteins. The phosphorylation reactions were strongly temperature dependent. The results indicate that the recombinant T. maritima two-component proteins overexpressed in E. coli are stable as well as enzymatically active at elevated temperatures.
Collapse
Affiliation(s)
- P J Lee
- Center for Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
97
|
LaCelle M, Kumano M, Kurita K, Yamane K, Zuber P, Nakano MM. Oxygen-controlled regulation of the flavohemoglobin gene in Bacillus subtilis. J Bacteriol 1996; 178:3803-8. [PMID: 8682784 PMCID: PMC232640 DOI: 10.1128/jb.178.13.3803-3808.1996] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A gene, hmp, which encodes a ubiquitous protein homologous to hemoglobin was isolated among genes from Bacillus subtilis that are induced under anaerobic conditions. The hmp protein belongs to the family of two-domain flavohemoproteins, homologs of which have been isolated from various organisms such as Escherichia coli, Alcaligenes eutrophus, and Saccharomyces cerevisiae. These proteins consist of an amino-terminal hemoglobin domain and a carboxy-terminal redox active site domain with potential binding sites for NAD(P)H and flavin adenine dinucleotide. The expression of hmp is strongly induced upon oxygen limitation, and the induction is dependent on a two-component regulatory pair, ResD and ResE, an anaerobic regulator, FNR, and respiratory nitrate reductase, NarGHJI. The requirement of FNR and NarGHJI for hmp expression is completely bypassed by the addition of nitrite in the culture medium, indicating that fnr is required for transcriptional activation of narGHJI, which produces nitrite, leading to induction of hmp expression. In contrast, induction of hmp was still dependent on resDE in the presence of nitrite. A defect in hmp in B. subtilis has no significant effect on anaerobic growth.
Collapse
Affiliation(s)
- M LaCelle
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | | | |
Collapse
|