51
|
The anti-bacterial iron-restriction defence mechanisms of egg white; the potential role of three lipocalin-like proteins in resistance against Salmonella. Biometals 2019; 32:453-467. [PMID: 30810876 PMCID: PMC6584246 DOI: 10.1007/s10534-019-00180-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 01/25/2019] [Indexed: 11/26/2022]
Abstract
Salmonella enterica serovar Enteritidis (SE) is the most frequently-detected Salmonella in foodborne outbreaks in the European Union. Among such outbreaks, egg and egg products were identified as the most common vehicles of infection. Possibly, the major antibacterial property of egg white is iron restriction, which results from the presence of the iron-binding protein, ovotransferrin. To circumvent iron restriction, SE synthesise catecholate siderophores (i.e. enterobactin and salmochelin) that can chelate iron from host iron-binding proteins. Here, we highlight the role of lipocalin-like proteins found in egg white that could enhance egg-white iron restriction through sequestration of certain siderophores, including enterobactin. Indeed, it is now apparent that the egg-white lipocalin, Ex-FABP, can inhibit bacterial growth via its siderophore-binding capacity in vitro. However, it remains unclear whether Ex-FABP performs such a function in egg white or during bird infection. Regarding the two other lipocalins of egg white (Cal-γ and α-1-glycoprotein), there is currently no evidence to indicate that they sequester siderophores.
Collapse
|
52
|
Conley ZC, Carlson-Banning KM, Carter AG, de la Cova A, Song Y, Zechiedrich L. Sugar and iron: Toward understanding the antibacterial effect of ciclopirox in Escherichia coli. PLoS One 2019; 14:e0210547. [PMID: 30633761 PMCID: PMC6329577 DOI: 10.1371/journal.pone.0210547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022] Open
Abstract
New antibiotics are needed against antibiotic-resistant gram-negative bacteria. The repurposed antifungal drug, ciclopirox, equally blocks antibiotic-susceptible or multidrug-resistant Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae clinical isolates, indicating that it is not affected by existing resistance mechanisms. Toward understanding how ciclopirox blocks growth, we screened E. coli mutant strains and found that disruption of genes encoding products involved in galactose salvage, enterobacterial common antigen synthesis, and transport of the iron binding siderophore, enterobactin, lowered the minimum inhibitory concentration of ciclopirox needed to block growth of the mutant compared to the isogenic parent strain. We found that ciclopirox induced enterobactin production and that this effect is strongly affected by the deletion of the galactose salvage genes encoding UDP-galactose 4-epimerase, galE, or galactose-1-phosphate uridylyltransferase, galT. As disruption of ECA synthesis activates the regulation of capsular synthesis (Rcs) phosphorelay, which inhibits bacterial swarming and promotes biofilm development, we test whether ciclopirox prevents activation of the Rcs pathway. Sub-inhibitory concentrations of ciclopirox increased swarming of the E. coli laboratory K12 strain BW25113 but had widely varying effects on swarming or surface motility of clinical isolate E. coli, A. baumannii, and K. pneumoniae. There was no effect of ciclopirox on biofilm production, suggesting it does not target Rcs. Altogether, our data suggest ciclopirox-mediated alteration of lipopolysaccharides stimulates enterobactin production and affects bacterial swarming.
Collapse
Affiliation(s)
- Zachary C. Conley
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kimberly M. Carlson-Banning
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ashley G. Carter
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alejandro de la Cova
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Environmental and Human Toxicology, University of Florida College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lynn Zechiedrich
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
53
|
Chao A, Sieminski PJ, Owens CP, Goulding CW. Iron Acquisition in Mycobacterium tuberculosis. Chem Rev 2018; 119:1193-1220. [PMID: 30474981 DOI: 10.1021/acs.chemrev.8b00285] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The highly contagious disease tuberculosis (TB) is caused by the bacterium Mycobacterium tuberculosis (Mtb), which has been evolving drug resistance at an alarming rate. Like all human pathogens, Mtb requires iron for growth and virulence. Consequently, Mtb iron transport is an emerging drug target. However, the development of anti-TB drugs aimed at these metabolic pathways has been restricted by the dearth of information on Mtb iron acquisition. In this Review, we describe the multiple strategies utilized by Mtb to acquire ferric iron and heme iron. Mtb iron uptake is a complex process, requiring biosynthesis and subsequent export of Mtb siderophores, followed by ferric iron scavenging and ferric-siderophore import into Mtb. Additionally, Mtb possesses two possible heme uptake pathways and an Mtb-specific mechanism of heme degradation that yields iron and novel heme-degradation products. We conclude with perspectives for potential therapeutics that could directly target Mtb heme and iron uptake machineries. We also highlight how hijacking Mtb heme and iron acquisition pathways for drug import may facilitate drug transport through the notoriously impregnable Mtb cell wall.
Collapse
Affiliation(s)
| | | | - Cedric P Owens
- Schmid College of Science and Technology , Chapman University , Orange , California 92866 , United States
| | | |
Collapse
|
54
|
Washington-Hughes CL, Ford GT, Jones AD, McRae K, Outten FW. Nickel exposure reduces enterobactin production in Escherichia coli. Microbiologyopen 2018; 8:e00691. [PMID: 30062714 PMCID: PMC6460284 DOI: 10.1002/mbo3.691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/26/2022] Open
Abstract
Escherichia coli is a well‐studied bacterium that can be found in many niches, such as industrial wastewater, where the concentration of nickel can rise to low‐millimolar levels. Recent studies show that nickel exposure can repress pyochelin or induce pyoverdine siderophore production in Pseudomonas aueroginosa. Understanding the molecular cross‐talk between siderophore production, metal homeostasis, and metal toxicity in microorganisms is critical for designing bioremediation strategies for metal‐contaminated sites. Here, we show that high‐nickel exposure prolongs lag phase duration as a result of low‐intracellular iron levels in E. coli. Although E. coli cells respond to low‐intracellular iron during nickel stress by maintaining high expression of iron uptake systems such as fepA, the demand for iron is not met due to a lack of siderophores in the extracellular medium during nickel stress. Taken together, these results indicate that nickel inhibits iron accumulation in E. coli by reducing the presence of enterobactin in the extracellular medium.
Collapse
Affiliation(s)
| | - Geoffrey T Ford
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina
| | - Alsten D Jones
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina
| | - Kimberly McRae
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina
| | - F Wayne Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
55
|
Mateus A, Bobonis J, Kurzawa N, Stein F, Helm D, Hevler J, Typas A, Savitski MM. Thermal proteome profiling in bacteria: probing protein state in vivo. Mol Syst Biol 2018; 14:e8242. [PMID: 29980614 PMCID: PMC6056769 DOI: 10.15252/msb.20188242] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Increasing antibiotic resistance urges for new technologies for studying microbes and antimicrobial mechanism of action. We adapted thermal proteome profiling (TPP) to probe the thermostability of Escherichia coli proteins in vivoE. coli had a more thermostable proteome than human cells, with protein thermostability depending on subcellular location-forming a high-to-low gradient from the cell surface to the cytoplasm. While subunits of protein complexes residing in one compartment melted similarly, protein complexes spanning compartments often had their subunits melting in a location-wise manner. Monitoring the E. coli meltome and proteome at different growth phases captured changes in metabolism. Cells lacking TolC, a component of multiple efflux pumps, exhibited major physiological changes, including differential thermostability and levels of its interaction partners, signaling cascades, and periplasmic quality control. Finally, we combined in vitro and in vivo TPP to identify targets of known antimicrobial drugs and to map their downstream effects. In conclusion, we demonstrate that TPP can be used in bacteria to probe protein complex architecture, metabolic pathways, and intracellular drug target engagement.
Collapse
Affiliation(s)
- André Mateus
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jacob Bobonis
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nils Kurzawa
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johannes Hevler
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Athanasios Typas
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
56
|
Selection and validation of reference genes for gene expression studies in Klebsiella pneumoniae using Reverse Transcription Quantitative real-time PCR. Sci Rep 2018; 8:9001. [PMID: 29899556 PMCID: PMC5998039 DOI: 10.1038/s41598-018-27420-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/23/2018] [Indexed: 12/27/2022] Open
Abstract
For reliable results, Reverse Transcription Quantitative real-time Polymerase Chain Reaction (RT-qPCR) analyses depend on stably expressed reference genes for data normalization purposes. Klebsiella pneumoniae is an opportunistic Gram-negative bacterium that has become a serious threat worldwide. Unfortunately, there is no consensus for an ideal reference gene for RT-qPCR data normalization on K. pneumoniae. In this study, the expression profile of eleven candidate reference genes was assessed in K. pneumoniae cells submitted to various experimental conditions, and the expression stability of these candidate genes was evaluated using statistical algorithms BestKeeper, NormFinder, geNorm, Delta CT and RefFinder. The statistical analyses ranked recA, rho, proC and rpoD as the most suitable reference genes for accurate RT-qPCR data normalization in K. pneumoniae. The reliability of the proposed reference genes was validated by normalizing the relative expression of iron-regulated genes in K. pneumoniae cells submitted to iron-replete and iron-limited conditions. This work emphasizes that the stable expression of any potential reference candidate gene must be validated in each physiological condition or experimental treatment under study.
Collapse
|
57
|
Santos TMA, Lammers MG, Zhou M, Sparks IL, Rajendran M, Fang D, De Jesus CLY, Carneiro GFR, Cui Q, Weibel DB. Small Molecule Chelators Reveal That Iron Starvation Inhibits Late Stages of Bacterial Cytokinesis. ACS Chem Biol 2018; 13:235-246. [PMID: 29227619 DOI: 10.1021/acschembio.7b00560] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial cell division requires identification of the division site, assembly of the division machinery, and constriction of the cell envelope. These processes are regulated in response to several cellular and environmental signals. Here, we use small molecule iron chelators to characterize the surprising connections between bacterial iron homeostasis and cell division. We demonstrate that iron starvation downregulates the transcription of genes encoding proteins involved in cell division, reduces protein biosynthesis, and prevents correct positioning of the division machinery at the division site. These combined events arrest the constriction of the cell during late stages of cytokinesis in a manner distinct from known mechanisms of inhibiting cell division. Overexpression of genes encoding cell division proteins or iron transporters partially suppresses the biological activity of iron chelators and restores growth and division. We propose a model demonstrating the effect of iron availability on the regulatory mechanisms coordinating division in response to the nutritional state of the cell.
Collapse
Affiliation(s)
- Thiago M. A. Santos
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Matthew G. Lammers
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Maoquan Zhou
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Ian L. Sparks
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Madhusudan Rajendran
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Dong Fang
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Crystal L. Y. De Jesus
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Gabriel F. R. Carneiro
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Qiang Cui
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Douglas B. Weibel
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department
of Biomedical Engineering, University of Wisconsin—Madison, 1550 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
58
|
Baseer S, Ahmad S, Ranaghan KE, Azam SS. Towards a peptide-based vaccine against Shigella sonnei: A subtractive reverse vaccinology based approach. Biologicals 2017; 50:87-99. [PMID: 28826780 DOI: 10.1016/j.biologicals.2017.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/11/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
Shigella sonnei is one of the major causes of shigellosis in technically advanced countries and reports of its unprecedented increase are published from the Middle East, Latin America, and Asia. The pathogen exhibits resistance against first and second line antibiotics which highlights the need for the development of an effective broad-spectrum vaccine. A computational based approach comprising subtractive reverse vaccinology was used for the identification of potential peptide-based vaccine candidates in the proteome of S. sonnei reference strain (53G). The protocol revealed three essential, host non-homologous, highly virulent, antigenic, conserved and adhesive vaccine proteins: TolC, PhoE, and outer membrane porin protein. The cellular interactome of these proteins supports their direct and indirect involvement in biologically significant pathways, essential for pathogen survival. Epitope mapping of these candidates reveals the presence of surface exposed 9-mer B-cell-derived T-cell epitopes of an antigenic, virulent, non-allergen nature and have broad-spectrum potency. In addition, molecular docking studies demonstrated the deep binding of the epitopes in the binding groove and the stability of the complex with the most common binding allele in the human population, DRB1*0101. Future characterization of the screened epitopes in order to further investigate the immune protection efficacy in animal models is highly desirable.
Collapse
Affiliation(s)
- Shehneela Baseer
- Computational Biology Lab, National Center for Bioinformatics (NCB), Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajjad Ahmad
- Computational Biology Lab, National Center for Bioinformatics (NCB), Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Kara E Ranaghan
- Centre for Computational Chemistry, University of Bristol, Bristol, United Kingdom
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics (NCB), Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
59
|
The Biofilm Inhibitor Carolacton Enters Gram-Negative Cells: Studies Using a TolC-Deficient Strain of Escherichia coli. mSphere 2017; 2:mSphere00375-17. [PMID: 28959742 PMCID: PMC5615136 DOI: 10.1128/mspheredirect.00375-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 08/26/2017] [Indexed: 12/18/2022] Open
Abstract
The emergence of pathogens resistant against most or all of the antibiotics currently used in human therapy is a global threat, and therefore the search for antimicrobials with novel targets and modes of action is of utmost importance. The myxobacterial secondary metabolite carolacton had previously been shown to inhibit biofilm formation and growth of streptococci. Here, we investigated if carolacton could act against Gram-negative bacteria, which are difficult targets because of their double-layered cytoplasmic envelope. We found that the model organism Escherichia coli is susceptible to carolacton, similar to the Gram-positive Streptococcus pneumoniae, if its multidrug efflux system AcrAB-TolC is either inactivated genetically, by disruption of the tolC gene, or physiologically by coadministering an efflux pump inhibitor. A carolacton epimer that has a different steric configuration at carbon atom 9 is completely inactive, suggesting that carolacton may interact with the same molecular target in both Gram-positive and Gram-negative bacteria. The myxobacterial secondary metabolite carolacton inhibits growth of Streptococcus pneumoniae and kills biofilm cells of the caries- and endocarditis-associated pathogen Streptococcus mutans at nanomolar concentrations. Here, we studied the response to carolacton of an Escherichia coli strain that lacked the outer membrane protein TolC. Whole-genome sequencing of the laboratory E. coli strain TolC revealed the integration of an insertion element, IS5, at the tolC locus and a close phylogenetic relationship to the ancient E. coli K-12. We demonstrated via transcriptome sequencing (RNA-seq) and determination of MIC values that carolacton penetrates the phospholipid bilayer of the Gram-negative cell envelope and inhibits growth of E. coli TolC at similar concentrations as for streptococci. This inhibition is completely lost for a C-9 (R) epimer of carolacton, a derivative with an inverted stereocenter at carbon atom 9 [(S) → (R)] as the sole difference from the native molecule, which is also inactive in S. pneumoniae and S. mutans, suggesting a specific interaction of native carolacton with a conserved cellular target present in bacterial phyla as distantly related as Firmicutes and Proteobacteria. The efflux pump inhibitor (EPI) phenylalanine arginine β-naphthylamide (PAβN), which specifically inhibits AcrAB-TolC, renders E. coli susceptible to carolacton. Our data indicate that carolacton has potential for use in antimicrobial chemotherapy against Gram-negative bacteria, as a single drug or in combination with EPIs. Strain E. coli TolC has been deposited at the DSMZ; together with the associated RNA-seq data and MIC values, it can be used as a reference during future screenings for novel bioactive compounds. IMPORTANCE The emergence of pathogens resistant against most or all of the antibiotics currently used in human therapy is a global threat, and therefore the search for antimicrobials with novel targets and modes of action is of utmost importance. The myxobacterial secondary metabolite carolacton had previously been shown to inhibit biofilm formation and growth of streptococci. Here, we investigated if carolacton could act against Gram-negative bacteria, which are difficult targets because of their double-layered cytoplasmic envelope. We found that the model organism Escherichia coli is susceptible to carolacton, similar to the Gram-positive Streptococcus pneumoniae, if its multidrug efflux system AcrAB-TolC is either inactivated genetically, by disruption of the tolC gene, or physiologically by coadministering an efflux pump inhibitor. A carolacton epimer that has a different steric configuration at carbon atom 9 is completely inactive, suggesting that carolacton may interact with the same molecular target in both Gram-positive and Gram-negative bacteria.
Collapse
|
60
|
Siderophores in clinical isolates of Klebsiella pneumoniae promote ciprofloxacin resistance by inhibiting the oxidative stress. Biochem Biophys Res Commun 2017; 491:855-861. [DOI: 10.1016/j.bbrc.2017.04.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/20/2017] [Indexed: 11/30/2022]
|
61
|
Hussain HI, Iqbal Z, Seleem MN, Huang D, Sattar A, Hao H, Yuan Z. Virulence and transcriptome profile of multidrug-resistant Escherichia coli from chicken. Sci Rep 2017; 7:8335. [PMID: 28827616 PMCID: PMC5567091 DOI: 10.1038/s41598-017-07798-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/03/2017] [Indexed: 02/01/2023] Open
Abstract
Numerous studies have examined the prevalence of pathogenic Escherichia coli in poultry and poultry products; however, limited data are available regarding their resistance- and virulence-associated gene expression profiles. This study was designed to examine the resistance and virulence of poultry E. coli strains in vitro and in vivo via antibiotic susceptibility, biofilm formation and adhesion, and invasion and intracellular survivability assays in Caco-2 and Raw 264.7 cell lines as well as the determination of the median lethal dose in two-day old chickens. A clinical pathogenic multidrug-resistant isolate, E. coli 381, isolated from broilers, was found to be highly virulent in cell culture and 1000-fold more virulent in a chicken model than other strains; accordingly, the isolate was subsequently selected for transcriptome analysis. The comparative gene expression profile of MDR E. coli 381 and the reference human strain E. coli ATCC 25922 was completed with Illumina HiSeq. 2500 transcriptome analysis. Differential gene expression analysis indicates that there are multiple pathways involved in the resistance and virulence of this highly virulent strain. The results garnered from this study provide critical information about the highly virulent MDR E. coli strain of poultry origin and warrant further investigation due to its significant threat to public health.
Collapse
Affiliation(s)
- Hafiz I Hussain
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zahid Iqbal
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Deyu Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Adeel Sattar
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
62
|
The Vibrio cholerae VexGH RND Efflux System Maintains Cellular Homeostasis by Effluxing Vibriobactin. mBio 2017; 8:mBio.00126-17. [PMID: 28512090 PMCID: PMC5433094 DOI: 10.1128/mbio.00126-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Resistance-nodulation-division (RND) superfamily efflux systems have been widely studied for their role in antibiotic resistance, but their native biological functions remain poorly understood. We previously showed that loss of RND-mediated efflux in Vibrio cholerae resulted in activation of the Cpx two-component regulatory system, which mediates adaptation to stress resulting from misfolded membrane proteins. Here, we investigated the mechanism linking RND-mediated efflux to the Cpx response. We performed transposon mutagenesis screening of RND-deficient V. cholerae to identify Cpx suppressors. Suppressor mutations mapped to genes involved in the biosynthesis of the catechol siderophore vibriobactin. We subsequently demonstrated that vibriobactin secretion is impaired in mutants lacking the VexGH RND efflux system and that impaired vibriobactin secretion is responsible for Cpx system activation, suggesting that VexGH secretes vibriobactin. This conclusion was bolstered by results showing that vexGH expression is induced by iron limitation and that vexH-deficient cells exhibit reduced fitness during growth under iron-limiting conditions. Our results support a model where VexGH contributes to cellular homeostasis by effluxing vibriobactin. In the absence of vexGH, retained vibriobactin appears to chelate iron from iron-rich components of the respiratory chain, with the deferrated proteins functioning to activate the Cpx response. Our collective results demonstrate that a native function of the V. cholerae VexGH RND efflux system is in vibriobactin secretion and that vibriobactin efflux is critical for maintenance of cellular homeostasis.IMPORTANCE RND efflux systems are ubiquitous Gram-negative transporters that play critical roles in antimicrobial resistance. In addition to antimicrobial resistance, RND transporters also affect the expression of diverse phenotypes, including virulence, cell metabolism, and stress responses. The latter observations suggest that RND transporters fulfill unknown physiological functions in the cell independently of their role in antimicrobial resistance. Vibrio cholerae is representative of many Gram-negative bacteria in encoding multiple RND transporters that are redundant in antimicrobial resistance and affect multiple phenotypes. Here we describe a novel function of the V. cholerae VexGH RND transporter in vibriobactin secretion. We show that vibriobactin production in VexGH-deficient cells impacts cell homeostasis, leading to activation of the Cpx stress response and reduced fitness under iron-limiting conditions. Our results highlight a native physiological function of an RND transporter and provide insight into the selective forces that maintain what was thought to be a redundant multidrug transporter.
Collapse
|
63
|
Novel RpoS-Dependent Mechanisms Strengthen the Envelope Permeability Barrier during Stationary Phase. J Bacteriol 2016; 199:JB.00708-16. [PMID: 27821607 DOI: 10.1128/jb.00708-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Gram-negative bacteria have effective methods of excluding toxic compounds, including a largely impermeable outer membrane (OM) and a range of efflux pumps. Furthermore, when cells become nutrient limited, RpoS enacts a global expression change providing cross-protection against many stresses. Here, we utilized sensitivity to an anionic detergent (sodium dodecyl sulfate [SDS]) to probe changes occurring to the cell's permeability barrier during nutrient limitation. Escherichia coli is resistant to SDS whether cells are actively growing, carbon limited, or nitrogen limited. In actively growing cells, this resistance depends on the AcrAB-TolC efflux pump; however, this pump is not necessary for protection under either carbon-limiting or nitrogen-limiting conditions, suggesting an alternative mechanism(s) of SDS resistance. In carbon-limited cells, RpoS-dependent pathways lessen the permeability of the OM, preventing the necessity for efflux. In nitrogen-limited but not carbon-limited cells, the loss of rpoS can be completely compensated for by the AcrAB-TolC efflux pump. We suggest that this difference simply reflects the fact that nitrogen-limited cells have access to a metabolizable energy (carbon) source that can efficiently power the efflux pump. Using a transposon mutant pool sequencing (Tn-Seq) approach, we identified three genes, sanA, dacA, and yhdP, that are necessary for RpoS-dependent SDS resistance in carbon-limited stationary phase. Using genetic analysis, we determined that these genes are involved in two different envelope-strengthening pathways. These genes have not previously been implicated in stationary-phase stress responses. A third novel RpoS-dependent pathway appears to strengthen the cell's permeability barrier in nitrogen-limited cells. Thus, though cells remain phenotypically SDS resistant, SDS resistance mechanisms differ significantly between growth states. IMPORTANCE Gram-negative bacteria are intrinsically resistant to detergents and many antibiotics due to synergistic activities of a strong outer membrane (OM) permeability barrier and efflux pumps that capture and expel toxic molecules eluding the barrier. When the bacteria are depleted of an essential nutrient, a program of gene expression providing cross-protection against many stresses is induced. Whether this program alters the OM to further strengthen the barrier is unknown. Here, we identify novel pathways dependent on the master regulator of stationary phase that further strengthen the OM permeability barrier during nutrient limitation, circumventing the need for efflux pumps. Decreased permeability of nutrient-limited cells to toxic compounds has important implications for designing new antibiotics capable of targeting Gram-negative bacteria that may be in a growth-limited state.
Collapse
|
64
|
Bay DC, Stremick CA, Slipski CJ, Turner RJ. Secondary multidrug efflux pump mutants alter Escherichia coli biofilm growth in the presence of cationic antimicrobial compounds. Res Microbiol 2016; 168:208-221. [PMID: 27884783 DOI: 10.1016/j.resmic.2016.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 11/30/2022]
Abstract
Escherichia coli possesses many secondary active multidrug resistance transporters (MDTs) that confer overlapping substrate resistance to a broad range of antimicrobials via proton and/or sodium motive force. It is uncertain whether redundant MDTs uniquely alter cell survival when cultures grow planktonically or as biofilms. In this study, the planktonic and biofilm growth and antimicrobial resistance of 13 E. coli K-12 single MDT gene deletion strains in minimal and rich media were determined. Antimicrobial tolerance to tetracycline, tobramycin and benzalkonium were also compared for each ΔMDT strain. Four E. coli MDT families were represented in this study: resistance nodulation and cell division members acrA, acrB, acrD, acrE, acrF and tolC; multidrug and toxin extruder mdtK; major facilitator superfamily emrA and emrB; and small multidrug resistance members emrE, sugE, mdtI and mdtJ. Deletions of multipartite efflux system genes acrB, acrE and tolC resulted in significant reductions in both planktonic and biofilm growth phenotypes and enhanced antimicrobial susceptibilities. The loss of remaining MDT genes produced similar or enhanced (acrD, acrE, emrA, emrB, mdtK, emrE and mdtJ) biofilm growth and antimicrobial resistance. ΔMDT strains with enhanced antimicrobial tolerance also enhanced biofilm biomass. These findings suggest that many redundant MDTs regulate biofilm formation and drug tolerance.
Collapse
Affiliation(s)
- Denice C Bay
- University of Manitoba, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Manitoba, Canada.
| | - Carol A Stremick
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Carmine J Slipski
- University of Manitoba, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Manitoba, Canada
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
65
|
Beyond Antimicrobial Resistance: Evidence for a Distinct Role of the AcrD Efflux Pump in Salmonella Biology. mBio 2016; 7:mBio.01916-16. [PMID: 27879336 PMCID: PMC5120143 DOI: 10.1128/mbio.01916-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
For over 20 years, bacterial multidrug resistance (MDR) efflux pumps have been studied because of their impact on resistance to antimicrobials. However, critical questions remain, including why produce efflux pumps under non-antimicrobial treatment conditions, and why have multiple pumps if their only purpose is antimicrobial efflux? Salmonella spp. possess five efflux pump families, including the resistance-nodulation-division (RND) efflux pumps. Notably, the RND efflux pump AcrD has a unique substrate profile, distinct from other Salmonella efflux pumps. Here we show that inactivation of acrD results in a profoundly altered transcriptome and modulation of pathways integral to Salmonella biology. The most significant transcriptome changes were central metabolism related, with additional changes observed in pathogenicity, environmental sensing, and stress response pathway expression. The extent of tricarboxylic acid cycle and fumarate metabolism expression changes led us to hypothesize that acrD inactivation may result in motility defects due to perturbation of metabolite concentrations, such as fumarate, for which a role in motility has been established. Despite minimal detectable changes in flagellar gene expression, we found that an acrD mutant Salmonella enterica serovar Typhimurium isolate was significantly impaired for swarming motility, which was restored by addition of fumarate. The acrD mutant outcompeted the wild type in fitness experiments. The results of these diverse experiments provide strong evidence that the AcrD efflux pump is not simply a redundant system providing response resilience, but also has distinct physiological functions. Together, these data indicate that the AcrD efflux pump has a significant and previously underappreciated impact on bacterial biology, despite only minor perturbations of antibiotic resistance profiles. Efflux pumps in Gram-negative bacteria are studied because of their important contributions to antimicrobial resistance. However, the role of these pumps in bacterial biology has remained surprisingly elusive. Here, we provide evidence that loss of the AcrD efflux pump significantly impacts the physiology of Salmonella enterica serovar Typhimurium. Inactivation of acrD led to changes in the expression of 403 genes involved in fundamental processes, including basic metabolism, virulence, and stress responses. Pathways such as these allow Salmonella to grow, survive in the environment, and cause disease. Indeed, our data show that the acrD mutant is more fit than wild-type Salmonella under standard lab conditions. We hypothesized that inactivation of acrD would alter levels of bacterial metabolites, impacting traits such as swarming motility. We demonstrated this by exogenous addition of the metabolite fumarate, which partially restored the acrD mutant’s swarming defect. This work extends our understanding of the role of bacterial efflux pumps.
Collapse
|
66
|
Fowler GJS, Pereira-Medrano AG, Jaffe S, Pasternak G, Pham TK, Ledezma P, Hall STE, Ieropoulos IA, Wright PC. An iTRAQ characterisation of the role of TolC during electron transfer from Shewanella oneidensis MR-1. Proteomics 2016; 16:2764-2775. [PMID: 27599463 DOI: 10.1002/pmic.201500538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 07/20/2016] [Accepted: 09/02/2016] [Indexed: 02/04/2023]
Abstract
Anodophilic bacteria have the ability to generate electricity in microbial fuel cells (MFCs) by extracellular electron transfer to the anode. We investigated the anode-specific responses of Shewanella oneidensis MR-1, an exoelectroactive Gammaproteobacterium, using for the first time iTRAQ and 2D-LC MS/MS driven membrane proteomics to compare protein abundances in S. oneidensis when generating power in MFCs, and growing in a continuous culture. The regulated dataset produced was enriched in membrane proteins. Proteins shown to be more abundant in anaerobic electroactive anodic cells included efflux pump TolC and an uncharacterised tetratricopeptide repeat (TPR) protein, whilst the TonB2 system and associated uncharacterised proteins such as TtpC2 and DUF3450 were more abundant in microaerobic planktonic cells. In order to validate the iTRAQ data, the functional role for TolC was examined using a δTolC knockout mutant of S. oneidensis. Possible roles for the uncharacterised proteins were identified using comparative bioinformatics. We demonstrate that employing an insoluble extracellular electron acceptor requires multiple proteins involved in cell surface properties. All MS and processed data are available via ProteomeXchange with identifier PXD004090.
Collapse
Affiliation(s)
- Gregory J S Fowler
- Biological and Environmental Systems Group, ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Ana G Pereira-Medrano
- Biological and Environmental Systems Group, ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Stephen Jaffe
- Biological and Environmental Systems Group, ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Grzegorz Pasternak
- Bristol Robotics Laboratory, Universities of Bristol and of the West of England, , Frenchay Campus, Bristol, UK
| | - Trong Khoa Pham
- Biological and Environmental Systems Group, ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Pablo Ledezma
- Bristol Robotics Laboratory, Universities of Bristol and of the West of England, , Frenchay Campus, Bristol, UK
| | - Simon T E Hall
- Biological and Environmental Systems Group, ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Ioannis A Ieropoulos
- Bristol Robotics Laboratory, Universities of Bristol and of the West of England, , Frenchay Campus, Bristol, UK
| | - Phillip C Wright
- Biological and Environmental Systems Group, ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK. .,Faculty of Science, Agriculture & Engineering, Newcastle University, Devonshire Building, Newcastle upon Tyne, UK.
| |
Collapse
|
67
|
Giner-Lamia J, Pereira SB, Bovea-Marco M, Futschik ME, Tamagnini P, Oliveira P. Extracellular Proteins: Novel Key Components of Metal Resistance in Cyanobacteria? Front Microbiol 2016; 7:878. [PMID: 27375598 PMCID: PMC4894872 DOI: 10.3389/fmicb.2016.00878] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/24/2016] [Indexed: 11/13/2022] Open
Abstract
Metals are essential for all living organisms and required for fundamental biochemical processes. However, when in excess, metals can turn into highly-toxic agents able to disrupt cell membranes, alter enzymatic activities, and damage DNA. Metal concentrations are therefore tightly controlled inside cells, particularly in cyanobacteria. Cyanobacteria are ecologically relevant prokaryotes that perform oxygenic photosynthesis and can be found in many different marine and freshwater ecosystems, including environments contaminated with heavy metals. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been widely studied in cyanobacteria. So far, most studies have focused on how cells are capable of controlling their internal metal pools, with a strong bias toward the analysis of intracellular processes. Ultrastructure, modulation of physiology, dynamic changes in transcription and protein levels have been studied, but what takes place in the extracellular environment when cells are exposed to an unbalanced metal availability remains largely unknown. The interest in studying the subset of proteins present in the extracellular space has only recently begun and the identification and functional analysis of the cyanobacterial exoproteomes are just emerging. Remarkably, metal-related proteins such as the copper-chaperone CopM or the iron-binding protein FutA2 have already been identified outside the cell. With this perspective, we aim to raise the awareness that metal-resistance mechanisms are not yet fully known and hope to motivate future studies assessing the role of extracellular proteins on bacterial metal homeostasis, with a special focus on cyanobacteria.
Collapse
Affiliation(s)
- Joaquín Giner-Lamia
- Systems Biology and Bioinformatics Laboratory, Centro de Ciências do Mar, Universidade do AlgarveFaro, Portugal; Center for Biomedical Research, Universidade do AlgarveFaro, Portugal
| | - Sara B Pereira
- Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | | | - Matthias E Futschik
- Systems Biology and Bioinformatics Laboratory, Centro de Ciências do Mar, Universidade do AlgarveFaro, Portugal; Center for Biomedical Research, Universidade do AlgarveFaro, Portugal
| | - Paula Tamagnini
- Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Faculdade de Ciências, Departamento de Biologia, Universidade do PortoPorto, Portugal
| | - Paulo Oliveira
- Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| |
Collapse
|
68
|
Microbial siderophore-based iron assimilation and therapeutic applications. Biometals 2016; 29:377-88. [PMID: 27146331 DOI: 10.1007/s10534-016-9935-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/23/2016] [Indexed: 10/21/2022]
Abstract
Siderophores are structurally diverse, complex natural products that bind metals with extraordinary specificity and affinity. The acquisition of iron is critical for the survival and virulence of many pathogenic microbes and diverse strategies have evolved to synthesize, import and utilize iron. There has been a substantial increase of known siderophore scaffolds isolated and characterized in the past decade and the corresponding biosynthetic gene clusters have provided insight into the varied pathways involved in siderophore biosynthesis, delivery and utilization. Additionally, therapeutic applications of siderophores and related compounds are actively being developed. The study of biosynthetic pathways to natural siderophores augments the understanding of the complex mechanisms of bacterial iron acquisition, and enables a complimentary approach to address virulence through the interruption of siderophore biosynthesis or utilization by targeting the key enzymes to the siderophore pathways.
Collapse
|
69
|
Role of the Gram-Negative Envelope Stress Response in the Presence of Antimicrobial Agents. Trends Microbiol 2016; 24:377-390. [PMID: 27068053 DOI: 10.1016/j.tim.2016.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 01/10/2023]
Abstract
Bacterial survival necessitates endurance of many types of antimicrobial compound. Many Gram-negative envelope stress responses, which must contend with an outer membrane and a dense periplasm containing the cell wall, have been associated with the status of protein folding, membrane homeostasis, and physiological functions such as efflux and the proton motive force (PMF). In this review, we discuss evidence that indicates an emerging role for Gram-negative envelope stress responses in enduring exposure to diverse antimicrobial substances, focusing on recent studies of the γ-proteobacterial Cpx envelope stress response.
Collapse
|
70
|
Zhang C, Chen X, Stephanopoulos G, Too HP. Efflux transporter engineering markedly improves amorphadiene production inEscherichia coli. Biotechnol Bioeng 2016; 113:1755-63. [DOI: 10.1002/bit.25943] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/21/2015] [Accepted: 01/18/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Congqiang Zhang
- Chemical and Pharmaceutical Engineering; Singapore-MIT Alliance; 4 Engineering Drive 3 Singapore Singapore
- Biotransformation Innovation Platform (BioTrans); Agency for Science, Technology and Research (A*STAR); Singapore Singapore
| | - Xixian Chen
- Chemical and Pharmaceutical Engineering; Singapore-MIT Alliance; 4 Engineering Drive 3 Singapore Singapore
- Biotransformation Innovation Platform (BioTrans); Agency for Science, Technology and Research (A*STAR); Singapore Singapore
| | - Gregory Stephanopoulos
- Chemical and Pharmaceutical Engineering; Singapore-MIT Alliance; 4 Engineering Drive 3 Singapore Singapore
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge Massachusetts
| | - Heng-Phon Too
- Chemical and Pharmaceutical Engineering; Singapore-MIT Alliance; 4 Engineering Drive 3 Singapore Singapore
- Biotransformation Innovation Platform (BioTrans); Agency for Science, Technology and Research (A*STAR); Singapore Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine; National University of Singapore, 8 Medical Drive; Blk MD7, Level 4 Singapore 117597 Singapore
| |
Collapse
|
71
|
Balbontín R, Villagra N, Pardos de la Gándara M, Mora G, Figueroa-Bossi N, Bossi L. Expression of IroN, the salmochelin siderophore receptor, requires mRNA activation by RyhB small RNA homologues. Mol Microbiol 2016; 100:139-55. [PMID: 26710935 DOI: 10.1111/mmi.13307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
Abstract
The iroN gene of Salmonella enterica and uropathogenic Escherichia coli encodes the outer membrane receptor of Fe(3+) -bound salmochelin, a siderophore tailored to evade capture by the host's immune system. The iroN gene is under negative control of the Fur repressor and transcribed under iron limiting conditions. We show here that transcriptional de-repression is not sufficient to allow iroN expression, as this also requires activation by either of two partially homologous small RNAs (sRNAs), RyhB1 and RyhB2. The two sRNAs target the same sequence segment approximately in the middle of the 94-nucleotide 5' untranslated region (UTR) of iroN mRNA. Several lines of evidence suggest that base pair interaction stimulates iroN mRNA translation. Activation does not result from the disruption of a secondary structure masking the ribosome binding site; rather it involves sequences at the 5' end of iroN 5' UTR. In vitro 'toeprint' assays revealed that this upstream site binds the 30S ribosomal subunit provided that RyhB1 is paired with the mRNA. Altogether, our data suggest that RyhB1, and to lesser extent RyhB2, activate iroN mRNA translation by promoting entry of the ribosome at an upstream 'standby' site. These findings add yet an additional nuance to the polychromatic landscape of sRNA-mediated regulation.
Collapse
Affiliation(s)
- Roberto Balbontín
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Nicolás Villagra
- Laboratorio de Patogénesis Molecular y Antimicrobianos, Facultad de Medicina, Universidad Andres Bello, Echaurren 183, Santiago, Chile
| | - Maria Pardos de la Gándara
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Guido Mora
- Laboratorio de Patogénesis Molecular y Antimicrobianos, Facultad de Medicina, Universidad Andres Bello, Echaurren 183, Santiago, Chile
| | - Nara Figueroa-Bossi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Lionello Bossi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| |
Collapse
|
72
|
Mousa JJ, Bruner SD. Structural and mechanistic diversity of multidrug transporters. Nat Prod Rep 2016; 33:1255-1267. [DOI: 10.1039/c6np00006a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The review article surveys recent structural and mechanistic advances in the field of multi-drug and natural product transporters.
Collapse
|
73
|
Abstract
This chapter focuses on transition metals. All transition metal cations are toxic-those that are essential for Escherichia coli and belong to the first transition period of the periodic system of the element and also the "toxic-only" metals with higher atomic numbers. Common themes are visible in the metabolism of these ions. First, there is transport. High-rate but low-affinity uptake systems provide a variety of cations and anions to the cells. Control of the respective systems seems to be mainly through regulation of transport activity (flux control), with control of gene expression playing only a minor role. If these systems do not provide sufficient amounts of a needed ion to the cell, genes for ATP-hydrolyzing high-affinity but low-rate uptake systems are induced, e.g., ABC transport systems or P-type ATPases. On the other hand, if the amount of an ion is in surplus, genes for efflux systems are induced. By combining different kinds of uptake and efflux systems with regulation at the levels of gene expression and transport activity, the concentration of a single ion in the cytoplasm and the composition of the cellular ion "bouquet" can be rapidly adjusted and carefully controlled. The toxicity threshold of an ion is defined by its ability to produce radicals (copper, iron, chromate), to bind to sulfide and thiol groups (copper, zinc, all cations of the second and third transition period), or to interfere with the metabolism of other ions. Iron poses an exceptional metabolic problem due its metabolic importance and the low solubility of Fe(III) compounds, combined with the ability to cause dangerous Fenton reactions. This dilemma for the cells led to the evolution of sophisticated multi-channel iron uptake and storage pathways to prevent the occurrence of unbound iron in the cytoplasm. Toxic metals like Cd2+ bind to thiols and sulfide, preventing assembly of iron complexes and releasing the metal from iron-sulfur clusters. In the unique case of mercury, the cation can be reduced to the volatile metallic form. Interference of nickel and cobalt with iron is prevented by the low abundance of these metals in the cytoplasm and their sequestration by metal chaperones, in the case of nickel, or by B12 and its derivatives, in the case of cobalt. The most dangerous metal, copper, catalyzes Fenton-like reactions, binds to thiol groups, and interferes with iron metabolism. E. coli solves this problem probably by preventing copper uptake, combined with rapid efflux if the metal happens to enter the cytoplasm.
Collapse
|
74
|
Piedrafita G, Keller MA, Ralser M. The Impact of Non-Enzymatic Reactions and Enzyme Promiscuity on Cellular Metabolism during (Oxidative) Stress Conditions. Biomolecules 2015; 5:2101-22. [PMID: 26378592 PMCID: PMC4598790 DOI: 10.3390/biom5032101] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/03/2015] [Accepted: 08/31/2015] [Indexed: 11/16/2022] Open
Abstract
Cellular metabolism assembles in a structurally highly conserved, but functionally dynamic system, known as the metabolic network. This network involves highly active, enzyme-catalyzed metabolic pathways that provide the building blocks for cell growth. In parallel, however, chemical reactivity of metabolites and unspecific enzyme function give rise to a number of side products that are not part of canonical metabolic pathways. It is increasingly acknowledged that these molecules are important for the evolution of metabolism, affect metabolic efficiency, and that they play a potential role in human disease—age-related disorders and cancer in particular. In this review we discuss the impact of oxidative and other cellular stressors on the formation of metabolic side products, which originate as a consequence of: (i) chemical reactivity or modification of regular metabolites; (ii) through modifications in substrate specificity of damaged enzymes; and (iii) through altered metabolic flux that protects cells in stress conditions. In particular, oxidative and heat stress conditions are causative of metabolite and enzymatic damage and thus promote the non-canonical metabolic activity of the cells through an increased repertoire of side products. On the basis of selected examples, we discuss the consequences of non-canonical metabolic reactivity on evolution, function and repair of the metabolic network.
Collapse
Affiliation(s)
- Gabriel Piedrafita
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK.
| | - Markus A Keller
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK.
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK.
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW1 7AA, UK.
| |
Collapse
|
75
|
Involvement of major facilitator superfamily proteins SfaA and SbnD in staphyloferrin secretion in Staphylococcus aureus. FEBS Lett 2015; 589:730-7. [PMID: 25680529 DOI: 10.1016/j.febslet.2015.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/31/2015] [Accepted: 02/02/2015] [Indexed: 12/11/2022]
Abstract
A paucity of information exists concerning the mechanism(s) by which bacteria secrete siderophores into the extracellular compartment. We investigated the role of SfaA and SbnD, two major facilitator superfamily (MFS)-type efflux proteins, in the secretion of the Staphylococcus aureus siderophores staphyloferrin A (SA) and staphyloferrin B (SB), respectively. Deletion of sfaA resulted in a drastic reduction of SA secreted into the supernatant with a corresponding accumulation of SA in the cytoplasm and a significant growth defect in cells devoid of SB synthesis. In contrast, sbnD mutants showed transiently lowered levels of secreted SB, suggesting the involvement of additional efflux mechanisms.
Collapse
|
76
|
Ibrahim HR, Tatsumoto S, Ono H, Van Immerseel F, Raspoet R, Miyata T. A novel antibiotic-delivery system by using ovotransferrin as targeting molecule. Eur J Pharm Sci 2014; 66:59-69. [PMID: 25315410 DOI: 10.1016/j.ejps.2014.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/04/2014] [Accepted: 10/02/2014] [Indexed: 01/09/2023]
Abstract
Synthetic antibiotics and antimicrobial agents, such as sulfonamide and triclosan (TCS), have provided new avenues in the treatment of bacterial infections, as they target lethal intracellular pathways. Sulfonamide antibiotics block synthesis of folic acid by inhibiting dihydrofolate reductase (DHFR) while TCS block fatty acid synthesis through inhibition of enoyl-ACP reductase (FabI). They are water-insoluble agents and high doses are toxic, limiting their therapeutic efficiency. In this study, an antibiotic drug-targeting strategy based on utilizing ovotransferrin (OTf) as a carrier to allow specific targeting of the drug to microbial or mammalian cells via the transferrin receptor (TfR) is explored, with potential to alleviate insolubility and toxicity problems. Complexation, through non-covalent interaction, with OTf turned sulfa antibiotics or TCS into completely soluble in aqueous solution. OTf complexes showed superior bactericidal activity against several bacterial strains compared to the activity of free agents. Strikingly, a multi-drug resistant Salmonella strain become susceptible to antibiotics-OTf complexes while a tolC-knockout mutant strain become susceptible to OTf and more sensitive to the complexes. The antibiotic bound to OTf was, thus exported through the multi-drug efflux pump TolC in Salmonella wild-type strain. Further, antibiotics-OTf complexes were able to efficiently kill intracellular pathogens after infecting human colon carcinoma cells (HCT-116). The results demonstrate, for the first time, that the TfR mediated endocytosis of OTf can be utilized to specifically target drugs directly to pathogens or intracellularly infected cells and highlights the potency of the antibiotic-OTf complex for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Hisham R Ibrahim
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| | - Sayuri Tatsumoto
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Hajime Ono
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Ruth Raspoet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Takeshi Miyata
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
77
|
Horiyama T, Nishino K. AcrB, AcrD, and MdtABC multidrug efflux systems are involved in enterobactin export in Escherichia coli. PLoS One 2014; 9:e108642. [PMID: 25259870 PMCID: PMC4178200 DOI: 10.1371/journal.pone.0108642] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/02/2014] [Indexed: 01/30/2023] Open
Abstract
Escherichia coli produces the iron-chelating compound enterobactin to enable growth under iron-limiting conditions. After biosynthesis, enterobactin is released from the cell. However, the enterobactin export system is not fully understood. Previous studies have suggested that the outer membrane channel TolC is involved in enterobactin export. There are several multidrug efflux transporters belonging to resistance-nodulation-cell division (RND) family that require interaction with TolC to function. Therefore, several RND transporters may be responsible for enterobactin export. In this study, we investigated whether RND transporters are involved in enterobactin export using deletion mutants of multidrug transporters in E. coli. Single deletions of acrB, acrD, mdtABC, acrEF, or mdtEF did not affect the ability of E. coli to excrete enterobactin, whereas deletion of tolC did affect enterobactin export. We found that multiple deletion of acrB, acrD, and mdtABC resulted in a significant decrease in enterobactin export and that plasmids carrying the acrAB, acrD, or mdtABC genes restored the decrease in enterobactin export exhibited by the ΔacrB acrD mdtABC mutant. These results indicate that AcrB, AcrD, and MdtABC are required for the secretion of enterobactin.
Collapse
Affiliation(s)
- Tsukasa Horiyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kunihiko Nishino
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Laboratory of Microbiology and Infectious Diseases, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
- * E-mail:
| |
Collapse
|
78
|
Kawano H, Miyamoto K, Yasunobe M, Murata M, Myojin T, Tsuchiya T, Tanabe T, Funahashi T, Sato T, Azuma T, Mino Y, Tsujibo H. The RND protein is involved in the vulnibactin export system in Vibrio vulnificus M2799. Microb Pathog 2014; 75:59-67. [PMID: 25205089 DOI: 10.1016/j.micpath.2014.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 11/25/2022]
Abstract
Vibrio vulnificus, an opportunistic marine bacterium that causes a serious, often fatal, infection in humans, requires iron for its pathogenesis. This bacterium exports vulnibactin for iron acquisition from the environment. The mechanisms of vulnibactin biosynthesis and ferric-vulnibactin uptake systems have recently been reported, while the vulnibactin export system has not been reported. Mutant growth under low-iron concentration conditions and a bioassay of the culture supernatant indicate that the VV1_0612 protein plays a crucial role in the vulnibactin secretion as a component of the resistance-nodulation-division (RND)-type efflux system in V. vulnificus M2799. To identify which RND protein(s) together with VV1_0612 TolC constituted the RND efflux system for vulnibactin secretion, deletion mutants of 11 RND protein-encoding genes were constructed. The growth inhibition of a multiple mutant (Δ11) of the RND protein-encoding genes was observed 6 h after the beginning of the culture. Furthermore, ΔVV1_1681 exhibited a growth curve that was similar to that of Δ11, while the multiple mutant except ΔVV1_1681 showed the same growth as the wild-type strain. These results indicate that the VV1_1681 protein is involved in the vulnibactin export system of V. vulnificus M2799. This is the first genetic evidence that vulnibactin is secreted through the RND-type efflux systems in V. vulnificus.
Collapse
Affiliation(s)
- Hiroaki Kawano
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Katsushiro Miyamoto
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Megumi Yasunobe
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Masahiro Murata
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Tomoka Myojin
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Takahiro Tsuchiya
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Tomotaka Tanabe
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Tatsuya Funahashi
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Takaji Sato
- Department of Analytical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Takashi Azuma
- Department of Analytical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yoshiki Mino
- Department of Analytical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hiroshi Tsujibo
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
79
|
Frawley ER, Fang FC. The ins and outs of bacterial iron metabolism. Mol Microbiol 2014; 93:609-16. [PMID: 25040830 DOI: 10.1111/mmi.12709] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2014] [Indexed: 02/07/2023]
Abstract
Iron is a critical nutrient for the growth and survival of most bacterial species. Accordingly, much attention has been paid to the mechanisms by which host organisms sequester iron from invading bacteria and how bacteria acquire iron from their environment. However, under oxidative stress conditions such as those encountered within phagocytic cells during the host immune response, iron is released from proteins and can act as a catalyst for Fenton chemistry to produce cytotoxic reactive oxygen species. The transitory efflux of free intracellular iron may be beneficial to bacteria under such conditions. The recent discovery of putative iron efflux transporters in Salmonella enterica serovar Typhimurium is discussed in the context of cellular iron homeostasis.
Collapse
Affiliation(s)
- Elaine R Frawley
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
80
|
Liu Z, Reba S, Chen WD, Porwal SK, Boom WH, Petersen RB, Rojas R, Viswanathan R, Devireddy L. Regulation of mammalian siderophore 2,5-DHBA in the innate immune response to infection. ACTA ACUST UNITED AC 2014; 211:1197-213. [PMID: 24863067 PMCID: PMC4042634 DOI: 10.1084/jem.20132629] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacteria can utilize a mammalian host siderophore to usurp host iron; however, the host can respond by down-regulating siderophore expression and up-regulating expression of an inhibitory siderophore-binding protein. Competition for iron influences host–pathogen interactions. Pathogens secrete small iron-binding moieties, siderophores, to acquire host iron. In response, the host secretes siderophore-binding proteins, such as lipocalin 24p3, which limit siderophore-mediated iron import into bacteria. Mammals produce 2,5-dihydroxy benzoic acid, a compound that resembles a bacterial siderophore. Our data suggest that bacteria use both mammalian and bacterial siderophores. In support of this idea, supplementation with mammalian siderophore enhances bacterial growth in vitro. In addition, mice lacking the mammalian siderophore resist E. coli infection. Finally, we show that the host responds to infection by suppressing siderophore synthesis while up-regulating lipocalin 24p3 expression via TLR signaling. Thus, reciprocal regulation of 24p3 and mammalian siderophore is a protective mechanism limiting microbial access to iron.
Collapse
Affiliation(s)
- Zhuoming Liu
- Case Comprehensive Cancer Center; Department of Pathology; Department of Medicine, Tuberculosis Research Institute and Division of Infectious Diseases; and Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106Case Comprehensive Cancer Center; Department of Pathology; Department of Medicine, Tuberculosis Research Institute and Division of Infectious Diseases; and Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Scott Reba
- Case Comprehensive Cancer Center; Department of Pathology; Department of Medicine, Tuberculosis Research Institute and Division of Infectious Diseases; and Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Wei-Dong Chen
- Genetics Branch, National Cancer Institute/National Institutes of Health, Bethesda, MD 20892
| | - Suheel Kumar Porwal
- Case Comprehensive Cancer Center; Department of Pathology; Department of Medicine, Tuberculosis Research Institute and Division of Infectious Diseases; and Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106Case Comprehensive Cancer Center; Department of Pathology; Department of Medicine, Tuberculosis Research Institute and Division of Infectious Diseases; and Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | - W Henry Boom
- Case Comprehensive Cancer Center; Department of Pathology; Department of Medicine, Tuberculosis Research Institute and Division of Infectious Diseases; and Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Robert B Petersen
- Case Comprehensive Cancer Center; Department of Pathology; Department of Medicine, Tuberculosis Research Institute and Division of Infectious Diseases; and Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Roxana Rojas
- Case Comprehensive Cancer Center; Department of Pathology; Department of Medicine, Tuberculosis Research Institute and Division of Infectious Diseases; and Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Rajesh Viswanathan
- Case Comprehensive Cancer Center; Department of Pathology; Department of Medicine, Tuberculosis Research Institute and Division of Infectious Diseases; and Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | - L Devireddy
- Case Comprehensive Cancer Center; Department of Pathology; Department of Medicine, Tuberculosis Research Institute and Division of Infectious Diseases; and Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106Case Comprehensive Cancer Center; Department of Pathology; Department of Medicine, Tuberculosis Research Institute and Division of Infectious Diseases; and Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
81
|
Pontel LB, Scampoli NL, Porwollik S, Checa SK, McClelland M, Soncini FC. Identification of a Salmonella ancillary copper detoxification mechanism by a comparative analysis of the genome-wide transcriptional response to copper and zinc excess. MICROBIOLOGY-SGM 2014; 160:1659-1669. [PMID: 24858080 DOI: 10.1099/mic.0.080473-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Copper and zinc are essential metal ions, but toxic in excess. Bacteria have evolved different strategies to control their intracellular concentrations, ensuring proper supply while avoiding toxicity, including the induction of metal-specific as well as non-specific mechanisms. We compared the transcriptional profiles of Salmonella Typhimurium after exposure to either copper or zinc ions in both rich and minimal media. Besides metal-specific regulatory networks many global stress-response pathways react to an excess of either of these metal ions. Copper excess affects both zinc and iron homeostasis by inducing transcription of these metal-specific regulons. In addition to the control of zinc-specific regulons, zinc excess affects the Cpx regulon and the σ(E) envelope-stress responses. Finally, novel metal-specific upregulated genes were detected including a new copper-detoxification pathway that involves the siderophore enterobactin and the outer-membrane protein TolC. This work sheds light onto the transcriptional landscape of Salmonella after copper or zinc overload, and discloses a new mechanism of copper detoxification.
Collapse
Affiliation(s)
- Lucas B Pontel
- Instituto de Biología Molecular y Celular de Rosario, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Ocampo y Esmeralda, 2000-Rosario, Argentina
| | - Nadia L Scampoli
- Instituto de Biología Molecular y Celular de Rosario, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Ocampo y Esmeralda, 2000-Rosario, Argentina
| | - Steffen Porwollik
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Susana K Checa
- Instituto de Biología Molecular y Celular de Rosario, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Ocampo y Esmeralda, 2000-Rosario, Argentina
| | - Michael McClelland
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Fernando C Soncini
- Instituto de Biología Molecular y Celular de Rosario, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Ocampo y Esmeralda, 2000-Rosario, Argentina
| |
Collapse
|
82
|
Tang F, Saier MH. Transport proteins promoting Escherichia coli pathogenesis. Microb Pathog 2014; 71-72:41-55. [PMID: 24747185 DOI: 10.1016/j.micpath.2014.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 12/26/2022]
Abstract
Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies.
Collapse
Affiliation(s)
- Fengyi Tang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA.
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA.
| |
Collapse
|
83
|
Adler C, Corbalan NS, Peralta DR, Pomares MF, de Cristóbal RE, Vincent PA. The alternative role of enterobactin as an oxidative stress protector allows Escherichia coli colony development. PLoS One 2014; 9:e84734. [PMID: 24392154 PMCID: PMC3879343 DOI: 10.1371/journal.pone.0084734] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/18/2013] [Indexed: 12/18/2022] Open
Abstract
Numerous bacteria have evolved different iron uptake systems with the ability to make use of their own and heterologous siderophores. However, there is growing evidence attributing alternative roles for siderophores that might explain the potential adaptive advantages of microorganisms having multiple siderophore systems. In this work, we show the requirement of the siderophore enterobactin for Escherichia coli colony development in minimal media. We observed that a strain impaired in enterobactin production (entE mutant) was unable to form colonies on M9 agar medium meanwhile its growth was normal on LB agar medium. Given that, neither iron nor citrate supplementation restored colony growth, the role of enterobactin as an iron uptake-facilitator would not explain its requirement for colony development. The absence of colony development was reverted either by addition of enterobactin, the reducing agent ascorbic acid or by incubating in anaerobic culture conditions with no additives. Then, we associated the enterobactin requirement for colony development with its ability to reduce oxidative stress, which we found to be higher in media where the colony development was impaired (M9) compared with media where the strain was able to form colonies (LB). Since oxyR and soxS mutants (two major stress response regulators) formed colonies in M9 agar medium, we hypothesize that enterobactin could be an important piece in the oxidative stress response repertoire, particularly required in the context of colony formation. In addition, we show that enterobactin has to be hydrolyzed after reaching the cell cytoplasm in order to enable colony development. By favoring iron release, hydrolysis of the enterobactin-iron complex, not only would assure covering iron needs, but would also provide the cell with a molecule with exposed hydroxyl groups (hydrolyzed enterobactin). This molecule would be able to scavenge radicals and therefore reduce oxidative stress.
Collapse
Affiliation(s)
- Conrado Adler
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - Natalia S. Corbalan
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - Daiana R. Peralta
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - María Fernanda Pomares
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - Ricardo E. de Cristóbal
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - Paula A. Vincent
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
- * E-mail:
| |
Collapse
|
84
|
Vega DE, Young KD. Accumulation of periplasmic enterobactin impairs the growth and morphology of Escherichia coli tolC mutants. Mol Microbiol 2013; 91:508-21. [PMID: 24330203 DOI: 10.1111/mmi.12473] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2013] [Indexed: 01/01/2023]
Abstract
TolC is the outer membrane component of tripartite efflux pumps, which expel proteins, toxins and antimicrobial agents from Gram-negative bacteria. Escherichia coli tolC mutants grow well and are slightly elongated in rich media but grow less well than wild-type cells in minimal media. These phenotypes have no physiological explanation as yet. Here, we find that tolC mutants have highly aberrant shapes when grown in M9-glucose medium but that adding iron restores wild-type morphology. When starved for iron, E. coli tolC mutants synthesize but cannot secrete the siderophore enterobactin, which collects in the periplasm. tolC mutants unable to synthesize enterobactin display no growth or morphological defects, and adding exogenous enterobactin recreates these aberrations, implicating this compound as the causative agent. Cells unable to import enterobactin across the outer membrane grow normally, whereas cells that import enterobactin only to the periplasm become morphologically aberrant. Thus, tolC mutants grown in low iron conditions accumulate periplasmic enterobactin, which impairs bacterial morphology, possibly by sequestering iron and inhibiting an iron-dependent reaction involved in cell division or peptidoglycan synthesis. The results also highlight the need to supply sufficient iron when studying TolC-directed export or efflux, to eliminate extraneous physiological effects.
Collapse
Affiliation(s)
- Daniel E Vega
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205-7199, USA
| | | |
Collapse
|
85
|
Hahn A, Stevanovic M, Mirus O, Lytvynenko I, Pos KM, Schleiff E. The outer membrane TolC-like channel HgdD is part of tripartite resistance-nodulation-cell division (RND) efflux systems conferring multiple-drug resistance in the Cyanobacterium Anabaena sp. PCC7120. J Biol Chem 2013; 288:31192-205. [PMID: 24014018 DOI: 10.1074/jbc.m113.495598] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TolC-like protein HgdD of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 is part of multiple three-component "AB-D" systems spanning the inner and outer membranes and is involved in secretion of various compounds, including lipids, metabolites, antibiotics, and proteins. Several components of HgdD-dependent tripartite transport systems have been identified, but the diversity of inner membrane energizing systems is still unknown. Here we identified six putative resistance-nodulation-cell division (RND) type factors. Four of them are expressed during late exponential and stationary growth phase under normal growth conditions, whereas the other two are induced upon incubation with erythromycin or ethidium bromide. The constitutively expressed RND component Alr4267 has an atypical predicted topology, and a mutant strain (I-alr4267) shows a reduction in the content of monogalactosyldiacylglycerol as well as an altered filament shape. An insertion mutant of the ethidium bromide-induced all7631 did not show any significant phenotypic alteration under the conditions tested. Mutants of the constitutively expressed all3143 and alr1656 exhibited a Fox(-) phenotype. The phenotype of the insertion mutant I-all3143 parallels that of the I-hgdD mutant with respect to antibiotic sensitivity, lipid profile, and ethidium efflux. In addition, expression of the RND genes all3143 and all3144 partially complements the capability of Escherichia coli ΔacrAB to transport ethidium. We postulate that the RND transporter All3143 and the predicted membrane fusion protein All3144, as homologs of E. coli AcrB and AcrA, respectively, are major players for antibiotic resistance in Anabaena sp. PCC 7120.
Collapse
Affiliation(s)
- Alexander Hahn
- From the Department of Biosciences, Molecular Cell Biology of Plants
| | | | | | | | | | | |
Collapse
|
86
|
Andrews S, Norton I, Salunkhe AS, Goodluck H, Aly WSM, Mourad-Agha H, Cornelis P. Control of iron metabolism in bacteria. Met Ions Life Sci 2013; 12:203-39. [PMID: 23595674 DOI: 10.1007/978-94-007-5561-1_7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacteria depend upon iron as a vital cofactor that enables a wide range of key metabolic activities. Bacteria must therefore ensure a balanced supply of this essential metal. To do so, they invest considerable resourse into its acquisition and employ elaborate control mechanisms to eleviate both iron-induced toxitiy as well as iron deficiency. This chapter describes the processes that bacteria engage in maintaining iron homeostasis. The focus is Escherichia coli, as this bacterium provides a well studied example. A summary of the current status of understanding of iron management at the 'omics' level is also presented.
Collapse
Affiliation(s)
- Simon Andrews
- The School of Biological Sciences, The University of Reading, Whiteknights, Reading, RG6 6AJ, UK,
| | | | | | | | | | | | | |
Collapse
|
87
|
Braun V, Hantke K. The Tricky Ways Bacteria Cope with Iron Limitation. IRON UPTAKE IN BACTERIA WITH EMPHASIS ON E. COLI AND PSEUDOMONAS 2013. [DOI: 10.1007/978-94-007-6088-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
88
|
Wells RM, Jones CM, Xi Z, Speer A, Danilchanka O, Doornbos KS, Sun P, Wu F, Tian C, Niederweis M. Discovery of a siderophore export system essential for virulence of Mycobacterium tuberculosis. PLoS Pathog 2013; 9:e1003120. [PMID: 23431276 PMCID: PMC3561183 DOI: 10.1371/journal.ppat.1003120] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 11/24/2012] [Indexed: 11/18/2022] Open
Abstract
Iron is an essential nutrient for most bacterial pathogens, but is restricted by the host immune system. Mycobacterium tuberculosis (Mtb) utilizes two classes of small molecules, mycobactins and carboxymycobactins, to capture iron from the human host. Here, we show that an Mtb mutant lacking the mmpS4 and mmpS5 genes did not grow under low iron conditions. A cytoplasmic iron reporter indicated that the double mutant experienced iron starvation even under high-iron conditions. Loss of mmpS4 and mmpS5 did not change uptake of carboxymycobactin by Mtb. Thin layer chromatography showed that the ΔmmpS4/S5 mutant was strongly impaired in biosynthesis and secretion of siderophores. Pull-down experiments with purified proteins demonstrated that MmpS4 binds to a periplasmic loop of the associated transporter protein MmpL4. This interaction was corroborated by genetic experiments. While MmpS5 interacted only with MmpL5, MmpS4 interacted with both MmpL4 and MmpL5. These results identified MmpS4/MmpL4 and MmpS5/MmpL5 as siderophore export systems in Mtb and revealed that the MmpL proteins transport small molecules other than lipids. MmpS4 and MmpS5 resemble periplasmic adapter proteins of tripartite efflux pumps of Gram-negative bacteria, however, they are not only required for export but also for efficient siderophore synthesis. Membrane association of MbtG suggests a link between siderophore synthesis and transport. The structure of the soluble domain of MmpS4 (residues 52-140) was solved by NMR and indicates that mycobacterial MmpS proteins constitute a novel class of transport accessory proteins. The bacterial burden of the mmpS4/S5 deletion mutant in mouse lungs was lower by 10,000-fold and none of the infected mice died within 180 days compared to wild-type Mtb. This is the strongest attenuation observed so far for Mtb mutants lacking genes involved in iron utilization. In conclusion, this study identified the first components of novel siderophore export systems which are essential for virulence of Mtb.
Collapse
Affiliation(s)
- Ryan M. Wells
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Christopher M. Jones
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Zhaoyong Xi
- School of Chemistry and Material Sciences, University of Science and Technology of China, Hefei, P. R. China
| | - Alexander Speer
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Olga Danilchanka
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kathryn S. Doornbos
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Peibei Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, P. R. China
| | - Fangming Wu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, P. R. China
| | - Changlin Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, P. R. China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, P. R. China
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
89
|
Reduction of cellular stress by TolC-dependent efflux pumps in Escherichia coli indicated by BaeSR and CpxARP activation of spy in efflux mutants. J Bacteriol 2012; 195:1042-50. [PMID: 23264577 DOI: 10.1128/jb.01996-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli has nine inner membrane efflux pumps which complex with the outer membrane protein TolC and cognate membrane fusion proteins to form tripartite transperiplasmic pumps with diverse functions, including the expulsion of antibiotics. We recently observed that tolC mutants have elevated activities for three stress response regulators, MarA, SoxS, and Rob, and we suggested that TolC-dependent efflux is required to prevent the accumulation of stressful cellular metabolites. Here, we used spy::lacZ fusions to show that two systems for sensing/repairing extracytoplasmic stress, BaeRS and CpxARP, are activated in the absence of TolC-dependent efflux. In either tolC mutants or bacteria with mutations in the genes for four TolC-dependent efflux pumps, spy expression was increased 6- to 8-fold. spy encodes a periplasmic chaperone regulated by the BaeRS and CpxARP stress response systems. The overexpression of spy in tolC or multiple efflux pump mutants also depended on these systems. spy overexpression was not due to acetate, ethanol, or indole accumulation, since external acetate had only a minor effect on wild-type cells, ethanol had a large effect that was not CpxA dependent, and a tolC tnaA mutant which cannot accumulate internal indole overexpressed spy. We propose that, unless TolC-dependent pumps excrete certain metabolites, the metabolites accumulate and activate at least five different stress response systems.
Collapse
|
90
|
Identification of transport proteins involved in free fatty acid efflux in Escherichia coli. J Bacteriol 2012; 195:135-44. [PMID: 23104810 DOI: 10.1128/jb.01477-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Escherichia coli has been used as a platform host for studying the production of free fatty acids (FFA) and other energy-dense compounds useful in biofuel applications. Most of the FFA produced by E. coli are found extracellularly. This finding suggests that a mechanism for transport across the cell envelope exists, yet knowledge of proteins that may be responsible for export remains incomplete. Production of FFA has been shown to cause cell lysis, induce stress responses, and impair basic physiological processes. These phenotypes could potentially be diminished if efflux rates were increased. Here, a total of 15 genes and operons were deleted and screened for their impact on cell viability and titer in FFA-producing E. coli. Deletions of acrAB and rob and, to a lower degree of statistical confidence, emrAB, mdtEF, and mdtABCD reduced multiple measures of viability, while deletion of tolC nearly abolished FFA production. An acrAB emrAB deletion strain exhibited greatly reduced FFA titers approaching the tolC deletion phenotype. Expression of efflux pumps on multicopy plasmids did not improve endogenous FFA production in an acrAB(+) strain, but plasmid-based expression of acrAB, mdtEF, and an mdtEF-tolC artificial operon improved the MIC of exogenously added decanoate for an acrAB mutant strain. The findings suggest that AcrAB-TolC is responsible for most of the FFA efflux in E. coli, with residual activity provided by other resistance-nodulation-cell division superfamily-type efflux pumps, including EmrAB-TolC and MdtEF-TolC. While the expression of these proteins on multicopy plasmids did not improve production over the basal level, their identification enables future engineering efforts.
Collapse
|
91
|
Hahn A, Stevanovic M, Mirus O, Schleiff E. The TolC-like protein HgdD of the cyanobacterium Anabaena sp. PCC 7120 is involved in secondary metabolite export and antibiotic resistance. J Biol Chem 2012; 287:41126-38. [PMID: 23071120 DOI: 10.1074/jbc.m112.396010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of TolC has largely been explored in proteobacteria, where it functions as a metabolite and protein exporter. In contrast, little research has been carried out on the function of cyanobacterial homologues, and as a consequence, not much is known about the mechanism of cyanobacterial antibiotic uptake and metabolite secretion in general. It has been suggested that the TolC-like homologue of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120, termed heterocyst glycolipid deposition protein D (HgdD), is involved in both protein and lipid secretion. To describe its function in secondary metabolite secretion, we established a system to measure the uptake of antibiotics based on the fluorescent molecule ethidium bromide. We analyzed the rate of porin-dependent metabolite uptake and confirmed the functional relation between detoxification and the action of HgdD. Moreover, we identified two major facilitator superfamily proteins that are involved in this process. It appears that anaOmp85 (Alr2269) is not required for insertion or assembly of HgdD, because an alr2269 mutant does not exhibit a phenotype similar to the hgdD mutant. Thus, we could assign components of the metabolite efflux system and describe parameters of detoxification by Anabaena sp. PCC 7120.
Collapse
Affiliation(s)
- Alexander Hahn
- Department of Biosciences, Center of Membrane Proteomics, Cluster of Excellence Frankfurt, Goethe University, 60438 Frankfurt, Germany
| | | | | | | |
Collapse
|
92
|
Saha R, Saha N, Donofrio RS, Bestervelt LL. Microbial siderophores: a mini review. J Basic Microbiol 2012; 53:303-17. [PMID: 22733623 DOI: 10.1002/jobm.201100552] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/20/2012] [Indexed: 01/22/2023]
Abstract
Iron is one of the major limiting factors and essential nutrients of microbial life. Since in nature it is not readily available in the preferred form, microorganisms produce small high affinity chelating molecules called siderophores for its acquisition. Microorganisms produce a wide variety of siderophores controlled at the molecular level by different genes to accumulate, mobilize and transport iron for metabolism. Siderophores also play a critical role in the expression of virulence and development of biofilms by different microbes. Apart from maintaining microbial life, siderophores can be harnessed for the sustainability of human, animals and plants. With the advent of modern molecular tools, a major breakthrough is taking place in the understanding of the multifaceted role of siderophores in nature. This mini review is intended to provide a general overview on siderophore along with its role and applications.
Collapse
Affiliation(s)
- Ratul Saha
- Department of Microbiology and Molecular Biology, NSF International, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
93
|
Greenwald JW, Greenwald CJ, Philmus BJ, Begley TP, Gross DC. RNA-seq analysis reveals that an ECF σ factor, AcsS, regulates achromobactin biosynthesis in Pseudomonas syringae pv. syringae B728a. PLoS One 2012; 7:e34804. [PMID: 22529937 PMCID: PMC3329529 DOI: 10.1371/journal.pone.0034804] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/08/2012] [Indexed: 12/30/2022] Open
Abstract
Iron is an essential micronutrient for Pseudomonas syringae pv. syringae strain B728a and many other microorganisms; therefore, B728a has evolved methods of iron acquirement including the use of iron-chelating siderophores. In this study an extracytoplasmic function (ECF) sigma factor, AcsS, encoded within the achromobactin gene cluster is shown to be a major regulator of genes involved in the biosynthesis and secretion of this siderophore. However, production of achromobactin was not completely abrogated in the deletion mutant, implying that other regulators may be involved such as PvdS, the sigma factor that regulates pyoverdine biosynthesis. RNA-seq analysis identified 287 genes that are differentially expressed between the AcsS deletion mutant and the wild type strain. These genes are involved in iron response, secretion, extracellular polysaccharide production, and cell motility. Thus, the transcriptome analysis supports a role for AcsS in the regulation of achromobactin production and the potential activity of both AcsS and achromobactin in the plant-associated lifestyle of strain B728a.
Collapse
Affiliation(s)
- Jessica W. Greenwald
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Charles J. Greenwald
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Benjamin J. Philmus
- Department of Chemistry, Texas A&M University, College Station, Texas, United States of America
| | - Tadhg P. Begley
- Department of Chemistry, Texas A&M University, College Station, Texas, United States of America
| | - Dennis C. Gross
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
94
|
|
95
|
Expression of multidrug resistance efflux pump gene norA is iron responsive in Staphylococcus aureus. J Bacteriol 2012; 194:1753-62. [PMID: 22267518 DOI: 10.1128/jb.06582-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus utilizes efflux transporter NorA to pump out a wide range of structurally dissimilar drugs, conferring low-level multidrug resistance. The regulation of norA expression has yet to be fully understood although past studies have revealed that this gene is under the control of the global transcriptional regulator MgrA and the two-component system ArlRS. To identify additional regulators of norA, we screened a transposon library in strain Newman expressing the transcriptional fusion norA-lacZ for altered β-galactosidase activity. We identify a transposon insertion in fhuB, a gene that encodes a ferric hydroxamate uptake system permease, and propose that the norA transcription is iron responsive. In agreement with this observation, addition of FeCl(3) repressed the induction of norA-lacZ, suggesting that bacterial iron uptake plays an important role in regulating norA transcription. In addition, a fur (ferric uptake regulator) deletion exhibited compromised norA transcription and reduced resistance to quinolone compared to the wild-type strain, indicating that fur functions as a positive regulator of norA. A putative Fur box identified in the promoter region of norA was confirmed by electrophoretic mobility shift and DNase I footprint assays. Finally, by employing a siderophore secretion assay, we reveal that NorA may contribute to the export of siderophores. Collectively, our experiments uncover some novel interactions between cellular iron level and norA regulation in S. aureus.
Collapse
|
96
|
Orchard SS, Rostron JE, Segall AM. Escherichia coli enterobactin synthesis and uptake mutants are hypersensitive to an antimicrobial peptide that limits the availability of iron in addition to blocking Holliday junction resolution. MICROBIOLOGY-SGM 2011; 158:547-559. [PMID: 22096151 DOI: 10.1099/mic.0.054361-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The peptide wrwycr inhibits Holliday junction resolution and is a potent antimicrobial. To study the physiological effects of wrwycr treatment on Escherichia coli cells, we partially screened the Keio collection of knockout mutants for those with increased sensitivity to wrwycr. Strains lacking part of the ferric-enterobactin (iron-bound siderophore) uptake and utilization system, parts of the enterobactin synthesis pathway, TolC (an outer-membrane channel protein) or Fur (an iron-responsive regulator) were hypersensitive to wrwycr. We provide evidence that the ΔtolC mutant was hypersensitive to wrwycr due to its reduced ability to efflux wrwycr from the cell rather than due to its export of newly synthesized enterobactin. Deleting ryhB, which encodes a small RNA involved in iron regulation, mostly relieved the wrwycr hypersensitivity of the fur and ferric-enterobactin uptake mutants, indicating that the altered regulation of a RyhB-controlled gene was at least partly responsible for the hypersensitivity of these strains. Chelatable iron in the cell, measured by electron paramagnetic resonance spectroscopy, increased dramatically following wrwycr treatment, as did expression of Fur-repressed genes and, to some extent, mutation frequency. These incongruous results suggest that while wrwycr treatment caused accumulation of chelatable iron in the cell, iron was not available to bind to Fur. This is corroborated by the observed induction of the suf system, which assembles iron-sulfur clusters in low-iron conditions. Disruption of iron metabolism by wrwycr, in addition to its effects on DNA repair, may make it a particularly effective antimicrobial in the context of the low-iron environment of a mammalian host.
Collapse
Affiliation(s)
- Samantha S Orchard
- Department of Biology and Center for Microbial Studies, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Jason E Rostron
- Department of Biology and Center for Microbial Studies, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Anca M Segall
- Department of Biology and Center for Microbial Studies, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
97
|
Stevanovic M, Hahn A, Nicolaisen K, Mirus O, Schleiff E. The components of the putative iron transport system in the cyanobacterium Anabaena sp. PCC 7120. Environ Microbiol 2011; 14:1655-70. [DOI: 10.1111/j.1462-2920.2011.02619.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
98
|
Global transcriptome analysis of the E. coli O157 response to Agrimonia pilosa extract. Mol Cell Toxicol 2011. [DOI: 10.1007/s13273-011-0036-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
99
|
Zgurskaya HI, Krishnamoorthy G, Ntreh A, Lu S. Mechanism and Function of the Outer Membrane Channel TolC in Multidrug Resistance and Physiology of Enterobacteria. Front Microbiol 2011; 2:189. [PMID: 21954395 PMCID: PMC3174397 DOI: 10.3389/fmicb.2011.00189] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/25/2011] [Indexed: 01/18/2023] Open
Abstract
TolC is an archetypal member of the outer membrane efflux protein (OEP) family. These proteins are involved in export of small molecules and toxins across the outer membrane of Gram-negative bacteria. Genomes of some bacteria such as Pseudomonas species contain multiple copies of OEPs. In contrast, enterobacteria contain a single tolC gene, the product of which functions with multiple transporters. Inactivation of tolC has a major impact on enterobacterial physiology and virulence. Recent studies suggest that the role of TolC in physiology of enterobacteria is very broad and affects almost all aspects of cell adaptation to adverse environments. We review the current state of understanding TolC structure and present an integrated view of TolC function in enterobacteria. We propose that seemingly unrelated phenotypes of tolC mutants are linked together by a single most common condition – an oxidative damage to membranes.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| | | | | | | |
Collapse
|
100
|
Salvail H, Massé E. Regulating iron storage and metabolism with RNA: an overview of posttranscriptional controls of intracellular iron homeostasis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:26-36. [PMID: 21793218 DOI: 10.1002/wrna.102] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Iron (Fe) is a double-edged sword for most living organisms. Although it is essential for the catalytic activity of a large number of enzymes, ferrous iron (Fe(2+) ) becomes cytotoxic in the presence of normal respiratory by-products such as H(2) O(2) . Because of this toxicity, intracellular iron concentrations ought to be regulated by elaborated homeostasis systems that, despite decades of extensive studies, have not yet revealed all of their surprising arrays of mechanistic details. Within the last few years, our understanding of iron metabolism has revealed that posttranscriptional regulation represents a major contribution to iron homeostasis in a host of organisms. While the small RNA RyhB regulates iron homeostasis in bacteria, its functional homolog protein Cth2 performs a similar task in yeasts. Recent advances in the elucidation of the mechanism of action and functions of RyhB have been made in Escherichia coli. In addition, other RyhB-like small RNAs have been identified in several bacterial species, such as Pseudomonas aeruginosa, Salmonella enterica, Vibrio cholerae, Neisseria meningitidis, and Shigella spp. These recent findings have shed light on the complexity of iron homeostasis.
Collapse
Affiliation(s)
- Hubert Salvail
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Québec, Canada
| | | |
Collapse
|