51
|
Nesbit AD, Giel JL, Rose JC, Kiley PJ. Sequence-specific binding to a subset of IscR-regulated promoters does not require IscR Fe-S cluster ligation. J Mol Biol 2009; 387:28-41. [PMID: 19361432 DOI: 10.1016/j.jmb.2009.01.055] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/08/2009] [Accepted: 01/20/2009] [Indexed: 10/21/2022]
Abstract
IscR is an Fe-S protein that functions as a transcriptional regulator of Fe-S biogenesis and other Fe-S protein-encoding genes in Escherichia coli. In this study, we investigated the requirement for the ligation of the [2Fe-2S] cluster of IscR to regulate a subset of IscR target promoters (P(hyaA), P(ydiU), P(napF), and P(hybO)) and defined the requirements for sequence-specific binding to the IscR target site in the hyaA promoter region. In contrast to previous results with the iscR promoter, we found that the Fe-S cluster is dispensable for IscR regulation of P(hyaA), P(ydiU), P(napF), and P(hybO), since IscR mutants containing alanine substitutions of the cysteine Fe-S ligands retained IscR-dependent regulation of these promoters in vivo. In vitro assays showed that both [2Fe-2S]-IscR and an IscR mutant lacking the cluster (IscR-C92A/C98A/C104A) bound the hya site with similar affinity, explaining why the mutant protein retained its ability to repress P(hyaA) in vivo. Characterization of the oligomeric state of IscR showed that both apo-IscR and [2Fe-2S]-IscR were dimers in solution, and four protomers of either form bound to the hya site. Also, binding of either apo- or [2Fe-2S]-IscR to the hya site showed cooperativity, suggesting that both forms interact similarly with the target site. Analysis of mutations in the hya site using DNA competition assays showed that apo-IscR most likely recognizes an imperfect palindrome within the hya promoter. Furthermore, the strength of apo-IscR binding to P(sufA), P(ydiU), P(napF), and P(hybO) IscR sites correlated with the number of matches to the hya site bases shown to be important in the competition assay. Thus, our data indicated that, unexpectedly, apo-IscR is a site-specific DNA-binding protein, and the role of apo-IscR needs to be considered in developing models for how IscR globally regulates transcription.
Collapse
Affiliation(s)
- A D Nesbit
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
52
|
Delgado A, Zaman S, Muthaiyan A, Nagarajan V, Elasri MO, Wilkinson BJ, Gustafson JE. The fusidic acid stimulon of Staphylococcus aureus. J Antimicrob Chemother 2008; 62:1207-14. [PMID: 18786940 DOI: 10.1093/jac/dkn363] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Fusidic acid interferes with the release of elongation factor G (EF-G) after the translocation step of protein synthesis. The objective of this study was to characterize the fusidic acid stimulon of a fusidic acid-susceptible strain of Staphylococcus aureus (SH1000). METHODS S. aureus microarrays and real-time PCR determined transcriptome alterations occurring in SH1000 grown with fusidic acid. The Staphylococcus aureus microarray meta-database (SAMMD) compared and contrasted the SH1000 fusidic stimulon with 89 other S. aureus transcriptional datasets. Fusidic acid gradient analyses with mutant-parent strain pairs were used to identify genes required for intrinsic fusidic acid susceptibility identified during transcriptional analysis. RESULTS Many genes altered by fusidic acid challenge are associated with protein synthesis. SAMMD analysis determined that the fusidic acid stimulon has the greatest overlap with the S. aureus cold shock and stringent responses. Six out of nine peptidoglycan hydrolase genes making up the two component YycFG regulon were also up-regulated by fusidic acid, as were a carboxylesterase gene (est) and two putative drug efflux pump genes (emr-qac1 and macA). Genes down-regulated by fusidic acid induction encoded a putative secreted acid phosphatase and a number of protease genes. Roles for the agr operon, the peptidoglycan hydrolase gene isaA and two proteases (htrA1 and htrA2) in the expression of fusidic acid susceptibility were revealed. CONCLUSIONS The SH1000 fusidic acid stimulon includes genes involved with two stress responses, YycFG-regulated cell wall metabolism, drug efflux, and protein synthesis and turnover.
Collapse
Affiliation(s)
- Alejandro Delgado
- Microbiology Group, Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Peters KM, Schuman JT, Skurray RA, Brown MH, Brennan RG, Schumacher MA. QacR-cation recognition is mediated by a redundancy of residues capable of charge neutralization. Biochemistry 2008; 47:8122-9. [PMID: 18616285 PMCID: PMC2646753 DOI: 10.1021/bi8008246] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The Staphylococcus aureus multidrug binding protein QacR binds to a broad spectrum of structurally dissimilar cationic, lipophilic drugs. Our previous structural analyses suggested that five QacR glutamic acid residues are critical for charge neutralization and specification of certain drugs. For example, E57 and E58 interact with berberine and with one of the positively charged moieties of the bivalent drug dequalinium. Here we report the structural and biochemical effects of substituting E57 and E58 with alanine and glutamine. Unexpectedly, individual substitutions of these residues did not significantly affect QacR drug binding affinity. Structures of QacR(E57Q) and QacR(E58Q) bound to dequalinium indicated that E57 and E58 are redundant for charge neutralization. The most significant finding was that berberine was reoriented in the QacR multidrug binding pocket so that its positive charge was neutralized by side chain oxygen atoms and aromatic residues. Together, these data emphasize the remarkable versatility of the QacR multidrug binding pocket, illustrating that the capacity of QacR to bind myriad cationic drugs is largely governed by the presence in the pocket of a redundancy of polar, charged, and aromatic residues that are capable of electrostatic neutralization.
Collapse
Affiliation(s)
- Kate M Peters
- School of Biological Sciences, A12, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
54
|
Theis T, Skurray RA, Brown MH. Identification of suitable internal controls to study expression of a Staphylococcus aureus multidrug resistance system by quantitative real-time PCR. J Microbiol Methods 2007; 70:355-62. [PMID: 17590462 DOI: 10.1016/j.mimet.2007.05.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 05/02/2007] [Accepted: 05/22/2007] [Indexed: 11/26/2022]
Abstract
Quantitative real-time PCR (qRT-PCR) has become a routine technique for gene expression analysis. Housekeeping genes are customarily used as endogenous references for the relative quantification of genes of interest. The aim of this study was to develop a quantitative real-time PCR assay to analyze gene expression in multidrug resistant Staphylococcus aureus in the presence of cationic lipophilic substrates of multidrug transport proteins. Eleven different housekeeping genes were analyzed for their expression stability in the presence of a range of concentrations of four structurally different antimicrobial compounds. This analysis demonstrated that the genes rho, pyk and proC were least affected by rhodamine 6G and crystal violet, whereas fabD, tpiA and gyrA or fabD, proC and pyk were stably expressed in cultures grown in the presence of ethidium or berberine, respectively. Subsequently, these housekeeping genes were used as internal controls to analyze expression of the multidrug transport protein QacA and its transcriptional regulator QacR in the presence of the aforementioned compounds. Expression of qacA was induced by all four compounds, whereas qacR expression was found to be unaffected, reduced or enhanced. This study demonstrates that staphylococcal gene expression, including housekeeping genes previously used to normalize qRT-PCR data, is affected by growth in the presence of different antimicrobial compounds. Thus, identification of suitable genes usable as a control set requires rigorous testing. Identification of a such a set enabled them to be utilized as internal standards for accurate quantification of transcripts of the qac multidrug resistance system from S. aureus grown under different inducing conditions. Moreover, the qRT-PCR assay presented in this study may also be applied to gene expression studies of other multidrug transporters from S. aureus.
Collapse
Affiliation(s)
- Torsten Theis
- School of Biological Sciences A12, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
55
|
Hassan KA, Skurray RA, Brown MH. Active Export Proteins Mediating Drug Resistance in Staphylococci. J Mol Microbiol Biotechnol 2007; 12:180-96. [PMID: 17587867 DOI: 10.1159/000099640] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Drug resistance mediated by integral membrane transporters is an important mode of cellular resistance to cytotoxic agents across all classes of living organisms. Gram-positive bacteria, such as staphylococcal species, are not encapsulated by a selective outer membrane permeability barrier. Therefore, these organisms often employ integral membrane drug transport systems to maintain cellular concentrations of antimicrobials at subtoxic levels. Staphylococcal species, including the opportunistic human pathogen Staphylococcus aureus, encode a multitude of drug exporters, encompassing transporters from each of the five currently recognized families of bacterial drug resistance transporters. A number of these transporters are chromosomally encoded and allow the host cell to realize clinically significant levels of drug resistance after minor mutations to regulatory regions. Others are plasmid-encoded and can be easily passed between staphylococcal strains and species, or acquired from other Gram-positive genera. In combination, staphylococcal drug transporters potentiate resistance to a vast array of antimicrobial compounds, including macrolide, quinolone, tetracycline and streptogramin antibiotics, as well as a broad range of biocides, such as quaternary ammonium compounds, biguanidines and diamidines. An understanding of the genetic and molecular properties of drug transporters will lead to effective treatments of staphylococcal infections. Here we provide a detailed review of the active drug transporters of the staphylococci.
Collapse
Affiliation(s)
- Karl A Hassan
- School of Biological Sciences, University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
56
|
Brooks BE, Piro KM, Brennan RG. Multidrug-binding transcription factor QacR binds the bivalent aromatic diamidines DB75 and DB359 in multiple positions. J Am Chem Soc 2007; 129:8389-95. [PMID: 17567017 DOI: 10.1021/ja072576v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Staphylococcus aureus QacR is a multidrug-binding transcription repressor. Crystal structures of multiple QacR-drug complexes reveal that these toxins bind in a large pocket, which is composed of smaller overlapping "minipockets". Stacking, van der Waals, and ionic interactions are common features of binding, whereas hydrogen bonds are limited. Pentamidine, a bivalent aromatic diamidine, interacts with QacR differently as one positively charged benzamidine moiety is neutralized by the dipoles of side-chain and peptide backbone oxygens rather than a formal negative charge from proximal acidic residues. To understand the binding mechanisms of other bivalent benzamidines, we determined the crystal structures of the QacR-DB75 and QacR-DB359 complexes and measured their binding affinities. Although these rigid aromatic diamidines bind with low-micromolar affinities, they do not use single, discrete binding modes. Such promiscuous binding underscores the intrinsic chemical redundancy of the QacR multidrug-binding pocket. Chemical redundancy is likely a hallmark of all multidrug-binding pockets, yet it is utilized by only a subset of drugs, which, for QacR, so far appears to be limited to chemically rigid, bivalent compounds.
Collapse
Affiliation(s)
- Benjamin E Brooks
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Unit 1000, Houston, TX 77030, USA
| | | | | |
Collapse
|
57
|
Krell T, Terán W, Mayorga OL, Rivas G, Jiménez M, Daniels C, Molina-Henares AJ, Martínez-Bueno M, Gallegos MT, Ramos JL. Optimization of the Palindromic Order of the TtgR Operator Enhances Binding Cooperativity. J Mol Biol 2007; 369:1188-99. [PMID: 17498746 DOI: 10.1016/j.jmb.2007.04.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 04/02/2007] [Accepted: 04/10/2007] [Indexed: 11/26/2022]
Abstract
TtgR is the specific transcriptional repressor of the TtgABC efflux pump. TtgR and the TtgB efflux pump proteins possess multidrug-binding capacity, and their concerted action is responsible for the multidrug resistance phenotype of Pseudomonas putida DOT-T1E. TtgR binds to a pseudo-palindromic site that overlaps the ttgR/ttgA promoters. Dimethylsulfate footprint assays reveal a close interaction between TtgR and the central region of this operator. The results of analytical ultracentrifugation demonstrate that TtgR forms stable dimers in solution, and that two dimers bind to the operator. Microcalorimetric analysis of the binding of the two TtgR dimers to the cognate operator showed biphasic behavior, and an interaction model was developed for the cooperative binding of two TtgR dimers to their target operators. The binding of the two TtgR dimers to the operator was characterized by a Hill coefficient of 1.63+/-0.13 (k(D)=18.2(+/-6.3) microM, k(D)(')=0.91(+/-0.49) microM), indicating positive cooperativity. These data are in close agreement with the results of sedimentation equilibrium studies of TtgR-DNA complexes. A series of oligonucleotides were generated in which the imperfect palindrome of the TtgR operator was empirically optimized. Optimization of the palindrome did not significantly alter the binding of the initial TtgR dimer to the operator, but increased the cooperativity of binding and consequently the overall affinity. The minimal fragment for TtgR binding was a 30-mer DNA duplex, and analysis of its sequence revealed two partially overlapping inverted repeats co-existing within the large pseudo-palindrome operator. Based on the architecture of the operator, the thermodynamics of the process, and the TtgR-operator interactions we propose a model for the binding of TtgR to its target sequence.
Collapse
Affiliation(s)
- Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apartado de Correos 419, 18008 Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Molina-Henares AJ, Krell T, Eugenia Guazzaroni M, Segura A, Ramos JL. Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiol Rev 2006; 30:157-86. [PMID: 16472303 DOI: 10.1111/j.1574-6976.2005.00008.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Members of the IclR family of regulators are proteins with around 250 residues. The IclR family is best defined by a profile covering the effector binding domain. This is supported by structural data and by a number of mutants showing that effector specificity lies within a pocket in the C-terminal domain. These regulators have a helix-turn-helix DNA binding motif in the N-terminal domain and bind target promoters as dimers or as a dimer of dimers. This family comprises regulators acting as repressors, activators and proteins with a dual role. Members of the IclR family control genes whose products are involved in the glyoxylate shunt in Enterobacteriaceae, multidrug resistance, degradation of aromatics, inactivation of quorum-sensing signals, determinants of plant pathogenicity and sporulation. No clear consensus exists on the architecture of DNA binding sites for IclR activators: the MhpR binding site is formed by a 15-bp palindrome, but the binding sites of PcaU and PobR are three perfect 10-bp sequence repetitions forming an inverted and a direct repeat. IclR-type positive regulators bind their promoter DNA in the absence of effector. The mechanism of repression differs among IclR-type regulators. In most of them the binding sites of RNA polymerase and the repressor overlap, so that the repressor occludes RNA polymerase binding. In other cases the repressor binding site is distal to the RNA polymerase, so that the repressor destabilizes the open complex.
Collapse
Affiliation(s)
- Antonio J Molina-Henares
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Biochemistry and Molecular and Cellular Biology of Plants, Granada, Spain
| | | | | | | | | |
Collapse
|
59
|
Hoffmann KM, Williams D, Shafer WM, Brennan RG. Characterization of the multiple transferable resistance repressor, MtrR, from Neisseria gonorrhoeae. J Bacteriol 2005; 187:5008-12. [PMID: 15995218 PMCID: PMC1169513 DOI: 10.1128/jb.187.14.5008-5012.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MtrR represses expression of the Neisseria gonorrhoeae mtrCDE multidrug efflux transporter genes. MtrR displays salt-dependent DNA binding, a stoichiometry of two dimers per DNA site, and, for a protein that was expected to be essentially all helical, a high percentage of random coil and possibly beta-sheet structure.
Collapse
Affiliation(s)
- Katherine M Hoffmann
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, 97239-3098, USA
| | | | | | | |
Collapse
|
60
|
Borges-Walmsley MI, Du D, McKeegan KS, Sharples GJ, Walmsley AR. VceR Regulates the vceCAB Drug Efflux Pump Operon of Vibrio cholerae by Alternating Between Mutually Exclusive Conformations that Bind either Drugs or Promoter DNA. J Mol Biol 2005; 349:387-400. [PMID: 15890203 DOI: 10.1016/j.jmb.2005.03.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 02/08/2005] [Accepted: 03/11/2005] [Indexed: 10/25/2022]
Abstract
VceR, a member of the TetR family of transcriptional regulators, is a repressor of the vceCAB operon, which encodes a multidrug efflux pump in Vibrio cholerae. VceR binds to a 28 bp inverted-repeat within the vceR-vceC intergenic region and is dissociated from this site with CCCP, a pump substrate. The rate of the CCCP-induced conformational change in VceR was determined by stopped-flow fluorescence spectroscopy, revealing a highly co-operative process that occurs with a Hill coefficient of approximately 4. The apparent affinity for CCCP decreased in a linear manner with increasing concentrations of DNA, indicative of competition between the CCCP and DNA for binding to VceR. These data are consistent with an equilibrium between mutually exclusive conformations that are supported by the binding of DNA and CCCP to the N and C termini of VceR, respectively. Size-exclusion chromatography and dynamic light-scattering studies indicate that VceR exists predominantly as a dimer; however, a pair of dimers binds to the DNA. In order to account for the fact that VceR is a dimer in the absence of DNA but binds CCCP with a Hill co-efficient of 4, implying that it has at least four binding-sites, we propose that the VceR monomer possesses a pair of binding sites that can be simultaneously occupied by CCCP. Using a gene-reporter system and stopped-flow spectroscopy, we established that the equilibrium between free VceR and VceR-CCCP plays a critical role in controlling expression of the pump. The co-operative transition between these states allows the repressor to respond to relatively small changes in drug concentration. Thus, repression and induction can be readily switched about a critical drug concentration which will prove toxic to the cell.
Collapse
Affiliation(s)
- M Ines Borges-Walmsley
- Centre for Infectious Diseases, Department of Biological and Biomedical Sciences, University of Durham, Wolfson Research Institute, Queen's Campus, Stockton-on-Tees TS17 6BH, UK
| | | | | | | | | |
Collapse
|
61
|
Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 2005; 69:326-56. [PMID: 15944459 PMCID: PMC1197418 DOI: 10.1128/mmbr.69.2.326-356.2005] [Citation(s) in RCA: 866] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a general profile for the proteins of the TetR family of repressors. The stretch that best defines the profile of this family is made up of 47 amino acid residues that correspond to the helix-turn-helix DNA binding motif and adjacent regions in the three-dimensional structures of TetR, QacR, CprB, and EthR, four family members for which the function and three-dimensional structure are known. We have detected a set of 2,353 nonredundant proteins belonging to this family by screening genome and protein databases with the TetR profile. Proteins of the TetR family have been found in 115 genera of gram-positive, alpha-, beta-, and gamma-proteobacteria, cyanobacteria, and archaea. The set of genes they regulate is known for 85 out of the 2,353 members of the family. These proteins are involved in the transcriptional control of multidrug efflux pumps, pathways for the biosynthesis of antibiotics, response to osmotic stress and toxic chemicals, control of catabolic pathways, differentiation processes, and pathogenicity. The regulatory network in which the family member is involved can be simple, as in TetR (i.e., TetR bound to the target operator represses tetA transcription and is released in the presence of tetracycline), or more complex, involving a series of regulatory cascades in which either the expression of the TetR family member is modulated by another regulator or the TetR family member triggers a cell response to react to environmental insults. Based on what has been learned from the cocrystals of TetR and QacR with their target operators and from their three-dimensional structures in the absence and in the presence of ligands, and based on multialignment analyses of the conserved stretch of 47 amino acids in the 2,353 TetR family members, two groups of residues have been identified. One group includes highly conserved positions involved in the proper orientation of the helix-turn-helix motif and hence seems to play a structural role. The other set of less conserved residues are involved in establishing contacts with the phosphate backbone and target bases in the operator. Information related to the TetR family of regulators has been updated in a database that can be accessed at www.bactregulators.org.
Collapse
Affiliation(s)
- Juan L Ramos
- Department of Plant Biochemistry and Molecular and Cellular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas, Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Lin J, Akiba M, Sahin O, Zhang Q. CmeR functions as a transcriptional repressor for the multidrug efflux pump CmeABC in Campylobacter jejuni. Antimicrob Agents Chemother 2005; 49:1067-75. [PMID: 15728904 PMCID: PMC549222 DOI: 10.1128/aac.49.3.1067-1075.2005] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CmeABC, a resistance-nodulation-division (RND) type of efflux pump, contributes to Campylobacter resistance to a broad spectrum of antimicrobial agents and is also essential for Campylobacter colonization of the animal intestinal tract by mediation of bile resistance. As one of the main systems for Campylobacter adaptation to different environments, CmeABC is likely subject to control by regulatory elements. We describe the identification of a transcriptional repressor for CmeABC. Insertional mutagenesis of cmeR, an open reading frame immediately upstream of the cmeABC operon, resulted in overexpression of cmeABC, as determined by transcriptional fusion (P(cmeABC-lacZ)) and immunoblotting with CmeABC-specific antibodies. Overexpression of the efflux pump was correlated with a moderate increase in the level of resistance of the cmeR mutant to several antimicrobials. In vitro, recombinant CmeR bound specifically to the promoter region of cmeABC, precisely, to the inverted repeat sequences in the cmeABC promoter. A single nucleotide deletion between the two half sites of the inverted repeat reduced the level of CmeR binding to the promoter sequence and resulted in overexpression of cmeABC. Together, these findings indicate that cmeR encodes a transcriptional repressor that directly interacts with the cmeABC promoter and modulates the expression of cmeABC. Mutation either in CmeR or in the inverted repeat impedes the repression and leads to enhanced production of the MDR efflux pump.
Collapse
Affiliation(s)
- Jun Lin
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, 1116 Veterinary Medicine Complex, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
63
|
Guazzaroni ME, Krell T, Felipe A, Ruiz R, Meng C, Zhang X, Gallegos MT, Ramos JL. The Multidrug Efflux Regulator TtgV Recognizes a Wide Range of Structurally Different Effectors in Solution and Complexed with Target DNA. J Biol Chem 2005; 280:20887-93. [PMID: 15767250 DOI: 10.1074/jbc.m500783200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TtgV modulates the expression of the ttgGHI operon, which encodes an efflux pump that extrudes a wide variety of chemicals including mono- and binuclear aromatic hydrocarbons, aliphatic alcohols, and antibiotics of dissimilar chemical structure. Using a 'lacZ fusion to the ttgG promoter, we show that the most efficient in vivo inducers were 1-naphthol, 2,3-dihydroxynaphthalene, 4-nitrotoluene, benzonitrile, and indole. The thermodynamic parameters for the binding of different effector molecules to purified TtgV were determined by isothermal titration calorimetry. For the majority of effectors, the interaction was enthalpy-driven and counterbalance by unfavorable entropy changes. The TtgV-effector dissociation constants were found to vary between 2 and 890 mum. There was a relationship between TtgV affinity for the different effectors and their potential to induce gene expression in vivo, indicating that the effector binding constant is a major determinant for efficient efflux pump gene expression. Equilibrium dialysis and isothermal titration calorimetry studies indicated that a TtgV dimer binds one effector molecule. No evidence for the simultaneous binding of multiple effectors to TtgV was obtained. The binding of TtgV to a 63-bp DNA fragment containing its cognate operator was tight and entropy-driven (K(D) = 2.4 +/- 0.35 nm, DeltaH = 5.5 +/- 0.04 kcal/mol). The TtgV-DNA complex was shown to bind 1-napthol with an affinity comparable with the free soluble TtgV protein, K(D) = 4.8 +/- 0.19 and 3.0 +/- 0.15 mum, respectively. The biological relevance of this finding is discussed.
Collapse
Affiliation(s)
- María-Eugenia Guazzaroni
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda, 1, E-18008 Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Kaatz GW, Thyagarajan RV, Seo SM. Effect of promoter region mutations and mgrA overexpression on transcription of norA, which encodes a Staphylococcus aureus multidrug efflux transporter. Antimicrob Agents Chemother 2005; 49:161-9. [PMID: 15616291 PMCID: PMC538897 DOI: 10.1128/aac.49.1.161-169.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
NorA is a Staphylococcus aureus multidrug transporter that confers resistance to structurally distinct compounds. The MgrA global regulatory protein is reported to augment norA expression when mgrA is overexpressed from an undefined plasmid-based promoter. Further details about norA regulatory mechanisms are scant. A chromosomal norA::lacZ transcriptional fusion was constructed in different S. aureus strains, and allele replacement was used to define the relevance of promoter region sequences to norA expression. The effect of mgrA overexpression in wild-type and mutant backgrounds was also determined. Contrary to existing data, overexpression of mgrA repressed norA transcription in all parent and selected norA promoter mutant strains in a dose-dependent fashion. Disruption of a near-perfect inverted repeat or other putative regulatory protein binding sites did not affect norA transcription, but the repressive effect of mgrA overexpression was blunted in these mutants. This result, and the conservation of all of these motifs in S. aureus, suggests that their presence is required for the full effect of MgrA, or other regulatory proteins, on norA expression. Mutations at the +5 nucleotide of norA mRNA (flqB mutations) had a major impact; all resulted in markedly increased norA expression that was significantly reversed by mgrA overexpression. The flqB position of norA mRNA is part of a conserved imperfect inverted repeat; it is feasible that this motif could be a binding site for a norA regulatory protein.
Collapse
Affiliation(s)
- Glenn W Kaatz
- Department of Internal Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, B4333 John D. Dingell VA Medical Center, 4646 John R, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
65
|
Krug A, Wendisch VF, Bott M. Identification of AcnR, a TetR-type repressor of the aconitase gene acn in Corynebacterium glutamicum. J Biol Chem 2004; 280:585-95. [PMID: 15494411 DOI: 10.1074/jbc.m408271200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Corynebacterium glutamicum, the activity of aconitase is 2.5-4-fold higher on propionate, citrate, or acetate than on glucose. Here we show that this variation is caused by transcriptional regulation. In search for putative regulators, a gene (acnR) encoding a TetR-type transcriptional regulator was found to be encoded immediately downstream of the aconitase gene (acn) in C. glutamicum. Deletion of the acnR gene led to a 5-fold increased acn-mRNA level and a 5-fold increased aconitase activity, suggesting that AcnR functions as repressor of acn expression. DNA microarray analyses indicated that acn is the primary target gene of AcnR in the C. glutamicum genome. Purified AcnR was shown to be a homodimer, which binds to the acn promoter in the region from -11 to -28 relative to the transcription start. It thus presumably acts by interfering with the binding of RNA polymerase. The acn-acnR organization is conserved in all corynebacteria and mycobacteria with known genome sequence and a putative AcnR consensus binding motif (CAGNACnnncGTACTG) was identified in the corresponding acn upstream regions. Mutations within this motif inhibited AcnR binding. Because the activities of citrate synthase and isocitrate dehydrogenase were previously reported not to be increased during growth on acetate, our data indicate that aconitase is a major control point of tricarboxylic acid cycle activity in C. glutamicum, and they identify AcnR as the first transcriptional regulator of a tricarboxylic acid cycle gene in the Corynebacterianeae.
Collapse
Affiliation(s)
- Andreas Krug
- Institut für Biotechnologie 1, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | | | | |
Collapse
|
66
|
Matsuo Y, Eda S, Gotoh N, Yoshihara E, Nakae T. MexZ-mediated regulation ofmexXYmultidrug efflux pump expression inPseudomonas aeruginosaby binding on themexZ-mexXintergenic DNA. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09732.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
67
|
Grkovic S, Hardie KM, Brown MH, Skurray RA. Interactions of the QacR multidrug-binding protein with structurally diverse ligands: implications for the evolution of the binding pocket. Biochemistry 2004; 42:15226-36. [PMID: 14690433 DOI: 10.1021/bi035447+] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The QacR multidrug-binding repressor protein regulates the expression of the Staphylococcus aureus qacA gene, a multidrug resistance (MDR) locus that is prevalent in clinical isolates of this important human pathogen. In this paper we demonstrate that the range of structurally diverse compounds capable of inducing qacA transcription is significantly more varied than previously appreciated, particularly in relation to bivalent cations. For all of the newly identified inducing compounds, induction of qacAexpression was correlated with a matching ability to dissociate QacR from operator DNA. Development of a ligand-binding assay based on intrinsic tryptophan fluorescence permitted dissociation constants to be determined for the majority of known QacR ligands, with values ranging from 0.2 to 82 microM. High-affinity binding of a compound to QacR in vitro was not found to correlate very strongly with either its in vivo inducing abilities or its structure. The latter observation indicated that the QacR ligand-binding pocket appears to have evolved to accommodate a wide range of toxic hydrophobic cations, rather than a specific class of compound. Importantly, the antimicrobial ligands of QacR included several plant alkaloids that share structural similarities with synthetic MDR substrates. This is consistent with the suggestion that the qacA-qacR MDR locus was recently derived from genes that protect against natural antimicrobial compounds.
Collapse
Affiliation(s)
- Steve Grkovic
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | |
Collapse
|
68
|
Murray DS, Schumacher MA, Brennan RG. Crystal Structures of QacR-Diamidine Complexes Reveal Additional Multidrug-binding Modes and a Novel Mechanism of Drug Charge Neutralization. J Biol Chem 2004; 279:14365-71. [PMID: 14726520 DOI: 10.1074/jbc.m313870200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Staphylococcus aureus multidrug-binding protein QacR represses transcription of the plasmid-encoded membrane protein QacA, a multidrug efflux transporter. QacR is induced by multiple structurally dissimilar monovalent and bivalent cationic lipophilic compounds, many of which are effluxed from the cell by QacA via the proton motive force. The multidrug-binding pocket of QacR has been shown to be quite extensive and features several glutamates and multiple aromatic residues. To date, the structure of only one QacR-bivalent cationic drug complex (that of QacR bound to dequalinium) has been determined, and how other longer or shorter bivalent cationic compounds bind is unknown. Here we report the crystal structures of QacR bound to two cytotoxic bivalent diamidines, pentamidine and hexamidine. These compounds are structurally similar, differing by only one methylene carbon in the alkyl chain linker. However, this small difference results in very dissimilar binding modes. Similar to dequalinium, hexamidine spans the multidrug-binding pocket, and its positively charged benzamidine groups are neutralized by residues Glu-57 and Glu-120. Pentamidine binds QacR in a novel fashion whereby one of its benzamidine groups interacts with residue Glu-63, and the other is neutralized by carbonyl and side chain oxygen atoms. Thus, these structures demonstrate that a formal negative charge is not a prerequisite for binding positively charged drugs and underscore the versatility of the QacR and, likely, all multidrug-binding pockets.
Collapse
Affiliation(s)
- David S Murray
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239-3098, USA
| | | | | |
Collapse
|
69
|
Terán W, Felipe A, Segura A, Rojas A, Ramos JL, Gallegos MT. Antibiotic-dependent induction of Pseudomonas putida DOT-T1E TtgABC efflux pump is mediated by the drug binding repressor TtgR. Antimicrob Agents Chemother 2004; 47:3067-72. [PMID: 14506010 PMCID: PMC201152 DOI: 10.1128/aac.47.10.3067-3072.2003] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida is well known for its metabolic capabilities, but recently, it has been shown to exhibit resistance to a wide range of antibiotics. In P. putida DOT-T1E, the TtgABC efflux pump, which has a broad substrate specificity, extrudes antibiotics such as ampicillin, carbenicillin, tetracycline, nalidixic acid, and chloramphenicol. We have analyzed the expression of the ttgABC efflux pump operon and its regulatory gene, ttgR, in response to several structurally unrelated antibiotics at the transcriptional level and investigated the role of the TtgR protein in this process. ttgABC and ttgR are expressed in vivo at a moderate basal level, which increases in the presence of hydrophobic antibiotics like chloramphenicol and tetracycline. In vitro experiments show that, in the absence of inducers, TtgR binds to a palindromic operator site which overlaps both ttgABC and ttgR promoters and dissociates from it in the presence of chloramphenicol and tetracycline. These results suggest that the TtgR repressor is able to bind to structurally different antibiotics, which allows induction of TtgABC multidrug efflux pump expression in response to these antimicrobial agents. This is the first case in which the expression of a drug transporter of the resistance-nodulation-division family has been shown to be regulated directly by antibiotics.
Collapse
Affiliation(s)
- Wilson Terán
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Plant Biochemistry, Molecular and Cellular Biology, Granada, Spain
| | | | | | | | | | | |
Collapse
|
70
|
Engohang-Ndong J, Baillat D, Aumercier M, Bellefontaine F, Besra GS, Locht C, Baulard AR. EthR, a repressor of the TetR/CamR family implicated in ethionamide resistance in mycobacteria, octamerizes cooperatively on its operator. Mol Microbiol 2004; 51:175-88. [PMID: 14651620 DOI: 10.1046/j.1365-2958.2003.03809.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ethionamide (ETH) is an important second-line antitubercular drug used for the treatment of patients infected with multidrug-resistant Mycobacterium tuberculosis. Although ETH is a structural analogue of isoniazid, only little cross-resistance to these two drugs is observed among clinical isolates. Both isoniazid and ETH are pro-drugs that need to be activated by mycobacterial enzymes to exert their antimicrobial activity. We have recently identified two M. tuberculosis genes, Rv3854c (ethA) and Rv3855 (ethR), involved in resistance to ETH. ethA encodes a protein that belongs to the Flavin-containing monooxygenase family catalysing the activation of ETH. We show here that ethR, which encodes a repressor belonging to the TetR/CamR family of transcriptional regulators, negatively regulates the expression of ethA. By the insertion of the ethA promoter region upstream of the lacZ reporter gene, overexpression of ethR in trans was found to cause a strong inhibition of ethA expression, independently of the presence of ETH in the culture media. Electrophoretic mobility shift assays indicated that EthR interacts directly with the ethA promoter region. This interaction was confirmed by DNA footprinting analysis, which, in addition, identified the EthR-binding region. Unlike other TetR/CamR members, which typically bind 15 bp operators, EthR recognises an unusually long 55 bp region suggesting multimerization of the repressor on its operator. Identification by primer-extension of the ethA transcriptional start site indicated that it is located within the EthR-binding region. Taken together, bacterial two-hybrid experiments and gel filtration assays suggested a dimerization of EthR in the absence of its operator. In contrast, surface plasmon resonance analyses showed that eight EthR molecules bind cooperatively to the 55 bp operator, which represents a novel repression mechanism for a TetR/CamR member.
Collapse
Affiliation(s)
- Jean Engohang-Ndong
- INSERM-U447, Institut de Biologie de Lille - Institut Pasteur de Lille, 1 rue du Professeur Calmette, BP 245, 59019 Lille Cedex, France
| | | | | | | | | | | | | |
Collapse
|
71
|
Natsume R, Ohnishi Y, Senda T, Horinouchi S. Crystal Structure of a γ-Butyrolactone Autoregulator Receptor Protein in Streptomyces coelicolor A3(2). J Mol Biol 2004; 336:409-19. [PMID: 14757054 DOI: 10.1016/j.jmb.2003.12.040] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The gamma-butyrolactone-type autoregulator/receptor systems in the Gram-positive bacterial genus Streptomyces regulate morphological differentiation or antibiotic production, or both. The autoregulator receptors act as DNA-binding proteins, and on binding their cognate ligands (gamma-butyrolactones) they are released from the DNA, thus serving as repressors. The crystal structure of CprB in Streptomyces coelicolor A3(2), a homologue of the A-factor-receptor protein, ArpA, in Streptomyces griseus, was determined. The overall structure of CprB shows that the gamma-butyrolactone receptors belong to the TetR family. CprB is composed of two domains, a DNA-binding domain and a regulatory domain. The regulatory domain contains a hydrophobic cavity, which probably serves as a ligand-binding pocket. On the basis of the crystal structure of CprB and on the analogy of the characteristics of ligand-TetR binding, the binding of gamma-butyrolactones to the regulatory domain of the receptors is supposed to induce the relocation of the DNA-binding domain through conformational changes of residues located between the ligand-binding site and the DNA-binding domain, which would result in the dissociation of the receptors from their target DNA.
Collapse
Affiliation(s)
- Ryo Natsume
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, 113-8657, Tokyo, Japan
| | | | | | | |
Collapse
|
72
|
Sandu C, Chiribau CB, Brandsch R. Characterization of HdnoR, the transcriptional repressor of the 6-hydroxy-D-nicotine oxidase gene of Arthrobacter nicotinovorans pAO1, and its DNA-binding activity in response to L- and D-nicotine Derivatives. J Biol Chem 2003; 278:51307-15. [PMID: 14534317 DOI: 10.1074/jbc.m307797200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Utilization of L-nicotine as growth substrate by Arthrobacter nicotinovorans pAO1 starts with hydroxylation of the pyridine ring at C6. Next, the pyrrolidine ring is oxidized by 6-hydroxy-L-nicotine oxidase, which acts strictly stereo-specific on the L-enantiomer. Surprisingly, L-nicotine also induces the synthesis of a 6-hydroxy-d-nicotine-specific oxidase in the bacteria. Genes of nicotine-degrading enzymes are located on the catabolic plasmid pAO1. The pAO1 sequence revealed that the 6-hydroxy-D-nicotine oxidase gene is flanked by two open reading frames with a similarity to amino acid permeases and a divergently transcribed open reading frame with a similarity to proteins of the tetracycline repressor TetR family. Reverse transcription PCR and primer extension analysis of RNA transcripts isolated from A. nicotinovorans pAO1 indicated that the 6-hydroxy-D-nicotine oxidase gene represents a transcriptional unit. DNA electromobility shift assays established that the purified TetR-similar protein represents the 6-hydroxy-D-nicotine oxidase gene repressor HdnoR and binds to the 6-hydroxy-D-nicotine oxidase gene operator with a Kd of 21 nM. The enantiomers 6-hydroxy-D- and 6-hydroxy-L-nicotine acted in vitro as inducers. In vivo analysis of 6-hydroxy-D-nicotine oxidase gene transcripts from bacteria grown with L- and D-nicotine confirmed this conclusion. The poor discrimination by HdnoR between the 6-hydroxy-L- and 6-hydroxy-D-nicotine enantiomers explains the presence of the 6-hydroxy-D-nicotine-specific enzyme in bacteria grown on L-nicotine.
Collapse
Affiliation(s)
- Cristinel Sandu
- Institute of Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany
| | | | | |
Collapse
|
73
|
Galluzzi L, Virtanen P, Karp M. A real-time analysis of QacR-regulated multidrug resistance in Staphylococcus aureus. Biochem Biophys Res Commun 2003; 301:24-30. [PMID: 12535635 DOI: 10.1016/s0006-291x(02)02992-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we describe the construction and characterization of a biosensing reporter where luxCDABE genes from Photorhabdus luminescens, engineered for expression in Gram-positive organisms, are under the transcriptional control of QacR repressor from Staphylococcus aureus. In non-pathogenic S. aureus model system we analyzed the activity of the regulatory region acting as multidrug-resistance mediator in wild type strains. The use of full-length bacterial luciferase and the measurement of real-time light emission from intact, living cells make the present system suitable to follow the short term activity of different inducers. Among the tested molecules, tetracyclines showed a peculiar behavior by giving very high induction in a fashion seemingly more related to a general stress condition of the culture than to the direct binding and displacement of QacR from its operator. Temperature shocks confirmed that active transcription from qacA promoter is started in response to unspecific conditions where cell growth is strongly inhibited.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Biotechnology, University of Turku, Tykistökatu 6, 6th floor, Turku FIN-20520, Finland
| | | | | |
Collapse
|
74
|
Grkovic S, Brown MH, Skurray RA. Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 2002; 66:671-701, table of contents. [PMID: 12456787 PMCID: PMC134658 DOI: 10.1128/mmbr.66.4.671-701.2002] [Citation(s) in RCA: 292] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The active transport of toxic compounds by membrane-bound efflux proteins is becoming an increasingly frequent mechanism by which cells exhibit resistance to therapeutic drugs. This review examines the regulation of bacterial drug efflux systems, which occurs primarily at the level of transcription. Investigations into these regulatory networks have yielded a substantial volume of information that has either not been forthcoming from or complements that obtained by analysis of the transport proteins themselves. Several local regulatory proteins, including the activator BmrR from Bacillus subtilis and the repressors QacR from Staphylococcus aureus and TetR and EmrR from Escherichia coli, have been shown to mediate increases in the expression of drug efflux genes by directly sensing the presence of the toxic substrates exported by their cognate pump. This ability to bind transporter substrates has permitted detailed structural information to be gathered on protein-antimicrobial agent-ligand interactions. In addition, bacterial multidrug efflux determinants are frequently controlled at a global level and may belong to stress response regulons such as E. coli mar, expression of which is controlled by the MarA and MarR proteins. However, many regulatory systems are ill-adapted for detecting the presence of toxic pump substrates and instead are likely to respond to alternative signals related to unidentified physiological roles of the transporter. Hence, in a number of important pathogens, regulatory mutations that result in drug transporter overexpression and concomitant elevated antimicrobial resistance are often observed.
Collapse
Affiliation(s)
- Steve Grkovic
- School of Biological Sciences, University of Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
75
|
Godsey MH, Zheleznova Heldwein EE, Brennan RG. Structural biology of bacterial multidrug resistance gene regulators. J Biol Chem 2002; 277:40169-72. [PMID: 12186881 DOI: 10.1074/jbc.r200018200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Michael H Godsey
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | |
Collapse
|
76
|
Schumacher MA, Brennan RG. Structural mechanisms of multidrug recognition and regulation by bacterial multidrug transcription factors. Mol Microbiol 2002; 45:885-93. [PMID: 12180910 DOI: 10.1046/j.1365-2958.2002.03039.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The increase in bacterial resistance to multiple drugs represents a serious and growing health risk. One component of multidrug resistance (MDR) is a group of multidrug transporters that are often regulated at the transcriptional level by repressors and/or activators. Some of these transcription factors are also multidrug-binding proteins, frequently recognizing the same array of drugs that are effluxed by the transporters that they regulate. How a single protein can recognize such chemically disparate compounds is an intriguing question from a structural standpoint and an important question in future drug development endeavours. Unlike the multidrug transporters, the cytosolic multidrug-binding regulatory proteins are more tractable systems for structural analyses. Here, we describe recent crystallographic studies on MarR, BmrR and QacR, three bacterial transcription regulators that are also multidrug-binding proteins. Although our understanding of multidrug binding and transcriptional regulation by MarR is in its initial stages, the structure of a BmrR-TPP+-DNA complex has revealed important insights into the novel transcription activation mechanism of the MerR family, and the structures of a QacR-DNA complex and QacR bound to six different drugs have revealed not only the mechanism of induction of this repressor but has afforded the first view of any MDR protein bound to multiple drugs.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97201, USA
| | | |
Collapse
|
77
|
Schumacher MA, Miller MC, Grkovic S, Brown MH, Skurray RA, Brennan RG. Structural basis for cooperative DNA binding by two dimers of the multidrug-binding protein QacR. EMBO J 2002; 21:1210-8. [PMID: 11867549 PMCID: PMC125875 DOI: 10.1093/emboj/21.5.1210] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Staphylococcus aureus multidrug-binding protein QacR represses transcription of the qacA multidrug transporter gene and is induced by multiple structurally dissimilar drugs. QacR is a member of the TetR/CamR family of transcriptional regulators, which share highly homologous N-terminal DNA-binding domains connected to seemingly non-homologous ligand-binding domains. Unlike other TetR members, which bind approximately 15 bp operators, QacR recognizes an unusually long 28 bp operator, IR1, which it appears to bind cooperatively. To elucidate the DNA-binding mechanism of QacR, we determined the 2.90 A resolution crystal structure of a QacR-IR1 complex. Strikingly, our data reveal that the DNA recognition mode of QacR is distinct from TetR and involves the binding of a pair of QacR dimers. In this unique binding mode, recognition at each IR1 half-site is mediated by a complement of DNA contacts made by two helix-turn-helix motifs. The inferred cooperativity does not arise from cross-dimer protein-protein contacts, but from the global undertwisting and major groove widening elicited by the binding of two QacR dimers.
Collapse
Affiliation(s)
| | | | - Steve Grkovic
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97201-3098, USA and
School of Biological Sciences, A12, University of Sydney, Sydney, NSW 2006, Australia Corresponding author e-mail:
| | - Melissa H. Brown
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97201-3098, USA and
School of Biological Sciences, A12, University of Sydney, Sydney, NSW 2006, Australia Corresponding author e-mail:
| | - Ronald A. Skurray
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97201-3098, USA and
School of Biological Sciences, A12, University of Sydney, Sydney, NSW 2006, Australia Corresponding author e-mail:
| | - Richard G. Brennan
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97201-3098, USA and
School of Biological Sciences, A12, University of Sydney, Sydney, NSW 2006, Australia Corresponding author e-mail:
| |
Collapse
|
78
|
Schumacher MA, Miller MC, Grkovic S, Brown MH, Skurray RA, Brennan RG. Structural mechanisms of QacR induction and multidrug recognition. Science 2001; 294:2158-63. [PMID: 11739955 DOI: 10.1126/science.1066020] [Citation(s) in RCA: 309] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Staphylococcus aureus multidrug binding protein QacR represses transcription of the qacA multidrug transporter gene and is induced by structurally diverse cationic lipophilic drugs. Here, we report the crystal structures of six QacR-drug complexes. Compared to the DNA bound structure, drug binding elicits a coil-to-helix transition that causes induction and creates an expansive multidrug-binding pocket, containing four glutamates and multiple aromatic and polar residues. These structures indicate the presence of separate but linked drug-binding sites within a single protein. This multisite drug-binding mechanism is consonant with studies on multidrug resistance transporters.
Collapse
Affiliation(s)
- M A Schumacher
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | | | | | | | | | | |
Collapse
|