51
|
Wang Y, Liu Y, Deng W, Fu F, Yan S, Yang H, Liu R, Geng J, Xu J, Wu Y, Ma J, Zhou J, Liu N, Jin Y, Xia R, Elias N, Lee RJ, Feldman AS, Blute ML, Colvin RB, Wu CL, Miao Y. Viral integration in BK polyomavirus-associated urothelial carcinoma in renal transplant recipients: multistage carcinogenesis revealed by next-generation virome capture sequencing. Oncogene 2020; 39:5734-5742. [PMID: 32724161 DOI: 10.1038/s41388-020-01398-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
BK polyomavirus (BKPyV)-associated cancer after transplantation has gained increasing attention. However, the role of BKPyV integration on oncogenesis is still unclear. In this study, next-generation virome capture sequencing of primary and metastatic tumors were performed in three patients with BKPyV-associated urothelial carcinoma after renal transplantation. As a result, a total of 332 viral integration sites were identified in the six tumors. Integration of BKPyV in both primary and metastatic tumors followed the mechanism of microhomology-mediated end joining mostly, since microhomologies between human and BKPyV genomes were significantly enriched in flanking regions of 84% of the integration sites. Viral DNA breakpoints were nonrandom and tended to assemble in large T gene, small T gene and viral protein 2 gene. There were three, one and one consensus integration sites between the primary and metastatic tumors, which affected LINC01924, eIF3c, and NEIL2 genes in the three cases respectively. Thus, we concluded that integration of BKPyV was a continuous process occurring in both primary and metastatic tumors, generating heterogenous tumor cell populations. Through this ongoing process, certain cell populations might have gained growth advantage or metastatic potential, as a result of viral integration either affecting the cellular genes where the viral DNA integrated to or altering the expression or function of the viral genes.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanna Liu
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenfeng Deng
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fangxiang Fu
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Susha Yan
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwei Yang
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rumin Liu
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Geng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Xu
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihan Wu
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | - Na Liu
- Mygenostics Co., Beijing, China
| | - Yu Jin
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Renfei Xia
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nahel Elias
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard J Lee
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Adam S Feldman
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael L Blute
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert B Colvin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. .,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | - Yun Miao
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
52
|
Pietropaolo V, Prezioso C, Moens U. Merkel Cell Polyomavirus and Merkel Cell Carcinoma. Cancers (Basel) 2020; 12:E1774. [PMID: 32635198 PMCID: PMC7407210 DOI: 10.3390/cancers12071774] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses are the cause of approximately 15% of all human cancers. Both RNA and DNA human tumor viruses have been identified, with Merkel cell polyomavirus being the most recent one to be linked to cancer. This virus is associated with about 80% of Merkel cell carcinomas, a rare, but aggressive cutaneous malignancy. Despite its name, the cells of origin of this tumor may not be Merkel cells. This review provides an update on the structure and life cycle, cell tropism and epidemiology of the virus and its oncogenic properties. Putative strategies to prevent viral infection or treat virus-positive Merkel cell carcinoma patients are discussed.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
- IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-Degenerative Pathologies, 00166 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
53
|
Tabachnick-Cherny S, Pulliam T, Church C, Koelle DM, Nghiem P. Polyomavirus-driven Merkel cell carcinoma: Prospects for therapeutic vaccine development. Mol Carcinog 2020; 59:807-821. [PMID: 32219902 PMCID: PMC8238237 DOI: 10.1002/mc.23190] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/15/2022]
Abstract
Great strides have been made in cancer immunotherapy including the breakthrough successes of anti-PD-(L)1 checkpoint inhibitors. In Merkel cell carcinoma (MCC), a rare and aggressive skin cancer, PD-(L)1 blockade is highly effective. Yet, ~50% of patients either do not respond to therapy or develop PD-(L)1 refractory disease and, thus, do not experience long-term benefit. For these patients, additional or combination therapies are needed to augment immune responses that target and eliminate cancer cells. Therapeutic vaccines targeting tumor-associated antigens, mutated self-antigens, or immunogenic viral oncoproteins are currently being developed to augment T-cell responses. Approximately 80% of MCC cases in the United States are driven by the ongoing expression of viral T-antigen (T-Ag) oncoproteins from genomically integrated Merkel cell polyomavirus (MCPyV). Since T-Ag elicits specific B- and T-cell immune responses in most persons with virus-positive MCC (VP-MCC), and ongoing T-Ag expression is required to drive VP-MCC cell proliferation, therapeutic vaccination with T-Ag is a rational potential component of immunotherapy. Failure of the endogenous T-cell response to clear VP-MCC (allowing clinically evident tumors to arise) implies that therapeutic vaccination will need to be potent anśd synergize with other mechanisms to enhance T-cell activity against tumor cells. Here, we review the relevant underlying biology of VP-MCC, potentially applicable therapeutic vaccine platforms, and antigen delivery formats. We also describe early successes in the field of therapeutic cancer vaccines and address several clinical scenarios in which VP-MCC patients could potentially benefit from a therapeutic vaccine.
Collapse
Affiliation(s)
- Shira Tabachnick-Cherny
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington
| | - Thomas Pulliam
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington
| | - Candice Church
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington
| | - David M Koelle
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Paul Nghiem
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington
- Seattle Cancer Care Alliance, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
54
|
Abstract
Viral infection underlies a significant share of the global cancer burden. Merkel cell polyomavirus (MCPyV) is the newest member of the human oncogenic virus family. Its discovery over a decade ago marked the beginning of an exciting era in human tumor virology. Since then, significant evidence has emerged to support the etiologic role of MCPyV in Merkel cell carcinoma (MCC), an extremely lethal form of skin cancer. MCPyV infection is widespread in the general population. MCC diagnoses have tripled over the past 20 years, but effective treatments are currently lacking. In this review, we highlight recent discoveries that have shaped our understanding of MCPyV oncogenic mechanism and host cellular tropism, as well as the molecular events occurring in the viral infectious life cycle. These insights will guide future efforts in developing novel virus-targeted therapeutic strategies for treating the devastating human cancers associated with this new tumorigenic virus.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6076, USA;
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6076, USA;
| |
Collapse
|
55
|
Abdulsalam I, Rasheed K, Sveinbjørnsson B, Ehlers B, Moens U. Promoter activity of Merkel cell Polyomavirus variants in human dermal fibroblasts and a Merkel cell carcinoma cell line. Virol J 2020; 17:54. [PMID: 32306957 PMCID: PMC7168875 DOI: 10.1186/s12985-020-01317-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/10/2020] [Indexed: 12/31/2022] Open
Abstract
Background Merkel cell polyomavirus (MCPyV) is a human polyomavirus that establishes a life-long harmless infection in most individuals, with dermal fibroblasts believed to be the natural host cell. However, this virus is the major cause of Merkel cell carcinoma (MCC), an aggressive skin cancer. Several MCPyV variants with polymorphism in their promoter region have been isolated, but it is not known whether these differences affect the biological properties of the virus. Methods Using transient transfection studies in human dermal fibroblasts and the MCC cell line MCC13, we compared the transcription activity of the early and late promoters of the most commonly described non-coding control region MCPyV variant and six other isolates containing specific mutation patterns. Results Both the early and late promoters were significantly stronger in human dermal fibroblasts compared with MCC13 cells, and a different promoter strength between the MCPyV variants was observed. The expression of full-length large T-antigen, a viral protein that regulates early and late promoter activity, inhibited early and late promoter activities in both cell lines. Nonetheless, a truncated large T-antigen, which is expressed in virus-positive MCCs, stimulated the activity of its cognate promoter. Conclusion The promoter activities of all MCPyV variants tested was stronger in human dermal fibroblasts, a cell line that supports viral replication, than in MCC13 cells, which are not permissive for MCPyV. Truncated large T-antigen, but not full-length large T-antigen stimulated viral promoter activity. Whether, the difference in promoter strength and regulation by large T-antigen may affect the replication and tumorigenic properties of the virus remains to be determined.
Collapse
Affiliation(s)
- Ibrahim Abdulsalam
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway.,Present address: Tumor Biology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Kashif Rasheed
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Baldur Sveinbjørnsson
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Bernhard Ehlers
- Division 12 Measles, Mumps, Rubella and Viruses Affecting Immunocompromised Patients, Robert Koch Institute, Berlin, Germany
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
56
|
Siebels S, Czech-Sioli M, Spohn M, Schmidt C, Theiss J, Indenbirken D, Günther T, Grundhoff A, Fischer N. Merkel Cell Polyomavirus DNA Replication Induces Senescence in Human Dermal Fibroblasts in a Kap1/Trim28-Dependent Manner. mBio 2020; 11:e00142-20. [PMID: 32156811 PMCID: PMC7064754 DOI: 10.1128/mbio.00142-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the only polyomavirus known to be associated with tumorigenesis in humans. Similarly to other polyomaviruses, MCPyV expresses a large tumor antigen (LT-Ag) that, together with a small tumor antigen (sT-Ag), contributes to cellular transformation and that is of critical importance for the initiation of the viral DNA replication. Understanding the cellular protein network regulated by MCPyV early proteins will significantly contribute to our understanding of the natural MCPyV life cycle as well as of the mechanisms by which the virus contributes to cellular transformation. We here describe KRAB-associated protein 1 (Kap1), a chromatin remodeling factor involved in cotranscriptional regulation, as a novel protein interaction partner of MCPyV T antigens sT and LT. Kap1 knockout results in a significant increase in the level of viral DNA replication that is highly suggestive of Kap1 being an important host restriction factor during MCPyV infection. Differently from other DNA viruses, MCPyV gene expression is unaffected in the absence of Kap1 and Kap1 does not associate with the viral genome. Instead, we show that in primary normal human dermal fibroblast (nHDF) cells, MCPyV DNA replication, but not T antigen expression alone, induces ataxia telangiectasia mutated (ATM) kinase-dependent Kap1 S824 phosphorylation, a mechanism that typically facilitates repair of double-strand breaks in heterochromatin by arresting the cells in G2 We show that MCPyV-induced inhibition of cell proliferation is mainly conferred by residues within the origin binding domain and thereby by viral DNA replication. Our data suggest that phosphorylation of Kap1 and subsequent Kap1-dependent G2 arrest/senescence represent host defense mechanisms against MCPyV replication in nHDF cells.IMPORTANCE We here describe Kap1 as a restriction factor in MCPyV infection. We report a novel, indirect mechanism by which Kap1 affects MCPyV replication. In contrast with from other DNA viruses, Kap1 does not associate with the viral genome in MCPyV infection and has no impact on viral gene expression. In MCPyV-infected nHDF cells, Kap1 phosphorylation (pKap1 S824) accumulates because of genomic stress mainly induced by viral DNA replication. In contrast, ectopic expression of LT or LT MCPyV mutants, previously shown to be important for induction of genotoxic stress, does not result in a similar extent of pKap1 accumulation. We show that cells actively replicating MCPyV accumulate pKap1 (in a manner dependent on the presence of ATM) and display a senescence phenotype reflected by G2 arrest. These results are supported by transcriptome analyses showing that LT antigen, in a manner dependent on the presence of Kap1, induces expression of secreted factors, which is known as the senescence-associated secretory phenotype (SASP).
Collapse
Affiliation(s)
- Svenja Siebels
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manja Czech-Sioli
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Spohn
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Claudia Schmidt
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Juliane Theiss
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Daniela Indenbirken
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Günther
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
57
|
Vescovo T, Pagni B, Piacentini M, Fimia GM, Antonioli M. Regulation of Autophagy in Cells Infected With Oncogenic Human Viruses and Its Impact on Cancer Development. Front Cell Dev Biol 2020; 8:47. [PMID: 32181249 PMCID: PMC7059124 DOI: 10.3389/fcell.2020.00047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
About 20% of total cancer cases are associated to infections. To date, seven human viruses have been directly linked to cancer development: high-risk human papillomaviruses (hrHPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein–Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV), and human T-lymphotropic virus 1 (HTLV-1). These viruses impact on several molecular mechanisms in the host cells, often resulting in chronic inflammation, uncontrolled proliferation, and cell death inhibition, and mechanisms, which favor viral life cycle but may indirectly promote tumorigenesis. Recently, the ability of oncogenic viruses to alter autophagy, a catabolic process activated during the innate immune response to infections, is emerging as a key event for the onset of human cancers. Here, we summarize the current understanding of the molecular mechanisms by which human oncogenic viruses regulate autophagy and how this negative regulation impacts on cancer development. Finally, we highlight novel autophagy-related candidates for the treatment of virus-related cancers.
Collapse
Affiliation(s)
- Tiziana Vescovo
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy
| | - Benedetta Pagni
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Mauro Piacentini
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Gian Maria Fimia
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza," Rome, Italy
| | - Manuela Antonioli
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy
| |
Collapse
|
58
|
The Ubiquitin-Specific Protease Usp7, a Novel Merkel Cell Polyomavirus Large T-Antigen Interaction Partner, Modulates Viral DNA Replication. J Virol 2020; 94:JVI.01638-19. [PMID: 31801860 DOI: 10.1128/jvi.01638-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/01/2019] [Indexed: 02/06/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the major cause for Merkel cell carcinoma (MCC), a rare but highly aggressive skin cancer predominantly found in elderly and immunosuppressed patients. The early viral gene products large T-antigen (LT) and small T-antigen (sT) are important for efficient viral DNA replication, and both contribute to transformation processes. These functions are executed mainly through interactions with host factors. Here, we identify the cellular ubiquitin-specific processing protease 7 (Usp7) as a new interaction partner of the MCPyV LT. Using glutathione S-transferase pulldown experiments, we show that MCPyV LT directly binds to Usp7 and that N- as well as C-terminal regions of LT bind to the TRAF (tumor necrosis factor receptor-associated) domain of Usp7. We demonstrate that endogenous Usp7 coprecipitates with MCPyV T-antigens and relocalizes to viral DNA replication centers in cells actively replicating MCPyV genomes. We show that Usp7 does not alter ubiquitination levels of the T-antigens; however, Usp7 binding increases the binding affinity of LT to the origin of replication, thereby negatively regulating viral DNA replication. Together, these data identify Usp7 as a restriction factor of MCPyV replication. In contrast to other DNA viruses, Usp7 does not affect MCPyV gene expression via its ubiquitination activity but influences MCPyV DNA replication solely via a novel mechanism that modulates binding of LT to viral DNA.IMPORTANCE MCPyV is the only human polyomavirus that is associated with cancer; the majority of Merkel cell cancers have a viral etiology. While much emphasis was placed on investigations to understand the transformation process by MCPyV oncoproteins and cellular factors, we have only limited knowledge of cellular factors participating in the MCPyV life cycle. Here, we describe Usp7, a cellular deubiquitination enzyme, as a new factor involved in MCPyV replication. Usp7 is known in the context of large DNA tumor viruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma herpesvirus, to restrict viral replication. Similar to EBV, where Usp7 binding to EBNA1 increases EBNA1 binding affinity to viral DNA, we find MCPyV LT binding to the origin of replication to be increased in the presence of Usp7, resulting in restriction of viral DNA replication. However, Usp7-induced restriction of MCPyV replication is independent of its enzymatic activity, thereby constituting a novel mechanism of Usp7-induced restriction of viral replication.
Collapse
|
59
|
Henriksen JR, Ramberg I, Mikkelsen LH, Heegaard S. The role of infectious agents in cancer of the ocular region. APMIS 2020; 128:136-149. [PMID: 32003084 DOI: 10.1111/apm.13017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
The purpose of the study was to investigate the association between infectious agents and the development of cancer in the ocular adnexa. A comprehensive literary study was carried out, reviewing and summarizing previous reports on the topic. A broad range of malignancies of the ocular adnexa are associated with infectious agents. A strong association and possible causal relationship between the infectious agent and the development of ocular adnexal cancer are seen in Merkel cell carcinoma (Merkel cell polyomavirus), Burkitt lymphoma (Epstein-Barr virus) and Kaposi sarcoma (human herpesvirus 8). Infection with Chlamydia psittaci has been associated with the development of extranodal marginal zone B-cell lymphoma in Italy. Human papillomavirus infection has been associated with the development of squamous cell carcinomas of the ocular adnexa, although with a highly variable reported prevalence. By exploring the role of infectious agents in the ocular adnexa and the mechanism by which they contribute to oncogenesis, the diagnostics, management and prevention of these malignancies may also improve. Antibiotic treatment and vaccines against infectious agents may be valuable in future treatment. Additionally, the presence of infectious agents within the tumours may have a prognostic or predictive value.
Collapse
Affiliation(s)
- Josephine Raun Henriksen
- Eye Pathology Section, Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ingvild Ramberg
- Eye Pathology Section, Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Ophthalmology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lauge Hjorth Mikkelsen
- Eye Pathology Section, Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Ophthalmology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Steffen Heegaard
- Eye Pathology Section, Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Ophthalmology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
60
|
Lérias JR, Paraschoudi G, de Sousa E, Martins J, Condeço C, Figueiredo N, Carvalho C, Dodoo E, Castillo-Martin M, Beltrán A, Ligeiro D, Rao M, Zumla A, Maeurer M. Microbes as Master Immunomodulators: Immunopathology, Cancer and Personalized Immunotherapies. Front Cell Dev Biol 2020; 7:362. [PMID: 32039196 PMCID: PMC6989410 DOI: 10.3389/fcell.2019.00362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
The intricate interplay between the immune system and microbes is an essential part of the physiological homeostasis in health and disease. Immunological recognition of commensal microbes, such as bacterial species resident in the gut or lung as well as dormant viral species, i.e., cytomegalovirus (CMV) or Epstein-Barr virus (EBV), in combination with a balanced immune regulation, is central to achieve immune-protection. Emerging evidence suggests that immune responses primed to guard against commensal microbes may cause unexpected pathological outcomes, e.g., chronic inflammation and/or malignant transformation. Furthermore, translocation of immune cells from one anatomical compartment to another, i.e., the gut-lung axis via the lymphatics or blood has been identified as an important factor in perpetrating systemic inflammation, tissue destruction, as well as modulating host-protective immune responses. We present in this review immune response patterns to pathogenic as well as non-pathogenic microbes and how these immune-recognition profiles affect local immune responses or malignant transformation. We discuss personalized immunological therapies which, directly or indirectly, target host biological pathways modulated by antimicrobial immune responses.
Collapse
Affiliation(s)
- Joana R. Lérias
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Eric de Sousa
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - João Martins
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Carolina Condeço
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Nuno Figueiredo
- Digestive Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Carlos Carvalho
- Digestive Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | | | - Antonio Beltrán
- Department of Pathology, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Dário Ligeiro
- Lisbon Centre for Blood and Transplantation, Instituto Português do Sangue e Transplantação, Lisbon, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Alimuddin Zumla
- Division of Infection and Immunity, NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, University College London, London, United Kingdom
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
61
|
Nako T, Fukumoto H, Hasegawa H, Saeki H, Katano H. Functional Analysis of Trichodysplasia Spinulosa-Associated Polyomavirus-Encoded Large T Antigen. Jpn J Infect Dis 2019; 73:132-139. [PMID: 31787742 DOI: 10.7883/yoken.jjid.2019.391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Trichodysplasia spinulosa-associated polyomavirus (TSPyV or human polyomavirus 8) was identified from patients with trichodysplasia spinulosa, a rare skin disease affecting the faces of immunocompromised patients. Like other polyomaviruses, the TSPyV genome encodes a large T antigen (LT). However, the expression and functions of TSPyV LT in infected cells remain largely unknown. In the present study, we cloned a full-length TSPyV LT cDNA from cells transfected with the full-length of TSPyV LT DNA. Transfection study using green fluorescence protein-tagged LT expression plasmids showed that TSPyV LT was expressed in the nucleus of transfected cells. Analysis of deletion mutants identified a nuclear localization signal in TSPyV LT. Recombinant TSPyV LT exhibited an ATPase activity. TSPyV LT has a chitinase-like domain; however, no chitinase activity was detected. Immunoprecipitation assays revealed that TSPyV LT bound to retinoblastoma 1, but not to p53 in transfected cells. Expression of TSPyV LT in NIH3T3 cells induced colony formation in soft agar, suggesting its transformation activity. These data indicate that TSPyV LT may be associated with the pathogenesis of trichodysplasia spinulosa, which is a hyperplasia of keratinocytes in inner hair follicles.
Collapse
Affiliation(s)
- Toshie Nako
- Department of Pathology, National Institute of Infectious Diseases.,Department of Dermatology, Nippon Medical School
| | - Hitomi Fukumoto
- Department of Pathology, National Institute of Infectious Diseases
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases
| | | | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases
| |
Collapse
|
62
|
Cho M, Kim H, Son HS. Codon usage patterns of LT-Ag genes in polyomaviruses from different host species. Virol J 2019; 16:137. [PMID: 31727090 PMCID: PMC6854729 DOI: 10.1186/s12985-019-1245-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022] Open
Abstract
Background Polyomaviruses (PyVs) have a wide range of hosts, from humans to fish, and their effects on hosts vary. The differences in the infection characteristics of PyV with respect to the host are assumed to be influenced by the biochemical function of the LT-Ag protein, which is related to the cytopathic effect and tumorigenesis mechanism via interaction with the host protein. Methods We carried out a comparative analysis of codon usage patterns of large T-antigens (LT-Ags) of PyVs isolated from various host species and their functional domains and sequence motifs. Parity rule 2 (PR2) and neutrality analysis were applied to evaluate the effects of mutation and selection pressure on codon usage bias. To investigate evolutionary relationships among PyVs, we carried out a phylogenetic analysis, and a correspondence analysis of relative synonymous codon usage (RSCU) values was performed. Results Nucleotide composition analysis using LT-Ag gene sequences showed that the GC and GC3 values of avian PyVs were higher than those of mammalian PyVs. The effective number of codon (ENC) analysis showed host-specific ENC distribution characteristics in both the LT-Ag gene and the coding sequences of its domain regions. In the avian and fish PyVs, the codon diversity was significant, whereas the mammalian PyVs tended to exhibit conservative and host-specific evolution of codon usage bias. The results of our PR2 and neutrality analysis revealed mutation bias or highly variable GC contents by showing a narrow GC12 distribution and wide GC3 distribution in all sequences. Furthermore, the calculated RSCU values revealed differences in the codon usage preference of the LT-AG gene according to the host group. A similar tendency was observed in the two functional domains used in the analysis. Conclusions Our study showed that specific domains or sequence motifs of various PyV LT-Ags have evolved so that each virus protein interacts with host cell targets. They have also adapted to thrive in specific host species and cell types. Functional domains of LT-Ag, which are known to interact with host proteins involved in cell proliferation and gene expression regulation, may provide important information, as they are significantly related to the host specificity of PyVs.
Collapse
Affiliation(s)
- Myeongji Cho
- Laboratory of Computational Biology & Bioinformatics, Institute of Public Health and Environment, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hayeon Kim
- Department of Biomedical Laboratory Science, Kyungdong University, 815 Gyeonhwon-ro, Munmak, Wonju, Gangwondo, 24695, South Korea
| | - Hyeon S Son
- Laboratory of Computational Biology & Bioinformatics, Institute of Public Health and Environment, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea. .,SNU Bioinformatics Institute, Interdisciplinary Graduate Program in Bioinformatics, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
63
|
|
64
|
Moens U, Macdonald A. Effect of the Large and Small T-Antigens of Human Polyomaviruses on Signaling Pathways. Int J Mol Sci 2019; 20:ijms20163914. [PMID: 31408949 PMCID: PMC6720190 DOI: 10.3390/ijms20163914] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022] Open
Abstract
Viruses are intracellular parasites that require a permissive host cell to express the viral genome and to produce new progeny virus particles. However, not all viral infections are productive and some viruses can induce carcinogenesis. Irrespective of the type of infection (productive or neoplastic), viruses hijack the host cell machinery to permit optimal viral replication or to transform the infected cell into a tumor cell. One mechanism viruses employ to reprogram the host cell is through interference with signaling pathways. Polyomaviruses are naked, double-stranded DNA viruses whose genome encodes the regulatory proteins large T-antigen and small t-antigen, and structural proteins that form the capsid. The large T-antigens and small t-antigens can interfere with several host signaling pathways. In this case, we review the interplay between the large T-antigens and small t-antigens with host signaling pathways and the biological consequences of these interactions.
Collapse
Affiliation(s)
- Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway.
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
65
|
Tanese K, Nakamura Y, Hirai I, Funakoshi T. Updates on the Systemic Treatment of Advanced Non-melanoma Skin Cancer. Front Med (Lausanne) 2019; 6:160. [PMID: 31355203 PMCID: PMC6635480 DOI: 10.3389/fmed.2019.00160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
Non-melanoma skin cancers (NMSCs), which represent a diverse group of cutaneous malignancies, are the most common forms of human neoplasia. The incidence of these diseases is increasing due to a number of factors, including that of increasing human lifespans. The majority of NMSCs are basal cell carcinomas (BCC) and cutaneous squamous cell carcinomas (cSCC), with the remainder being various rare skin cancers, including extramammary Paget's disease (EMPD), Merkel cell carcinoma (MCC), and several skin adnexal carcinomas. Of these, MCC usually shows aggressive behavior with a high mortality rate. On the other hand, BCC, cSCC, EMPD, and skin adnexal tumors usually show an indolent clinical course and metastasize only rarely. Nevertheless, the metastatic forms of these tumors commonly lead to poor patient outcome. A definitive management strategy for the treatment of advanced NMSC has not been established, mainly due to their rarity and lack of reliable information based on well-controlled randomized trials. Chemotherapeutic regimens for treatment of these diseases have been mainly based on the observations of isolated, small case series or clinical trials with a limited numbers of patients. However, accumulating evidence regarding their pathobiological backgrounds as well as recent advances in molecular biotechnology have facilitated the development of novel drugs for treatment of these diseases. Over the past decade, the U.S. Food and Drug Administration has approved several molecular targeting therapies, including Hedgehog inhibitors for BCC, monoclonal antibodies targeting anti-programmed death ligand-1 and anti- programmed cell death 1 (PD-1) for MCC, and anti-PD-1 for cSCC. Here, we review their clinical utility and discuss updated systemic treatment strategies for advanced NMSC.
Collapse
Affiliation(s)
- Keiji Tanese
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshio Nakamura
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Ikuko Hirai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
66
|
Harms PW, Harms KL, Moore PS, DeCaprio JA, Nghiem P, Wong MKK, Brownell I. The biology and treatment of Merkel cell carcinoma: current understanding and research priorities. Nat Rev Clin Oncol 2019; 15:763-776. [PMID: 30287935 PMCID: PMC6319370 DOI: 10.1038/s41571-018-0103-2] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer associated with advanced age and immunosuppression. Over the past decade, an association has been discovered between MCC and either integration of the Merkel cell polyomavirus, which likely drives tumorigenesis, or somatic mutations owing to ultraviolet-induced DNA damage. Both virus-positive and virus-negative MCCs are immunogenic, and inhibition of the programmed cell death protein 1 (PD-1)–programmed cell death 1 ligand 1 (PD-L1) immune checkpoint has proved to be highly effective in treating patients with metastatic MCC; however, not all patients have a durable response to immunotherapy. Despite these rapid advances in the understanding and management of patients with MCC, many basic, translational and clinical research questions remain unanswered. In March 2018, an International Workshop on Merkel Cell Carcinoma Research was held at the US National Cancer Institute, at which academic, government and industry experts met to identify the highest-priority research questions. Here, we review the biology and treatment of MCC and report the consensus-based recommendations agreed upon during the workshop. Merkel cell carcinoma (MCC) is a rare and aggressive form of nonmelanoma skin cancer. The availability of immune checkpoint inhibition has improved the outcomes of a subset of patients with MCC, although many unmet needs continue to exist. In this Consensus Statement, the authors summarize developments in our understanding of MCC while also providing consensus recommendations for future research.
Collapse
Affiliation(s)
- Paul W Harms
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kelly L Harms
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Patrick S Moore
- Cancer Virology Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paul Nghiem
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Michael K K Wong
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) and National Cancer Institute (NCI), NIH, Bethesda, MD, USA.
| | | |
Collapse
|
67
|
Abstract
Among Polyomaviridae family of viruses, Merkel Cell Polyomavirus (MCV) is the only human polyomavirus with convincing data supporting its classification as a direct causative agent of a human skin malignancy, Merkel Cell Carcinoma. Oncogenic transformation by MCV requires the integration of the viral genome into the human genome, truncation of the large T antigen (LT) to render the viral genome replication deficient and expression of small T antigen oncoprotein. The chromatin binding protein BRD4, was recently shown to transcriptionally regulate the expression of virus oncoproteins, thereby enhancing the tumorigenesis of virus-associated cancers, such as HPV associated cervical cancer. Previous work by Wang et al. revealed that BRD4 interacts with MCV full length LT during viral replication. In this study, we demonstrated that MCV truncated tumor LT antigen also interacts with BRD4 protein. We showed that the MCV tumor LT antigen and BRD4 protein complex co-localizes within the nucleus. Furthermore, we tested whether BRD4 protein transcriptionally regulates MCV Non Coding Control Region (NCCR), where we found that though full length LT and sT together, along with the BRD4 protein showed enhanced transcriptional activity whereas tumor truncated LT did not. These findings on the interactions of the MCV tumor truncated LT antigen with the BRD4 protein add to existing knowledge about interactions with LT and its role in tumorigenesis, and assist in efforts to more precisely define new therapy targets for this disease.
Collapse
Affiliation(s)
- Reety Arora
- Sudhir Krishna Group, National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Arushi Vats
- Sudhir Krishna Group, National Centre for Biological Sciences, TIFR, Bangalore, India.,Lawrence Banks Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Vrushali Chimankar
- Sudhir Krishna Group, National Centre for Biological Sciences, TIFR, Bangalore, India.,Hunter Medical Research Institute, University of Newcastle, Australia
| |
Collapse
|
68
|
Nguyen KD, Chamseddin BH, Cockerell CJ, Wang RC. The Biology and Clinical Features of Cutaneous Polyomaviruses. J Invest Dermatol 2018; 139:285-292. [PMID: 30470393 DOI: 10.1016/j.jid.2018.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022]
Abstract
Human polyomaviruses are double-stand DNA viruses with a conserved genomic structure, yet they present with diverse tissue tropisms and disease presentations. Merkel cell polyomavirus, trichodysplasia spinulosa polyomavirus, human polyomavirus 6 and 7, and Malawi polyomavirus are shed from the skin, and Merkel cell polyomavirus, trichodysplasia spinulosa polyomavirus, human polyomavirus 6 and 7 have been linked to specific skin diseases. We present an update on the genomic and clinical features of these cutaneous polyomaviruses.
Collapse
Affiliation(s)
- Khang D Nguyen
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA
| | - Bahir H Chamseddin
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA
| | - Clay J Cockerell
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA
| | - Richard C Wang
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA.
| |
Collapse
|
69
|
Kumar S, Xie H, Scicluna P, Lee L, Björnhagen V, Höög A, Larsson C, Lui WO. MiR-375 Regulation of LDHB Plays Distinct Roles in Polyomavirus-Positive and -Negative Merkel Cell Carcinoma. Cancers (Basel) 2018; 10:E443. [PMID: 30441870 PMCID: PMC6267432 DOI: 10.3390/cancers10110443] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNA-375 (miR-375) is deregulated in multiple tumor types and regulates important targets involved in tumorigenesis and metastasis. This miRNA is highly expressed in Merkel cell carcinoma (MCC) compared to normal skin and other non-MCC skin cancers, and its expression is high in Merkel cell polyomavirus (MCPyV)-positive (MCPyV+) and low in MCPyV-negative (MCPyV-) MCC tumors. In this study, we characterized the function and target of miR-375 in MCPyV+ and MCPyV- MCC cell lines. Ectopic expression of miR-375 in MCPyV- MCC cells resulted in decreased cell proliferation and migration, as well as increased cell apoptosis and cell cycle arrest. However, in MCPyV+ MCC cells, inhibition of miR-375 expression reduced cell growth and induced apoptosis. Additionally, the expression of lactate dehydrogenase B (LDHB), a known target of miR-375, was inversely correlated with miR-375. Silencing of LDHB reduced cell growth in MCPyV- cell lines, while its silencing in MCPyV+ cell lines rescued the cell growth effect mediated by miR-375 inhibition. Together, our results suggest dual roles of miR-375 and LDHB in MCPyV and non-MCPyV-associated MCCs. We propose that LDHB could be a therapeutic target in MCC and different strategies should be applied in virus- and non-virus-associated MCCs.
Collapse
Affiliation(s)
- Satendra Kumar
- Department of Oncology-Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden.
- Cancer Center Karolinska, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
| | - Hong Xie
- Department of Oncology-Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden.
- Cancer Center Karolinska, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Patrick Scicluna
- Department of Oncology-Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden.
- Cancer Center Karolinska, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17165 Stockholm, Sweden.
| | - Linkiat Lee
- Department of Oncology-Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden.
- Cancer Center Karolinska, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
| | - Viveca Björnhagen
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
| | - Anders Höög
- Department of Oncology-Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden.
- Cancer Center Karolinska, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
- Department of Clinical Pathology and Cytology, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden.
- Cancer Center Karolinska, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
- Department of Clinical Pathology and Cytology, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden.
- Cancer Center Karolinska, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
| |
Collapse
|
70
|
Prado JCM, Monezi TA, Amorim AT, Lino V, Paladino A, Boccardo E. Human polyomaviruses and cancer: an overview. Clinics (Sao Paulo) 2018; 73:e558s. [PMID: 30328951 PMCID: PMC6157077 DOI: 10.6061/clinics/2018/e558s] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/15/2018] [Indexed: 12/27/2022] Open
Abstract
The name of the family Polyomaviridae, derives from the early observation that cells infected with murine polyomavirus induced multiple (poly) tumors (omas) in immunocompromised mice. Subsequent studies showed that many members of this family exhibit the capacity of mediating cell transformation and tumorigenesis in different experimental models. The transformation process mediated by these viruses is driven by viral pleiotropic regulatory proteins called T (tumor) antigens. Similar to other viral oncoproteins T antigens target cellular regulatory factors to favor cell proliferation, immune evasion and downregulation of apoptosis. The first two human polyomaviruses were isolated over 45 years ago. However, recent advances in the DNA sequencing technologies led to the rapid identification of additional twelve new polyomaviruses in different human samples. Many of these viruses establish chronic infections and have been associated with conditions in immunosuppressed individuals, particularly in organ transplant recipients. This has been associated to viral reactivation due to the immunosuppressant therapy applied to these patients. Four polyomaviruses namely, Merkel cell polyomavirus (MCPyV), Trichodysplasia spinulosa polyomavirus (TSPyV), John Cunningham Polyomavirus (JCPyV) and BK polyomavirus (BKPyV) have been associated with the development of specific malignant tumors. However, present evidence only supports the role of MCPyV as a carcinogen to humans. In the present review we present a summarized discussion on the current knowledge concerning the role of MCPyV, TSPyV, JCPyV and BKPyV in human cancers.
Collapse
Affiliation(s)
- José Carlos Mann Prado
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Telma Alves Monezi
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Aline Teixeira Amorim
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Vanesca Lino
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Andressa Paladino
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Enrique Boccardo
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
71
|
Cellular sheddases are induced by Merkel cell polyomavirus small tumour antigen to mediate cell dissociation and invasiveness. PLoS Pathog 2018; 14:e1007276. [PMID: 30188954 PMCID: PMC6143273 DOI: 10.1371/journal.ppat.1007276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/18/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer with a high propensity for recurrence and metastasis. Merkel cell polyomavirus (MCPyV) is recognised as the causative factor in the majority of MCC cases. The MCPyV small tumour antigen (ST) is considered to be the main viral transforming factor, however potential mechanisms linking ST expression to the highly metastatic nature of MCC are yet to be fully elucidated. Metastasis is a complex process, with several discrete steps required for the formation of secondary tumour sites. One essential trait that underpins the ability of cancer cells to metastasise is how they interact with adjoining tumour cells and the surrounding extracellular matrix. Here we demonstrate that MCPyV ST expression disrupts the integrity of cell-cell junctions, thereby enhancing cell dissociation and implicate the cellular sheddases, A disintegrin and metalloproteinase (ADAM) 10 and 17 proteins in this process. Inhibition of ADAM 10 and 17 activity reduced MCPyV ST-induced cell dissociation and motility, attributing their function as critical to the MCPyV-induced metastatic processes. Consistent with these data, we confirm that ADAM 10 and 17 are upregulated in MCPyV-positive primary MCC tumours. These novel findings implicate cellular sheddases as key host cell factors contributing to virus-mediated cellular transformation and metastasis. Notably, ADAM protein expression may be a novel biomarker of MCC prognosis and given the current interest in cellular sheddase inhibitors for cancer therapeutics, it highlights ADAM 10 and 17 activity as a novel opportunity for targeted interventions for disseminated MCC.
Collapse
|
72
|
Merkel Cell Carcinoma: Updates on Pathogenesis, Diagnosis, and Management. CURRENT DERMATOLOGY REPORTS 2018. [DOI: 10.1007/s13671-018-0221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
73
|
Tornesello ML, Annunziata C, Tornesello AL, Buonaguro L, Buonaguro FM. Human Oncoviruses and p53 Tumor Suppressor Pathway Deregulation at the Origin of Human Cancers. Cancers (Basel) 2018; 10:213. [PMID: 29932446 PMCID: PMC6071257 DOI: 10.3390/cancers10070213] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
Viral oncogenesis is a multistep process largely depending on the complex interplay between viruses and host factors. The oncoviruses are capable of subverting the cell signaling machinery and metabolic pathways and exploit them for infection, replication, and persistence. Several viral oncoproteins are able to functionally inactivate the tumor suppressor p53, causing deregulated expression of many genes orchestrated by p53, such as those involved in apoptosis, DNA stability, and cell proliferation. The Epstein⁻Barr virus (EBV) BZLF1, the high-risk human papillomavirus (HPV) E6, and the hepatitis C virus (HCV) NS5 proteins have shown to directly bind to and degrade p53. The hepatitis B virus (HBV) HBx and the human T cell lymphotropic virus-1 (HTLV-1) Tax proteins inhibit p53 activity through the modulation of p300/CBP nuclear factors, while the Kaposi's sarcoma herpesvirus (HHV8) LANA, vIRF-1 and vIRF-3 proteins have been shown to destabilize the oncosuppressor, causing a decrease in its levels in the infected cells. The large T antigen of the Merkel cell polyomavirus (MCPyV) does not bind to p53 but significantly reduces p53-dependent transcription. This review describes the main molecular mechanisms involved in the interaction between viral oncoproteins and p53-related pathways as well as in the development of therapeutic strategies targeting such interactions.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", via Mariano Semmola, 80131 Napoli, Italy.
| | - Clorinda Annunziata
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", via Mariano Semmola, 80131 Napoli, Italy.
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", via Mariano Semmola, 80131 Napoli, Italy.
| | - Luigi Buonaguro
- Cancer Immunomodulation Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", via Mariano Semmola, 80131 Napoli, Italy.
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", via Mariano Semmola, 80131 Napoli, Italy.
| |
Collapse
|
74
|
Colunga A, Pulliam T, Nghiem P. Merkel Cell Carcinoma in the Age of Immunotherapy: Facts and Hopes. Clin Cancer Res 2018; 24:2035-2043. [PMID: 29217527 PMCID: PMC5932211 DOI: 10.1158/1078-0432.ccr-17-0439] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/12/2017] [Accepted: 12/01/2017] [Indexed: 11/16/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare (∼2,000 U.S. cases/year) but aggressive neuroendocrine tumor of the skin. For advanced MCC, cytotoxic chemotherapy only infrequently (<10% of cases) offers durable clinical responses (>1 year), suggesting a great need for improved therapeutic options. In 2008, the Merkel cell polyomavirus (MCPyV) was discovered and is clonally integrated in approximately 80% of MCC tumors. The remaining 20% of MCC tumors have large numbers of UV-associated mutations. Importantly, both the UV-induced neoantigens in virus-negative tumors and the MCPyV T antigen oncogenes that are required for virus-positive tumor growth are immunogenic. Indeed, antigen-specific T cells detected in patients are frequently dysfunctional/"exhausted," and the inhibitory ligand, PD-L1, is often present in MCC tumors. These findings led to recent clinical trials involving PD-1 pathway blockade in advanced MCC. The combined data from these trials involving three PD-1 pathway blocking agents-avelumab, pembrolizumab, and nivolumab-indicated a high frequency of durable responses in treated patients. Of note, prior treatment with chemotherapy was associated with decreased response rates to PD-1 checkpoint blockade. Over the past year, these striking data led to major changes in advanced MCC therapy, including the first-ever FDA drug approval for this disease. Despite these successes, approximately 50% of patients with MCC do not persistently benefit from PD-1 pathway blockade, underscoring the need for novel strategies to broaden antitumor immune responses in these patients. Here, we highlight recent progress in MCC including the underlying mechanisms of immune evasion and emerging approaches to augment the efficacy of PD-1 pathway blockade. Clin Cancer Res; 24(9); 2035-43. ©2017 AACR.
Collapse
Affiliation(s)
- Aric Colunga
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington
| | - Thomas Pulliam
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington.
- Seattle Cancer Care Alliance, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
75
|
DeCaprio JA. Merkel cell polyomavirus and Merkel cell carcinoma. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0276. [PMID: 28893943 DOI: 10.1098/rstb.2016.0276] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/27/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) causes the highly aggressive and relatively rare skin cancer known as Merkel cell carcinoma (MCC). MCPyV also causes a lifelong yet relatively innocuous infection and is one of 14 distinct human polyomaviruses species. Although polyomaviruses typically do not cause illness in healthy individuals, several can cause catastrophic diseases in immunocompromised hosts. MCPyV is the only polyomavirus clearly associated with human cancer. How MCPyV causes MCC and what oncogenic events must transpire to enable this virus to cause MCC is the focus of this essay.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA .,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
76
|
Becker JC, Stang A, Hausen AZ, Fischer N, DeCaprio JA, Tothill RW, Lyngaa R, Hansen UK, Ritter C, Nghiem P, Bichakjian CK, Ugurel S, Schrama D. Epidemiology, biology and therapy of Merkel cell carcinoma: conclusions from the EU project IMMOMEC. Cancer Immunol Immunother 2018; 67:341-351. [PMID: 29188306 PMCID: PMC6015651 DOI: 10.1007/s00262-017-2099-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/24/2017] [Indexed: 01/23/2023]
Abstract
Merkel cell carcinoma (MCC) is a highly aggressive, often lethal neuroendocrine cancer. Its carcinogenesis may be either caused by the clonal integration of the Merkel cell polyomavirus into the host genome or by UV-induced mutations. Notably, virally-encoded oncoproteins and UV-induced mutations affect comparable signaling pathways such as RB restriction of cell cycle progression or p53 inactivation. Despite its low incidence, MCC recently received much attention based on its exquisite immunogenicity and the resulting major success of immune modulating therapies. Here, we summarize current knowledge on epidemiology, biology and therapy of MCC as conclusion of the project 'Immune Modulating strategies for treatment of Merkel Cell Carcinoma', which was funded over a 5-year period by the European Commission to investigate innovative immunotherapies for MCC.
Collapse
Affiliation(s)
- Jürgen C Becker
- Translational Skin Cancer Research (tscr), German Cancer Consortium (DKTK), University Hospital of Essen, Universitätsstrasse 1, S05 T05 B, 45141, Essen, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Dermatology, University Hospital of Essen, Essen, Germany.
| | - Andreas Stang
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center of Clinical Epidemiology; c/o Institute of Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Axel Zur Hausen
- Department of Pathology, Academisch Ziekenhuis Maastricht, Maastricht, The Netherlands
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - James A DeCaprio
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | - Rikke Lyngaa
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Ulla Kring Hansen
- George F. Odland Endowed Chair in Dermatology, University of Washington, Seattle, WA, USA
| | - Cathrin Ritter
- Translational Skin Cancer Research (tscr), German Cancer Consortium (DKTK), University Hospital of Essen, Universitätsstrasse 1, S05 T05 B, 45141, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Nghiem
- George F. Odland Endowed Chair in Dermatology, University of Washington, Seattle, WA, USA
| | | | - Selma Ugurel
- Department of Dermatology, University Hospital of Essen, Essen, Germany
| | - David Schrama
- Department of Dermatology, University Hospital Wuerzburg, Würzburg, Germany
| |
Collapse
|
77
|
Hesbacher S, Pfitzer L, Wiedorfer K, Angermeyer S, Borst A, Haferkamp S, Scholz CJ, Wobser M, Schrama D, Houben R. RB1 is the crucial target of the Merkel cell polyomavirus Large T antigen in Merkel cell carcinoma cells. Oncotarget 2018; 7:32956-68. [PMID: 27121059 PMCID: PMC5078066 DOI: 10.18632/oncotarget.8793] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
The pocket protein (PP) family consists of the three members RB1, p107 and p130 all possessing tumor suppressive properties. Indeed, the PPs jointly control the G1/S transition mainly by inhibiting E2F transcription factors. Notably, several viral oncoproteins are capable of binding and inhibiting PPs. Merkel cell polyomavirus (MCPyV) is considered as etiological factor for Merkel cell carcinoma (MCC) with expression of the viral Large T antigen (LT) harboring an intact PP binding domain being required for proliferation of most MCC cells. Therefore, we analyzed the interaction of MCPyV-LT with the PPs. Co-IP experiments indicate that MCPyV-LT binds potently only to RB1. Moreover, MCPyV-LT knockdown-induced growth arrest in MCC cells can be rescued by knockdown of RB1, but not by p107 or p130 knockdown. Accordingly, cell cycle arrest and E2F target gene repression mediated by the single PPs can only in the case of RB1 be significantly reverted by MCPyV-LT expression. Moreover, data from an MCC patient indicate that loss of RB1 rendered the MCPyV-positive MCC cells LT independent. Thus, our results suggest that RB1 is the dominant tumor suppressor PP in MCC, and that inactivation of RB1 by MCPyV-LT is largely sufficient for its growth supporting function in established MCPyV-positive MCC cells.
Collapse
Affiliation(s)
- Sonja Hesbacher
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Lisa Pfitzer
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany.,Department of Pharmacy, Center for Drug Research, University of Munich (Ludwigs-Maximilians-Universität), Munich, Germany
| | - Katharina Wiedorfer
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Sabrina Angermeyer
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Borst
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | | | | | - Marion Wobser
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
78
|
Palopoli N, González Foutel NS, Gibson TJ, Chemes LB. Short linear motif core and flanking regions modulate retinoblastoma protein binding affinity and specificity. Protein Eng Des Sel 2018; 31:69-77. [DOI: 10.1093/protein/gzx068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/10/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Nicolás Palopoli
- Department of Science and Technology, Universidad Nacional de Quilmes, CONICET. Roque Sáenz Peña 352. CP (B1876BXD), Bernal, Buenos Aires, Argentina
- Structural Bioinformatics Unit, Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435 CP 1405, Buenos Aires, Argentina
| | - Nicolás S González Foutel
- Protein Structure Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435 CP 1405, Buenos Aires, Argentina
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Lucía B Chemes
- Protein Structure Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435 CP 1405, Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, Universidad Nacional de San Martín. Av. 25 de Mayo y Francia CP 1650, San Martín, Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Argentina
| |
Collapse
|
79
|
Baez CF, Brandão Varella R, Villani S, Delbue S. Human Polyomaviruses: The Battle of Large and Small Tumor Antigens. Virology (Auckl) 2017; 8:1178122X17744785. [PMID: 29238174 PMCID: PMC5721967 DOI: 10.1177/1178122x17744785] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022] Open
Abstract
About 40 years ago, the large and small tumor antigens (LT-Ag and sT-Ag) of the polyomavirus (PyVs) simian vacuolating virus 40 have been identified and characterized. To date, it is well known that all the discovered human PyVs (HPyVs) encode these 2 multifunctional and tumorigenic proteins, expressed at viral replication early stage. The 2 T-Ags are able to transform cells both in vitro and in vivo and seem to play a distinct role in the pathogenesis of some tumors in humans. In addition, they are involved in viral DNA replication, transcription, and virion assembly. This short review focuses on the structural and functional features of the HPyVs’ LT-Ag and sT-Ag, with special attention to their transforming properties.
Collapse
Affiliation(s)
- Camila Freze Baez
- Department of Preventive Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Sonia Villani
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| |
Collapse
|
80
|
Mui UN, Haley CT, Tyring SK. Viral Oncology: Molecular Biology and Pathogenesis. J Clin Med 2017; 6:E111. [PMID: 29186062 PMCID: PMC5742800 DOI: 10.3390/jcm6120111] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Oncoviruses are implicated in approximately 12% of all human cancers. A large number of the world's population harbors at least one of these oncoviruses, but only a small proportion of these individuals go on to develop cancer. The interplay between host and viral factors is a complex process that works together to create a microenvironment conducive to oncogenesis. In this review, the molecular biology and oncogenic pathways of established human oncoviruses will be discussed. Currently, there are seven recognized human oncoviruses, which include Epstein-Barr Virus (EBV), Human Papillomavirus (HPV), Hepatitis B and C viruses (HBV and HCV), Human T-cell lymphotropic virus-1 (HTLV-1), Human Herpesvirus-8 (HHV-8), and Merkel Cell Polyomavirus (MCPyV). Available and emerging therapies for these oncoviruses will be mentioned.
Collapse
Affiliation(s)
- Uyen Ngoc Mui
- Center for Clinical Studies, Houston, TX 77004, USA.
| | | | - Stephen K Tyring
- Center for Clinical Studies, Houston, TX 77004, USA.
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX 77004, USA.
| |
Collapse
|
81
|
Abstract
Merkel cell carcinoma (MCC) is a rare but highly aggressive skin cancer with neuroendocrine features. MCC pathogenesis is associated with either the presence of Merkel cell polyomavirus or chronic exposure to ultraviolet light (UV), which can cause a characteristic pattern of multiple DNA mutations. Notably, in the Northern hemisphere, the majority of MCC cases are of viral aetiology; by contrast, in areas with high UV exposure, UV-mediated carcinogenesis is predominant. The two aetiologies share similar clinical, histopathological and prognostic characteristics. MCC presents with a solitary cutaneous or subcutaneous nodule, most frequently in sun-exposed areas. In fact, UV exposure is probably involved in both viral-mediated and non-viral-mediated carcinogenesis, by contributing to immunosuppression or DNA damage, respectively. Confirmation of diagnosis relies on analyses of histological features and immunological marker expression profiles of the lesion. At primary diagnosis, loco-regional metastases are already present in ∼30% of patients. Excision of the tumour is the first-line therapy; if not feasible, radiotherapy can often effectively control the disease. Chemotherapy was the only alternative in advanced-stage or refractory MCC until several clinical trials demonstrated the efficacy of immune-checkpoint inhibitors.
Collapse
|
82
|
Cheng J, Park DE, Berrios C, White EA, Arora R, Yoon R, Branigan T, Xiao T, Westerling T, Federation A, Zeid R, Strober B, Swanson SK, Florens L, Bradner JE, Brown M, Howley PM, Padi M, Washburn MP, DeCaprio JA. Merkel cell polyomavirus recruits MYCL to the EP400 complex to promote oncogenesis. PLoS Pathog 2017; 13:e1006668. [PMID: 29028833 PMCID: PMC5640240 DOI: 10.1371/journal.ppat.1006668] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/25/2017] [Indexed: 11/19/2022] Open
Abstract
Merkel cell carcinoma (MCC) frequently contains integrated copies of Merkel cell polyomavirus DNA that express a truncated form of Large T antigen (LT) and an intact Small T antigen (ST). While LT binds RB and inactivates its tumor suppressor function, it is less clear how ST contributes to MCC tumorigenesis. Here we show that ST binds specifically to the MYC homolog MYCL (L-MYC) and recruits it to the 15-component EP400 histone acetyltransferase and chromatin remodeling complex. We performed a large-scale immunoprecipitation for ST and identified co-precipitating proteins by mass spectrometry. In addition to protein phosphatase 2A (PP2A) subunits, we identified MYCL and its heterodimeric partner MAX plus the EP400 complex. Immunoprecipitation for MAX and EP400 complex components confirmed their association with ST. We determined that the ST-MYCL-EP400 complex binds together to specific gene promoters and activates their expression by integrating chromatin immunoprecipitation with sequencing (ChIP-seq) and RNA-seq. MYCL and EP400 were required for maintenance of cell viability and cooperated with ST to promote gene expression in MCC cell lines. A genome-wide CRISPR-Cas9 screen confirmed the requirement for MYCL and EP400 in MCPyV-positive MCC cell lines. We demonstrate that ST can activate gene expression in a EP400 and MYCL dependent manner and this activity contributes to cellular transformation and generation of induced pluripotent stem cells.
Collapse
Affiliation(s)
- Jingwei Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Donglim Esther Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Graduate School of Arts and Sciences, Harvard University, Boston, Massachusetts, United States of America
| | - Christian Berrios
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School; Boston, Massachusetts, United States of America
| | - Elizabeth A. White
- Department of Microbiology and Immunobiology, Harvard Medical School; Boston, Massachusetts, United States of America
| | - Reety Arora
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Rosa Yoon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Graduate School of Arts and Sciences, Harvard University, Boston, Massachusetts, United States of America
| | - Timothy Branigan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Graduate School of Arts and Sciences, Harvard University, Boston, Massachusetts, United States of America
| | - Tengfei Xiao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Thomas Westerling
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alexander Federation
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Graduate School of Arts and Sciences, Harvard University, Boston, Massachusetts, United States of America
| | - Rhamy Zeid
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Graduate School of Arts and Sciences, Harvard University, Boston, Massachusetts, United States of America
| | - Benjamin Strober
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Selene K. Swanson
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - James E. Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Peter M. Howley
- Department of Microbiology and Immunobiology, Harvard Medical School; Boston, Massachusetts, United States of America
| | - Megha Padi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Michael P. Washburn
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
83
|
Barksdale SK. Advances in Merkel cell carcinoma from a pathologist's perspective. Pathology 2017; 49:568-574. [DOI: 10.1016/j.pathol.2017.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/28/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
|
84
|
Biology, evolution, and medical importance of polyomaviruses: An update. INFECTION GENETICS AND EVOLUTION 2017. [DOI: 10.1016/j.meegid.2017.06.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
85
|
Marongiu L. Proportion of transcriptionally active DNA virus integrants: a meta-analysis. Future Virol 2017. [DOI: 10.2217/fvl-2017-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oncoviruses are collectively responsible for over 1,000,000 new cases of cancer per year; some can integrate into the host's chromosomes. The present work was aimed at assessing the proportion of transcriptionally active viral integrants through a systematic review of the scientific publications present on the MedLine database. From the articles screened, 628 viral integrants overall were retrieved, of which 530.84 were transcriptionally active (84.53%); among the clinical samples, 264 of 323 integrants were active (81.73%). The causes for the silencing were not addressed in the articles analyzed. These findings might highlight a possible risk factor for the insurgence of cancer since some oncovirus integrants could be reactivated by stimuli of disparate nature. Further studies should address such possibility.
Collapse
Affiliation(s)
- Luigi Marongiu
- Roslin Institute, the University of Edinburgh, Easter Bush campus, EH25 9RG Edinburgh, Scotland
| |
Collapse
|
86
|
Schadendorf D, Nghiem P, Bhatia S, Hauschild A, Saiag P, Mahnke L, Hariharan S, Kaufman HL. Immune evasion mechanisms and immune checkpoint inhibition in advanced merkel cell carcinoma. Oncoimmunology 2017; 6:e1338237. [PMID: 29123950 DOI: 10.1080/2162402x.2017.1338237] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/25/2017] [Accepted: 05/27/2017] [Indexed: 12/22/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare skin cancer caused by Merkel cell polyomavirus (MCPyV) infection and/or ultraviolet radiation-induced somatic mutations. The presence of tumor-infiltrating lymphocytes is evidence that an active immune response to MCPyV and tumor-associated neoantigens occurs in some patients. However, inhibitory immune molecules, including programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1), within the MCC tumor microenvironment aid in tumor evasion of T-cell-mediated clearance. Unlike chemotherapy, treatment with anti-PD-L1 (avelumab) or anti-PD-1 (pembrolizumab) antibodies leads to durable responses in MCC, in both virus-positive and virus-negative tumors. As many tumors are established through the evasion of infiltrating immune-cell clearance, the lessons learned in MCC may be broadly relevant to many cancers.
Collapse
Affiliation(s)
- Dirk Schadendorf
- Department of Dermatology, Essen University Hospital, Germany and German Cancer Consortium Partner Site Essen/Düsseldorf, Essen, Germany
| | - Paul Nghiem
- Department of Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Shailender Bhatia
- Department of Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Axel Hauschild
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - Philippe Saiag
- Head of Service de Dermatologie Générale et Oncologique, University of Versailles-SQY, CHU A Paré, Boulogne Cedex, France
| | - Lisa Mahnke
- EMD Serono, Inc., Billerica, Boston, MA, USA
| | | | - Howard L Kaufman
- Department of Surgery and Medicine, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
87
|
Knips J, Czech-Sioli M, Spohn M, Heiland M, Moll I, Grundhoff A, Schumacher U, Fischer N. Spontaneous lung metastasis formation of human Merkel cell carcinoma cell lines transplanted into scid mice. Int J Cancer 2017; 141:160-171. [PMID: 28380668 DOI: 10.1002/ijc.30723] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/08/2017] [Accepted: 03/09/2017] [Indexed: 01/10/2023]
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer entity that frequently leads to rapid death due to its high propensity to metastasize. The etiology of most MCC cases is linked to Merkel cell polyomavirus (MCPyV), a virus which is monoclonally integrated in up to 95% of tumors. While there are presently no animal models to study the role of authentic MCPyV infection on transformation, tumorigenesis or metastasis formation, xenograft mouse models employing engrafted MCC-derived cell lines (MCCL) represent a promising approach to study certain aspects of MCC pathogenesis. Here, the two MCPyV-positive MCC cell lines WaGa and MKL-1 were subcutaneously engrafted in scid mice. Engraftment of both MCC cell lines resulted in the appearance of circulating tumor cells and metastasis formation, with WaGa-engrafted mice showing a significantly shorter survival time as well as increased numbers of spontaneous lung metastases compared to MKL-1 mice. Interestingly, explanted tumors compared to parental cell lines exhibit an upregulation of MCPyV sT-Antigen expression in all tumors, with WaGa tumors showing significantly higher sT-Antigen expression than MKL-1 tumors. RNA-Seq analysis of explanted tumors and parental cell lines furthermore revealed that in the more aggressive WaGa tumors, genes involved in inflammatory response, growth factor activity and Wnt signalling pathway are significantly upregulated, suggesting that sT-Antigen is the driver of the observed differences in metastasis formation.
Collapse
Affiliation(s)
- Jill Knips
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manja Czech-Sioli
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany
| | - Michael Spohn
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery, Charité Universitätsmedizin Berlin, Germany
| | - Ingrid Moll
- Department of Dermatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adam Grundhoff
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
88
|
Korup-Schulz SV, Lucke C, Moens U, Schmuck R, Ehlers B. Large T antigen variants of human polyomaviruses 9 and 12 and seroreactivity against their N terminus. J Gen Virol 2017; 98:704-714. [PMID: 28113048 DOI: 10.1099/jgv.0.000714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The tumour antigens (TAgs) of mammalian polyomaviruses (PyVs) are key proteins responsible for modulating the host cell cycle and are involved in virus replication as well as cell transformation and tumour formation. Here we aimed to identify mRNA sequences of known and novel TAgs encoded by the recently discovered human polyomaviruses 9 and 12 (HPyV9 and HPyV12) in cell culture. Synthetic viral genomes were transfected into human and animal cell lines. Gene expression occurred in most cell lines, as measured by quantitative PCR of cDNA copies of mRNA encoding major structural protein VP1. Large TAg- and small TAg-encoding mRNAs were detected in all cell lines, and additional spliced mRNAs were identified encoding TAg variants of 145 aa (HPyV9) and 84 aa (HPyV12). Using as antigens in ELISA the N-terminal 78 aa common to all respective TAg variants of HPyV9 and HPyV12, seroreactivity of 100 healthy blood donors, 54 patients with malignant diseases of the gastrointestinal tract (GIT) and 32 patients with non-malignant diseases of the GIT was analysed. For comparison, the corresponding TAg N termini of BK PyV (BKPyV) and Merkel cell PyV (MCPyV) were included. Frequent reactivity against HPyV9, HPyV12 and BKPyV TAgs, but not MCPyV TAg, was observed in all tested groups. This indicates expression activity of the early region of three human PyVs in healthy and diseased subjects.
Collapse
Affiliation(s)
- Sarah-Verena Korup-Schulz
- Division 12 'Measles, Mumps, Rubella, and Viruses Affecting Immunocompromised Patients', Robert Koch Institute, Berlin, Germany
| | - Claudia Lucke
- Division 12 'Measles, Mumps, Rubella, and Viruses Affecting Immunocompromised Patients', Robert Koch Institute, Berlin, Germany
| | - Ugo Moens
- Faculty of Health Sciences, Department of Medical Biology, University of Tromsø, NO-9037 Tromsø, Norway
| | - Rosa Schmuck
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Campus Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bernhard Ehlers
- Division 12 'Measles, Mumps, Rubella, and Viruses Affecting Immunocompromised Patients', Robert Koch Institute, Berlin, Germany
| |
Collapse
|
89
|
Pesavento PA, Brostoff T, Church ME, Dela Cruz FN, Woolard KD. Polyomavirus and Naturally Occuring Neuroglial Tumors in Raccoons (Procyon Lotor). ILAR J 2016; 56:297-305. [PMID: 26912716 DOI: 10.1093/ilar/ilv036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Polyomavirus (PyV) infections are widespread in human populations and, although generally associated with silent persistence, rarely cause severe disease. Among diseases convincingly associated with natural PyV infections of humans, there are remarkably different tissue tropisms and outcomes, including progressive multifocal leukoencephalopathy, transient or progressive nephropathy, and cancer. The variable character and unpredictable outcomes of infection attest to large gaps in our basic understanding of PyV biology. In particular, the rich history of research demonstrating the oncogenic potential of PyVs in laboratory animals begs the question of why cancer is not more often associated with infection. Raccoon polyomavirus (RacPyV), discovered in 2010, is consistently identified in neuroglial tumors in free-ranging raccoons in the western United States. Exposure to RacPyV is widespread, and RacPyV is detected in tissues of raccoons without tumors. Studying the relationship of RacPyV with its natural host is a unique opportunity to uncover cogent cellular targets and protein interactions between the virus and its host. Our hypothesis is that RacPyV, as an intact episome, alters cellular pathways within neural progenitor cells and drives oncogenesis.
Collapse
Affiliation(s)
- Patricia A Pesavento
- Patricia A. Pesavento, DVM, PhD, is a professor, Terza Brostoff, is a graduate and veterinary student, Molly E. Church, MS, VMD, is a graduate student, Florante N. Dela Cruz Jr., BS, is a staff research associate, and Kevin D. Woolard, DVM, PhD, is an assistant professor in the Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine at the University of California, Davis
| | - Terza Brostoff
- Patricia A. Pesavento, DVM, PhD, is a professor, Terza Brostoff, is a graduate and veterinary student, Molly E. Church, MS, VMD, is a graduate student, Florante N. Dela Cruz Jr., BS, is a staff research associate, and Kevin D. Woolard, DVM, PhD, is an assistant professor in the Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine at the University of California, Davis
| | - Molly E Church
- Patricia A. Pesavento, DVM, PhD, is a professor, Terza Brostoff, is a graduate and veterinary student, Molly E. Church, MS, VMD, is a graduate student, Florante N. Dela Cruz Jr., BS, is a staff research associate, and Kevin D. Woolard, DVM, PhD, is an assistant professor in the Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine at the University of California, Davis
| | - Florante N Dela Cruz
- Patricia A. Pesavento, DVM, PhD, is a professor, Terza Brostoff, is a graduate and veterinary student, Molly E. Church, MS, VMD, is a graduate student, Florante N. Dela Cruz Jr., BS, is a staff research associate, and Kevin D. Woolard, DVM, PhD, is an assistant professor in the Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine at the University of California, Davis
| | - Kevin D Woolard
- Patricia A. Pesavento, DVM, PhD, is a professor, Terza Brostoff, is a graduate and veterinary student, Molly E. Church, MS, VMD, is a graduate student, Florante N. Dela Cruz Jr., BS, is a staff research associate, and Kevin D. Woolard, DVM, PhD, is an assistant professor in the Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine at the University of California, Davis
| |
Collapse
|
90
|
Neumann F, Czech-Sioli M, Dobner T, Grundhoff A, Schreiner S, Fischer N. Replication of Merkel cell polyomavirus induces reorganization of promyelocytic leukemia nuclear bodies. J Gen Virol 2016; 97:2926-2938. [PMID: 27580912 DOI: 10.1099/jgv.0.000593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is associated with Merkel cell carcinoma (MCC), a rare but aggressive skin cancer. The virus is highly prevalent: 60-80 % of adults are seropositive; however, cells permissive for MCPyV infection are unknown. Consequently, very little information about the MCPyV life cycle is available. Until recently, MCPyV replication could only be studied using a semi-permissive in vitro replication system (Neumann et al., 2011; Feng et al., 2011, Schowalter et al., 2011). MCPyV replication most likely depends on subnuclear structures such as promyelocytic leukemia protein nuclear bodies (PML-NBs), which are known to play regulatory roles in the infection of many DNA viruses. Here, we investigated PML-NB components as candidate host factors to control MCPyV DNA replication. We showed that PML-NBs change in number and size in cells actively replicating MCPyV proviral DNA. We observed a significant increase in PML-NBs in cells positive for MCPyV viral DNA replication. Interestingly, a significant amount of cells actively replicating MCPyV did not show any Sp100 expression. While PML and Daxx had no effect on MCPyV DNA replication, MCPyV replication was increased in cells depleted for Sp100, strongly suggesting that Sp100 is a negative regulator of MCPyV DNA replication.
Collapse
MESH Headings
- Antigens, Nuclear/genetics
- Antigens, Nuclear/metabolism
- Autoantigens/genetics
- Autoantigens/metabolism
- Carcinoma, Merkel Cell/genetics
- Carcinoma, Merkel Cell/metabolism
- Carcinoma, Merkel Cell/virology
- DNA Replication
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Humans
- Inclusion Bodies, Viral/genetics
- Inclusion Bodies, Viral/metabolism
- Inclusion Bodies, Viral/virology
- Merkel cell polyomavirus/genetics
- Merkel cell polyomavirus/physiology
- Polyomavirus Infections/genetics
- Polyomavirus Infections/metabolism
- Polyomavirus Infections/virology
- Promyelocytic Leukemia Protein/genetics
- Promyelocytic Leukemia Protein/metabolism
- Tumor Virus Infections/genetics
- Tumor Virus Infections/metabolism
- Tumor Virus Infections/virology
- Virus Replication
Collapse
Affiliation(s)
- Friederike Neumann
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manja Czech-Sioli
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Dobner
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adam Grundhoff
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sabrina Schreiner
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
91
|
Lasithiotaki I, Tsitoura E, Koutsopoulos A, Lagoudaki E, Koutoulaki C, Pitsidianakis G, Spandidos DA, Siafakas NM, Sourvinos G, Antoniou KM. Aberrant expression of miR-21, miR-376c and miR-145 and their target host genes in Merkel cell polyomavirus-positive non-small cell lung cancer. Oncotarget 2016; 8:112371-112383. [PMID: 29348831 PMCID: PMC5762516 DOI: 10.18632/oncotarget.11222] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022] Open
Abstract
Merkel Cell Polyoma Virus (MCPyV) infection has been associated with non-small cell lung cancer (NSCLC). Viruses can manipulate cellular miRNAs or have a profound impact on cellular miRNA expression to control host regulatory pathways. In this study, we evaluated the expression profiles of cancer-associated and virally affected host microRNAs miR-21, miR-145, miR-146a, miR-155, miR-302c, miR-367 and miR-376c in a series of NSCLC tissue samples as well as in samples from “healthy” sites, distant from the tumour region that were either positive or negative for MCPyV DNA. miR-21 and miR-376c were significantly upregulated whereas miR-145 was significantly downregulated in the MCPyV+ve samples compared to the MCPyV-ve tumour samples. Overall, miR-21 and miR-376c expression was higher in tumour compared to healthy tissue samples. No association was observed between the miR-155, miR-146a, miR-302c and miR-367 levels and the presence of MCPyV. The expression of miR-21 target genes (Pten, Bcl-2, Daxx, Pkr, Timp3), miR-376c (Grb2, Alk7, Mmp9) and miR-145 (Oct-4, Sox2, Fascin1) and their associated pathways (Braf, Akt-1, Akt-2, Bax, Hif1a, p53) was altered between MCPyV+ve tumor samples and their corresponding controls. These results show a novel association between miR-21, miR-376c and miR-145 and their host target genes with the presence of MCPyV, suggesting a mechanism of virus-specific microRNA signature in NSCLC.
Collapse
Affiliation(s)
- Ismini Lasithiotaki
- Department of Thoracic Medicine, University Hospital, Medical School, University of Crete, Heraklion 71110, Greece.,Laboratory of Cellular and Molecular Pneumonology, Medical School, University of Crete, Heraklion Crete 71110, Greece
| | - Eliza Tsitoura
- Laboratory of Cellular and Molecular Pneumonology, Medical School, University of Crete, Heraklion Crete 71110, Greece.,Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion Crete 71110, Greece
| | | | - Eleni Lagoudaki
- Department of Pathology, Medical School, University of Crete, Heraklion Crete 71110, Greece
| | - Chara Koutoulaki
- Laboratory of Cellular and Molecular Pneumonology, Medical School, University of Crete, Heraklion Crete 71110, Greece
| | - George Pitsidianakis
- Department of Thoracic Medicine, University Hospital, Medical School, University of Crete, Heraklion 71110, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion Crete 71110, Greece
| | - Nikolaos M Siafakas
- Department of Thoracic Medicine, University Hospital, Medical School, University of Crete, Heraklion 71110, Greece
| | - George Sourvinos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion Crete 71110, Greece
| | - Katerina M Antoniou
- Department of Thoracic Medicine, University Hospital, Medical School, University of Crete, Heraklion 71110, Greece.,Laboratory of Cellular and Molecular Pneumonology, Medical School, University of Crete, Heraklion Crete 71110, Greece
| |
Collapse
|
92
|
Liu W, MacDonald M, You J. Merkel cell polyomavirus infection and Merkel cell carcinoma. Curr Opin Virol 2016; 20:20-27. [PMID: 27521569 DOI: 10.1016/j.coviro.2016.07.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 12/17/2022]
Abstract
Merkel cell polyomavirus is the only polyomavirus discovered to date that is associated with a human cancer. MCPyV infection is highly prevalent in the general population. Nearly all healthy adults asymptomatically shed MCPyV from their skin. However, in elderly and immunosuppressed individuals, the infection can lead to a lethal form of skin cancer, Merkel cell carcinoma. In the last few years, new findings have established links between MCPyV infection, host immune response, and Merkel cell carcinoma development. This review discusses these recent discoveries on how MCPyV interacts with host cells to achieve persistent infection and, in the immunocompromised population, contributes to MCC development.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Margo MacDonald
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
93
|
Grundhoff A, Fischer N. Merkel cell polyomavirus, a highly prevalent virus with tumorigenic potential. Curr Opin Virol 2016; 14:129-37. [PMID: 26447560 DOI: 10.1016/j.coviro.2015.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 08/18/2015] [Indexed: 12/29/2022]
Abstract
Merkel cell polyomavirus (MCPyV) is the only human polyomavirus known to be involved in tumorigenesis. Like other human polyomaviruses, MCPyV is highly prevalent in the healthy population, yet the MCPyV-associated Merkel cell carcinoma (MCC) is a very rare disease. Although in vitro and in vivo models have provided significant details regarding molecular functions of viral oncoproteins during cellular transformation, many open questions about the natural life cycle of the virus, its mechanisms of persistence and the precise role of MCPyV during MCC pathogenesis remain. This review will carve out the specifics of MCPyV biology and discuss unresolved issues to help the reader gain a better understanding of what may differentiate MCPyV from other polyomaviruses.
Collapse
Affiliation(s)
- Adam Grundhoff
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Department Virus Genomics, Martinistrasse 52, 20252 Hamburg, Germany.
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University-Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
94
|
Gossai A, Waterboer T, Hoen AG, Farzan SF, Nelson HH, Michel A, Willhauck‐Fleckenstein M, Christensen BC, Perry AE, Pawlita M, Karagas MR. Human polyomaviruses and incidence of cutaneous squamous cell carcinoma in the New Hampshire skin cancer study. Cancer Med 2016; 5:1239-50. [PMID: 26899857 PMCID: PMC4924382 DOI: 10.1002/cam4.674] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/02/2016] [Accepted: 01/25/2016] [Indexed: 02/06/2023] Open
Abstract
Squamous cell carcinoma (SCC) of the skin is a malignancy arising from epithelial keratinocytes. Experimental and epidemiologic evidence raise the possibility that human polyomaviruses (PyV) may be associated with the occurrence of SCC. To investigate whether the risk for SCC was associated with PyV infection, seropositivity to 10 PyV types was assessed following diagnosis in a population-based case-control study conducted in the United States. A total of 253 SCC cases and 460 age group and gender-matched controls were included. Antibody response against each PyV was measured using a multiplex serology-based glutathione S-transferase capture assay of recombinantly expressed VP1 capsid proteins. Odds ratios (OR) for SCC associated with seropositivity to each PyV type were estimated using logistic regression, with adjustment for potentially confounding factors. SCC cases were seropositive for a greater number of PyVs than controls (P = 0.049). Those who were JC seropositive had increased odds of SCC when compared to those who were JC seronegative (OR = 1.37, 95% CI: 0.98-1.90), with an increasing trend in SCC risk with increasing quartiles of seroreactivity (P for trend = 0.04). There were no clear associations between SCC risk and serostatus for other PyV types. This study provides limited evidence that infection with certain PyVs may be related to the occurrence of SCC in the general population of the United States.
Collapse
Affiliation(s)
- Anala Gossai
- Geisel School of Medicine at DartmouthHanoverNew Hampshire
| | - Tim Waterboer
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Anne G. Hoen
- Geisel School of Medicine at DartmouthHanoverNew Hampshire
| | - Shohreh F. Farzan
- Geisel School of Medicine at DartmouthHanoverNew Hampshire
- New York UniversityNew York, New York
| | | | | | | | | | - Ann E. Perry
- Geisel School of Medicine at DartmouthHanoverNew Hampshire
| | | | | |
Collapse
|
95
|
Singh M, Calonje E. Serological biomarkers for determining prognosis in Merkel cell carcinoma. Br J Dermatol 2016; 174:715-6. [DOI: 10.1111/bjd.14506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- M. Singh
- Department of Dermatology and Dermatopathology; St George's Hospital; Blackshaw Road London SW17 0QT U.K
| | - E. Calonje
- Department of Dermatopathology; St Thomas’ Hospital; Lambeth Palace Road London SE1 7EH U.K
| |
Collapse
|
96
|
Samimi M, Molet L, Fleury M, Laude H, Carlotti A, Gardair C, Baudin M, Gouguet L, Maubec E, Avenel-Audran M, Esteve E, Wierzbicka-Hainaut E, Beneton N, Aubin F, Rozenberg F, Dupin N, Avril MF, Lorette G, Guyetant S, Coursaget P, Touzé A. Prognostic value of antibodies to Merkel cell polyomavirus T antigens and VP1 protein in patients with Merkel cell carcinoma. Br J Dermatol 2016; 174:813-22. [PMID: 26600395 DOI: 10.1111/bjd.14313] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND Merkel cell polyomavirus (MCPyV) is the main aetiological agent of Merkel cell carcinoma (MCC). Serum antibodies against the major MCPyV capsid protein (VP1) are detected in the general population, whereas antibodies against MCPyV oncoproteins (T antigens) have been reported specifically in patients with MCC. OBJECTIVES The primary aim was to assess whether detection of serum antibodies against MCPyV proteins at baseline was associated with disease outcome in patients with MCC. The secondary aim was to establish whether evolution of these antibodies during follow-up was associated with the course of the disease. METHODS Serum T-antigen and VP1 antibodies were assessed by enzyme-linked immunosorbent assay using recombinant proteins in a cohort of 143 patients with MCC, including 84 patients with serum samples available at baseline. RESULTS Low titres of VP1 antibodies at baseline (< 10 000) were significantly and independently associated with increased risk of recurrence [hazard ratio (HR) 2·71, 95% confidence interval (CI) 1·13-6·53, P = 0·026] and death (HR 3·74, 95% CI 1·53-9·18, P = 0·004), whereas T-antigen antibodies were not found to be associated with outcome. VP1 antibodies did not differ between patients in remission and those with recurrence or progression during follow-up. However, T-antigen antibodies were more frequently detected in patients with recurrence or progression at 12 months (P = 0·020) and 24 months (P = 0·016) after diagnosis. CONCLUSIONS VP1 antibodies constitute a prognostic marker at baseline, whereas T-antigen antibodies constitute a marker of disease recurrence or progression if detected > 12 months after diagnosis.
Collapse
Affiliation(s)
- M Samimi
- Université François Rabelais, Tours, France.,INRA, UMR 1282 ISP, 31 Avenue Monge, 37200, Tours, France.,Dermatology Department, CHU Tours, Avenue de la République, 37170, Tours, France
| | - L Molet
- Assistance Publique des Hôpitaux de Paris, Virology, Pathology and Dermatology Departments, Hôpital Cochin, 27 Rue du Fbg Saint-Jacques, 75679, Paris CEDEX 14, France.,Institut Cochin, Inserm U1016, Université Paris Descartes, 22 Rue Méchain, 75014, Paris, France
| | - M Fleury
- Université François Rabelais, Tours, France.,INRA, UMR 1282 ISP, 31 Avenue Monge, 37200, Tours, France.,LUNAM Université, Groupe d'Etude des Interactions Hôte-Pathogéne, UPRES EA 3142, Angers, France
| | - H Laude
- Assistance Publique des Hôpitaux de Paris, Virology, Pathology and Dermatology Departments, Hôpital Cochin, 27 Rue du Fbg Saint-Jacques, 75679, Paris CEDEX 14, France.,Institut Cochin, Inserm U1016, Université Paris Descartes, 22 Rue Méchain, 75014, Paris, France
| | - A Carlotti
- Assistance Publique des Hôpitaux de Paris, Virology, Pathology and Dermatology Departments, Hôpital Cochin, 27 Rue du Fbg Saint-Jacques, 75679, Paris CEDEX 14, France
| | - C Gardair
- Université François Rabelais, Tours, France.,Pathology Department, CHU Tours, Avenue de la République, 37170, Tours, France
| | - M Baudin
- Université François Rabelais, Tours, France.,INRA, UMR 1282 ISP, 31 Avenue Monge, 37200, Tours, France
| | - L Gouguet
- Université François Rabelais, Tours, France.,INRA, UMR 1282 ISP, 31 Avenue Monge, 37200, Tours, France
| | - E Maubec
- Assistance Publique des Hôpitaux de Paris, Dermatology Department, Hôpital Bichat, 46 Rue Henri Huchard, 75877, Paris CEDEX 18, France.,Assistance Publique des Hôpitaux de Paris, Dermatology Department, Hôpital Avicenne, 125, rue de Stalingrad, 93009, Bobigny, France
| | - M Avenel-Audran
- LUNAM Université, CHU Angers, Dermatology Department, 4 Rue Larrey, 49933, Angers, France
| | - E Esteve
- CHR Orléans, Dermatology Department, 14 Avenue de l'Hôpital, 45067, Orléans CEDEX 2, France
| | - E Wierzbicka-Hainaut
- CHU Poitiers, Dermatology Department, 2 Rue de la Milétrie, 86021, Poitiers CEDEX, France
| | - N Beneton
- CHR Le Mans, Dermatology Department, 194 Avenue Rubillard, 72037, Le Mans CEDEX 09, France
| | - F Aubin
- Université de Franche Comté, EA3181, SFR 4234, CHU Besançon, Dermatology Department, 2 Boulevard Fleming, 25030, Besançon, France
| | - F Rozenberg
- Assistance Publique des Hôpitaux de Paris, Virology, Pathology and Dermatology Departments, Hôpital Cochin, 27 Rue du Fbg Saint-Jacques, 75679, Paris CEDEX 14, France.,Institut Cochin, Inserm U1016, Université Paris Descartes, 22 Rue Méchain, 75014, Paris, France
| | - N Dupin
- Assistance Publique des Hôpitaux de Paris, Virology, Pathology and Dermatology Departments, Hôpital Cochin, 27 Rue du Fbg Saint-Jacques, 75679, Paris CEDEX 14, France.,Institut Cochin, Inserm U1016, Université Paris Descartes, 22 Rue Méchain, 75014, Paris, France
| | - M F Avril
- Assistance Publique des Hôpitaux de Paris, Virology, Pathology and Dermatology Departments, Hôpital Cochin, 27 Rue du Fbg Saint-Jacques, 75679, Paris CEDEX 14, France.,Institut Cochin, Inserm U1016, Université Paris Descartes, 22 Rue Méchain, 75014, Paris, France
| | - G Lorette
- Université François Rabelais, Tours, France.,INRA, UMR 1282 ISP, 31 Avenue Monge, 37200, Tours, France.,Dermatology Department, CHU Tours, Avenue de la République, 37170, Tours, France
| | - S Guyetant
- Université François Rabelais, Tours, France.,Pathology Department, CHU Tours, Avenue de la République, 37170, Tours, France
| | - P Coursaget
- Université François Rabelais, Tours, France.,INRA, UMR 1282 ISP, 31 Avenue Monge, 37200, Tours, France
| | - A Touzé
- Université François Rabelais, Tours, France.,INRA, UMR 1282 ISP, 31 Avenue Monge, 37200, Tours, France
| |
Collapse
|
97
|
Mauzo SH, Ferrarotto R, Bell D, Torres-Cabala CA, Tetzlaff MT, Prieto VG, Aung PP. Molecular characteristics and potential therapeutic targets in Merkel cell carcinoma. J Clin Pathol 2016; 69:382-90. [PMID: 26818033 DOI: 10.1136/jclinpath-2015-203467] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/29/2015] [Indexed: 11/03/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin tumour occurring preferentially in elderly and immunosuppressed individuals. Multiple studies have provided insight into the molecular alterations of MCC, leading to the design of several ongoing clinical trials testing chemotherapy, targeted therapy and immunotherapy in patients with recurrent or metastatic disease. The results of some of these studies are available, whereas others are eagerly awaited and will likely shed light on the understanding of MCC biology and potentially improve the clinical outcomes of patients with this rare disease.
Collapse
Affiliation(s)
- Shakuntala H Mauzo
- Department of Pathology, The University of Texas Health Science Center, Houston, Texas, USA
| | - Renata Ferrarotto
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Diana Bell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos A Torres-Cabala
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael T Tetzlaff
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Victor G Prieto
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Phyu P Aung
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
98
|
HTLV-1 bZIP factor protein targets the Rb/E2F-1 pathway to promote proliferation and apoptosis of primary CD4(+) T cells. Oncogene 2016; 35:4509-17. [PMID: 26804169 DOI: 10.1038/onc.2015.510] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 11/18/2015] [Accepted: 12/04/2015] [Indexed: 12/13/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that induces a fatal T-cell malignancy, adult T-cell leukemia (ATL). Among several regulatory/accessory genes in HTLV-1, HTLV-1 bZIP factor (HBZ) is the only viral gene constitutively expressed in infected cells. Our previous study showed that HBZ functions in two different molecular forms, HBZ protein and HBZ RNA. In this study, we show that HBZ protein targets retinoblastoma protein (Rb), which is a critical tumor suppressor in many types of cancers. HBZ protein interacts with the Rb/E2F-1 complex and activates the transcription of E2F-target genes associated with cell cycle progression and apoptosis. Mouse primary CD4(+) T cells transduced with HBZ show accelerated G1/S transition and apoptosis, and importantly, T cells from HBZ transgenic (HBZ-Tg) mice also demonstrate enhanced cell proliferation and apoptosis. To evaluate the functions of HBZ protein alone in vivo, we generated a new transgenic mouse strain that expresses HBZ mRNA altered by silent mutations but encoding intact protein. In these mice, the numbers of effector/memory and Foxp3(+) T cells were increased, and genes associated with proliferation and apoptosis were upregulated. This study shows that HBZ protein promotes cell proliferation and apoptosis in primary CD4(+) T cells through activation of the Rb/E2F pathway, and that HBZ protein also confers onto CD4(+) T-cell immunophenotype similar to those of ATL cells, suggesting that HBZ protein has important roles in dysregulation of CD4(+) T cells infected with HTLV-1.
Collapse
|
99
|
Sobhy H. A Review of Functional Motifs Utilized by Viruses. Proteomes 2016; 4:proteomes4010003. [PMID: 28248213 PMCID: PMC5217368 DOI: 10.3390/proteomes4010003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 01/05/2023] Open
Abstract
Short linear motifs (SLiM) are short peptides that facilitate protein function and protein-protein interactions. Viruses utilize these motifs to enter into the host, interact with cellular proteins, or egress from host cells. Studying functional motifs may help to predict protein characteristics, interactions, or the putative cellular role of a protein. In virology, it may reveal aspects of the virus tropism and help find antiviral therapeutics. This review highlights the recent understanding of functional motifs utilized by viruses. Special attention was paid to the function of proteins harboring these motifs, and viruses encoding these proteins. The review highlights motifs involved in (i) immune response and post-translational modifications (e.g., ubiquitylation, SUMOylation or ISGylation); (ii) virus-host cell interactions, including virus attachment, entry, fusion, egress and nuclear trafficking; (iii) virulence and antiviral activities; (iv) virion structure; and (v) low-complexity regions (LCRs) or motifs enriched with residues (Xaa-rich motifs).
Collapse
Affiliation(s)
- Haitham Sobhy
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
100
|
Shuda M, Guastafierro A, Geng X, Shuda Y, Ostrowski SM, Lukianov S, Jenkins FJ, Honda K, Maricich SM, Moore PS, Chang Y. Merkel Cell Polyomavirus Small T Antigen Induces Cancer and Embryonic Merkel Cell Proliferation in a Transgenic Mouse Model. PLoS One 2015; 10:e0142329. [PMID: 26544690 PMCID: PMC4636375 DOI: 10.1371/journal.pone.0142329] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/19/2015] [Indexed: 01/30/2023] Open
Abstract
Merkel cell polyomavirus (MCV) causes the majority of human Merkel cell carcinomas (MCC) and encodes a small T (sT) antigen that transforms immortalized rodent fibroblasts in vitro. To develop a mouse model for MCV sT-induced carcinogenesis, we generated transgenic mice with a flox-stop-flox MCV sT sequence homologously recombined at the ROSA locus (ROSAsT), allowing Cre-mediated, conditional MCV sT expression. Standard tamoxifen (TMX) administration to adult UbcCreERT2; ROSAsT mice, in which Cre is ubiquitously expressed, resulted in MCV sT expression in multiple organs that was uniformly lethal within 5 days. Conversely, most adult UbcCreERT2; ROSAsT mice survived low-dose tamoxifen administration but developed ear lobe dermal hyperkeratosis and hypergranulosis. Simultaneous MCV sT expression and conditional homozygous p53 deletion generated multi-focal, poorly-differentiated, highly anaplastic tumors in the spleens and livers of mice after 60 days of TMX treatment. Mouse embryonic fibroblasts from these mice induced to express MCV sT exhibited anchorage-independent cell growth. To examine Merkel cell pathology, MCV sT expression was also induced during mid-embryogenesis in Merkel cells of Atoh1CreERT2/+; ROSAsT mice, which lead to significantly increased Merkel cell numbers in touch domes at late embryonic ages that normalized postnatally. Tamoxifen administration to adult Atoh1CreERT2/+; ROSAsT and Atoh1CreERT2/+; ROSAsT; p53flox/flox mice had no effects on Merkel cell numbers and did not induce tumor formation. Taken together, these results show that MCV sT stimulates progenitor Merkel cell proliferation in embryonic mice and is a bona fide viral oncoprotein that induces full cancer cell transformation in the p53-null setting.
Collapse
MESH Headings
- Anaplasia
- Animals
- Antigens, Viral, Tumor/genetics
- Carcinoma, Merkel Cell/pathology
- Carcinoma, Merkel Cell/virology
- Cell Count
- Cell Differentiation
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Viral
- Disease Models, Animal
- Embryo, Mammalian/pathology
- Female
- Humans
- Liver/pathology
- Male
- Merkel Cells/pathology
- Merkel cell polyomavirus/immunology
- Merkel cell polyomavirus/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Pregnancy
- Skin Neoplasms/pathology
- Skin Neoplasms/virology
- Spleen/pathology
- Tumor Suppressor Protein p53/deficiency
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Masahiro Shuda
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anna Guastafierro
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xuehui Geng
- Richard King Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yoko Shuda
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stephen M. Ostrowski
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Stefan Lukianov
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Frank J. Jenkins
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kord Honda
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Stephen M. Maricich
- Richard King Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (SMM); (PSM); (YC)
| | - Patrick S. Moore
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (SMM); (PSM); (YC)
| | - Yuan Chang
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (SMM); (PSM); (YC)
| |
Collapse
|