51
|
Yang Y, Huang XZ, Wang L, Risoul V, Zhang CC, Chen WL. Phenotypic variation caused by variation in the relative copy number of pDU1-based plasmids expressing the GAF domain of Pkn41 or Pkn42 in Anabaena sp. PCC 7120. Res Microbiol 2012; 164:127-35. [PMID: 23142489 DOI: 10.1016/j.resmic.2012.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/08/2012] [Indexed: 11/17/2022]
Abstract
The cyanobacterium Anabaena (Nostoc) sp. PCC 7120 is a model for cyanobacterial cell differentiation studies. pDU1, an endogenous plasmid in Nostoc sp. PCC 7524, is used as the only cyanobacterial replicon for Anabaena (Nostoc) studies. However, the relative copy numbers of pDU1-based plasmids in Anabaena (Nostoc) sp. PCC 7120 are not well studied. We found that the relative plasmid copy number of one such vector, pRL25T, varied widely, especially when the vector carried a recombinant insert, under different conditions, ranging from 0.53 to 1812 per chromosome in different recombinant strains tested, either in independent clones of the same strain or in the same clone under different growth conditions. The phenotypes caused by pRL25T-driven expression of green fluorescent protein or the GAF domain of Pkn41 or Pkn42 varied depending on the independent clones analyzed. This phenotypic variation correlated with the relative plasmid copy number present in cells.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China.
| | | | | | | | | | | |
Collapse
|
52
|
Muro-Pastor AM, Hess WR. Heterocyst differentiation: from single mutants to global approaches. Trends Microbiol 2012; 20:548-57. [DOI: 10.1016/j.tim.2012.07.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/08/2012] [Accepted: 07/12/2012] [Indexed: 02/05/2023]
|
53
|
Brown AI, Rutenberg AD. Heterocyst placement strategies to maximize the growth of cyanobacterial filaments. Phys Biol 2012; 9:046002. [DOI: 10.1088/1478-3975/9/4/046002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
54
|
Differences in cell division rates drive the evolution of terminal differentiation in microbes. PLoS Comput Biol 2012; 8:e1002468. [PMID: 22511858 PMCID: PMC3325182 DOI: 10.1371/journal.pcbi.1002468] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/24/2012] [Indexed: 12/01/2022] Open
Abstract
Multicellular differentiated organisms are composed of cells that begin by developing from a single pluripotent germ cell. In many organisms, a proportion of cells differentiate into specialized somatic cells. Whether these cells lose their pluripotency or are able to reverse their differentiated state has important consequences. Reversibly differentiated cells can potentially regenerate parts of an organism and allow reproduction through fragmentation. In many organisms, however, somatic differentiation is terminal, thereby restricting the developmental paths to reproduction. The reason why terminal differentiation is a common developmental strategy remains unexplored. To understand the conditions that affect the evolution of terminal versus reversible differentiation, we developed a computational model inspired by differentiating cyanobacteria. We simulated the evolution of a population of two cell types –nitrogen fixing or photosynthetic– that exchange resources. The traits that control differentiation rates between cell types are allowed to evolve in the model. Although the topology of cell interactions and differentiation costs play a role in the evolution of terminal and reversible differentiation, the most important factor is the difference in division rates between cell types. Faster dividing cells always evolve to become the germ line. Our results explain why most multicellular differentiated cyanobacteria have terminally differentiated cells, while some have reversibly differentiated cells. We further observed that symbioses involving two cooperating lineages can evolve under conditions where aggregate size, connectivity, and differentiation costs are high. This may explain why plants engage in symbiotic interactions with diazotrophic bacteria. The evolution of multicellularity is one of the most fascinating topics of evolutionary biology. Without multicellularity the incredible diversity of extant life would not be possible. In many multicellular organisms with specialized cells, some cell types become terminally differentiated (somatic cells) and lose the ability to reproduce new organisms while other cells maintain this ability (germline). Little is known about the conditions that favor the evolution of terminal differentiation in multicellular organisms. To understand this problem we have developed a computational model, inspired by multicellular cyanobacteria, in which the cells in an organism composed of two cell types (photosynthetic and nitrogen fixing) are allowed to evolve from germline to soma cells. We find three striking results. First, faster dividing cell types always evolve to become the germline. Second, the conditions under which we find different outcomes from the model are in good agreement with the different forms of development observed in multicellular cyanobacteria. Third, some conditions lead to a symbiotic state in which the two cell types separate into different lineages evolving independently of one another. Remarkably, cyanobacteria are also known to engage in symbiotic relationships with plants, producing fixed nitrogen for the plant in exchange for carbohydrates.
Collapse
|
55
|
Feldmann EA, Ni S, Sahu ID, Mishler CH, Levengood JD, Kushnir Y, McCarrick RM, Lorigan GA, Tolbert BS, Callahan SM, Kennedy MA. Differential Binding between PatS C-Terminal Peptide Fragments and HetR from Anabaena sp. PCC 7120. Biochemistry 2012; 51:2436-42. [DOI: 10.1021/bi300228n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Erik A. Feldmann
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Shuisong Ni
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Indra D. Sahu
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Clay H. Mishler
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Jeffrey D. Levengood
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Yegor Kushnir
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Robert M. McCarrick
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Gary A. Lorigan
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Blanton S. Tolbert
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Sean M. Callahan
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii 96822, United
States
| | - Michael A. Kennedy
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| |
Collapse
|
56
|
Higa KC, Rajagopalan R, Risser DD, Rivers OS, Tom SK, Videau P, Callahan SM. The RGSGR amino acid motif of the intercellular signalling protein, HetN, is required for patterning of heterocysts in Anabaena sp. strain PCC 7120. Mol Microbiol 2012; 83:682-93. [DOI: 10.1111/j.1365-2958.2011.07949.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
57
|
Lindblad P, Lindberg P, Oliveira P, Stensjö K, Heidorn T. Design, engineering, and construction of photosynthetic microbial cell factories for renewable solar fuel production. AMBIO 2012; 41 Suppl 2:163-8. [PMID: 22434446 PMCID: PMC3357766 DOI: 10.1007/s13280-012-0274-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H(2) production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.
Collapse
Affiliation(s)
- Peter Lindblad
- Photochemistry and Molecular Science, Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 523, 751 20, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
58
|
Ispolatov I, Ackermann M, Doebeli M. Division of labour and the evolution of multicellularity. Proc Biol Sci 2011; 279:1768-76. [PMID: 22158952 DOI: 10.1098/rspb.2011.1999] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding the emergence and evolution of multicellularity and cellular differentiation is a core problem in biology. We develop a quantitative model that shows that a multicellular form emerges from genetically identical unicellular ancestors when the compartmentalization of poorly compatible physiological processes into component cells of an aggregate produces a fitness advantage. This division of labour between the cells in the aggregate occurs spontaneously at the regulatory level owing to mechanisms present in unicellular ancestors and does not require any genetic predisposition for a particular role in the aggregate or any orchestrated cooperative behaviour of aggregate cells. Mathematically, aggregation implies an increase in the dimensionality of phenotype space that generates a fitness landscape with new fitness maxima, in which the unicellular states of optimized metabolism become fitness saddle points. Evolution of multicellularity is modelled as evolution of a hereditary parameter: the propensity of cells to stick together, which determines the fraction of time a cell spends in the aggregate form. Stickiness can increase evolutionarily owing to the fitness advantage generated by the division of labour between cells in an aggregate.
Collapse
Affiliation(s)
- Iaroslav Ispolatov
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
59
|
Tom SK, Callahan SM. The putative phosphatase All1758 is necessary for normal growth, cell size and synthesis of the minor heterocyst-specific glycolipid in the cyanobacterium Anabaena sp. strain PCC 7120. MICROBIOLOGY-SGM 2011; 158:380-389. [PMID: 22053007 DOI: 10.1099/mic.0.054783-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The filamentous cyanobacterium Anabaena sp. strain PCC 7120 differentiates nitrogen-fixing heterocysts arranged in a periodic pattern when deprived of a fixed source of nitrogen. In a genetic screen for mutations that prevent diazotrophic growth, open reading frame all1758, which encodes a putative serine/threonine phosphatase, was identified. Mutation of all1758 resulted in a number of seemingly disparate phenotypes that included a delay in the morphological differentiation of heterocysts, reduced cell size, and lethality under certain conditions. The mutant was incapable of fixing nitrogen under either oxic or anoxic conditions, and lacked the minor heterocyst-specific glycolipid. Pattern formation, as indicated by the timing and pattern of expression from the promoters of hetR and patS fused transcriptionally to the gene for green fluorescent protein (GFP), was unaffected by mutation of all1758, suggesting that its role in the formation of heterocysts is limited to morphological differentiation. Transcription of all1758 was constitutive with respect to both cell type and conditions of growth, but required a functional copy of all1758. The reduced cell size of the all1758 mutant and the location of all1758 between the cell division genes ftsX and ftsY may be indicative of a role for all1758 in cell division. Taken together, these results suggest that the protein encoded by all1758 may represent a link between cell growth, division and regulation of the morphological differentiation of heterocysts.
Collapse
Affiliation(s)
- Sasa K Tom
- Department of Microbiology, University of Hawaii, Honolulu, HI 96822, USA
| | - Sean M Callahan
- Department of Microbiology, University of Hawaii, Honolulu, HI 96822, USA
| |
Collapse
|
60
|
Mutations in genes patA and patL of Anabaena sp. strain PCC 7120 result in similar phenotypes, and the proteins encoded by those genes may interact. J Bacteriol 2011; 193:6070-4. [PMID: 21890704 DOI: 10.1128/jb.05523-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PatA resembles a response regulator protein with a defective DNA-binding domain, and PatL (All3305) is a pentapeptide repeat protein. A yeast two-hybrid library identified PatL as a protein with which PatA may interact. Heterocysts of patA and patL Anabaena sp. form nearly exclusively terminally in long filaments, further linking the genes.
Collapse
|
61
|
Flaherty BL, Van Nieuwerburgh F, Head SR, Golden JW. Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. strain PCC 7120 to combined-nitrogen deprivation. BMC Genomics 2011; 12:332. [PMID: 21711558 PMCID: PMC3141674 DOI: 10.1186/1471-2164-12-332] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 06/28/2011] [Indexed: 11/13/2022] Open
Abstract
Background Cyanobacteria are potential sources of renewable chemicals and biofuels and serve as model organisms for bacterial photosynthesis, nitrogen fixation, and responses to environmental changes. Anabaena (Nostoc) sp. strain PCC 7120 (hereafter Anabaena) is a multicellular filamentous cyanobacterium that can "fix" atmospheric nitrogen into ammonia when grown in the absence of a source of combined nitrogen. Because the nitrogenase enzyme is oxygen sensitive, Anabaena forms specialized cells called heterocysts that create a microoxic environment for nitrogen fixation. We have employed directional RNA-seq to map the Anabaena transcriptome during vegetative cell growth and in response to combined-nitrogen deprivation, which induces filaments to undergo heterocyst development. Our data provide an unprecedented view of transcriptional changes in Anabaena filaments during the induction of heterocyst development and transition to diazotrophic growth. Results Using the Illumina short read platform and a directional RNA-seq protocol, we obtained deep sequencing data for RNA extracted from filaments at 0, 6, 12, and 21 hours after the removal of combined nitrogen. The RNA-seq data provided information on transcript abundance and boundaries for the entire transcriptome. From these data, we detected novel antisense transcripts within the UTRs (untranslated regions) and coding regions of key genes involved in heterocyst development, suggesting that antisense RNAs may be important regulators of the nitrogen response. In addition, many 5' UTRs were longer than anticipated, sometimes extending into upstream open reading frames (ORFs), and operons often showed complex structure and regulation. Finally, many genes that had not been previously identified as being involved in heterocyst development showed regulation, providing new candidates for future studies in this model organism. Conclusions Directional RNA-seq data were obtained that provide comprehensive mapping of transcript boundaries and abundance for all transcribed RNAs in Anabaena filaments during the response to nitrogen deprivation. We have identified genes and noncoding RNAs that are transcriptionally regulated during heterocyst development. These data provide detailed information on the Anabaena transcriptome as filaments undergo heterocyst development and begin nitrogen fixation.
Collapse
Affiliation(s)
- Britt L Flaherty
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | |
Collapse
|
62
|
Identification of ten Anabaena sp. genes that under aerobic conditions are required for growth on dinitrogen but not for growth on fixed nitrogen. J Bacteriol 2011; 193:3482-9. [PMID: 21602343 DOI: 10.1128/jb.05010-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterocysts are specialized cells required for aerobic fixation of dinitrogen by certain filamentous cyanobacteria. Numerous genes involved in the differentiation and function of heterocysts in Anabaena sp. strain PCC 7120 have been identified by mutagenizing and screening for mutants that require fixed nitrogen for growth in the presence of oxygen. We have verified that 10 Anabaena sp. genes, all1338, all1591, alr1728, all3278, all3520, all3582, all3850, all4019, alr4311, and all4388, identified initially by transposon mutagenesis, are such genes by complementing or reconstructing the original mutation and by determining whether the mutant phenotype might be due to a polar effect of the transposon. Elucidation of the roles of these genes should enhance understanding of heterocyst biology.
Collapse
|
63
|
Mella-Herrera RA, Neunuebel MR, Kumar K, Saha SK, Golden JW. The sigE gene is required for normal expression of heterocyst-specific genes in Anabaena sp. strain PCC 7120. J Bacteriol 2011; 193:1823-32. [PMID: 21317330 PMCID: PMC3133031 DOI: 10.1128/jb.01472-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 01/31/2011] [Indexed: 11/20/2022] Open
Abstract
The filamentous cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120 produces specialized cells for nitrogen fixation called heterocysts. Previous work showed that the group 2 sigma factor sigE (alr4249; previously called sigF) is upregulated in differentiating heterocysts 16 h after nitrogen step-down. We now show that the sigE gene is required for normal heterocyst development and normal expression levels of several heterocyst-specific genes. Mobility shift assays showed that the transcription factor NtcA binds to sites in the upstream region of sigE and that this binding is enhanced by 2-oxoglutarate (2-OG). Deletions of the region containing the NtcA binding sites in P(sigE)-gfp reporter plasmids showed that the sites contribute to normal developmental regulation but are not essential for upregulation in heterocysts. Northern RNA blot analysis of nifH mRNA revealed delayed and reduced transcript levels during heterocyst differentiation in a sigE mutant background. Quantitative reverse transcription-PCR (qRT-PCR) analyses of the sigE mutant showed lower levels of transcripts for nifH, fdxH, and hglE2 but normal levels for hupL. We developed a P(nifHD)-gfp reporter construct that showed strong heterocyst-specific expression. Time-lapse microscopy of the P(nifHD)-gfp reporter in a sigE mutant background showed delayed development and undetectable green fluorescent protein (GFP) fluorescence. Overexpression of sigE caused accelerated heterocyst development, an increased heterocyst frequency, and premature expression of GFP fluorescence from the P(nifHD)-gfp reporter.
Collapse
Affiliation(s)
- Rodrigo A. Mella-Herrera
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
- Division of Biological Sciences, University of California—San Diego, La Jolla, California 92093-0116
| | - M. Ramona Neunuebel
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Krithika Kumar
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Sushanta K. Saha
- Division of Biological Sciences, University of California—San Diego, La Jolla, California 92093-0116
| | - James W. Golden
- Division of Biological Sciences, University of California—San Diego, La Jolla, California 92093-0116
| |
Collapse
|
64
|
Overexpression of pknE blocks heterocyst development in Anabaena sp. strain PCC 7120. J Bacteriol 2011; 193:2619-29. [PMID: 21421755 DOI: 10.1128/jb.00120-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The upstream intergenic regions for each of four genes encoding Ser/Thr kinases, all2334, pknE (alr3732), all4668, and all4838, were fused to a gfpmut2 reporter gene to determine their expression during heterocyst development in the cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120. P(pknE)-gfp was upregulated after nitrogen step-down and showed strong expression in differentiating cells. Developmental regulation of pknE required a 118-bp upstream region and was abolished in a hetR mutant. A pknE mutant strain had shorter filaments with slightly higher heterocyst frequency than did the wild type. Overexpression of pknE from its native promoter inhibited heterocyst development in the wild type and in four mutant backgrounds that overproduce heterocysts. Overexpression of pknE from the copper-inducible petE promoter did not completely inhibit heterocyst development but caused a 24-h delay in heterocyst differentiation and cell bleaching 4 to 5 days after nitrogen step-down. Strains overexpressing pknE and containing P(hetR)-gfp or P(patS)-gfp reporters failed to show developmental regulation of the reporters and had undetectable levels of HetR protein. Genetic epistasis experiments suggest that overexpression of pknE blocks HetR activity or downstream regulation.
Collapse
|
65
|
Lehner J, Zhang Y, Berendt S, Rasse TM, Forchhammer K, Maldener I. The morphogene AmiC2 is pivotal for multicellular development in the cyanobacterium Nostoc punctiforme. Mol Microbiol 2011; 79:1655-69. [DOI: 10.1111/j.1365-2958.2011.07554.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
66
|
Abstract
Cyanobacteria are the only prokaryotes capable of using sunlight as their energy, water as an electron donor, and air as a source of carbon and, for some nitrogen-fixing strains, nitrogen. Compared to algae and plants, cyanobacteria are much easier to genetically engineer, and many of the standard biological parts available for Synthetic Biology applications in Escherichia coli can also be used in cyanobacteria. However, characterization of such parts in cyanobacteria reveals differences in performance when compared to E. coli, emphasizing the importance of detailed characterization in the cellular context of a biological chassis. Furthermore, cyanobacteria possess special characteristics (e.g., multiple copies of their chromosomes, high content of photosynthetically active proteins in the thylakoids, the presence of exopolysaccharides and extracellular glycolipids, and the existence of a circadian rhythm) that have to be taken into account when genetically engineering them. With this chapter, the synthetic biologist is given an overview of existing biological parts, tools and protocols for the genetic engineering, and molecular analysis of cyanobacteria for Synthetic Biology applications.
Collapse
|
67
|
Mella-Herrera RA, Neunuebel MR, Golden JW. Anabaena sp. strain PCC 7120 conR contains a LytR-CpsA-Psr domain, is developmentally regulated, and is essential for diazotrophic growth and heterocyst morphogenesis. MICROBIOLOGY-SGM 2010; 157:617-626. [PMID: 21088107 DOI: 10.1099/mic.0.046128-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The conR (all0187) gene of the filamentous cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120 is predicted to be part of a family of proteins that contain the LytR-CpsA-Psr domain associated with septum formation and cell wall maintenance. The conR gene was originally misannotated as a transcription regulator. Northern RNA blot analysis showed that conR expression was upregulated 8 h after nitrogen step-down. Fluorescence microscopy of a P(conR)-gfp reporter strain revealed increased GFP fluorescence in proheterocysts and heterocysts beginning 9 h after nitrogen step-down. Insertional inactivation of conR caused a septum-formation defect of vegetative cells grown in nitrate-containing medium. In nitrate-free medium, mutant filaments formed abnormally long heterocysts and were defective for diazotrophic growth. Septum formation between heterocysts and adjacent vegetative cells was abnormal, often with one or both poles of the heterocysts appearing partially open. In a conR mutant, expression of nifH was delayed after nitrogen step-down and nitrogenase activity was approximately 70 % of wild-type activity, indicating that heterocysts of the conR mutant strain are partially functional. We hypothesize that the diazotrophic growth defect is caused by an inability of the heterocysts to transport fixed nitrogen to the neighbouring vegetative cells.
Collapse
Affiliation(s)
- Rodrigo A Mella-Herrera
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA.,Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - M Ramona Neunuebel
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - James W Golden
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
68
|
Zhu M, Callahan SM, Allen JS. Maintenance of heterocyst patterning in a filamentous cyanobacterium. JOURNAL OF BIOLOGICAL DYNAMICS 2010; 4:621-633. [PMID: 22881208 DOI: 10.1080/17513751003777507] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In the absence of sufficient combined nitrogen, some filamentous cyanobacteria differentiate nitrogen-fixing heterocysts at approximately every 10th cell position. As cells between heterocysts grow and divide, this initial pattern is maintained by the differentiation of a single cell approximately midway between existing heterocysts. This paper introduces a mathematical model for the maintenance of the periodic pattern of heterocysts differentiated by Anabaena sp. strain PCC 7120 based on the current experimental knowledge of the system. The model equations describe a non-diffusing activator (HetR) and two inhibitors (PatS and HetN) that undergo diffusion in a growing one-dimensional domain. The inhibitors in this model have distinct diffusion rates and temporal expression patterns. These unique aspects of the model reflect recent experimental findings regarding the molecular interactions that regulate patterning in Anabaena. Output from the model is in good agreement with both the temporal and spatial characteristics of the pattern maintenance process observed experimentally.
Collapse
Affiliation(s)
- Mei Zhu
- Mathematics Department, Pacific Lutheran University, Tacoma, WA 98447, USA.
| | | | | |
Collapse
|
69
|
Higa KC, Callahan SM. Ectopic expression of hetP can partially bypass the need for hetR in heterocyst differentiation by Anabaena sp. strain PCC 7120. Mol Microbiol 2010; 77:562-74. [DOI: 10.1111/j.1365-2958.2010.07257.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
70
|
Jones AC, Monroe EA, Eisman EB, Gerwick L, Sherman DH, Gerwick WH. The unique mechanistic transformations involved in the biosynthesis of modular natural products from marine cyanobacteria. Nat Prod Rep 2010; 27:1048-65. [PMID: 20442916 DOI: 10.1039/c000535e] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cyanobacteria are abundant producers of natural products well recognized for their bioactivity and utility in drug discovery and biotechnology applications. In the last decade, characterization of several modular gene clusters that code for the biosynthesis of these compounds has revealed a number of unusual enzymatic reactions. In this article, we review several mechanistic transformations identified in marine cyanobacterial biosynthetic pathways, with an emphasis on modular polyketide synthase(PKS)/non-ribosomal peptide synthetase (NRPS) gene clusters. In selected instances, we also make comparisons between cyanobacterial gene clusters derived from marine and freshwater strains. We then provide an overview of recent developments in cyanobacterial natural products biosynthesis made available through genome sequencing and new advances in bioinformatics and genetics.
Collapse
Affiliation(s)
- Adam C Jones
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
71
|
Multicellularity in a Heterocyst-Forming Cyanobacterium: Pathways for Intercellular Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010. [DOI: 10.1007/978-1-4419-1528-3_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
72
|
Abstract
Many multicellular cyanobacteria produce specialized nitrogen-fixing heterocysts. During diazotrophic growth of the model organism Anabaena (Nostoc) sp. strain PCC 7120, a regulated developmental pattern of single heterocysts separated by about 10 to 20 photosynthetic vegetative cells is maintained along filaments. Heterocyst structure and metabolic activity function together to accommodate the oxygen-sensitive process of nitrogen fixation. This article focuses on recent research on heterocyst development, including morphogenesis, transport of molecules between cells in a filament, differential gene expression, and pattern formation.
Collapse
Affiliation(s)
- Krithika Kumar
- Department of Biology, Texas A&M University, College Station, 77843, USA
| | | | | |
Collapse
|
73
|
Flores E, Herrero A. Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol 2010; 8:39-50. [PMID: 19966815 DOI: 10.1038/nrmicro2242] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Within the wide biodiversity that is found in the bacterial world, Cyanobacteria represents a unique phylogenetic group that is responsible for a key metabolic process in the biosphere - oxygenic photosynthesis - and that includes representatives exhibiting complex morphologies. Many cyanobacteria are multicellular, growing as filaments of cells in which some cells can differentiate to carry out specialized functions. These differentiated cells include resistance and dispersal forms as well as a metabolically specialized form that is devoted to N(2) fixation, known as the heterocyst. In this Review we address cyanobacterial intercellular communication, the supracellular structure of the cyanobacterial filament and the basic principles that govern the process of heterocyst differentiation.
Collapse
Affiliation(s)
- Enrique Flores
- Instituto de Bioqumica Vegetal y Fotosntesis, CSIC and Universidad de Sevilla, Amrico Vespucio 49, E41092 Seville, Spain.
| | | |
Collapse
|
74
|
Temporal and spatial regulation of the four transcription start sites of hetR from Anabaena sp. strain PCC 7120. J Bacteriol 2009; 192:1088-96. [PMID: 20008074 DOI: 10.1128/jb.01297-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous cyanobacterium Anabaena sp. strain PCC 7120 forms nitrogen-fixing heterocysts in a periodic pattern in response to combined-nitrogen limitation in the environment. The master regulator of heterocyst differentiation, HetR, is necessary for both pattern formation and commitment of approximately every 10th cell of a filament to differentiation into a heterocyst. In this study, the individual contributions of four transcriptional start points (tsps) in regulation of transcription of hetR were assessed, and the effects of the regulatory genes patS, hetN, and patA on transcription from the tsps were determined. The tsp located at nucleotide -271 relative to the translational start site (-271 tsp) was the most tightly regulated tsp, and fluorescence from a -271 tsp-green fluorescent protein (GFP) reporter fusion was observed initially in groups of two cells and later in single cells arranged in a spatial pattern that mimicked the pattern of heterocysts that emerged. Conversely, the fluorescence from the -184 and -728/-696 tsp-GFP reporter fusions was uniform throughout filaments. Transcription from the -271 tsp was severely downregulated in a strain in which the patA gene, which encodes a positive regulator of differentiation, was deleted, and it was not detectable in strains overexpressing the genes encoding the negative regulators of differentiation, patS and hetN. In strains lacking the -271 tsp of hetR, pattern formation, the timing of commitment to differentiation, and the number of cells that differentiated into heterocysts were affected. Taken together, these results demonstrate the role of regulation of the -271 tsp of hetR in the genetic network that governs heterocyst pattern formation and differentiation.
Collapse
|
75
|
Jones AC, Gerwick L, Gonzalez D, Dorrestein PC, Gerwick WH. Transcriptional analysis of the jamaicamide gene cluster from the marine cyanobacterium Lyngbya majuscula and identification of possible regulatory proteins. BMC Microbiol 2009; 9:247. [PMID: 19951434 PMCID: PMC2799420 DOI: 10.1186/1471-2180-9-247] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 12/01/2009] [Indexed: 12/02/2022] Open
Abstract
Background The marine cyanobacterium Lyngbya majuscula is a prolific producer of bioactive secondary metabolites. Although biosynthetic gene clusters encoding several of these compounds have been identified, little is known about how these clusters of genes are transcribed or regulated, and techniques targeting genetic manipulation in Lyngbya strains have not yet been developed. We conducted transcriptional analyses of the jamaicamide gene cluster from a Jamaican strain of Lyngbya majuscula, and isolated proteins that could be involved in jamaicamide regulation. Results An unusually long untranslated leader region of approximately 840 bp is located between the jamaicamide transcription start site (TSS) and gene cluster start codon. All of the intergenic regions between the pathway ORFs were transcribed into RNA in RT-PCR experiments; however, a promoter prediction program indicated the possible presence of promoters in multiple intergenic regions. Because the functionality of these promoters could not be verified in vivo, we used a reporter gene assay in E. coli to show that several of these intergenic regions, as well as the primary promoter preceding the TSS, are capable of driving β-galactosidase production. A protein pulldown assay was also used to isolate proteins that may regulate the jamaicamide pathway. Pulldown experiments using the intergenic region upstream of jamA as a DNA probe isolated two proteins that were identified by LC-MS/MS. By BLAST analysis, one of these had close sequence identity to a regulatory protein in another cyanobacterial species. Protein comparisons suggest a possible correlation between secondary metabolism regulation and light dependent complementary chromatic adaptation. Electromobility shift assays were used to evaluate binding of the recombinant proteins to the jamaicamide promoter region. Conclusion Insights into natural product regulation in cyanobacteria are of significant value to drug discovery and biotechnology. To our knowledge, this is the first attempt to characterize the transcription and regulation of secondary metabolism in a marine cyanobacterium. If jamaicamide is light regulated, this mechanism would be similar to other cyanobacterial natural product gene clusters such as microcystin LR. These findings could aid in understanding and potentially assisting the management of toxin production by Lyngbya in the environment.
Collapse
Affiliation(s)
- Adam C Jones
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
76
|
Toyoshima M, Sasaki NV, Fujiwara M, Ehira S, Ohmori M, Sato N. Early candidacy for differentiation into heterocysts in the filamentous cyanobacterium Anabaena sp. PCC 7120. Arch Microbiol 2009; 192:23-31. [DOI: 10.1007/s00203-009-0525-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 10/15/2009] [Accepted: 10/26/2009] [Indexed: 11/29/2022]
|
77
|
Asai H, Iwamori S, Kawai K, Ehira S, Ishihara JI, Aihara K, Shoji S, Iwasaki H. Cyanobacterial cell lineage analysis of the spatiotemporal hetR expression profile during heterocyst pattern formation in Anabaena sp. PCC 7120. PLoS One 2009; 4:e7371. [PMID: 19823574 PMCID: PMC2756587 DOI: 10.1371/journal.pone.0007371] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 09/17/2009] [Indexed: 11/18/2022] Open
Abstract
Diazotrophic heterocyst formation in the filamentous cyanobacterium, Anabaena sp. PCC 7120, is one of the simplest pattern formations known to occur in cell differentiation. Most previous studies on heterocyst patterning were based on statistical analysis using cells collected or observed at different times from a liquid culture, which would mask stochastic fluctuations affecting the process of pattern formation dynamics in a single bacterial filament. In order to analyze the spatiotemporal dynamics of heterocyst formation at the single filament level, here we developed a culture system to monitor simultaneously bacterial development, gene expression, and phycobilisome fluorescence. We also developed micro-liquid chamber arrays to analyze multiple Anabaena filaments at the same time. Cell lineage analyses demonstrated that the initial distributions of hetR::gfp and phycobilisome fluorescence signals at nitrogen step-down were not correlated with the resulting distribution of developed heterocysts. Time-lapse observations also revealed a dynamic hetR expression profile at the single-filament level, including transient upregulation accompanying cell division, which did not always lead to heterocyst development. In addition, some cells differentiated into heterocysts without cell division after nitrogen step-down, suggesting that cell division in the mother cells is not an essential requirement for heterocyst differentiation.
Collapse
Affiliation(s)
- Hironori Asai
- Department of Electrical Engineering and Biological Science, Waseda University (TWIns), Tokyo, Japan
| | - Shunsuke Iwamori
- Department of Electrical Engineering and Biological Science, Waseda University (TWIns), Tokyo, Japan
| | - Kentaro Kawai
- Department of Electrocic and Photonic Systems, Waseda University, Tokyo, Japan
| | - Shigeki Ehira
- Department of Biological Science, Chuo University, Kasuga, Tokyo
| | - Jun-ichi Ishihara
- Department of Electrical Engineering and Biological Science, Waseda University (TWIns), Tokyo, Japan
| | - Kazuyuki Aihara
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- ERATO Aihara Complexity Modelling Project, JST, Tokyo, Japan
| | - Shuichi Shoji
- Department of Electrical Engineering and Biological Science, Waseda University (TWIns), Tokyo, Japan
- Department of Electrocic and Photonic Systems, Waseda University, Tokyo, Japan
| | - Hideo Iwasaki
- Department of Electrical Engineering and Biological Science, Waseda University (TWIns), Tokyo, Japan
- PRESTO, Japan Science and Technology Agency (JST), Tokyo, Japan
- * E-mail:
| |
Collapse
|
78
|
Gerdtzen ZP, Salgado JC, Osses A, Asenjo JA, Rapaport I, Andrews BA. Modeling heterocyst pattern formation in cyanobacteria. BMC Bioinformatics 2009; 10 Suppl 6:S16. [PMID: 19534741 PMCID: PMC2697639 DOI: 10.1186/1471-2105-10-s6-s16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background To allow the survival of the population in the absence of nitrogen, some cyanobacteria strains have developed the capability of differentiating into nitrogen fixing cells, forming a characteristic pattern. In this paper, the process by which cyanobacteria differentiates from vegetative cells into heterocysts in the absence of nitrogen and the elements of the gene network involved that allow the formation of such a pattern are investigated. Methods A simple gene network model, which represents the complexity of the differentiation process, and the role of all variables involved in this cellular process is proposed. Specific characteristics and details of the system's behavior such as transcript profiles for ntcA, hetR and patS between consecutive heterocysts were studied. Results The proposed model is able to capture one of the most distinctive features of this system: a characteristic distance of 10 cells between two heterocysts, with a small standard deviation according to experimental variability. The system's response to knock-out and over-expression of patS and hetR was simulated in order to validate the proposed model against experimental observations. In all cases, simulations show good agreement with reported experimental results. Conclusion A simple evolution mathematical model based on the gene network involved in heterocyst differentiation was proposed. The behavior of the biological system naturally emerges from the network and the model is able to capture the spacing pattern observed in heterocyst differentiation, as well as the effect of external perturbations such as nitrogen deprivation, gene knock-out and over-expression without specific parameter fitting.
Collapse
Affiliation(s)
- Ziomara P Gerdtzen
- Centre for Biochemical Engineering and Biotechnology, Department of Chemical Engineering and Biotechnology, University of Chile, Av, Beauchef 850, Santiago 837-0448, Chile.
| | | | | | | | | | | |
Collapse
|
79
|
Imamura S, Asayama M. Sigma factors for cyanobacterial transcription. GENE REGULATION AND SYSTEMS BIOLOGY 2009; 3:65-87. [PMID: 19838335 PMCID: PMC2758279 DOI: 10.4137/grsb.s2090] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cyanobacteria are photosynthesizing microorganisms that can be used as a model for analyzing gene expression. The expression of genes involves transcription and translation. Transcription is performed by the RNA polymerase (RNAP) holoenzyme, comprising a core enzyme and a sigma (sigma) factor which confers promoter selectivity. The unique structure, expression, and function of cyanobacterial sigma factors (and RNAP core subunits) are summarized here based on studies, reported previously. The types of promoter recognized by the sigma factors are also discussed with regard to transcriptional regulation.
Collapse
Affiliation(s)
- Sousuke Imamura
- Laboratory of Molecular Genetics, School of Agriculture, Ibaraki University, 3-21-1 Ami, Inashiki, Ibaraki 300-0393, Japan
| | | |
Collapse
|
80
|
Ni S, Benning MM, Smola MJ, Feldmann EA, Kennedy MA. Crystal structure of Npun_R1517, a putative negative regulator of heterocyst differentiation fromNostoc punctiformePCC 73102. Proteins 2009; 74:794-8. [DOI: 10.1002/prot.22308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
81
|
Zhang LC, Chen YF, Chen WL, Zhang CC. Existence of periplasmic barriers preventing green fluorescent protein diffusion from cell to cell in the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 2008; 70:814-23. [PMID: 18990181 DOI: 10.1111/j.1365-2958.2008.06476.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
When deprived of combined nitrogen, the filamentous cyanobacterium Anabaena PCC 7120 relies on intercellular cooperation involving two cell types: nitrogen-fixing heterocysts and photosynthetic vegetative cells. Heterocysts send fixed nitrogen to vegetative cells over long distances along the filament, receiving a reduced carbon source from them. These intercellular exchanges might involve a continuous periplasm along the filament or cytoplasm-to-cytoplasm conduits or both. In the present study, the green fluorescent protein (GFP) was fused to a twin-arginine translocation signal sequence, which exported GFP to the periplasm of either a heterocyst using the heterocyst-specific promoters PhepA and PpatB or to the periplasm of vegetative cells using the vegetative cell-specific promoter PrbcL. Using the techniques of FRAP (fluorescence recovery after photobleaching) and FLIP (fluorescence loss in photobleaching), we found no evidence for intercellular diffusion of GFP through the periplasm, either from a heterocyst to vegetative cells or vice versa, or among vegetative cells. GFP could diffuse within the periplasm of the producing cell, but the diffusion stopped at the cell border. GFP diffusion could occur between two dividing cells before septum closure. This study indicates that barriers exist at the periplasmic space to prevent free GFP diffusion across cell border along the filament.
Collapse
Affiliation(s)
- Li-Chen Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | |
Collapse
|
82
|
Abstract
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that differentiates heterocysts in response to deprivation of combined nitrogen. A hetF deletion strain lacked heterocysts and had aberrant cell morphology. Site-directed mutagenesis of the predicted active-site histidine and cysteine residues of this putative caspase-hemoglobinase fold protease abolished HetF function, supporting the hypothesis that HetF is a protease. Deletion of patA, which is necessary for the formation of most intercalary heterocysts, or hetF resulted in an increase in HetR protein, and extra copies of hetF on a plasmid functionally bypassed the deletion of patA. A hetR-gfp translational fusion expressed from an inducible promoter demonstrated that hetF-dependent downregulation of HetR levels occurs rapidly in vegetative cells, as well as developing heterocysts. "Mosaic" filaments in which only one cell of a filament had a copy of hetR or hetF indicated that hetF is required for differentiation only in cells that will become heterocysts. hetF was required for transcription from a hetR-dependent transcription start point of the hetR promoter and induction of transcription from the patS promoter. The inverse correlation between the level of HetR protein and transcription from hetR-dependent promoters suggests that the transcriptional activity of HetR is regulated by HetF and PatA.
Collapse
|
83
|
The Anabaena sp. strain PCC 7120 gene all2874 encodes a diguanylate cyclase and is required for normal heterocyst development under high-light growth conditions. J Bacteriol 2008; 190:6829-36. [PMID: 18723619 DOI: 10.1128/jb.00701-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 harbors 14 genes containing a GGDEF diguanylate cyclase domain. We found that inactivation of one of these genes, all2874, caused abnormal heterocyst development. The all2874 mutant showed a pronounced reduction in heterocyst frequency during diazotrophic growth and reduced vegetative cell size compared to the wild type. The severity of the mutant phenotype varied with light intensity; at high light intensity, the mutant phenotype was accentuated, whereas at low light intensity the phenotype was similar to wild type. Under high-light growth conditions, the initial heterocyst frequency and pattern for the all2874 mutant were normal, but within 4 days following nitrogen step-down, many intervals between heterocysts increased to as many as 200 vegetative cells, whereas in the wild type the intervals were less than 25 vegetative cells. Filaments containing these unusually long vegetative cell intervals between heterocysts also contained intervals of normal length. An all2874 mutant strain carrying a P(patS)-gfp transcriptional reporter fusion failed to show normal upregulation of the reporter, which indicates that the decrease in heterocyst frequency is due to an early block in differentiation before induction of the patS gene, which in the wild type takes place 8 h after nitrogen step-down. Genetic epistasis experiments suggest that All2874 acts upstream of the master regulator HetR in differentiating cells. We also showed that purified All2874 functions as a diguanylate cyclase in vitro. We hypothesize that All2874 is required for the normal regulation of heterocyst frequency under high-light growth conditions.
Collapse
|
84
|
Allard JF, Hill AL, Rutenberg AD. Heterocyst patterns without patterning proteins in cyanobacterial filaments. Dev Biol 2007; 312:427-34. [DOI: 10.1016/j.ydbio.2007.09.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 09/23/2007] [Accepted: 09/24/2007] [Indexed: 11/24/2022]
|
85
|
Aldea MR, Mella-Herrera RA, Golden JW. Sigma factor genes sigC, sigE, and sigG are upregulated in heterocysts of the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2007; 189:8392-6. [PMID: 17873052 PMCID: PMC2168693 DOI: 10.1128/jb.00821-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used gfp transcriptional fusions to investigate the regulation of eight sigma factor genes during heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Reporter strains containing gfp fusions with the upstream regions of sigB2, sigD, sigI, and sigJ did not show developmental regulation. Time-lapse microscopy of sigC, sigE, and sigG reporter strains showed increased green fluorescent protein fluorescence in differentiating cells at 4 h, 16 h, and 9 h, respectively, after nitrogen step down.
Collapse
Affiliation(s)
- M Ramona Aldea
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, USA
| | | | | |
Collapse
|
86
|
Wu X, Lee DW, Mella RA, Golden JW. The Anabaena sp. strain PCC 7120 asr1734 gene encodes a negative regulator of heterocyst development. Mol Microbiol 2007; 64:782-94. [PMID: 17462023 DOI: 10.1111/j.1365-2958.2007.05698.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The novel asr1734 gene of Anabaena (Nostoc) sp. strain PCC 7120 inhibited heterocyst development when present in extra copies. Overexpression of asr1734 inhibited heterocyst development in several strains including the wild type and two strains that form multiple contiguous heterocysts (Mch phenotype): a PatS null mutant and a hetR(R223W) mutant. Overexpression of asr1734 also caused increased nblA messenger RNA levels, and increased loss of autofluorescence in vegetative cells throughout filaments after nitrogen or sulphur depletion. Unlike the wild type, an asr1734 knockout mutant formed 5% heterocysts after a nitrogen shift from ammonium to nitrate, and formed 15% heterocysts and a weak Mch phenotype after step-down to medium lacking combined nitrogen. After nitrogen step-down, the asr1734 mutant had elevated levels of ntcA messenger RNA. A green fluorescent protein reporter driven by the asr1734 promoter, P(asr1734)-gfp, was expressed specifically in differentiating proheterocysts and heterocysts after nitrogen step-down. Strains overexpressing asr1734 and containing P(hetR)-gfp or P(patS)-gfp reporters failed to show normal patterned upregulation 24 h after nitrogen step-down even though hetR expression was upregulated at 6 h. Apparent orthologues of asr1734 are found only in two other filamentous nitrogen-fixing cyanobacteria, Anabaena variabilis and Nostoc punctiforme.
Collapse
Affiliation(s)
- Xiaoqiang Wu
- Department of Biology, Texas A and M University, College Station, TX 77843-3258, USA
| | | | | | | |
Collapse
|
87
|
Mariscal V, Herrero A, Flores E. Continuous periplasm in a filamentous, heterocyst-forming cyanobacterium. Mol Microbiol 2007; 65:1139-45. [PMID: 17645442 DOI: 10.1111/j.1365-2958.2007.05856.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cyanobacteria bear a Gram-negative type of cell wall that includes a peptidoglycan layer and an outer membrane outside of the cytoplasmic membrane. In filamentous cyanobacteria, the outer membrane appears to be continuous along the filament of cells. In the heterocyst-forming cyanobacteria, two cell types contribute specialized functions for growth: vegetative cells provide reduced carbon to heterocysts, which provide N2-derived fixed nitrogen to vegetative cells. The promoter of the patS gene, which is active specifically in developing proheterocysts and heterocysts of Anabaena sp. PCC 7120, was used to direct the expression of altered versions of the gfp gene. An engineered green fluorescent protein (GFP) that was exported to the periplasm of the proheterocysts through the twin-arginine translocation system was observed also in the periphery of neighbouring vegetative cells. However, if the GFP was anchored to the cytoplasmic membrane, it was observed in the periphery of the producing proheterocysts or heterocysts but not in adjacent vegetative cells. These results show that there is no cytoplasmic membrane continuity between heterocysts and vegetative cells and that the GFP protein can move along the filament in the periplasm, which is functionally continuous and so provides a conduit that can be used for chemical communication between cells.
Collapse
Affiliation(s)
- Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain
| | | | | |
Collapse
|
88
|
Zhao W, Guo Q, Zhao J. A Membrane-Associated Mn-Superoxide Dismutase Protects the Photosynthetic Apparatus and Nitrogenase from Oxidative Damage in the Cyanobacterium Anabaena sp. PCC 7120. ACTA ACUST UNITED AC 2007; 48:563-72. [PMID: 17307750 DOI: 10.1093/pcp/pcm025] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We investigated the functions of a membrane-associated manganese superoxide dismutase (MnSOD) of the heterocystous cyanobacterium Anabaena sp. PCC 7120. The gene sodA encoding MnSOD was inactivated by interposon mutagenesis and it was confirmed by Southern hybridization and immunoblotting. The strain A17, lacking sodA, grew more slowly than the wild type, and the difference in growth rates between the two strains became larger with an increase in growth light intensity. More severe inhibition of growth of A17 was observed when the cells were grown in the absence of combined nitrogen. Complementation of A17 with a full copy of the sodA gene restored the wild-type phenotypes. Strain A17 produced more malondialdehyde than did the wild type, especially under high light intensity, indicating more lipid peroxidation in the absence of MnSOD. A17 was also more susceptible to photoinhibition by a high light, and it was shown that both PSII and PSI were more severely damaged by the photoinhibitory light in A17, suggesting that the MnSOD plays important roles in protection of both photosystems. Immunoblotting revealed that the MnSOD was present in vegetative cells and heterocysts. Light greatly stimulated nitrogenase activity in the wild type under both aerobic and anaerobic conditions, but stimulated nitrogenase activity in A17 only slightly in air. The results suggest that reactive oxygen species produced in heterocysts under aerobic conditions cause the inactivation of nitrogenase in the absence of MnSOD.
Collapse
Affiliation(s)
- Weixing Zhao
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, PR China
| | | | | |
Collapse
|
89
|
Nayar AS, Yamaura H, Rajagopalan R, Risser DD, Callahan SM. FraG is necessary for filament integrity and heterocyst maturation in the cyanobacterium Anabaena sp. strain PCC 7120. MICROBIOLOGY-SGM 2007; 153:601-607. [PMID: 17259632 DOI: 10.1099/mic.0.2006/002535-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that differentiates nitrogen-fixing heterocysts when fixed nitrogen becomes growth limiting in the medium. The gene alr2338 (designated fraG herein), located immediately upstream of the master regulator of differentiation hetR, was identified in a genetic screen for mutants unable to grow diazotrophically. Filaments with a mutation in fraG were unable to fix nitrogen or synthesize heterocyst-specific glycolipids, and they fragmented initially to approximately nine cells in length at 24 h after induction of heterocyst development and eventually became unicellular. The fragmentation phenotype could be duplicated in the presence of fixed nitrogen when differentiation of heterocysts was elicited by overexpression of hetR, suggesting that a defect in differentiation, and not a lack of fixed nitrogen in the medium, was the more direct cause of fragmentation. An intact fraG gene was necessary for differentiation of mature heterocysts, but was not required for proper pattern formation, as indicated by a normal pattern of expression of hetR in a fraG mutant. A transcriptional GFP reporter fusion indicated that the level of expression of fraG was low in vegetative cells in both nitrogen-replete and nitrogen-free media, and was induced in heterocysts. fraG appears to play a role in filament integrity and differentiation of proheterocysts into mature heterocysts.
Collapse
Affiliation(s)
- Asha S Nayar
- Department of Microbiology, University of Hawaii, Honolulu, HI 96822, USA
| | - Hiroshi Yamaura
- Department of Microbiology, University of Hawaii, Honolulu, HI 96822, USA
| | - Ramya Rajagopalan
- Department of Microbiology, University of Hawaii, Honolulu, HI 96822, USA
| | - Douglas D Risser
- Department of Microbiology, University of Hawaii, Honolulu, HI 96822, USA
| | - Sean M Callahan
- Department of Microbiology, University of Hawaii, Honolulu, HI 96822, USA
| |
Collapse
|
90
|
Cumino AC, Marcozzi C, Barreiro R, Salerno GL. Carbon cycling in Anabaena sp. PCC 7120. Sucrose synthesis in the heterocysts and possible role in nitrogen fixation. PLANT PHYSIOLOGY 2007; 143:1385-97. [PMID: 17237189 PMCID: PMC1820908 DOI: 10.1104/pp.106.091736] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Accepted: 01/08/2006] [Indexed: 05/13/2023]
Abstract
Nitrogen (N) available to plants mostly originates from N(2) fixation carried out by prokaryotes. Certain cyanobacterial species contribute to this energetically expensive process related to carbon (C) metabolism. Several filamentous strains differentiate heterocysts, specialized N(2)-fixing cells. To understand how C and N metabolism are regulated in photodiazotrophically grown organisms, we investigated the role of sucrose (Suc) biosynthesis in N(2) fixation in Anabaena sp. PCC 7120 (also known as Nostoc sp. PCC 7120). The presence of two Suc-phosphate synthases (SPS), SPS-A and SPS-B, directly involved in Suc synthesis with different glucosyl donor specificity, seems to be important in the N(2)-fixing filament. Measurement of enzyme activity and polypeptide levels plus reverse transcription-polymerase chain reaction experiments showed that total SPS expression is greater in cells grown in N(2) versus combined N conditions. Only SPS-B, however, was seen to be active in the heterocyst, as confirmed by analysis of green fluorescent protein reporters. SPS-B gene expression is likely controlled at the transcriptional initiation level, probably in relation to a global N regulator. Metabolic control analysis indicated that the metabolism of glycogen and Suc is likely interconnected in N(2)-fixing filaments. These findings suggest that N(2) fixation may be spatially compatible with Suc synthesis and support the role of the disaccharide as an intermediate in the reduced C flux in heterocyst-forming cyanobacteria.
Collapse
Affiliation(s)
- Andrea C Cumino
- Centro de Investigaciones Biológicas, Fundación para Investigaciones Biológicas Aplicadas, 7600 Mar del Plata, Argentina
| | | | | | | |
Collapse
|
91
|
López-Gomollón S, Hernández JA, Wolk CP, Peleato ML, Fillat MF. Expression of furA is modulated by NtcA and strongly enhanced in heterocysts of Anabaena sp. PCC 7120. MICROBIOLOGY-SGM 2007; 153:42-50. [PMID: 17185533 DOI: 10.1099/mic.0.2006/000091-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fur (ferric uptake regulator) proteins are principally responsible for maintaining iron homeostasis in prokaryotes. Iron is usually a scarce resource. Its limitation reduces photosynthetic rates and cell growth in cyanobacteria in general and especially in cyanobacteria that are fixing dinitrogen, a process that requires the synthesis of numerous proteins with a high content of iron. This paper shows that in the diazotrophic cyanobacterium Anabaena sp. strain PCC 7120, levels of furA mRNA and FurA protein increase significantly in response to nitrogen deprivation, and that furA up-regulation takes place specifically in proheterocysts and mature heterocysts. Great differences in a Northern blot, probed with furA, of RNA from an ntcA mutant relative to wild-type Anabaena sp. were attributable to binding of NtcA, a global regulator of nitrogen metabolism, to the promoter of furA and to the promoter of the furA antisense transcript alr1690-alpha-furA.
Collapse
Affiliation(s)
- S López-Gomollón
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| | | | | | | | | |
Collapse
|
92
|
Physiological Adaptations in Nitrogen-fixing Nostoc–Plant Symbiotic Associations. MICROBIOLOGY MONOGRAPHS 2007. [DOI: 10.1007/7171_2007_101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
93
|
Chen H, Laurent S, Bédu S, Ziarelli F, Chen HL, Cheng Y, Zhang CC, Peng L. Studying the signaling role of 2-oxoglutaric acid using analogs that mimic the ketone and ketal forms of 2-oxoglutaric acid. ACTA ACUST UNITED AC 2006; 13:849-56. [PMID: 16931334 DOI: 10.1016/j.chembiol.2006.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 05/18/2006] [Accepted: 06/01/2006] [Indexed: 11/23/2022]
Abstract
2-Oxoglutaric acid (2-OG), a Krebs cycle intermediate, is a signaling molecule in many organisms. To determine which form of 2-OG, the ketone or the ketal form, is responsible for its signaling function, we have synthesized and characterized various 2-OG analogs. Only 2-methylenepentanedioic acid (2-MPA), which resembles closely the ketone form of 2-OG, is able to elicit cell responses in the cyanobacterium Anabaena by inducing nitrogen-fixing cells called heterocysts. None of the analogs mimicking the ketal form of 2-OG are able to induce heterocysts because none of them are able to interact with NtcA, a 2-OG sensor. NtcA interacts with 2-MPA and 2-OG in a similar manner, and it is necessary for heterocyst differentiation induced by 2-MPA. Therefore, it is primarily the ketone form that is responsible for the signaling role of 2-OG in Anabaena.
Collapse
Affiliation(s)
- Han Chen
- College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Zhang CC, Laurent S, Sakr S, Peng L, Bédu S. Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Mol Microbiol 2006; 59:367-75. [PMID: 16390435 DOI: 10.1111/j.1365-2958.2005.04979.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterocyst differentiation in filamentous cyanobacteria provides an excellent prokaryotic model for studying multicellular behaviour and pattern formation. In Anabaena sp. strain PCC 7120, for example, 5-10% of the cells along each filament are induced, when deprived of combined nitrogen, to differentiate into heterocysts. Heterocysts are specialized in the fixation of N(2) under oxic conditions and are semi-regularly spaced among vegetative cells. This developmental programme leads to spatial separation of oxygen-sensitive nitrogen fixation (by heterocysts) and oxygen-producing photosynthesis (by vegetative cells). The interdependence between these two cell types ensures filament growth under conditions of combined-nitrogen limitation. Multiple signals have recently been identified as necessary for the initiation of heterocyst differentiation, the formation of the heterocyst pattern and pattern maintenance. The Krebs cycle metabolite 2-oxoglutarate (2-OG) serves as a signal of nitrogen deprivation. Accumulation of a non-metabolizable analogue of 2-OG triggers the complex developmental process of heterocyst differentiation. Once heterocyst development has been initiated, interactions among the various components involved in heterocyst differentiation determine the developmental fate of each cell. The free calcium concentration is crucial to heterocyst differentiation. Lateral diffusion of the PatS peptide or a derivative of it from a developing cell may inhibit the differentiation of neighbouring cells. HetR, a protease showing DNA-binding activity, is crucial to heterocyst differentiation and appears to be the central processor of various early signals involved in the developmental process. How the various signalling pathways are integrated and used to control heterocyst differentiation processes is a challenging question that still remains to be elucidated.
Collapse
Affiliation(s)
- Cheng-Cai Zhang
- Laboratoire de Chimie Bactérienne, UPR9043-CNRS, Institut de Biologie Structurale et Microbiologie, 31, chemin Joseph Aiguier, 13402 Marseille cedex 20, France.
| | | | | | | | | |
Collapse
|
95
|
Orozco CC, Risser DD, Callahan SM. Epistasis analysis of four genes from Anabaena sp. strain PCC 7120 suggests a connection between PatA and PatS in heterocyst pattern formation. J Bacteriol 2006; 188:1808-16. [PMID: 16484191 PMCID: PMC1426565 DOI: 10.1128/jb.188.5.1808-1816.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hetR, patA, hetN, and patS genes are part of a regulatory network that regulates the differentiation and patterning of heterocysts in the filamentous cyanobacterium Anabaena sp. strain PCC 7120. In this report, the epistatic interactions of mutant alleles of these four genes have been used to refine our understanding of their relationships to one another. The hetR gene was necessary for differentiation in genetic backgrounds that normally give rise to excessive differentiation, supporting its role as the master regulator of differentiation and indicating that HetR directly regulates factors in addition to hetR and patS genes that regulate differentiation. A functional patS gene was necessary for the delayed multiple-contiguous-heterocyst phenotype observed in hetN mutants as well as for the relative lack of intercalary heterocysts in patA mutants. Epistasis results with mutant alleles of these three genes suggested that PatA attenuates the negative effects of both PatS and HetN on differentiation and promotes differentiation independent of its antagonistic effects on PatS and HetN activity. Cooverxpression of patS and hetR in a synthetic operon indicated that patS acts at a point downstream of hetR transcription in the regulatory network controlling differentiation. A model for the regulation of differentiation that is consistent with these and previous findings is presented.
Collapse
Affiliation(s)
- Christine C Orozco
- University of Hawaii, Department of Microbiology, 2538 McCarthy Mall, 207 Snyder Hall, Honolulu, HI 96822, USA
| | | | | |
Collapse
|
96
|
Sakr S, Jeanjean R, Zhang CC, Arcondeguy T. Inhibition of cell division suppresses heterocyst development in Anabaena sp. strain PCC 7120. J Bacteriol 2006; 188:1396-404. [PMID: 16452422 PMCID: PMC1367218 DOI: 10.1128/jb.188.4.1396-1404.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When the filamentous cyanobacterium Anabaena PCC 7120 is exposed to combined nitrogen starvation, 5 to 10% of the cells along each filament at semiregular intervals differentiate into heterocysts specialized in nitrogen fixation. Heterocysts are terminally differentiated cells in which the major cell division protein FtsZ is undetectable. In this report, we provide molecular evidence indicating that cell division is necessary for heterocyst development. FtsZ, which is translationally fused to the green fluorescent protein (GFP) as a reporter, is found to form a ring structure at the mid-cell position. SulA from Escherichia coli inhibits the GTPase activity of FtsZ in vitro and prevents the formation of FtsZ rings when expressed in Anabaena PCC 7120. The expression of sulA arrests cell division and suppresses heterocyst differentiation completely. The antibiotic aztreonam, which is targeted to the FtsI protein necessary for septum formation, has similar effects on both cell division and heterocyst differentiation, although in this case, the FtsZ ring is still formed. Therefore, heterocyst differentiation is coupled to cell division but independent of the formation of the FtsZ ring. Consistently, once the inhibitory pressure of cell division is removed, cell division should take place first before heterocyst differentiation resumes at a normal frequency. The arrest of cell division does not affect the accumulation of 2-oxoglutarate, which triggers heterocyst differentiation. Consistently, a nonmetabolizable analogue of 2-oxoglutarate does not rescue the failure of heterocyst differentiation when cell division is blocked. These results suggest that the control of heterocyst differentiation by cell division is independent of the 2-oxoglutarate signal.
Collapse
Affiliation(s)
- Samer Sakr
- Laboratoire de Chimie Bactérienne, CNRS UPR9043, Institut de Biologie Structurale et Microbiologie, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| | | | | | | |
Collapse
|
97
|
Meeks JC. Molecular mechanisms in the nitrogen-fixing Nostoc-bryophyte symbiosis. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 41:165-96. [PMID: 16623394 DOI: 10.1007/3-540-28221-1_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- John C Meeks
- Section of Microbiology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
98
|
Abstract
Cyanobacteria such as Synechococcus elongatus PCC 7942, Thermosynechococcus elongatus BP-1, and Synechocystis species strain PCC 6803 have an endogenous timing mechanism that can generate and maintain a 24 h (circadian) periodicity to global (whole genome) gene expression patterns. This rhythmicity extends to many other physiological functions, including chromosome compaction. These rhythmic patterns seem to reflect the periodicity of availability of the primary energy source for these photoautotrophic organisms, the Sun. Presumably, eons of environmentally derived rhythmicity--light/dark cycles--have simply been mechanistically incorporated into the regulatory networks of these cyanobacteria. Genetic and biochemical experimentation over the last 15 years has identified many key components of the primary timing mechanism that generates rhythmicity, the input pathways that synchronize endogenous rhythms to exogenous rhythms, and the output pathways that transduce temporal information from the timekeeper to the regulators of gene expression and function. Amazingly, the primary timing mechanism has evidently been extracted from S. elongatus PCC 7942 and can also keep time in vitro. Mixing the circadian clock proteins KaiA, KaiB, and KaiC from S. elongatus PCC 7942 in vitro and adding ATP results in a circadian rhythm in the KaiC protein phosphorylation state. Nonetheless, many questions still loom regarding how this circadian clock mechanism works, how it communicates with the environment and how it regulates temporal patterns of gene expression. Many details regarding structure and function of the individual clock-related proteins are provided here as a basis to discuss these questions. A strong, data-intensive foundation has been developed to support the working model for the cyanobacterial circadian regulatory system. The eventual addition to that model of the metabolic parameters participating in the command and control of this circadian global regulatory system will ultimately allow a fascinating look into whole-cell physiology and metabolism and the consequential organization of global gene expression patterns.
Collapse
Affiliation(s)
- Stanly B Williams
- Department of Biology, Life Science Building, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
99
|
Pinzon NM, Ju LK. Modeling Culture Profiles of the Heterocystous N2-Fixing CyanobacteriumAnabaenaflos-aquae. Biotechnol Prog 2006. [DOI: 10.1002/bp060163c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
100
|
Laurent S, Chen H, Bédu S, Ziarelli F, Peng L, Zhang CC. Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120. Proc Natl Acad Sci U S A 2005; 102:9907-12. [PMID: 15985552 PMCID: PMC1174989 DOI: 10.1073/pnas.0502337102] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In response to combined nitrogen starvation in the growth medium, the filamentous cyanobacterium Anabaena sp. PCC 7120 is able to develop a particular cell type, called a heterocyst, specialized in molecular nitrogen fixation. Heterocysts are regularly intercalated among vegetative cells and represent 5-10% of all cells along each filament. In unicellular cyanobacteria, the key Krebs cycle intermediate, 2-oxoglutarate (2-OG), has been suggested as a nitrogen status signal, but in vivo evidence is still lacking. In this study we show that nitrogen starvation causes 2-OG to accumulate transiently within cells of Anabaena PCC 7120, reaching a maximal intracellular concentration of approximately 0.1 mM 1 h after combined nitrogen starvation. A nonmetabolizable fluorinated 2-OG derivative, 2,2-difluoropentanedioic acid (DFPA), was synthesized and used to demonstrate the signaling function of 2-OG in vivo. DFPA is shown to be a structural analogue of 2-OG and the process of its uptake and accumulation in vivo can be followed by (19)F magic angle spinning NMR because of the presence of the fluorine atom and its chemical stability. DFPA at a threshold concentration of 0.3 mM triggers heterocyst differentiation under repressing conditions. The multidisciplinary approaches using synthetic fluorinated analogues, magic angle spinning NMR for their analysis in vivo, and techniques of molecular biology provide a powerful means to identify the nature of the signals that remain unknown or poorly defined in many signaling pathways.
Collapse
Affiliation(s)
- Sophie Laurent
- Laboratoire de Chimie Bactérienne, UPR9043, Centre National de la Recherche Scientifique, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|