51
|
Directed evolution of aniline dioxygenase for enhanced bioremediation of aromatic amines. Appl Microbiol Biotechnol 2008; 81:1063-70. [PMID: 18813921 DOI: 10.1007/s00253-008-1710-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 08/21/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
Abstract
The objective of this study was to enhance the activity of aniline dioxygenase (AtdA), a multi-component Rieske non-heme iron dioxygenase enzyme isolated from Acinetobacter sp. strain YAA, so as to create an enhanced biocatalyst for the bioremediation of aromatic amines. Previously, the mutation V205A was found to widen the substrate specificity of AtdA to accept 2-isopropylaniline (2IPA) for which the wild-type enzyme has no activity (Ang EL, Obbard JP, Zhao HM, FEBS J, 274:928-939, 2007). Using mutant V205A as the parent and applying one round of saturation mutagenesis followed by a round of random mutagenesis, the activity of the final mutant, 3-R21, was increased by 8.9-, 98.0-, and 2.0-fold for aniline, 2,4-dimethylaniline (24DMA), and 2-isopropylaniline (2IPA), respectively, over the mutant V205A. In particular, the activity of the mutant 3-R21 for 24DMA, which is a carcinogenic aromatic amine pollutant, was increased by 3.5-fold over the wild-type AtdA, while the AN activity was restored to the wild-type level, thus yielding a mutant aniline dioxygenase with enhanced activity and capable of hydroxylating a wider range of aromatic amines than the wild type.
Collapse
|
52
|
Levin EJ, Elsen NL, Seder KD, McCoy JG, Fox BG, Phillips GN. X-ray structure of a soluble Rieske-type ferredoxin from Mus musculus. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2008; 64:933-40. [PMID: 18703841 PMCID: PMC2631127 DOI: 10.1107/s0907444908021653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 07/11/2008] [Indexed: 11/25/2022]
Abstract
The X-ray crystal structure of a soluble Rieske ferredoxin from M. musculus was solved at 2.07 Å resolution, revealing an iron–sulfur cluster-binding domain with similar architecture to the Rieske-type domains of bacterial aromatic dioxygenases. The ferredoxin was also shown to be capable of accepting electrons from both eukaryotic and prokaryotic oxidoreductases. The 2.07 Å resolution X-ray crystal structure of a soluble Rieske-type ferredoxin from Mus musculus encoded by the gene Mm.266515 is reported. Although they are present as covalent domains in eukaryotic membrane oxidase complexes, soluble Rieske-type ferredoxins have not previously been observed in eukaryotes. The overall structure of the mouse Rieske-type ferredoxin is typical of this class of iron–sulfur proteins and consists of a larger partial β-barrel domain and a smaller domain containing Cys57, His59, Cys80 and His83 that binds the [2Fe–2S] cluster. The S atoms of the cluster are hydrogen-bonded by six backbone amide N atoms in a pattern typical of membrane-bound high-potential eukaryotic respiratory Rieske ferredoxins. However, phylogenetic analysis suggested that the mouse Rieske-type ferredoxin was more closely related to bacterial Rieske-type ferredoxins. Correspondingly, the structure revealed an extended loop most similar to that seen in Rieske-type ferredoxin subunits of bacterial aromatic dioxygenases, including the positioning of an aromatic side chain (Tyr85) between this loop and the [2Fe–2S] cluster. The mouse Rieske-type ferredoxin was shown to be capable of accepting electrons from both eukaryotic and prokaryotic oxidoreductases, although it was unable to serve as an electron donor for a bacterial monooxygenase complex. The human homolog of mouse Rieske-type ferredoxin was also cloned and purified. It behaved identically to mouse Rieske-type ferredoxin in all biochemical characterizations but did not crystallize. Based on its high sequence identity, the structure of the human homolog is likely to be modeled well by the mouse Rieske-type ferredoxin structure.
Collapse
Affiliation(s)
- Elena J Levin
- Department of Biochemistry, University of Wisconsin, Madison, USA
| | | | | | | | | | | |
Collapse
|
53
|
Parales RE, Parales JV, Pelletier DA, Ditty JL. Diversity of microbial toluene degradation pathways. ADVANCES IN APPLIED MICROBIOLOGY 2008; 64:1-73, 2 p following 264. [PMID: 18485280 DOI: 10.1016/s0065-2164(08)00401-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- R E Parales
- Department of Microbiology, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
54
|
Abstract
Oxidase and oxygenase enzymes allow the use of relatively unreactive O2 in biochemical reactions. Many of the mechanistic strategies used in nature for this key reaction are represented within the 2-histidine-1-carboxylate facial triad family of non-heme Fe(II)-containing enzymes. The open face of the metal coordination sphere opposite the three endogenous ligands participates directly in the reaction chemistry. Here, data from several studies are presented showing that reductive O2 activation within this family is initiated by substrate (and in some cases cosubstrate or cofactor) binding, which then allows coordination of O2 to the metal. From this starting point, the O2 activation process and the reactions with substrates diverge broadly. The reactive species formed in these reactions have been proposed to encompass four oxidation states of iron and all forms of reduced O2 as well as several of the reactive oxygen species that derive from O-O bond cleavage.
Collapse
Affiliation(s)
- Elena G Kovaleva
- Elena G. Kovaleva and John D. Lipscomb are in the Department of Biochemistry, Molecular Biology and Biophysics and the Center for Metals in Biocatalysis, University of Minnesota, 6-155 Jackson Hall, Minneapolis, Minnesota, 55455 USA
| | - John D Lipscomb
- Elena G. Kovaleva and John D. Lipscomb are in the Department of Biochemistry, Molecular Biology and Biophysics and the Center for Metals in Biocatalysis, University of Minnesota, 6-155 Jackson Hall, Minneapolis, Minnesota, 55455 USA
| |
Collapse
|
55
|
Ohta T, Chakrabarty S, Lipscomb JD, Solomon EI. Near-IR MCD of the nonheme ferrous active site in naphthalene 1,2-dioxygenase: correlation to crystallography and structural insight into the mechanism of Rieske dioxygenases. J Am Chem Soc 2008; 130:1601-10. [PMID: 18189388 PMCID: PMC2886598 DOI: 10.1021/ja074769o] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Near-IR MCD and variable temperature, variable field (VTVH) MCD have been applied to naphthalene 1,2-dioxygenase (NDO) to describe the coordination geometry and electronic structure of the mononuclear nonheme ferrous catalytic site in the resting and substrate-bound forms with the Rieske 2Fe2S cluster oxidized and reduced. The structural results are correlated with the crystallographic studies of NDO and other related Rieske nonheme iron oxygenases to develop molecular level insights into the structure/function correlation for this class of enzymes. The MCD data for resting NDO with the Rieske center oxidized indicate the presence of a six-coordinate high-spin ferrous site with a weak axial ligand which becomes more tightly coordinated when the Rieske center is reduced. Binding of naphthalene to resting NDO (Rieske oxidized and reduced) converts the six-coordinate sites into five-coordinate (5c) sites with elimination of a water ligand. In the Rieske oxidized form the 5c sites are square pyramidal but transform to a 1:2 mixture of trigonal bipyramial/square pyramidal sites when the Rieske center is reduced. Thus the geometric and electronic structure of the catalytic site in the presence of substrate can be significantly affected by the redox state of the Rieske center. The catalytic ferrous site is primed for the O2 reaction when substrate is bound in the active site in the presence of the reduced Rieske site. These structural changes ensure that two electrons and the substrate are present before the binding and activation of O2, which avoids the uncontrolled formation and release of reactive oxygen species.
Collapse
Affiliation(s)
- Takehiro Ohta
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
56
|
Bruijnincx PCA, van Koten G, Klein Gebbink RJM. Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad: recent developments in enzymology and modeling studies. Chem Soc Rev 2008; 37:2716-44. [DOI: 10.1039/b707179p] [Citation(s) in RCA: 412] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
57
|
Emerson J, Farquhar E, Que L. “Schnappschüsse” von Strukturen entlang der Reaktionswege von Nicht-Häm-Eisenenzymen. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200703057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
58
|
Emerson J, Farquhar E, Que L. Structural “Snapshots” along Reaction Pathways of Non-Heme Iron Enzymes. Angew Chem Int Ed Engl 2007; 46:8553-6. [DOI: 10.1002/anie.200703057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
59
|
Tarasev M, Kaddis CS, Yin S, Loo JA, Burgner J, Ballou DP. Similar enzymes, different structures: phthalate dioxygenase is an alpha3alpha3 stacked hexamer, not an alpha3beta3 trimer like "normal" Rieske oxygenases. Arch Biochem Biophys 2007; 466:31-9. [PMID: 17764654 PMCID: PMC2084370 DOI: 10.1016/j.abb.2007.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 07/05/2007] [Accepted: 07/06/2007] [Indexed: 11/24/2022]
Abstract
Phthalate dioxygenase (PDO) is a member of a class of bacterial oxygenases that contain both Rieske [2Fe-2S] and Fe(II) mononuclear centers. Recent crystal structures of several Rieske dioxygenases showed that they exist as alpha(3)beta(3) multimers with subunits arranged head-to-tail in alpha and beta stacked planar rings. The structure of PDO, which consists of only alpha-subunits, remains to be solved. Although similar to other Rieske dioxygenases in many aspects, PDO was shown to differ in the mechanism of catalysis. Gel filtration and analytical centrifugation experiments, supplemented with mass spectrometric analysis (both ESI-MS and ESI-GEMMA), in this work showed a hexameric arrangement of subunits in the PDO multimer. Our proposed model for the subunit arrangement in PDO postulates two alpha(3) planar rings one on top the other, similar to the alpha(3)beta(3) arrangement in other Rieske dioxygenases. Unlike other Rieske dioxygenases, this arrangement brings two Rieske and two mononuclear centers, all on separate subunits, into proximity, allowing their cooperation for catalysis. Potential reasons necessitating this unusual structural arrangement are discussed.
Collapse
Affiliation(s)
- Michael Tarasev
- Department of Biological Chemistry, University of Michigan, 1301 Catherine Street, Ann Arbor, MI 48109-0606, USA
| | | | | | | | | | | |
Collapse
|
60
|
de Cárcer DA, Martín M, Karlson U, Rivilla R. Changes in bacterial populations and in biphenyl dioxygenase gene diversity in a polychlorinated biphenyl-polluted soil after introduction of willow trees for rhizoremediation. Appl Environ Microbiol 2007; 73:6224-32. [PMID: 17693557 PMCID: PMC2075012 DOI: 10.1128/aem.01254-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to analyze the structural and functional changes occurring in a polychlorinated-biphenyl (PCB)-contaminated soil ecosystem after the introduction of a suitable host plant for rhizoremediation (Salix viminalis). We have studied the populations and phylogenetic distribution of key bacterial groups (Alpha- and Betaproteobacteria, Acidobacteria, and Actinobacteria) and the genes encoding iron-sulfur protein alpha (ISPalpha) subunits of the toluene/biphenyl dioxygenases in soil and rhizosphere by screening gene libraries using temperature gradient gel electrophoresis. The results, based on the analysis of 415 clones grouped into 133 operational taxonomic units that were sequence analyzed (>128 kbp), show that the rhizospheric bacterial community which evolved from the native soil community during the development of the root system was distinct from the soil community for all groups studied except for the Actinobacteria. Proteobacteria were enriched in the rhizosphere and dominated both in rhizosphere and soil. There was a higher than expected abundance of Betaproteobacteria in the native and in the planted PCB-polluted soil. The ISPalpha sequences retrieved indicate a high degree of catabolic and phylogenetic diversity. Many sequences clustered with biphenyl dioxygenase sequences from gram-negative bacteria. A distinct cluster that was composed of sequences from this study, some previously described environmental sequences, and a putative ISPalpha from Sphingomonas wittichii RW1 seems to contain greater diversity than the presently recognized toluene/biphenyl dioxygenase subfamily. Moreover, the rhizosphere selected for two ISPalpha sequences that accounted for almost 60% of the gene library and were very similar to sequences harbored by Pseudomonas species.
Collapse
|
61
|
Neibergall MB, Stubna A, Mekmouche Y, Münck E, Lipscomb JD. Hydrogen peroxide dependent cis-dihydroxylation of benzoate by fully oxidized benzoate 1,2-dioxygenase. Biochemistry 2007; 46:8004-16. [PMID: 17567152 PMCID: PMC2720163 DOI: 10.1021/bi700120j] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rieske dioxygenases catalyze the reductive activation of O2 for the formation of cis-dihydrodiols from unactivated aromatic compounds. It is known that O2 is activated at a mononuclear non-heme iron site utilizing electrons supplied by a nearby Rieske iron sulfur cluster. However, it is controversial whether the reactive species is an Fe(III)-(hydro)peroxo or an Fe(II)-(hydro)peroxo (or electronically equivalent species formed by breaking the O-O bond). Here it is shown that benzoate 1,2 dioxygenase oxygenase component (BZDO) prepared in a form with the Rieske cluster oxidized and the mononuclear iron in the Fe(III) state can utilize H2O2 as a source of reduced oxygen to form the correct cis-dihydrodiol product from benzoate. The reaction approaches stoichiometric yield relative to the mononuclear Fe(III) concentration, being limited to a single turnover by inefficient product release from the Fe(III)-product complex. EPR and Mössbauer studies show that the iron remains ferric throughout this single turnover "peroxide shunt" reaction. These results strongly support Fe(III)-(hydro)peroxo (or Fe(V)-oxo-hydroxo) as the reactive species because there is no source of additional reducing equivalents to form the Fe(II)-(hydro)peroxo state. This conclusion could be further tested in the case of BZDO because the peroxide shunt occurs very slowly compared with normal turnover, allowing the reactive intermediate to be trapped for spectroscopic analysis. We attribute the slow reaction rate to a forced change in the normally strict order of the substrate binding and enzyme reduction steps that regulate the catalytic cycle. The reactive intermediate is a high-spin ferric species exhibiting an unusual negative zero field splitting and other EPR and Mössbauer spectroscopic properties reminiscent of previously characterized side-on-bound peroxide adducts of Fe(III) model complexes. If the species in BZDO is a similar adduct, its isomer shift is most consistent with an Fe(III)-hydroperoxo reactive state.
Collapse
Affiliation(s)
- Matthew B. Neibergall
- Department of Biochemistry, Molecular Biology, and Biophysics, and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
| | - Audria Stubna
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Yasmina Mekmouche
- Department of Biochemistry, Molecular Biology, and Biophysics, and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
| | - Eckard Münck
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
62
|
Ang EL, Obbard JP, Zhao H. Probing the molecular determinants of aniline dioxygenase substrate specificity by saturation mutagenesis. FEBS J 2007; 274:928-39. [PMID: 17269935 DOI: 10.1111/j.1742-4658.2007.05638.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aniline dioxygenase is a multicomponent Rieske nonheme-iron dioxygenase enzyme isolated from Acinetobacter sp. strain YAA. Saturation mutagenesis of the substrate-binding pocket residues, which were identified using a homology model of the alpha subunit of the terminal dioxygenase (AtdA3), was used to probe the molecular determinants of AtdA substrate specificity. The V205A mutation widened the substrate specificity of aniline dioxygenase to include 2-isopropylaniline, for which the wild-type enzyme has no activity. The V205A mutation also made 2-isopropylaniline a better substrate for the enzyme than 2,4-dimethylaniline, a native substrate of the wild-type enzyme. The I248L mutation improved the activity of aniline dioxygenase against aniline and 2,4-dimethylaniline approximately 1.7-fold and 2.1-fold, respectively. Thus, it is shown that the alpha subunit of the terminal dioxygenase indeed plays a part in the substrate specificity as well as the activity of aniline dioxygenase. Interestingly, the equivalent residues of V205 and I248 have not been previously reported to influence the substrate specificity of other Rieske dioxygenases. These results should facilitate future engineering of the enzyme for bioremediation and industrial applications.
Collapse
Affiliation(s)
- Ee L Ang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
63
|
Structural investigations of the ferredoxin and terminal oxygenase components of the biphenyl 2,3-dioxygenase from Sphingobium yanoikuyae B1. BMC STRUCTURAL BIOLOGY 2007; 7:10. [PMID: 17349044 PMCID: PMC1847435 DOI: 10.1186/1472-6807-7-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 03/09/2007] [Indexed: 11/10/2022]
Abstract
Background The initial step involved in oxidative hydroxylation of monoaromatic and polyaromatic compounds by the microorganism Sphingobium yanoikuyae strain B1 (B1), previously known as Sphingomonas yanoikuyae strain B1 and Beijerinckia sp. strain B1, is performed by a set of multiple terminal Rieske non-heme iron oxygenases. These enzymes share a single electron donor system consisting of a reductase and a ferredoxin (BPDO-FB1). One of the terminal Rieske oxygenases, biphenyl 2,3-dioxygenase (BPDO-OB1), is responsible for B1's ability to dihydroxylate large aromatic compounds, such as chrysene and benzo[a]pyrene. Results In this study, crystal structures of BPDO-OB1 in both native and biphenyl bound forms are described. Sequence and structural comparisons to other Rieske oxygenases show this enzyme to be most similar, with 43.5 % sequence identity, to naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. While structurally similar to naphthalene 1,2-dioxygenase, the active site entrance is significantly larger than the entrance for naphthalene 1,2-dioxygenase. Differences in active site residues also allow the binding of large aromatic substrates. There are no major structural changes observed upon binding of the substrate. BPDO-FB1 has large sequence identity to other bacterial Rieske ferredoxins whose structures are known and demonstrates a high structural homology; however, differences in side chain composition and conformation around the Rieske cluster binding site are noted. Conclusion This is the first structure of a Rieske oxygenase that oxidizes substrates with five aromatic rings to be reported. This ability to catalyze the oxidation of larger substrates is a result of both a larger entrance to the active site as well as the ability of the active site to accommodate larger substrates. While the biphenyl ferredoxin is structurally similar to other Rieske ferredoxins, there are distinct changes in the amino acids near the iron-sulfur cluster. Because this ferredoxin is used by multiple oxygenases present in the B1 organism, this ferredoxin-oxygenase system provides the structural platform to dissect the balance between promiscuity and selectivity in protein-protein electron transport systems.
Collapse
|
64
|
Carrondo MA, Bento I, Matias PM, Lindley PF. Crystallographic evidence for dioxygen interactions with iron proteins. J Biol Inorg Chem 2007; 12:429-42. [PMID: 17318598 DOI: 10.1007/s00775-007-0213-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
Abstract
The interaction of dioxygen with iron plays a key role in many important biological processes, such as dioxygen transport in the bloodstream and the reduction of dioxygen by iron in respiration. However, the catalytic mechanisms employed, for example in ligand oxidation, are not fully understood at the current time despite intensive biochemical, spectroscopic and structural studies. This review outlines the structural evidence obtained by X-ray crystallographic methods for the nature of the interactions between dioxygen and the metal in iron-containing proteins. Proteins involved in iron transport or electron transfer are not included.
Collapse
Affiliation(s)
- M Arménia Carrondo
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2781-901, Oeiras, Portugal.
| | | | | | | |
Collapse
|
65
|
Vézina J, Barriault D, Sylvestre M. Family shuffling of soil DNA to change the regiospecificity of Burkholderia xenovorans LB400 biphenyl dioxygenase. J Bacteriol 2007; 189:779-88. [PMID: 17142386 PMCID: PMC1797277 DOI: 10.1128/jb.01267-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 11/15/2006] [Indexed: 11/20/2022] Open
Abstract
Previous work has shown that the C-terminal portion of BphA, especially two amino acid segments designated region III and region IV, influence the regiospecificity of the biphenyl dioxygenase (BPDO) toward 2,2'-dichlorobiphenyl (2,2'-CB). In this work, we evolved BPDO by shuffling bphA genes amplified from polychlorinated biphenyl-contaminated soil DNA. Sets of approximately 1-kb DNA fragments were amplified with degenerate primers designed to amplify the C-terminal portion of bphA. These fragments were shuffled, and the resulting library was used to replace the corresponding fragment of Burkholderia xenovorans LB400 bphA. Variants were screened for their ability to oxygenate 2,2'-CB onto carbons 5 and 6, which are positions that LB400 BPDO is unable to attack. Variants S100, S149, and S151 were obtained and exhibited this feature. Variant S100 BPDO produced exclusively cis-5,6-dihydro-5,6-dihydroxy-2,2'-dichlorobiphenyl from 2,2'-CB. Moreover, unlike LB400 BPDO, S100 BphA catalyzed the oxygenation of 2,2',3,3'-tetrachlorobiphenyl onto carbons 5 and 6 exclusively and it was unable to oxygenate 2,2',5,5'-tetrachlorobiphenyl. Based on oxygen consumption measurements, variant S100 oxygenated 2,2'-CB at a rate of 16 +/- 1 nmol min(-1) per nmol enzyme, which was similar to the value observed for LB400 BPDO. cis-5,6-Dihydro-5,6-dihydroxy-2,2'-dichlorobiphenyl was further oxidized by 2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase (BphB) and 2,3-dihydroxybiphenyl dioxygenase (BphC). Variant S100 was, in addition, able to oxygenate benzene, toluene, and ethyl benzene. Sequence analysis identified amino acid residues M237 S238 and S283 outside regions III and IV that influence the activity toward doubly ortho-substituted chlorobiphenyls.
Collapse
Affiliation(s)
- Julie Vézina
- Institut national de la recherche scientifique (INRS-Institut Armand-Frappier), 245 Boul. Hymus, Pointe-Claire, Québec, Canada H9R 1G6
| | | | | |
Collapse
|
66
|
Jakoncic J, Jouanneau Y, Meyer C, Stojanoff V. The catalytic pocket of the ring-hydroxylating dioxygenase from Sphingomonas CHY-1. Biochem Biophys Res Commun 2006; 352:861-6. [PMID: 17157819 PMCID: PMC1820764 DOI: 10.1016/j.bbrc.2006.11.117] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 11/15/2006] [Indexed: 11/19/2022]
Abstract
Ring-hydroxylating dioxygenases are multicomponent bacterial enzymes that catalyze the first step in the oxidative degradation of aromatic hydrocarbons. The dioxygenase from Sphingomonas CHY-1 is unique in that it can oxidize a wide range of polycyclic aromatic hydrocarbons (PAHs). With a crystal structure similar to that of the seven other known dioxygenases, its catalytic domain features the largest hydrophobic substrate binding cavity characterized so far. Molecular modeling studies indicated that the catalytic cavity is large enough to accommodate a five-ring benzo[a]pyrene molecule. The predicted positions of this and other PAHs in the substrate binding pocket are consistent with the product regio- and stereo-selectivity of the enzyme.
Collapse
Affiliation(s)
- Jean Jakoncic
- Brookhaven National Laboratory, National Synchrotron Light Source, Upton, NY 11973, USA
| | - Yves Jouanneau
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, CEA, DSV, DRDC and CNRS UMR 5092, CEA-Grenoble, F-38054 Grenoble Cedex 9, France
| | - Christine Meyer
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, CEA, DSV, DRDC and CNRS UMR 5092, CEA-Grenoble, F-38054 Grenoble Cedex 9, France
| | - Vivian Stojanoff
- Brookhaven National Laboratory, National Synchrotron Light Source, Upton, NY 11973, USA
| |
Collapse
|
67
|
Tarasev M, Pinto A, Kim D, Elliott SJ, Ballou DP. The "bridging" aspartate 178 in phthalate dioxygenase facilitates interactions between the Rieske center and the iron(II)--mononuclear center. Biochemistry 2006; 45:10208-16. [PMID: 16922496 PMCID: PMC2546612 DOI: 10.1021/bi060219b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phthalate dioxygenase (PDO) and its reductase are parts of a two-component Rieske dioxygenase system that initiates the aerobic breakdown of phthalate by forming cis-4,5-dihydro-4,5-dihydroxyphthalate (DHD). Aspartate D178 in PDO, located near its ferrous mononuclear center, is highly conserved among Rieske dioxygenases. The analogous aspartate has been implicated in electron transfer between the mononuclear iron and Rieske center in naphthalene dioxygenase [Parales et al. (1999) J. Bacteriol. 181, 1831-1837] and in substrate binding and oxygen reactivity in anthranilate dioxygenase [Beharry et al. (2003) Biochemistry 42, 13625-13636]. The effects of substituting D178 in PDO with alanine or asparagine on the reactivity of the Rieske centers, phthalate hydroxylation, and coupling of Rieske center oxidation to DHD formation were studied previously [Pinto et al. (2006) Biochemistry 45, 9032-9041]. This work describes effects that D178N and D178A substitutions have on the interactions between the Rieske and mononuclear centers in PDO. The mutations affected protonation of the Rieske center histidine and conformation of subunits within the PDO multimer to create a more open structure with more solvent-accessible Rieske centers. When the Rieske centers in PDO were oxidized, D178N and D178A substitutions disrupted communication between the Rieske and Fe-mononuclear centers. This was shown by the lack of perturbations of the UV-vis spectra on phthalate binding to the D178N and D178A variants, as opposed to that observed in WT PDO. However, when the Rieske center was in the reduced state, communication between the centers was not disrupted. Phthalate binding similarly affected the rates of oxidation of the reduced Rieske center in both WT and mutant PDO. Nitric oxide binding at the Fe(II)-mononuclear center, as detected by EPR spectrometry of the Fe(II) nitrosyl complex, was regulated by the redox state of the Rieske center. When the Rieske center was oxidized in either WT or D178N PDO, NO bound to the mononuclear iron in the presence or absence of phthalate. However, when the Rieske center was reduced, NO bound only when phthalate was present. These findings are discussed in terms of the "communication functions" performed by the bridging Asp-178.
Collapse
Affiliation(s)
- Michael Tarasev
- Dept. of Biological Chemistry, University of Michigan, 1301 Catherine St., Ann Arbor, MI 48109-0606
| | - Alex Pinto
- Dept. of Biological Chemistry, University of Michigan, 1301 Catherine St., Ann Arbor, MI 48109-0606
| | - Duke Kim
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215
| | - Sean J. Elliott
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215
| | - David P. Ballou
- Dept. of Biological Chemistry, University of Michigan, 1301 Catherine St., Ann Arbor, MI 48109-0606
| |
Collapse
|
68
|
Witzig R, Junca H, Hecht HJ, Pieper DH. Assessment of toluene/biphenyl dioxygenase gene diversity in benzene-polluted soils: links between benzene biodegradation and genes similar to those encoding isopropylbenzene dioxygenases. Appl Environ Microbiol 2006; 72:3504-14. [PMID: 16672497 PMCID: PMC1472391 DOI: 10.1128/aem.72.5.3504-3514.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PCR-single-strand conformation polymorphism (SSCP) technique was used to assess the diversity and distribution of Rieske nonheme iron oxygenases of the toluene/biphenyl subfamily in soil DNA and bacterial isolates recovered from sites contaminated with benzene, toluene, ethylbenzene, and xylenes (BTEX). The central cores of genes encoding the catalytic alpha subunits were targeted, since they are responsible for the substrate specificities of these enzymes. SSCP functional genotype fingerprinting revealed a substantial diversity of oxygenase genes in three differently BTEX-contaminated soil samples, and sequence analysis indicated that in both the soil DNA and the bacterial isolates, genes for oxygenases related to the isopropylbenzene (cumene) dioxygenase branch of the toluene/biphenyl oxygenase subfamily were predominant among the detectable genotypes. The peptide sequences of the two most abundant alpha subunit sequence types differed by only five amino acids (residues 258, 286, 288, 289, and 321 according to numbering in cumene dioxygenase alpha subunit CumA1 of Pseudomonas fluorescens IP01). However, a strong correlation between sequence type and substrate utilization pattern was observed in isolates harboring these genes. Two of these residues were located at positions contributing, according to the resolved crystal structure of cumene dioxygenase from Pseudomonas fluorescens IP01, to the inner surface of the substrate-binding pocket. Isolates containing an alpha subunit with isoleucine and leucine at positions 288 and 321, respectively, were capable of degrading benzene and toluene, whereas isolates containing two methionine substitutions were found to be incapable of degrading toluene, indicating that the more bulky methionine residues significantly narrowed the available space within the substrate-binding pocket.
Collapse
Affiliation(s)
- Robert Witzig
- Department of Environmental Microbiology, GBF-German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
69
|
Simmons CR, Liu Q, Huang Q, Hao Q, Begley TP, Karplus PA, Stipanuk MH. Crystal Structure of Mammalian Cysteine Dioxygenase. J Biol Chem 2006; 281:18723-33. [PMID: 16611640 DOI: 10.1074/jbc.m601555200] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine dioxygenase is a mononuclear iron-dependent enzyme responsible for the oxidation of cysteine with molecular oxygen to form cysteine sulfinate. This reaction commits cysteine to either catabolism to sulfate and pyruvate or the taurine biosynthetic pathway. Cysteine dioxygenase is a member of the cupin superfamily of proteins. The crystal structure of recombinant rat cysteine dioxygenase has been determined to 1.5-A resolution, and these results confirm the canonical cupin beta-sandwich fold and the rare cysteinyltyrosine intramolecular cross-link (between Cys(93) and Tyr(157)) seen in the recently reported murine cysteine dioxygenase structure. In contrast to the catalytically inactive mononuclear Ni(II) metallocenter present in the murine structure, crystallization of a catalytically competent preparation of rat cysteine dioxygenase revealed a novel tetrahedrally coordinated mononuclear iron center involving three histidines (His(86), His(88), and His(140)) and a water molecule. Attempts to acquire a structure with bound ligand using either cocrystallization or soaking crystals with cysteine revealed the formation of a mixed disulfide involving Cys(164) near the active site, which may explain previously observed substrate inhibition. This work provides a framework for understanding the molecular mechanisms involved in thiol dioxygenation and sets the stage for exploration of the chemistry of both the novel mononuclear iron center and the catalytic role of the cysteinyl-tyrosine linkage.
Collapse
Affiliation(s)
- Chad R Simmons
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853-8001, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
el Fantroussi S, Agathos SN, Pieper DH, Witzig R, Cámara B, Gabriel-Jürgens L, Junca H, Zanaroli G, Fava F, Pérez-Jiménez JR, Young LY, Hamonts K, Lookman R, Maesen M, Diels L, Dejonghe W, Dijk J, Springael D. Biological Assessment and Remediation of Contaminated Sediments. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/978-1-4020-4959-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
71
|
Abstract
The range of available arene dihydroxylating dioxygenase enzymes, their structure and mechanism, and recent examples of the application of arene cis-dihydrodiol bioproducts as chiral precursors in the synthesis of natural and unnatural products and chiral ligands are discussed.
Collapse
Affiliation(s)
- Derek R Boyd
- School of Chemistry and Centre for Theory and Application of Catalysis, Queen's University of Belfast, Belfast, UKBT9 5AG
| | | |
Collapse
|
72
|
Gakhar L, Malik ZA, Allen CCR, Lipscomb DA, Larkin MJ, Ramaswamy S. Structure and increased thermostability of Rhodococcus sp. naphthalene 1,2-dioxygenase. J Bacteriol 2005; 187:7222-31. [PMID: 16237006 PMCID: PMC1272967 DOI: 10.1128/jb.187.21.7222-7231.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rieske nonheme iron oxygenases form a large class of aromatic ring-hydroxylating dioxygenases found in microorganisms. These enzymes enable microorganisms to tolerate and even exclusively utilize aromatic compounds for growth, making them good candidates for use in synthesis of chiral intermediates and bioremediation. Studies of the chemical stability and thermostability of these enzymes thus become important. We report here the structure of free and substrate (indole)-bound forms of naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038. The structure of the Rhodococcus enzyme reveals that, despite a approximately 30% sequence identity between these naphthalene dioxygenases, their overall structures superpose very well with a root mean square deviation of less than 1.6 A. The differences in the active site of the two enzymes are pronounced near the entrance; however, indole binds to the Rhodococcus enzyme in the same orientation as in the Pseudomonas enzyme. Circular dichroism spectroscopy experiments show that the Rhodococcus enzyme has higher thermostability than the naphthalene dioxygenase from Pseudomonas species. The Pseudomonas enzyme has an apparent melting temperature of 55 degrees C while the Rhodococcus enzyme does not completely unfold even at 95 degrees C. Both enzymes, however, show similar unfolding behavior in urea, and the Rhodococcus enzyme is only slightly more tolerant to unfolding by guanidine hydrochloride. Structure analysis suggests that the higher thermostability of the Rhodococcus enzyme may be attributed to a larger buried surface area and extra salt bridge networks between the alpha and beta subunits in the Rhodococcus enzyme.
Collapse
Affiliation(s)
- Lokesh Gakhar
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
73
|
Ferraro DJ, Gakhar L, Ramaswamy S. Rieske business: structure-function of Rieske non-heme oxygenases. Biochem Biophys Res Commun 2005; 338:175-90. [PMID: 16168954 DOI: 10.1016/j.bbrc.2005.08.222] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2005] [Accepted: 08/30/2005] [Indexed: 11/20/2022]
Abstract
Rieske non-heme iron oxygenases (RO) catalyze stereo- and regiospecific reactions. Recently, an explosion of structural information on this class of enzymes has occurred in the literature. ROs are two/three component systems: a reductase component that obtains electrons from NAD(P)H, often a Rieske ferredoxin component that shuttles the electrons and an oxygenase component that performs catalysis. The oxygenase component structures have all shown to be of the alpha3 or alpha3beta3 types. The transfer of electrons happens from the Rieske center to the mononuclear iron of the neighboring subunit via a conserved aspartate, which is shown to be involved in gating electron transport. Molecular oxygen has been shown to bind side-on in naphthalene dioxygenase and a concerted mechanism of oxygen activation and hydroxylation of the ring has been proposed. The orientation of binding of the substrate to the enzyme is hypothesized to control the substrate selectivity and regio-specificity of product formation.
Collapse
Affiliation(s)
- Daniel J Ferraro
- Department of Biochemistry, University of Iowa Roy J. and Lucille A. Carver College of Medicine, 51 Newton Road, 4-403 BSB, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
74
|
Nojiri H, Ashikawa Y, Noguchi H, Nam JW, Urata M, Fujimoto Z, Uchimura H, Terada T, Nakamura S, Shimizu K, Yoshida T, Habe H, Omori T. Structure of the Terminal Oxygenase Component of Angular Dioxygenase, Carbazole 1,9a-Dioxygenase. J Mol Biol 2005; 351:355-70. [PMID: 16005887 DOI: 10.1016/j.jmb.2005.05.059] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 05/24/2005] [Accepted: 05/25/2005] [Indexed: 10/25/2022]
Abstract
Carbazole 1,9a-dioxygenase (CARDO) catalyzes the dihydroxylation of carbazole by angular position (C9a) carbon bonding to the imino nitrogen and its adjacent C1 carbon. This reaction is an initial degradation reaction of the carbazole degradation pathway by various bacterial strains. Only a limited number of Rieske non-heme iron oxygenase systems (ROSs) can catalyze this novel reaction, termed angular dioxygenation. Angular dioxygenation is also involved in the degradation pathways of carbazole-related compounds, dioxin, and CARDO can catalyze the angular dioxygenation for dioxin. CARDO consists of a terminal oxygenase component (CARDO-O), and the electron transport components, ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R). CARDO-O has a homotrimeric structure, and governs the substrate specificity of CARDO. Here, we have determined the crystal structure of CARDO-O of Janthinobacterium sp. strain J3 at a resolution of 1.95A. The alpha3 trimeric overall structure of the CARDO-O molecule roughly corresponds to the alpha3 partial structures of other terminal oxygenase components of ROSs that have the alpha3beta3 configuration. The CARDO-O structure is a first example of the terminal oxygenase components of ROSs that have the alpha3 configuration, and revealed the presence of the specific loops that interact with a neighboring subunit, which is proposed to be indispensable for stable alpha3 interactions without structural beta subunits. The shape of the substrate-binding pocket of CARDO-O is markedly different from those of other oxygenase components involved in naphthalene and biphenyl degradation pathways. Docking simulations suggested that carbazole binds to the substrate-binding pocket in a manner suitable for catalysis of angular dioxygenation.
Collapse
Affiliation(s)
- Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|