51
|
Hashimoto W, Miyake O, Ochiai A, Murata K. Molecular identification of Sphingomonas sp. A1 Alginate lyase (A1-IV′) as a member of novel polysaccharide lyase family 15 and implications in alginate lyase evolution. J Biosci Bioeng 2005; 99:48-54. [PMID: 16233753 DOI: 10.1263/jbb.99.48] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Accepted: 10/14/2004] [Indexed: 11/17/2022]
Abstract
Sphingomonas sp. A1 (strain A1) produces three endotypes (A1-I [65 kDa], A1-II [25 kDa], and A1-III [40 kDa]) and an exotype (A1-IV [86 kDa]) alginate lyases in cytoplasm. These four enzymes cooperatively depolymerize alginate into constituent monosaccharides. In addition to the genes for these lyases, novel genes encoding hypothetical proteins homologous with A1-IV were found in the genomes of many bacteria including strain A1. One such protein, A1-IV' (90 kDa) of strain A1, was overexpressed in Escherichia coli cells, purified, and characterized. A1-IV' catalyzed the cleavage of glycosidic bonds in alginate through a beta-elimination reaction and released unsaturated di- and trisaccharides as main products, thus indicating that the enzyme is an endotype alginate lyase. A1-IV', which differed from A1-IV in some enzymatic properties, was not expressed in strain A1, suggesting that A1-IV' has no significant role in alginate metabolism. A1-IV' and other A1-IV homologs facilitate the creation of novel polysaccharide lyase family 15 based on their primary structures, implying the evolution route of alginate lyases in family PL-15.
Collapse
Affiliation(s)
- Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | |
Collapse
|
52
|
He J, Nankai H, Hashimoto W, Murata K. Molecular identification and characterization of an alginate-binding protein on the cell surface of Sphingomonas sp. A1. Biochem Biophys Res Commun 2004; 322:712-7. [PMID: 15336522 DOI: 10.1016/j.bbrc.2004.07.184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Indexed: 11/28/2022]
Abstract
Cells of Sphingomonas sp. A1 (strain A1) directly incorporate a macromolecule, alginate, into cytoplasm through a biosystem, or "super-channel," consisting of a pit on the cell surface, alginate-binding proteins in periplasm, and an ABC transporter in the inner membrane. The pit functions as a concentrator for extracellular alginate. Through differential display analysis, a protein (p8) with a molecular mass of 20kDa and a pI of 7.4 was found to be inducibly expressed in the outer membrane of alginate-grown cells. The gene coding for p8 was identified in the genome of strain A1 and shown to be similar to that for the polyhydroxyalkanoate granule-associated protein of Ralstonia eutropha. The disruptant of p8 gene showed significant growth retardation in the alginate medium. An overexpression system for p8 was constructed in Escherichia coli, and the protein was purified and characterized. Surface plasmon resonance biosensor analysis indicated that p8 is able to bind alginate most efficiently at pH 4.0. The above results indicate that p8 is a cell surface protein able to bind alginate and facilitates the concentration of alginate in the pit on the cell surface of strain A1.
Collapse
Affiliation(s)
- Jinshan He
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | |
Collapse
|
53
|
Miyake O, Ochiai A, Hashimoto W, Murata K. Origin and diversity of alginate lyases of families PL-5 and -7 in Sphingomonas sp. strain A1. J Bacteriol 2004; 186:2891-6. [PMID: 15090531 PMCID: PMC387801 DOI: 10.1128/jb.186.9.2891-2896.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingomonas sp. strain A1 has three endotype alginate lyases (A1-I, A1-II [family PL-7], and A1-III [family PL-5]), each of which is encoded by a single gene. In addition to those of these lyases, a gene (the A1-II' gene) showing significant identity with the A1-II gene was present in the bacterial genome and coded for an alginate lyase with broad substrate specificity. Since no expression of A1-II' was observed even in bacterial cells grown on alginate, the A1-II' gene was thought to be a silent gene derived from the A1-II gene, presumably through duplication, modification, and translocation.
Collapse
Affiliation(s)
- Osamu Miyake
- Department of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | |
Collapse
|
54
|
Hashimoto W, Yamasaki M, Itoh T, Momma K, Mikami B, Murata K. Super-channel in bacteria: Structural and functional aspects of a novel biosystem for the import and depolymerization of macromolecules. J Biosci Bioeng 2004; 98:399-413. [PMID: 16233728 DOI: 10.1016/s1389-1723(05)00304-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Accepted: 09/27/2004] [Indexed: 11/22/2022]
Abstract
Cells of Sphingomonas sp. A1 directly incorporate a macromolecule, alginate, into the cytoplasm through a biosystem, super-channel, consisting of a pit on the cell surface, alginate-binding proteins in the periplasm, and an ATP-binding cassette transporter in the inner membrane. The alginate is finally depolymerized into constituent monosaccharides by polysaccharide lyases present in the cytoplasm. The fundamental frame of the biosystem for alginate transport, and the functions of the pit, binding proteins, and ABC transporter have already been reviewed together with those of alginate-depolymerization processes [Hashimoto et al., J. Biosci. Bioeng., 87, 123-136 (1999)]. In this review, we have attempted to demonstrate the three-dimensional structure and evolution features of the super-channel, and alginate-depolymerization processes by using information obtained mainly through genomics, proteomics, and X-ray crystallography.
Collapse
Affiliation(s)
- Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
55
|
Abstract
Gram-negative bacteria characteristically are surrounded by an additional membrane layer, the outer membrane. Although outer membrane components often play important roles in the interaction of symbiotic or pathogenic bacteria with their host organisms, the major role of this membrane must usually be to serve as a permeability barrier to prevent the entry of noxious compounds and at the same time to allow the influx of nutrient molecules. This review summarizes the development in the field since our previous review (H. Nikaido and M. Vaara, Microbiol. Rev. 49:1-32, 1985) was published. With the discovery of protein channels, structural knowledge enables us to understand in molecular detail how porins, specific channels, TonB-linked receptors, and other proteins function. We are now beginning to see how the export of large proteins occurs across the outer membrane. With our knowledge of the lipopolysaccharide-phospholipid asymmetric bilayer of the outer membrane, we are finally beginning to understand how this bilayer can retard the entry of lipophilic compounds, owing to our increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopolysaccharide structure is modified by environmental conditions.
Collapse
Affiliation(s)
- Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA.
| |
Collapse
|
56
|
Mishima Y, Momma K, Miyake O, Hashimoto W, Mikami B, Murata K. A super-channel in bacteria: macromolecule uptake and depolymerization systems of Sphingomonas sp. A1 with a special cell surface structure. Biotechnol Genet Eng Rev 2003; 19:105-19. [PMID: 12520874 DOI: 10.1080/02648725.2002.10648025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yumiko Mishima
- Department of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
57
|
Miyake O, Hashimoto W, Murata K. An exotype alginate lyase in Sphingomonas sp. A1: overexpression in Escherichia coli, purification, and characterization of alginate lyase IV (A1-IV). Protein Expr Purif 2003; 29:33-41. [PMID: 12729723 DOI: 10.1016/s1046-5928(03)00018-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sphingomonas sp. A1 (strain A1) cells contain three kinds of endotype alginate lyases [A1-I, A1-II, and A1-III], all of which are formed from a common precursor through posttranslational processing. In addition to these lyases, another type of lyase (A1-IV) that acts on oligoalginates exists in the bacterium. A1-IV was overexpressed in Escherichia coli cells through control of its gene under the T7 promoter. The expression level of the enzyme in E. coli cells was 8.6U/L-culture, which was about 270-fold higher than that in strain A1 cells. The enzyme was purified to homogeneity through three steps with an activity yield of 10.9%. The optimal pH and temperature, thermal stability, and mode of action of the purified enzyme were similar to those of the native enzyme from strain A1 cells. A1-IV exolytically degraded oligoalginates, which were produced from alginate through the reaction of A1-I, A1-II, or A1-III, into monosaccharides, indicating that the cooperative actions of these four enzymes cause the complete depolymerization of alginate in strain A1 cells.
Collapse
Affiliation(s)
- Osamu Miyake
- Division of Food and Biological Science, Department of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
58
|
Mishima Y, Momma K, Hashimoto W, Mikami B, Murata K. Crystal structure of AlgQ2, a macromolecule (alginate)-binding protein of Sphingomonas sp. A1, complexed with an alginate tetrasaccharide at 1.6-A resolution. J Biol Chem 2003; 278:6552-9. [PMID: 12486124 DOI: 10.1074/jbc.m209932200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingomonas sp. A1 possesses a high molecular weight (HMW) alginate uptake system composed of a novel pit formed on the cell surface and a pit-dependent ATP-binding cassette (ABC) transporter in the inner membrane. The transportation of HMW alginate from the pit to the ABC transporter is mediated by the periplasmic HMW alginate-binding proteins AlgQ1 and AlgQ2. We determined the crystal structure of AlgQ2 complexed with an alginate tetrasaccharide using an alginate-free (apo) form as a search model and refined it at 1.6-A resolution. One tetrasaccharide was found between the N and C-terminal domains, which are connected by three extended hinge loops. The tetrasaccharide complex took on a closed domain form, in contrast to the open domain form of the apo form. The tetrasaccharide was bound in the cleft between the domains through van der Waals interactions and the formation of hydrogen bonds. Among the four sugar residues, the nonreducing end residue was located at the bottom of the cleft and exhibited the largest number of interactions with the surrounding amino acid residues, suggesting that AlgQ2 mainly recognizes and binds to the nonreducing part of a HMW alginate and delivers the polymer to the ABC transporter through conformational changes (open and closed forms) of the two domains.
Collapse
Affiliation(s)
- Yumiko Mishima
- Department of Basic and Applied Molecular Biotechnology, Division of Food and Biological Science, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
59
|
Ming LJ, Epperson JD. Metal binding and structure-activity relationship of the metalloantibiotic peptide bacitracin. J Inorg Biochem 2002; 91:46-58. [PMID: 12121761 DOI: 10.1016/s0162-0134(02)00464-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bacitracin is a widely used metallopeptide antibiotic produced by Bacillus subtilis and Bacillus licheniformis with a potent bactericidal activity directed primarily against Gram-positive organisms. This antibiotic requires a divalent metal ion such as Zn(2+) for its biological activity, and has been reported to bind several other transition metal ions, including Mn(2+), Co(2+), Ni(2+), and Cu(2+). Despite the widespread use of bacitracin since its discovery in the early 1940s, the structure-activity relationship of this drug has not been established and the coordination chemistry of its metal complexes was not fully determined until recently. This antibiotic has been suggested to influence cell functioning through more than one route. Since bacterial resistance against bacitracin is still rare despite several decades of widespread use, this antibiotic can serve as an ideal lead for the design of potent peptidyl antibiotics lacking bacterial resistance. In this review, the results of physical (including NMR, EPR, and EXAFS) and molecular biological studies regarding the synthesis and structure of bacitracin, the coordination chemistry of its metal derivatives, the mechanism of its antibiotic actions, its influence on membrane function, and its structure and function relationship are discussed.
Collapse
Affiliation(s)
- Li-June Ming
- Department of Chemistry and Institute for Biomolecular Science, University of South Florida, 4202 Fowler Avenue, SCA400 Tampa, FL 33620-5250, USA.
| | | |
Collapse
|
60
|
Momma K, Mikami B, Mishima Y, Hashimoto W, Murata K. Crystal structure of AlgQ2, a macromolecule (alginate)-binding protein of Sphingomonas sp. A1 at 2.0A resolution. J Mol Biol 2002; 316:1051-9. [PMID: 11884143 DOI: 10.1006/jmbi.2001.5393] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sphingomonas sp. A1 possesses a high molecular mass (average 25,700 Da) alginate uptake system mediated by a novel pit-dependent ABC transporter. The X-ray crystallographic structure of AlgQ2 (57,200 Da), an alginate-binding protein in the system, was determined by the multiple isomorphous replacement method and refined at 2.0 A resolution with a final R-factor of 18.3% for 15 to 2.0 A resolution data. The refined structure of AlgQ2 was comprised of 492 amino acid residues, 172 water molecules, and one calcium ion. AlgQ2 was composed of two globular domains with a deep cleft between them, which is expected to be the alginate-binding site. The overall structure is basically similar to that of maltose/maltodextrin-binding protein, except for the presence of an N2-subdomain. The entire calcium ion-binding site is similar to the site in the EF-hand motif, but comprises a ten residue loop. This calcium ion-binding site is about 40 A away from the alginate-binding site.
Collapse
Affiliation(s)
- Keiko Momma
- Department of Basic and Applied Molecular Biotechnology, Division of Food and Biological Science, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | | | | | | | | |
Collapse
|
61
|
Mishima Y, Momma K, Hashimoto W, Mikami B, Murata K. Super-channel in bacteria: function and structure of the macromolecule import system mediated by a pit-dependent ABC transporter. FEMS Microbiol Lett 2001; 204:215-21. [PMID: 11731126 DOI: 10.1111/j.1574-6968.2001.tb10888.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In a soil isolate, Sphingomonas sp. A1, the transport of a macromolecule (alginate: 27 kDa) is mediated by a pit-dependent ATP-binding cassette (ABC) transporter. The transporter is different from other ABC transporters so far analyzed in that its function is dependent on a pit, a mouth-like organ formed on the cell surface only when cells are compelled to assimilate macromolecules, and in that it allows direct import of macromolecules into cells. The ABC transporter coupled with the pit, which functions as a funnel and/or concentrator of macromolecules to be imported, was designated the 'super-channel', and in this review, we discuss the three-dimensional structure and specific function of the 'super-channel' for macromolecule import found for the first time in a bacterium.
Collapse
Affiliation(s)
- Y Mishima
- Department of Basic and Applied Molecular Biotechnology, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
62
|
Hashimoto W, Miyake O, Momma K, Kawai S, Murata K. Molecular identification of oligoalginate lyase of Sphingomonas sp. strain A1 as one of the enzymes required for complete depolymerization of alginate. J Bacteriol 2000; 182:4572-7. [PMID: 10913091 PMCID: PMC94629 DOI: 10.1128/jb.182.16.4572-4577.2000] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A bacterium, Sphingomonas sp. strain A1, can incorporate alginate into cells through a novel ABC (ATP-binding cassette) transporter system specific to the macromolecule. The transported alginate is depolymerized to di- and trisaccharides by three kinds of cytoplasmic alginate lyases (A1-I [66 kDa], A1-II [25 kDa], and A1-III [40 kDa]) generated from a single precursor through posttranslational autoprocessing. The resultant alginate oligosaccharides were degraded to monosaccharides by cytoplasmic oligoalginate lyase. The enzyme and its gene were isolated from the bacterial cells grown in the presence of alginate. The purified enzyme was a monomer with a molecular mass of 85 kDa and cleaved glycosidic bonds not only in oligosaccharides produced from alginate by alginate lyases but also in polysaccharides (alginate, polymannuronate, and polyguluronate) most efficiently at pH 8.0 and 37 degrees C. The reaction catalyzed by the oligoalginate lyase was exolytic and thought to play an important role in the complete depolymerization of alginate in Sphingomonas sp. strain A1. The gene for this novel enzyme consisted of an open reading frame of 2,286 bp encoding a polypeptide with a molecular weight of 86,543 and was located downstream of the genes coding for the precursor of alginate lyases (aly) and the ABC transporter (algS, algM1, and algM2). This result indicates that the genes for proteins required for the transport and complete depolymerization of alginate are assembled to form a cluster.
Collapse
Affiliation(s)
- W Hashimoto
- Research Institute for Food Science, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | | | | | | | | |
Collapse
|