51
|
Nagamune H. [Virulence factors of Anginosus group streptococci]. Nihon Saikingaku Zasshi 2009; 63:425-35. [PMID: 19317232 DOI: 10.3412/jsb.63.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hideaki Nagamune
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minamijyosanjima-cho, Tokushima 770-8506
| |
Collapse
|
52
|
Christen R. Identifications of pathogens - a bioinformatic point of view. Curr Opin Biotechnol 2008; 19:266-73. [PMID: 18513941 DOI: 10.1016/j.copbio.2008.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 04/02/2008] [Accepted: 04/03/2008] [Indexed: 12/25/2022]
Abstract
Over the past 15 years, microbiology has undergone a momentous shift toward molecular methods. New sequences appear daily in the public databases and new computer tools and web servers are published on a regular basis. Major advances in molecular identifications of pathogens have been made because new biotechnology methods have appeared that often require a thorough in silico analysis of sequences. However, significant difficulties partly remain in developing efficient methods because the public databases contain many poorly annotated or partial sequences (often of environmental origin) and also because there are few dedicated web servers and curated databases.
Collapse
Affiliation(s)
- Richard Christen
- University of Nice Sophia-Antipolis and CNRS UMR 6543, Institute of Developmental Biology and Cancer, Parc Valrose, Centre de Biochimie, F 06108 Nice, France.
| |
Collapse
|
53
|
van Gent M, Pierard D, Lauwers S, van der Heide HGJ, King AJ, Mooi FR. Characterization ofBordetella pertussisclinical isolates that do not express the tracheal colonization factor. ACTA ACUST UNITED AC 2007; 51:149-54. [PMID: 17854476 DOI: 10.1111/j.1574-695x.2007.00291.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bordetella pertussis, the causative agent of whooping cough, has remained endemic and there is a resurgence in some countries despite vaccination. Bordetella pertussis produces a wide range of virulence factors which are assumed to play an important role in infection and transmission, including tracheal colonization factor (TcfA). Here we show that clinical isolates belonging to distinct lineages may lose their ability to produce TcfA. Irreversible and reversible loss occurred, respectively, by recombination between repeats leading to deletion of the tcfA gene and by mutations in a polymorphic G-track. These phenomena may reflect adaptation to distinct niches.
Collapse
Affiliation(s)
- Marjolein van Gent
- Laboratory for Infectious Diseases and Screening, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | | | | | | |
Collapse
|
54
|
Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 2007; 71:495-548. [PMID: 17804669 PMCID: PMC2168647 DOI: 10.1128/mmbr.00005-07] [Citation(s) in RCA: 634] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Actinobacteria constitute one of the largest phyla among bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context.
Collapse
Affiliation(s)
- Marco Ventura
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, parco Area delle Scienze 11a, 43100 Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
55
|
Diavatopoulos DA, Cummings CA, van der Heide HGJ, van Gent M, Liew S, Relman DA, Mooi FR. Characterization of a highly conserved island in the otherwise divergent Bordetella holmesii and Bordetella pertussis genomes. J Bacteriol 2006; 188:8385-94. [PMID: 17041054 PMCID: PMC1698220 DOI: 10.1128/jb.01081-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The recently discovered pathogen Bordetella holmesii has been isolated from the airways and blood of diseased humans. Genetic events contributing to the emergence of B. holmesii are not understood, and its phylogenetic position among the bordetellae remains unclear. To address these questions, B. holmesii strains were analyzed by comparative genomic hybridization (CGH) to a Bordetella pertussis microarray and by multilocus sequence typing. Both methods indicated substantial sequence divergence between B. pertussis and B. holmesii. However, CGH identified a putative pathogenicity island of 66 kb that is highly conserved between these species and contains several IS481 elements that may have been laterally transferred from B. pertussis to B. holmesii. This island contains, among other genes, a functional, iron-regulated locus encoding the biosynthesis, export, and uptake of the siderophore alcaligin. The acquisition of this genomic island by B. holmesii may have significantly contributed to its emergence as a human pathogen. Horizontal gene transfer between B. pertussis and B. holmesii may also explain the unusually high sequence identity of their 16S rRNA genes.
Collapse
Affiliation(s)
- D A Diavatopoulos
- Laboratory for Vaccine Preventable Diseases, National Institute of Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
56
|
Lee HY, Côté JC. Phylogenetic analysis of gamma-proteobacteria inferred from nucleotide sequence comparisons of the house-keeping genes adk, aroE and gdh: comparisons with phylogeny inferred from 16S rRNA gene sequences. J GEN APPL MICROBIOL 2006; 52:147-58. [PMID: 16960331 DOI: 10.2323/jgam.52.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nucleotide sequence comparisons of three house-keeping genes, adenylate kinase (adk), shikimate dehydrogenase (aroE), and glucose-6-phosphate dehydrogenase (gdh), were used to infer the phylogeny of 33 gamma-proteobacteria. Phylogenetic trees inferred from each gene, and from the concatenated sequences of all three genes, are, in general, similar to a 16S rRNA gene-inferred tree. Similar grouping of bacteria are revealed at the family, genus, species and strain levels in all five trees. The house-keeping genes, however, show a higher rate of nucleotide sequence substitutions. Consequently, they can possibly probe deeper branches of a phylogenetic tree than the 16S rRNA gene. However, because their nucleotide sequences are not as highly conserved among gamma-proteobacteria, family- or genus-specific primers would need to be designed for the amplification of any of these three house-keeping genes. Since these genes are used in multilocus sequence typing, it is expected that the number of sequences publicly available for many taxa will increase over time proving them very useful either at complementing 16S rRNA-inferred phylogenies or for specific, targeted, phylogenetic analysis.
Collapse
Affiliation(s)
- Hoon-Yong Lee
- Agriculture and Agri-Food Canada, Research Centre, St-Jean-sur-Richelieu, Québec, Canada
| | | |
Collapse
|
57
|
Silva C, Vinuesa P, Eguiarte LE, Souza V, Martínez-Romero E. Evolutionary genetics and biogeographic structure of Rhizobium gallicum sensu lato, a widely distributed bacterial symbiont of diverse legumes. Mol Ecol 2006; 14:4033-50. [PMID: 16262857 DOI: 10.1111/j.1365-294x.2005.02721.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We used phylogenetic and population genetics approaches to evaluate the importance of the evolutionary forces on shaping the genetic structure of Rhizobium gallicum and related species. We analysed 54 strains from several populations distributed in the Northern Hemisphere, using nucleotide sequences of three 'core' chromosomal genes (rrs, glnII and atpD) and two 'auxiliary' symbiotic genes (nifH and nodB) to elucidate the biogeographic history of the species and symbiotic ecotypes (biovarieties) within species. The analyses revealed that strains classified as Rhizobium mongolense and Rhizobium yanglingense belong to the chromosomal evolutionary lineage of R. gallicum and harbour symbiotic genes corresponding to a new biovar; we propose their reclassification as R. gallicum bv. orientale. The comparison of the chromosomal and symbiotic genes revealed evidence of lateral transfer of symbiotic information within and across species. Genetic differentiation analyses based on the chromosomal protein-coding genes revealed a biogeographic pattern with three main populations, whereas the 16S rDNA sequences did not resolve that biogeographic pattern. Both the phylogenetic and population genetic analyses showed evidence of recombination at the rrs locus. We discuss our results in the light of the contrasting views of bacterial species expressed by microbial taxonomist and evolutionary biologists.
Collapse
Affiliation(s)
- Claudia Silva
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP 565A, Cuernavaca, Morelos, México.
| | | | | | | | | |
Collapse
|
58
|
Teeling H, Gloeckner FO. RibAlign: a software tool and database for eubacterial phylogeny based on concatenated ribosomal protein subunits. BMC Bioinformatics 2006; 7:66. [PMID: 16476165 PMCID: PMC1421441 DOI: 10.1186/1471-2105-7-66] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 02/13/2006] [Indexed: 11/28/2022] Open
Abstract
Background Until today, analysis of 16S ribosomal RNA (rRNA) sequences has been the de-facto gold standard for the assessment of phylogenetic relationships among prokaryotes. However, the branching order of the individual phlya is not well-resolved in 16S rRNA-based trees. In search of an improvement, new phylogenetic methods have been developed alongside with the growing availability of complete genome sequences. Unfortunately, only a few genes in prokaryotic genomes qualify as universal phylogenetic markers and almost all of them have a lower information content than the 16S rRNA gene. Therefore, emphasis has been placed on methods that are based on multiple genes or even entire genomes. The concatenation of ribosomal protein sequences is one method which has been ascribed an improved resolution. Since there is neither a comprehensive database for ribosomal protein sequences nor a tool that assists in sequence retrieval and generation of respective input files for phylogenetic reconstruction programs, RibAlign has been developed to fill this gap. Results RibAlign serves two purposes: First, it provides a fast and scalable database that has been specifically adapted to eubacterial ribosomal protein sequences and second, it provides sophisticated import and export capabilities. This includes semi-automatic extraction of ribosomal protein sequences from whole-genome GenBank and FASTA files as well as exporting aligned, concatenated and filtered sequence files that can directly be used in conjunction with the PHYLIP and MrBayes phylogenetic reconstruction programs. Conclusion Up to now, phylogeny based on concatenated ribosomal protein sequences is hampered by the limited set of sequenced genomes and high computational requirements. However, hundreds of full and draft genome sequencing projects are on the way, and advances in cluster-computing and algorithms make phylogenetic reconstructions feasible even with large alignments of concatenated marker genes. RibAlign is a first step in this direction and may be particularly interesting to scientists involved in whole genome sequencing of representatives of new or sparsely studied eubacterial phyla. RibAlign is available at
Collapse
Affiliation(s)
- Hanno Teeling
- Microbial Genomics Group, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany
| | - Frank Oliver Gloeckner
- Microbial Genomics Group, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany
- International University Bremen, D-28759 Bremen, Germany
| |
Collapse
|
59
|
Innings A, Krabbe M, Ullberg M, Herrmann B. Identification of 43 Streptococcus species by pyrosequencing analysis of the rnpB gene. J Clin Microbiol 2006; 43:5983-91. [PMID: 16333086 PMCID: PMC1317172 DOI: 10.1128/jcm.43.12.5983-5991.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyrosequencing technology was evaluated for identification of species within the Streptococcus genus. Two variable regions in the rnpB gene, which encodes the RNA subunit of endonuclease P, were sequenced in two reactions. Of 43 species, all could be identified to the species level except strains of the species pairs Streptococcus anginosus/S. constellatus and S. infantis/S. peroris. A total of 113 blood culture isolates were identified by pyrosequencing analysis of partial rnpB sequences. All but eight isolates could be unambiguously assigned to a specific species when the first 30 nucleotides of the two regions were compared to an rnpB database comprising 107 streptococcal strains. Principal coordinate analysis of sequence variation of strains from viridans group streptococci resulted in species-specific clusters for the mitis and the salivarius groups but not for the anginosus group. The identification capacity of pyrosequencing was compared to the biochemical test systems VITEK 2 and Rapid ID 32 Strep. The concordance between pyrosequencing and VITEK 2 was 75%, and for Rapid ID 32 Strep the corresponding figure was 77%. Isolates with discrepant identifications in the three methods were subjected to entire rnpB DNA sequence analysis that confirmed the identifications by pyrosequencing. In conclusion, pyrosequencing analysis of the rnpB gene can reliably identify Streptococcus species with high resolution.
Collapse
Affiliation(s)
- Asa Innings
- Department of Clinical Microbiology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
| | | | | | | |
Collapse
|
60
|
Dewhirst FE, Shen Z, Scimeca MS, Stokes LN, Boumenna T, Chen T, Paster BJ, Fox JG. Discordant 16S and 23S rRNA gene phylogenies for the genus Helicobacter: implications for phylogenetic inference and systematics. J Bacteriol 2005; 187:6106-18. [PMID: 16109952 PMCID: PMC1196133 DOI: 10.1128/jb.187.17.6106-6118.2005] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of 16S rRNA gene sequences has become the primary method for determining prokaryotic phylogeny. Phylogeny is currently the basis for prokaryotic systematics. Therefore, the validity of 16S rRNA gene-based phylogenetic analyses is of fundamental importance for prokaryotic systematics. Discrepancies between 16S rRNA gene analyses and DNA-DNA hybridization and phenotypic analyses have been noted in the genus Helicobacter. To clarify these discrepancies, we sequenced the 23S rRNA genes for 55 helicobacter strains representing 41 taxa (>2,700 bases per sequence). Phylogenetic-tree construction using neighbor-joining, parsimony, and maximum likelihood methods for 23S rRNA gene sequence data yielded stable trees which were consistent with other phenotypic and genotypic methods. The 16S rRNA gene sequence-derived trees were discordant with the 23S rRNA gene trees and other data. Discrepant 16S rRNA gene sequence data for the helicobacters are consistent with the horizontal transfer of 16S rRNA gene fragments and the creation of mosaic molecules with loss of phylogenetic information. These results suggest that taxonomic decisions must be supported by other phylogenetically informative macromolecules, such as the 23S rRNA gene, when 16S rRNA gene-derived phylogeny is discordant with other credible phenotypic and genotypic methods. This study found Wolinella succinogenes to branch with the unsheathed-flagellum cluster of helicobacters by 23S rRNA gene analyses and whole-genome comparisons. This study also found intervening sequences (IVSs) in the 23S rRNA genes of strains of 12 Helicobacter species. IVSs were found in helices 10, 25, and 45, as well as between helices 31' and 27'. Simultaneous insertion of IVSs at three sites was found in H. mesocricetorum.
Collapse
Affiliation(s)
- Floyd E Dewhirst
- Department of Molecular Genetics, The Forsyth Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Badger JH, Eisen JA, Ward NL. Genomic analysis of Hyphomonas neptunium contradicts 16S rRNA gene-based phylogenetic analysis: implications for the taxonomy of the orders 'Rhodobacterales' and Caulobacterales. Int J Syst Evol Microbiol 2005; 55:1021-1026. [PMID: 15879228 DOI: 10.1099/ijs.0.63510-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hyphomonas neptunium is a marine prosthecate alpha-proteobacterium currently classified as a member of the order 'Rhodobacterales'. Although this classification is supported by 16S rRNA gene sequence phylogeny, 23S rRNA gene sequence analysis, concatenated ribosomal proteins, HSP70 and EF-Tu phylogenies all support classifying Hyphomonas neptunium as a member of the Caulobacterales instead. The possible reasons why the 16S rRNA gene sequence gives conflicting results in this case are also discussed.
Collapse
MESH Headings
- Alphaproteobacteria/classification
- Alphaproteobacteria/genetics
- Bacterial Proteins/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Genes, rRNA
- HSP70 Heat-Shock Proteins/genetics
- Peptide Elongation Factor Tu/genetics
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Jonathan H Badger
- The Institute for Genomic Research, 9712 Medical Center Dr., Rockville, MD 20850, USA
| | - Jonathan A Eisen
- The Institute for Genomic Research, 9712 Medical Center Dr., Rockville, MD 20850, USA
| | - Naomi L Ward
- The Institute for Genomic Research, 9712 Medical Center Dr., Rockville, MD 20850, USA
| |
Collapse
|
62
|
Rubin CJ, Thollesson M, Kirsebom LA, Herrmann B. Phylogenetic relationships and species differentiation of 39 Legionella species by sequence determination of the RNase P RNA gene rnpB. Int J Syst Evol Microbiol 2005; 55:2039-2049. [PMID: 16166707 DOI: 10.1099/ijs.0.63656-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rnpB gene is ubiquitous in Bacteria, Archaea and Eucarya and encodes the RNA component of RNase P, an endoribonuclease P that consists of one RNA and one protein subunit (C5). In this study, partial rnpB genes were sequenced from 39 type strains and 16 additional strains of the genus Legionella. Models of the putative secondary structures of the RNase P RNA in the genus Legionella are proposed and possible interactions between RNase P RNA and C5 are discussed. The phylogenetic relationships within the genus Legionella were examined and rnpB sequences indicated six main clades that together comprised 27 of the 39 species examined. The phylogenetic relationships were further inferred by analysing combined datasets of sequences from the rnpB, mip, 16S rRNA and rpoB genes. It is concluded that rnpB is suitable for use in phylogenetic studies of closely related species and that it exhibits the potential to discriminate between Legionella species.
Collapse
Affiliation(s)
- Carl-Johan Rubin
- Department of Clinical Microbiology, University Hospital, SE-751 85 Uppsala, Sweden
| | - Mikael Thollesson
- Department of Molecular Evolution, EBC, Uppsala University, Norbyvägen 18C, SE-19530 Uppsala, Sweden
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-75124 Uppsala, Sweden
| | - Björn Herrmann
- Department of Clinical Microbiology, University Hospital, SE-751 85 Uppsala, Sweden
| |
Collapse
|
63
|
Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 2005; 69:326-56. [PMID: 15944459 PMCID: PMC1197418 DOI: 10.1128/mmbr.69.2.326-356.2005] [Citation(s) in RCA: 866] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a general profile for the proteins of the TetR family of repressors. The stretch that best defines the profile of this family is made up of 47 amino acid residues that correspond to the helix-turn-helix DNA binding motif and adjacent regions in the three-dimensional structures of TetR, QacR, CprB, and EthR, four family members for which the function and three-dimensional structure are known. We have detected a set of 2,353 nonredundant proteins belonging to this family by screening genome and protein databases with the TetR profile. Proteins of the TetR family have been found in 115 genera of gram-positive, alpha-, beta-, and gamma-proteobacteria, cyanobacteria, and archaea. The set of genes they regulate is known for 85 out of the 2,353 members of the family. These proteins are involved in the transcriptional control of multidrug efflux pumps, pathways for the biosynthesis of antibiotics, response to osmotic stress and toxic chemicals, control of catabolic pathways, differentiation processes, and pathogenicity. The regulatory network in which the family member is involved can be simple, as in TetR (i.e., TetR bound to the target operator represses tetA transcription and is released in the presence of tetracycline), or more complex, involving a series of regulatory cascades in which either the expression of the TetR family member is modulated by another regulator or the TetR family member triggers a cell response to react to environmental insults. Based on what has been learned from the cocrystals of TetR and QacR with their target operators and from their three-dimensional structures in the absence and in the presence of ligands, and based on multialignment analyses of the conserved stretch of 47 amino acids in the 2,353 TetR family members, two groups of residues have been identified. One group includes highly conserved positions involved in the proper orientation of the helix-turn-helix motif and hence seems to play a structural role. The other set of less conserved residues are involved in establishing contacts with the phosphate backbone and target bases in the operator. Information related to the TetR family of regulators has been updated in a database that can be accessed at www.bactregulators.org.
Collapse
Affiliation(s)
- Juan L Ramos
- Department of Plant Biochemistry and Molecular and Cellular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas, Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Leavis H, Top J, Shankar N, Borgen K, Bonten M, van Embden J, Willems RJL. A novel putative enterococcal pathogenicity island linked to the esp virulence gene of Enterococcus faecium and associated with epidemicity. J Bacteriol 2004; 186:672-82. [PMID: 14729692 PMCID: PMC321477 DOI: 10.1128/jb.186.3.672-682.2004] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Enterococcus faecalis harbors a virulence-associated surface protein encoded by the esp gene. This gene has been shown to be part of a 150-kb putative pathogenicity island. A gene similar to esp has recently been found in Enterococcus faecium isolates recovered from hospitalized patients. In the present study we analyzed the polymorphism in the esp gene of E. faecium, and we investigated the association of esp with neighboring chromosomal genes. The esp gene showed considerable sequence heterogeneity in the regions encoding the nonrepeat N- and C-terminal domains of the Esp protein as well as differences in the number of repeats. DNA sequencing of chromosomal regions flanking the esp gene of E. faecium revealed seven open reading frames, representing putative genes implicated in virulence, regulation of transcription, and antibiotic resistance. These flanking regions were invariably associated with the presence or absence of the esp gene in E. faecium, indicating that esp in E. faecium is part of a distinct genetic element. Because of the presence of virulence genes in this gene cluster, the lower G+C content relative to that of the genome, and the presence of esp in E. faecium isolates associated with nosocomial outbreaks and clinically documented infections, we conclude that this genetic element constitutes a putative pathogenicity island, the first one described in E. faecium. Except for the presence of esp and araC, this pathogenicity island is completely different from the esp-containing pathogenicity island previously disclosed in E. faecalis.
Collapse
Affiliation(s)
- Helen Leavis
- Diagnostic Laboratory for Infectious Diseases, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | | | | | | | | |
Collapse
|