51
|
Norgan AP, Lee JRE, Oestreich AJ, Payne JA, Krueger EW, Katzmann DJ. ESCRT-independent budding of HIV-1 gag virus-like particles from Saccharomyces cerevisiae spheroplasts. PLoS One 2012; 7:e52603. [PMID: 23285107 PMCID: PMC3528670 DOI: 10.1371/journal.pone.0052603] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 11/20/2012] [Indexed: 12/28/2022] Open
Abstract
Heterologous expression of HIV-1 Gag in a variety of host cells results in its packaging into virus-like particles (VLPs) that are subsequently released into the extracellular milieu. This phenomenon represents a useful tool for probing cellular factors required for viral budding and has contributed to the discovery of roles for ubiquitin ligases and the endosomal sorting complexes required for transport (ESCRTs) in viral budding. These factors are highly conserved throughout eukaryotes and have been studied extensively in the yeast Saccharomyces cerevisiae, a model eukaryote previously utilized as a host for the production of VLPs. We used heterologous expression of HIV Gag in yeast spheroplasts to examine the role of ESCRTs and associated factors (Rsp5, a HECT ubiquitin ligase of the Nedd4 family; Bro1, a homolog of Alix; and Vps4, the AAA-ATPase required for ESCRT function in all contexts/organisms investigated) in the generation of VLPs. Our data reveal: 1) characterized Gag-ESCRT interaction motifs (late domains) are not required for VLP budding, 2) loss of function alleles of the essential HECT ubiquitin ligase Rsp5 do not display defects in VLP formation, and 3) ESCRT function is not required for VLP formation from spheroplasts. These results suggest that the egress of HIV Gag from yeast cells is distinct from the most commonly described mode of exit from mammalian cells, instead mimicking ESCRT-independent VLP formation observed in a subset of mammalian cells. As such, budding of Gag from yeast cells appears to represent ESCRT-independent budding relevant to viral replication in at least some situations. Thus the myriad of genetic and biochemical tools available in the yeast system may be of utility in the study of this aspect of viral budding.
Collapse
Affiliation(s)
- Andrew P. Norgan
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jacqueline R. E. Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andrea J. Oestreich
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Johanna A. Payne
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Eugene W. Krueger
- Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - David J. Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
52
|
Solbak SMØ, Reksten TR, Hahn F, Wray V, Henklein P, Henklein P, Halskau Ø, Schubert U, Fossen T. HIV-1 p6 - a structured to flexible multifunctional membrane-interacting protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:816-23. [PMID: 23174350 DOI: 10.1016/j.bbamem.2012.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/30/2012] [Accepted: 11/06/2012] [Indexed: 02/02/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) p6 protein has recently been recognized as a docking site for several cellular and viral binding partners and is important for the formation of infectious viruses. Most of its known functions are suggested to occur under hydrophobic conditions near the cytoplasmic membrane, where the protein is presumed to exist in its most structured state. Although p6 is involved in manifold specific interactions, the protein has previously been considered to possess a random structure in aqueous solution. We show that p6 exhibits a defined structure with N- and C-terminal helical domains, connected by a flexible hinge region in 100mM dodecylphosphocholine micelle solution at pH 7 devoid of any organic co-solvents, indicating that this is a genuine limiting structural feature of the molecule in a hydrophobic environment. Furthermore, we show that p6 directly interacts with a cytoplasmic model membrane through both N-terminal and C-terminal regions by use of surface plasmon resonance (SPR) spectroscopy. Phosphorylation of Ser-40 located in the center of the C-terminal α-helix does not alter the secondary structure of the protein but amplifies the interaction with membranes significantly, indicating that p6 binds to the polar head groups at the surface of the cytoplasmic membrane. The increased hydrophobic membrane interaction of p6(23-52) S40F correlated with the observed increased amount of the polyprotein Gag in the RIPA insoluble fraction when Ser40 of p6 was mutated with Phe indicating that p6 modulates the membrane interactions of HIV-1 Gag.
Collapse
Affiliation(s)
- Sara Marie Øie Solbak
- Department of Chemistry and Centre for Pharmacy, University of Bergen, N-5007 Bergen, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters. Proc Natl Acad Sci U S A 2012; 109:16928-33. [PMID: 23027949 DOI: 10.1073/pnas.1211759109] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Most membrane-enveloped viruses depend on host proteins of the endosomal sorting complex required for transport (ESCRT) machinery for their release. HIV-1 is the prototypic ESCRT-dependent virus. The direct interactions between HIV-1 and the early ESCRT factors TSG101 and ALIX have been mapped in detail. However, the full pathway of ESCRT recruitment to HIV-1 budding sites, which culminates with the assembly of the late-acting CHMP4, CHMP3, CHMP2, and CHMP1 subunits, is less completely understood. Here, we report the biochemical reconstitution of ESCRT recruitment to viral assembly sites, using purified proteins and giant unilamellar vesicles. The myristylated full-length Gag protein of HIV-1 was purified to monodispersity. Myr-Gag forms clusters on giant unilamellar vesicle membranes containing the plasma membrane lipid PI(4,5)P(2). These Gag clusters package a fluorescent oligonucleotide, and recruit early ESCRT complexes ESCRT-I or ALIX with the appropriate dependence on the Gag PTAP and LYP(X)(n)L motifs. ALIX directly recruits the key ESCRT-III subunit CHMP4. ESCRT-I can only recruit CHMP4 when ESCRT-II and CHMP6 are present as intermediary factors. Downstream of CHMP4, CHMP3 and CHMP2 assemble synergistically, with the presence of both subunits required for efficient recruitment. The very late-acting factor CHMP1 is not recruited unless the pathway is completed through CHMP3 and CHMP2. These findings define the minimal sets of components needed to complete ESCRT assembly at HIV-1 budding sites, and provide a starting point for in vitro structural and biophysical dissection of the system.
Collapse
|
54
|
Obiang L, Raux H, Ouldali M, Blondel D, Gaudin Y. Phenotypes of vesicular stomatitis virus mutants with mutations in the PSAP motif of the matrix protein. J Gen Virol 2012; 93:857-865. [DOI: 10.1099/vir.0.039800-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vesicular stomatitis virus (VSV) matrix protein (M) has a flexible amino-terminal part that recruits cellular partners. It contains a dynamin-binding site that is required for efficient virus assembly, and two motifs, 24PPPY27 and 37PSAP40, that constitute potential late domains. Late domains are present in proteins of several enveloped viruses and are involved in the ultimate step of the budding process (i.e. fission between viral and cellular membranes). In baby hamster kidney (BHK)-21 cells, it has been demonstrated that the 24PPPY27 motif binds the Nedd4 (neuronal precursor cell-expressed developmentally downregulated 4) E3 ubiquitin ligase for efficient virus budding and that the 37PSAP40 motif, although conserved among M proteins of vesiculoviruses, does not possess late-domain activity. In this study, we have re-examined the contribution of the PSAP motif to VSV budding. First, we demonstrate that VSV M indeed binds TSG101 [tumour susceptibility gene 101; a component of the ESCRT1 (endosomal sorting complex required for transport 1)] through its PSAP motif. Second, we analysed the phenotype of several recombinant mutants. We show that a double mutant with point mutations in both the PSAP and the PPPY motifs is impaired compared with a single mutant in the PPPY motif, indicating that the PSAP motif partially compensates for the lack of the PPPY motif. Mutants’ phenotypes depend on cell lines: in CERA (chicken embryo-related, Alger clone) cells, a recombinant virus with a single mutation in the PSAP motif was impaired compared with the wild type, and a mutant with a single mutation in the dynamin-binding motif was much less impaired in Vero cells than in BSR (clones of BHK-21) cells. These results have implications for the VSV budding pathway that will be discussed.
Collapse
Affiliation(s)
- Linda Obiang
- Centre de Recherche de Gif, Laboratoire de Virologie Moléculaire et Structurale, CNRS (UPR 3296), 91198 Gif sur Yvette Cedex, France
| | - Hélène Raux
- Centre de Recherche de Gif, Laboratoire de Virologie Moléculaire et Structurale, CNRS (UPR 3296), 91198 Gif sur Yvette Cedex, France
| | - Malika Ouldali
- Centre de Recherche de Gif, Laboratoire de Virologie Moléculaire et Structurale, CNRS (UPR 3296), 91198 Gif sur Yvette Cedex, France
| | - Danielle Blondel
- Centre de Recherche de Gif, Laboratoire de Virologie Moléculaire et Structurale, CNRS (UPR 3296), 91198 Gif sur Yvette Cedex, France
| | - Yves Gaudin
- Centre de Recherche de Gif, Laboratoire de Virologie Moléculaire et Structurale, CNRS (UPR 3296), 91198 Gif sur Yvette Cedex, France
| |
Collapse
|
55
|
Demirov D, Gabriel G, Schneider C, Hohenberg H, Ludwig S. Interaction of influenza A virus matrix protein with RACK1 is required for virus release. Cell Microbiol 2012; 14:774-89. [PMID: 22289149 DOI: 10.1111/j.1462-5822.2012.01759.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The mechanism of budding of influenza A virus revealed important deviation from the consensus mechanism of budding of retroviruses and of a growing number of negative-strand RNA viruses. This study is focused on the role of the influenza A virus matrix protein M1 in virus release. We found that a mutation of the proline residue at position 16 of the matrix protein induces inhibition of virus detachment from cells. Depletion of the M1-binding protein RACK1 also impairs virus release and RACK1 binding requires the proline residue at position 16 of M1. The impaired M1-RACK1 interaction does not affect the plasma membrane binding of M1; in contrast, RACK1 is recruited to detergent-resistant membranes in a M1-proline-16-dependent manner. The proline-16 mutation in M1 and depletion of RACK1 impairs the pinching-off of the budding virus particles. These findings reveal the active role of the viral matrix protein in the release of influenza A virus particles that involves a cross-talk with a RACK1-mediated pathway.
Collapse
Affiliation(s)
- Dimiter Demirov
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
56
|
Solbak SMØ, Reksten TR, Röder R, Wray V, Horvli O, Raae AJ, Henklein P, Henklein P, Fossen T. HIV-1 p6-Another viral interaction partner to the host cellular protein cyclophilin A. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:667-78. [PMID: 22342556 DOI: 10.1016/j.bbapap.2012.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/12/2012] [Accepted: 02/01/2012] [Indexed: 11/30/2022]
Abstract
The 52-amino acid human immunodeficiency virus type 1 (HIV-1) p6 protein has previously been recognized as a docking site for several cellular and viral binding factors and is important for the formation of infectious viruses. A particular structural feature of p6 is the notably high relative content of proline residues, located at positions 5, 7, 10, 11, 24, 30, 37 and 49 in the sequence. Proline cis/trans isomerism was detected for all these proline residues to such an extent that more than 40% of all p6 molecules contain at least one proline in a cis conformation. 2D (1)H nuclear magnetic resonance analysis of full-length HIV-1 p6 and p6 peptides established that cyclophilin A (CypA) interacts as a peptidyl-prolyl cis/trans isomerase with all proline residues of p6. Only catalytic amounts of CypA were necessary for the interaction with p6 to occur, strongly suggesting that the observed interaction is highly relevant in vivo. In addition, surface plasmon resonance studies revealed binding of full-length p6 to CypA, and that this binding was significantly stronger than any of its N- or C-terminal peptides. This study demonstrates the first identification of an interaction between HIV-1 p6 and the host cellular protein CypA. The mode of interaction involves both transient enzyme-substrate interactions and a more stable binding. The binding motifs of p6 to Tsg-101, ALIX and Vpr coincide with binding regions and catalytic sites of p6 to CypA, suggesting a potential role of CypA in modulating functional interactions of HIV-1.
Collapse
Affiliation(s)
- Sara M Ø Solbak
- Department of Chemistry and Centre of Pharmacy, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Structural basis for membrane targeting by the MVB12-associated β-prism domain of the human ESCRT-I MVB12 subunit. Proc Natl Acad Sci U S A 2012; 109:1901-6. [PMID: 22232651 DOI: 10.1073/pnas.1117597109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
MVB12-associated β-prism (MABP) domains are predicted to occur in a diverse set of membrane-associated bacterial and eukaryotic proteins, but their existence, structure, and biochemical properties have not been characterized experimentally. Here, we find that the MABP domains of the MVB12A and B subunits of ESCRT-I are functional modules that bind in vitro to liposomes containing acidic lipids depending on negative charge density. The MABP domain is capable of autonomously localizing to subcellular puncta and to the plasma membrane. The 1.3-Å atomic resolution crystal structure of the MVB12B MABP domain reveals a β-prism fold, a hydrophobic membrane-anchoring loop, and an electropositive phosphoinositide-binding patch. The basic patch is open, which explains how it senses negative charge density but lacks stereoselectivity. These observations show how ESCRT-I could act as a coincidence detector for acidic phospholipids and protein ligands, enabling it to function both in protein transport at endosomes and in cytokinesis and viral budding at the plasma membrane.
Collapse
|
58
|
Gan X, Gould SJ. HIV Pol inhibits HIV budding and mediates the severe budding defect of Gag-Pol. PLoS One 2012; 7:e29421. [PMID: 22235295 PMCID: PMC3250436 DOI: 10.1371/journal.pone.0029421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/28/2011] [Indexed: 02/01/2023] Open
Abstract
The prevailing hypothesis of HIV budding posits that the viral Gag protein drives budding, and that the Gag p6 peptide plays an essential role by recruiting host-cell budding factors to sites of HIV assembly. HIV also expresses a second Gag protein, p160 Gag-Pol, which lacks p6 and fails to bud from cells, consistent with the prevailing hypothesis of HIV budding. However, we show here that the severe budding defect of Gag-Pol is not caused by the absence of p6, but rather, by the presence of Pol. Specifically, we show that (i) the budding defect of Gag-Pol is unaffected by loss of HIV protease activity and is therefore an intrinsic property of the Gag-Pol polyprotein, (ii) the N-terminal 433 amino acids of Gag and Gag-Pol are sufficient to drive virus budding even though they lack p6, (iii) the severe budding defect of Gag-Pol is caused by a dominant, cis-acting inhibitor of budding in the HIV Pol domain, and (iv) Gag-Pol inhibits Gag and virus budding in trans, even at normal levels of Gag and Gag-Pol expression. These and other data support an alternative hypothesis of HIV budding as a process that is mediated by the normal, non-viral pathway of exosome/microvesicle biogenesis.
Collapse
Affiliation(s)
- Xin Gan
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Stephen J. Gould
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
59
|
Waheed AA, Freed EO. HIV type 1 Gag as a target for antiviral therapy. AIDS Res Hum Retroviruses 2012; 28:54-75. [PMID: 21848364 DOI: 10.1089/aid.2011.0230] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Gag proteins of HIV-1 are central players in virus particle assembly, release, and maturation, and also function in the establishment of a productive infection. Despite their importance throughout the replication cycle, there are currently no approved antiretroviral therapies that target the Gag precursor protein or any of the mature Gag proteins. Recent progress in understanding the structural and cell biology of HIV-1 Gag function has revealed a number of potential Gag-related targets for possible therapeutic intervention. In this review, we summarize our current understanding of HIV-1 Gag and suggest some approaches for the development of novel antiretroviral agents that target Gag.
Collapse
Affiliation(s)
- Abdul A. Waheed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland
| |
Collapse
|
60
|
Woods MW, Kelly JN, Hattlmann CJ, Tong JGK, Xu LS, Coleman MD, Quest GR, Smiley JR, Barr SD. Human HERC5 restricts an early stage of HIV-1 assembly by a mechanism correlating with the ISGylation of Gag. Retrovirology 2011; 8:95. [PMID: 22093708 PMCID: PMC3228677 DOI: 10.1186/1742-4690-8-95] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/17/2011] [Indexed: 11/12/2022] Open
Abstract
Background The identification and characterization of several interferon (IFN)-induced cellular HIV-1 restriction factors, defined as host cellular proteins or factors that restrict or inhibit the HIV-1 life cycle, have provided insight into the IFN response towards HIV-1 infection and identified new therapeutic targets for HIV-1 infection. To further characterize the mechanism underlying restriction of the late stages of HIV-1 replication, we assessed the ability of IFNbeta-induced genes to restrict HIV-1 Gag particle production and have identified a potentially novel host factor called HECT domain and RCC1-like domain-containing protein 5 (HERC5) that blocks a unique late stage of the HIV-1 life cycle. Results HERC5 inhibited the replication of HIV-1 over multiple rounds of infection and was found to target a late stage of HIV-1 particle production. The E3 ligase activity of HERC5 was required for blocking HIV-1 Gag particle production and correlated with the post-translational modification of Gag with ISG15. HERC5 interacted with HIV-1 Gag and did not alter trafficking of HIV-1 Gag to the plasma membrane. Electron microscopy revealed that the assembly of HIV-1 Gag particles was arrested at the plasma membrane, at an early stage of assembly. The mechanism of HERC5-induced restriction of HIV-1 particle production is distinct from the mechanism underlying HIV-1 restriction by the expression of ISG15 alone, which acts at a later step in particle release. Moreover, HERC5 restricted murine leukemia virus (MLV) Gag particle production, showing that HERC5 is effective in restricting Gag particle production of an evolutionarily divergent retrovirus. Conclusions HERC5 represents a potential new host factor that blocks an early stage of retroviral Gag particle assembly. With no apparent HIV-1 protein that directly counteracts it, HERC5 may represent a new candidate for HIV/AIDS therapy.
Collapse
Affiliation(s)
- Matthew W Woods
- The University of Western Ontario, Schulich School of Medicine and Dentistry, Center for Human Immunology, Department of Microbiology and Immunology, Dental Sciences Building Room 3006b, London, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Ehrlich LS, Medina GN, Carter CA. ESCRT machinery potentiates HIV-1 utilization of the PI(4,5)P(2)-PLC-IP3R-Ca(2+) signaling cascade. J Mol Biol 2011; 413:347-58. [PMID: 21875593 PMCID: PMC3193579 DOI: 10.1016/j.jmb.2011.08.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/05/2011] [Accepted: 08/16/2011] [Indexed: 01/09/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) release efficiency is directed by late (L) domain motifs in the viral structural precursor polyprotein Gag, which serve as links to the ESCRT (endosomal sorting complex required for transport) machinery. Linkage is normally through binding of Tsg101, an ESCRT-1 component, to the P(7)TAP motif in the p6 region of Gag. In its absence, budding is directed by binding of Alix, an ESCRT adaptor protein, to the LY(36)PX(n)L motif in Gag. We recently showed that budding requires activation of the inositol 1,4,5-triphosphate receptor (IP3R), a protein that "gates" Ca(2+) release from intracellular stores, triggers Ca(2+) cell influx and thereby functions as a major regulator of Ca(2+) signaling. In the present study, we determined whether the L domain links Gag to Ca(2+) signaling machinery. Depletion of IP3R and inactivation of phospholipase C (PLC) inhibited budding whether or not Tsg101 was bound to Gag. PLC hydrolysis of phosphatidylinositol-(4,5)-bisphosphate generates inositol (1,4,5)-triphosphate, the ligand that activates IP3R. However, with Tsg101 bound, Gag release was independent of Gq-mediated activation of PLC, and budding was readily enhanced by pharmacological stimulation of PLC. Moreover, IP3R was redistributed to the cell periphery and cytosolic Ca(2+) was elevated, events indicative of induction of Ca(2+) signaling. The results suggest that L domain function, ESCRT machinery and Ca(2+) signaling are linked events in Gag release.
Collapse
Affiliation(s)
- Lorna S. Ehrlich
- Dept. of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Gisselle N. Medina
- Dept. of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Carol A. Carter
- Dept. of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| |
Collapse
|
62
|
Weiss ER, Göttlinger H. The role of cellular factors in promoting HIV budding. J Mol Biol 2011; 410:525-33. [PMID: 21762798 DOI: 10.1016/j.jmb.2011.04.055] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/16/2011] [Accepted: 04/21/2011] [Indexed: 12/20/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) becomes enveloped while budding through the plasma membrane, and the release of nascent virions requires a membrane fission event that separates the viral envelope from the cell surface. To facilitate this crucial step in its life cycle, HIV-1 exploits a complex cellular membrane remodeling and fission machinery known as the endosomal sorting complex required for transport (ESCRT) pathway. HIV-1 Gag directly interacts with early-acting components of this pathway, which ultimately triggers the assembly of the ESCRT-III membrane fission complex at viral budding sites. Surprisingly, HIV-1 requires only a subset of ESCRT-III components, indicating that the membrane fission reaction that occurs during HIV-1 budding differs in crucial aspects from topologically related cellular abscission events.
Collapse
Affiliation(s)
- Eric R Weiss
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
63
|
Dorjbal B, Derse D, Lloyd P, Soheilian F, Nagashima K, Heidecker G. The role of ITCH protein in human T-cell leukemia virus type 1 release. J Biol Chem 2011; 286:31092-104. [PMID: 21724848 DOI: 10.1074/jbc.m111.259945] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) has two late domain (LD) motifs, PPPY and PTAP, which are important for viral budding. Mutations in the PPPY motif are more deleterious for viral release than changes in the PTAP motif. Several reports have shown that the interaction of PPPY with the WW domains of a Nedd4 (neuronal precursor cell-expressed developmentally down-regulated-4) family ubiquitin ligase (UL) is a critical event in virus release. We tested nine members of the Nedd4 family ULs and found that ITCH is the main contributor to HTLV-1 budding. ITCH overexpression strongly inhibited release and infectivity of wild-type (wt) HTLV-1, but rescued the release of infectious virions with certain mutations in the PPPY motif. Electron microscopy showed either fewer or misshapen virus particles when wt HTLV-1 was produced in the presence of overexpressed ITCH, whereas mutants with changes in the PPPY motif yielded normal looking particles at wt level. The other ULs had significantly weaker or no effects on HTLV-1 release and infectivity except for SMURF-1, which caused enhanced release of wt and all PPPY(-) mutant particles. These particles were poorly infectious and showed abnormal morphology by electron microscopy. Budding and infectivity defects due to overexpression of ITCH and SMURF-1 were correlated with higher than normal ubiquitination of Gag. Only silencing of ITCH, but not of WWP1, WWP2, and Nedd4, resulted in a reduction of HTLV-1 budding from 293T cells. The binding efficiencies between the HTLV-1 LD and WW domains of different ULs as measured by mammalian two-hybrid interaction did not correlate with the strength of their effect on HTLV-1 budding.
Collapse
Affiliation(s)
- Batsukh Dorjbal
- HIV-Drug Resistance Program, NCI Frederick, Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
64
|
Joshi A, Garg H, Ablan SD, Freed EO. Evidence of a role for soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery in HIV-1 assembly and release. J Biol Chem 2011; 286:29861-71. [PMID: 21680744 DOI: 10.1074/jbc.m111.241521] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retrovirus assembly is a complex process that requires the orchestrated participation of viral components and host-cell factors. The concerted movement of different viral proteins to specific sites in the plasma membrane allows for virus particle assembly and ultimately budding and maturation of infectious virions. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins constitute the minimal machinery that catalyzes the fusion of intracellular vesicles with the plasma membrane, thus regulating protein trafficking. Using siRNA and dominant negative approaches we demonstrate here that generalized disruption of the host SNARE machinery results in a significant reduction in human immunodeficiency virus type 1 (HIV-1) and equine infectious anemia virus particle production. Further analysis of the mechanism involved revealed a defect at the level of HIV-1 Gag localization to the plasma membrane. Our findings demonstrate for the first time a role of SNARE proteins in HIV-1 assembly and release, likely by affecting cellular trafficking pathways required for Gag transport and association with the plasma membrane.
Collapse
Affiliation(s)
- Anjali Joshi
- Center of Excellence for Infectious Diseases, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas 79905, USA.
| | | | | | | |
Collapse
|
65
|
Structural basis for endosomal recruitment of ESCRT-I by ESCRT-0 in yeast. EMBO J 2011; 30:2130-9. [PMID: 21505419 DOI: 10.1038/emboj.2011.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 03/25/2011] [Indexed: 11/08/2022] Open
Abstract
The ESCRT-0 and ESCRT-I complexes coordinate the clustering of ubiquitinated cargo with intralumenal budding of the endosomal membrane, two essential steps in vacuolar/lysosomal protein sorting from yeast to humans. The 1.85-Å crystal structure of interacting regions of the yeast ESCRT-0 and ESCRT-I complexes reveals that PSDP motifs of the Vps27 ESCRT-0 subunit bind to a novel electropositive N-terminal site on the UEV domain of the ESCRT-I subunit Vps23 centred on Trp16. This novel site is completely different from the C-terminal part of the human UEV domain that binds to P(S/T)AP motifs of human ESCRT-0 and HIV-1 Gag. Disruption of the novel PSDP-binding site eliminates the interaction in vitro and blocks enrichment of Vps23 in endosome-related class E compartments in yeast cells. However, this site is non-essential for sorting of the ESCRT cargo Cps1. Taken together, these results show how a conserved motif/domain pair can evolve to use strikingly different binding modes in different organisms.
Collapse
|
66
|
Gan X, Gould SJ. Identification of an inhibitory budding signal that blocks the release of HIV particles and exosome/microvesicle proteins. Mol Biol Cell 2011; 22:817-30. [PMID: 21248205 PMCID: PMC3057706 DOI: 10.1091/mbc.e10-07-0625] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We identify and characterize an inhibitory budding signal that acts dominantly to block the budding of otherwise budding-competent proteins, both viral and nonviral, and impairs the budding of several classic, budding-deficient HIV mutants. These findings expand our understanding of EMV biogenesis and resolve a number of previously paradoxical observations regarding the budding of HIV. Animal cells bud exosomes and microvesicles (EMVs) from endosome and plasma membranes. The combination of higher-order oligomerization and plasma membrane binding is a positive budding signal that targets diverse proteins into EMVs and retrovirus particles. Here we describe an inhibitory budding signal (IBS) from the human immunodeficiency virus (HIV) Gag protein. This IBS was identified in the spacer peptide 2 (SP2) domain of Gag, is activated by C-terminal exposure of SP2, and mediates the severe budding defect of p6-deficient and PTAP-deficient strains of HIV. This IBS also impairs the budding of CD63 and several other viral and nonviral EMV proteins. The IBS does not prevent cargo delivery to the plasma membrane, a major site of EMV and virus budding. However, the IBS does inhibit an interaction between EMV cargo proteins and VPS4B, a component of the endosomal sorting complexes required for transport (ESCRT) machinery. Taken together, these results demonstrate that inhibitory signals can block protein and virus budding, raise the possibility that the ESCRT machinery plays a role in EMV biogenesis, and shed new light on the role of the p6 domain and PTAP motif in the biogenesis of HIV particles.
Collapse
Affiliation(s)
- Xin Gan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
67
|
Abstract
The human immunodeficiency virus (HIV), the causative agent of acquired immunodeficiency syndrome (AIDS), relies heavily on protein-protein interactions in almost every step of its lifecycle. Targeting these interactions, especially those between virus and host proteins, is increasingly viewed as an ideal avenue for the design and development of new therapeutics. In this tutorial review, we outline the lifecycle of HIV and describe some of the protein-protein interactions that control and regulate each step of this process, also detailing efforts to develop therapies that target these interactions.
Collapse
Affiliation(s)
- Ali Tavassoli
- University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
68
|
Hurley JH, Boura E, Carlson LA, Różycki B. Membrane budding. Cell 2010; 143:875-87. [PMID: 21145455 PMCID: PMC3102176 DOI: 10.1016/j.cell.2010.11.030] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/27/2010] [Accepted: 11/17/2010] [Indexed: 01/06/2023]
Abstract
Membrane budding is a key step in vesicular transport, multivesicular body biogenesis, and enveloped virus release. These events range from those that are primarily protein driven, such as the formation of coated vesicles, to those that are primarily lipid driven, such as microdomain-dependent biogenesis of multivesicular bodies. Other types of budding reside in the middle of this spectrum, including caveolae biogenesis, HIV-1 budding, and ESCRT-catalyzed multivesicular body formation. Some of these latter events involve budding away from cytosol, and this unusual topology involves unique mechanisms. This Review discusses progress toward understanding the structural and energetic bases of these different membrane-budding paradigms.
Collapse
Affiliation(s)
- James H Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0580, USA.
| | | | | | | |
Collapse
|
69
|
Im YJ, Kuo L, Ren X, Burgos PV, Zhao XZ, Liu F, Burke TR, Bonifacino JS, Freed EO, Hurley JH. Crystallographic and functional analysis of the ESCRT-I /HIV-1 Gag PTAP interaction. Structure 2010; 18:1536-47. [PMID: 21070952 PMCID: PMC3124085 DOI: 10.1016/j.str.2010.08.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 07/14/2010] [Accepted: 08/06/2010] [Indexed: 11/17/2022]
Abstract
Budding of HIV-1 requires the binding of the PTAP late domain of the Gag p6 protein to the UEV domain of the TSG101 subunit of ESCRT-I. The normal function of this motif in cells is in receptor downregulation. Here, we report the 1.4-1.6 Å structures of the human TSG101 UEV domain alone and with wild-type and mutant HIV-1 PTAP and Hrs PSAP nonapeptides. The hydroxyl of the Thr or Ser residue in the P(S/T)AP motif hydrogen bonds with the main chain of Asn69. Mutation of the Asn to Pro, blocking the main-chain amide, abrogates PTAP motif binding in vitro and blocks budding of HIV-1 from cells. N69P and other PTAP binding-deficient alleles of TSG101 did not rescue HIV-1 budding. However, the mutant alleles did rescue downregulation of endogenous EGF receptor. This demonstrates that the PSAP motif is not rate determining in EGF receptor downregulation under normal conditions.
Collapse
Affiliation(s)
- Young Jun Im
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0580, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
The matrix protein of vesicular stomatitis virus binds dynamin for efficient viral assembly. J Virol 2010; 84:12609-18. [PMID: 20943988 DOI: 10.1128/jvi.01400-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Matrix proteins (M) direct the process of assembly and budding of viruses belonging to the Mononegavirales order. Using the two-hybrid system, the amino-terminal part of vesicular stomatitis virus (VSV) M was shown to interact with dynamin pleckstrin homology domain. This interaction was confirmed by coimmunoprecipitation of both proteins in cells transfected by a plasmid encoding a c-myc-tagged dynamin and infected by VSV. A role for dynamin in the viral cycle (in addition to its role in virion endocytosis) was suggested by the fact that a late stage of the viral cycle was sensitive to dynasore. By alanine scanning, we identified a single mutation of M protein that abolished this interaction and reduced virus yield. The adaptation of mutant virus (M.L4A) occurred rapidly, allowing the isolation of revertants, among which the M protein, despite having an amino acid sequence distinct from that of the wild type, recovered a significant level of interaction with dynamin. This proved that the mutant phenotype was due to the loss of interaction between M and dynamin. The infectious cycle of the mutant virus M.L4A was blocked at a late stage, resulting in a quasi-absence of bullet-shaped viruses in the process of budding at the cell membrane. This was associated with an accumulation of nucleocapsids at the periphery of the cell and a different pattern of VSV glycoprotein localization. Finally, we showed that M-dynamin interaction affects clathrin-dependent endocytosis. Our study suggests that hijacking the endocytic pathway might be an important feature for enveloped virus assembly and budding at the plasma membrane.
Collapse
|
71
|
Manel N, Hogstad B, Wang Y, Levy DE, Unutmaz D, Littman DR. A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 2010; 467:214-7. [PMID: 20829794 PMCID: PMC3051279 DOI: 10.1038/nature09337] [Citation(s) in RCA: 341] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 07/06/2010] [Indexed: 12/17/2022]
Abstract
Dendritic cells (DC) serve a key function in host defense, linking innate detection of microbes to the activation of pathogen-specific adaptive immune responses(1,2). Whether there is cell-intrinsic recognition of HIV-1 by host innate pattern-recognition receptors and subsequent coupling to antiviral T cell responses is not yet known(3). DC are largely resistant to infection with HIV-1(4), but facilitate infection of co-cultured T-helper cells through a process of trans-enhancement(5,6). We show here that, when DC resistance to infection is circumvented(7,8), HIV-1 induces DC maturation, an antiviral type I interferon response and activation of T cells. This innate response is dependent on the interaction of newly-synthesized HIV-1 capsid (CA) with cellular cyclophilin A (CypA) and the subsequent activation of the transcription factor IRF3. Because the peptidyl-prolyl isomerase CypA also interacts with CA to promote HIV-1 infectivity, our results suggest that CA conformation has evolved under opposing selective pressures for infectivity versus furtiveness. Thus, a cell intrinsic sensor for HIV-1 exists in DC and mediates an antiviral immune response, but it is not typically engaged due to absence of DC infection. The virulence of HIV-1 may be related to evasion of this response, whose manipulation may be necessary to generate an effective HIV-1 vaccine.
Collapse
Affiliation(s)
- Nicolas Manel
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
72
|
Abstract
The ESCRT machinery consists of the peripheral membrane protein complexes ESCRT-0, -I, -II, -III, and Vps4-Vta1, and the ALIX homodimer. The ESCRT system is required for degradation of unneeded or dangerous plasma membrane proteins; biogenesis of the lysosome and the yeast vacuole; the budding of most membrane enveloped viruses; the membrane abscission step in cytokinesis; macroautophagy; and several other processes. From their initial discovery in 2001-2002, the literature on ESCRTs has grown exponentially. This review will describe the structure and function of the six complexes noted above and summarize current knowledge of their mechanistic roles in cellular pathways and in disease.
Collapse
Affiliation(s)
- James H Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD 20892, USA.
| |
Collapse
|
73
|
Human immunodeficiency virus type 1 nucleocapsid p1 confers ESCRT pathway dependence. J Virol 2010; 84:6590-7. [PMID: 20427536 DOI: 10.1128/jvi.00035-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To facilitate the release of infectious progeny virions, human immunodeficiency virus type 1 (HIV-1) exploits the Endosomal Sorting Complex Required for Transport (ESCRT) pathway by engaging Tsg101 and ALIX through late assembly (L) domains in the C-terminal p6 domain of Gag. However, the L domains in p6 are known to be dispensable for efficient particle production by certain HIV-1 Gag constructs that have the nucleocapsid (NC) domain replaced by a foreign dimerization domain to substitute for the assembly function of NC. We now show that one such L domain-independent HIV-1 Gag construct (termed Z(WT)) that has NC-p1-p6 replaced by a leucine zipper domain is resistant to dominant-negative inhibitors of the ESCRT pathway that block HIV-1 particle production. However, Z(WT) became dependent on the presence of an L domain when NC-p1-p6 was restored to its C terminus. Furthermore, when the NC domain was replaced by a leucine zipper, the p1-p6 region, but not p6 alone, conferred sensitivity to inhibition of the ESCRT pathway. In an authentic HIV-1 Gag context, the effect of an inhibitor of the ESCRT pathway on particle production could be alleviated by deleting a portion of the NC domain together with p1. Together, these results indicate that the ESCRT pathway dependence of HIV-1 budding is determined, at least in part, by the NC-p1 region of Gag.
Collapse
|
74
|
An LYPSL late domain in the gag protein contributes to the efficient release and replication of Rous sarcoma virus. J Virol 2010; 84:6276-87. [PMID: 20392845 DOI: 10.1128/jvi.00238-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The efficient release of newly assembled retrovirus particles from the plasma membrane requires the recruitment of a network of cellular proteins (ESCRT machinery) normally involved in the biogenesis of multivesicular bodies and in cytokinesis. Retroviruses and other enveloped viruses recruit the ESCRT machinery through three classes of short amino acid consensus sequences termed late domains: PT/SAP, PPXY, and LYPX(n)L. The major late domain of Rous sarcoma virus (RSV) has been mapped to a PPPY motif in Gag that binds members of the Nedd4 family of ubiquitin ligases. RSV Gag also contains a second putative late domain motif, LYPSL, positioned 5 amino acids downstream of PPPY. LYPX(n)L motifs have been shown to support budding in other retroviruses by binding the ESCRT adaptor protein Alix. To investigate a possible role of the LYPSL motif in RSV budding, we constructed PPPY and LYPSL mutants in the context of an infectious virus and then analyzed the budding rates, spreading profiles, and budding morphology. The data imply that the LYPSL motif acts as a secondary late domain and that its role in budding is amplified in the absence of a fully functional PPPY motif. The LYPXL motif proved to be a stronger late domain when an aspartic acid was substituted for the native serine, recapitulating the properties of the LYPDL late domain of equine infectious anemia virus. The overexpression of human Alix in the absence of a fully functional PPPY late domain partially rescued both the viral budding rate and viral replication, supporting a model in which the RSV LYPSL motif mediates budding through an interaction with the ESCRT adaptor protein Alix.
Collapse
|
75
|
Inhibition of human immunodeficiency virus type 1 by triciribine involves the accessory protein nef. Antimicrob Agents Chemother 2010; 54:1512-9. [PMID: 20086149 DOI: 10.1128/aac.01443-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Triciribine (TCN) is a tricyclic nucleoside that inhibits human immunodeficiency virus type 1 (HIV-1) replication by a unique mechanism not involving the inhibition of enzymes directly involved in viral replication. This activity requires the phosphorylation of TCN to its 5' monophosphate by intracellular adenosine kinase. New testing with a panel of HIV and simian immunodeficiency virus isolates, including low-passage-number clinical isolates and selected subgroups of HIV-1, multidrug resistant HIV-1, and HIV-2, has demonstrated that TCN has broad antiretroviral activity. It was active in cell lines chronically infected with HIV-1 in which the provirus was integrated into chromosomal DNA, thereby indicating that TCN inhibits a late process in virus replication. The selection of TCN-resistant HIV-1 isolates resulted in up to a 750-fold increase in the level of resistance to the drug. DNA sequence analysis of highly resistant isolate HIV-1(H10) found five point mutations in the HIV-1 gene nef, resulting in five different amino acid changes. DNA sequencing of the other TCN-resistant isolates identified at least one and up to three of the same mutations observed in isolate HIV-1(H10). Transfer of the mutations from TCN-resistant isolate HIV-1(H10) to wild-type virus and subsequent viral growth experiments with increasing concentrations of TCN demonstrated resistance to the drug. We conclude that TCN is a late-phase inhibitor of HIV-1 replication and that mutations in nef are necessary and sufficient for TCN resistance.
Collapse
|
76
|
Adamson CS, Freed EO. Novel approaches to inhibiting HIV-1 replication. Antiviral Res 2010; 85:119-41. [PMID: 19782103 PMCID: PMC2815006 DOI: 10.1016/j.antiviral.2009.09.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 09/09/2009] [Accepted: 09/12/2009] [Indexed: 01/17/2023]
Abstract
Considerable success has been achieved in the treatment of HIV-1 infection, and more than two-dozen antiretroviral drugs are available targeting several distinct steps in the viral replication cycle. However, resistance to these compounds emerges readily, even in the context of combination therapy. Drug toxicity, adverse drug-drug interactions, and accompanying poor patient adherence can also lead to treatment failure. These considerations make continued development of novel antiretroviral therapeutics necessary. In this article, we highlight a number of steps in the HIV-1 replication cycle that represent promising targets for drug discovery. These include lipid raft microdomains, the RNase H activity of the viral enzyme reverse transcriptase, uncoating of the viral core, host cell machinery involved in the integration of the viral DNA into host cell chromatin, virus assembly, maturation, and budding, and the functions of several viral accessory proteins. We discuss the relevant molecular and cell biology, and describe progress to date in developing inhibitors against these novel targets. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- Catherine S. Adamson
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland, 21702-1201
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland, 21702-1201
| |
Collapse
|
77
|
Elder JH, Lin YC, Fink E, Grant CK. Feline immunodeficiency virus (FIV) as a model for study of lentivirus infections: parallels with HIV. Curr HIV Res 2010; 8:73-80. [PMID: 20210782 PMCID: PMC2853889 DOI: 10.2174/157016210790416389] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 11/02/2009] [Indexed: 12/22/2022]
Abstract
FIV is a significant pathogen in the cat and is, in addition, the smallest available natural model for the study of lentivirus infections. Although divergent at the amino acid level, the cat lentivirus has an abundance of structural and pathophysiological commonalities with HIV and thus serves well as a model for development of intervention strategies relevant to infection in both cats and man. The following review highlights both the strengths and shortcomings of the FIV/cat model, particular as regards development of antiviral drugs.
Collapse
Affiliation(s)
- John H Elder
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
78
|
Salgado GF, Vogel A, Marquant R, Feller SE, Bouaziz S, Alves ID. The role of membranes in the organization of HIV-1 Gag p6 and Vpr: p6 shows high affinity for membrane bilayers which substantially increases the interaction between p6 and Vpr. J Med Chem 2009; 52:7157-62. [PMID: 19883084 DOI: 10.1021/jm901106t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular mechanism by which HIV-1 Gag proteins are targeted and transported to the plasma membrane after ribosomal synthesis is unknown. In this work, we investigated the potential interaction of p6 and Vpr with model membranes and have determined their binding constants. Plasmon waveguide resonance (PWR) experiments showed that p6 strongly interacts with membranes (K(d) approximately 40 nM), which may help explaining in part why Gag is targeted to and assembles into membranes by coating itself with lipids. Moreover, a substantial increased affinity of Vpr for p6 was observed while in a membrane environment. In order to further investigate the molecular properties behind the high affinity to model membranes, molecular dynamics simulations were carried out for p6 with a dodecylphosphocholine (DPC) micelle. The results indicate an integration route model for Vpr into virions and may help explain why previous reports failed to detect p6 in virion core preparations.
Collapse
Affiliation(s)
- Gilmar F Salgado
- Departement de Chimie, Ecole Normale Superieure, CNRS, UMR 8642, 24 rue Lhomond, 75231 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
79
|
Joshi A, Nagashima K, Freed EO. Defects in cellular sorting and retroviral assembly induced by GGA overexpression. BMC Cell Biol 2009; 10:72. [PMID: 19788741 PMCID: PMC2760529 DOI: 10.1186/1471-2121-10-72] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 09/29/2009] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND We previously demonstrated that overexpression of Golgi-localized, gamma-ear containing, Arf-binding (GGA) proteins inhibits retrovirus assembly and release by disrupting the function of endogenous ADP ribosylation factors (Arfs). GGA overexpression led to the formation of large, swollen vacuolar compartments, which in the case of GGA1 sequestered HIV-1 Gag. RESULTS In the current study, we extend our previous findings to characterize in depth the GGA-induced compartments and the determinants for retroviral Gag sequestration in these structures. We find that GGA-induced structures are derived from the Golgi and contain aggresome markers. GGA overexpression leads to defects in trafficking of transferrin receptor and recycling of cation-dependent mannose 6-phosphate receptor. Additionally, we find that compartments induced by GGA overexpression sequester Tsg101, poly-ubiquitin, and, in the case of GGA3, Hrs. Interestingly, brefeldin A treatment, which leads to the dissociation of endogenous GGAs from membranes, does not dissociate the GGA-induced compartments. GGA mutants that are defective in Arf binding and hence association with membranes also induce the formation of GGA-induced structures. Overexpression of ubiquitin reverses the formation of GGA-induced structures and partially rescues HIV-1 particle production. We found that in addition to HIV-1 Gag, equine infectious anemia virus Gag is also sequestered in GGA1-induced structures. The determinants in Gag responsible for sequestration map to the matrix domain, and recruitment to these structures is dependent on Gag membrane binding. CONCLUSION These data provide insights into the composition of structures induced by GGA overexpression and their ability to disrupt endosomal sorting and retroviral particle production.
Collapse
Affiliation(s)
- Anjali Joshi
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland, USA
- Department of Biomedical Sciences, Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Kunio Nagashima
- Image Analysis Laboratory, Advanced Technology Program, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland, USA
| |
Collapse
|
80
|
Fujii K, Munshi UM, Ablan SD, Demirov DG, Soheilian F, Nagashima K, Stephen AG, Fisher RJ, Freed EO. Functional role of Alix in HIV-1 replication. Virology 2009; 391:284-92. [PMID: 19596386 DOI: 10.1016/j.virol.2009.06.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/21/2009] [Accepted: 06/09/2009] [Indexed: 11/17/2022]
Abstract
Retroviral Gag proteins encode small peptide motifs known as late domains that promote the release of virions from infected cells by interacting directly with host cell factors. Three types of retroviral late domains, with core sequences P(T/S)AP, YPX(n)L, and PPPY, have been identified. HIV-1 encodes a primary P(T/S)AP-type late domain and an apparently secondary late domain sequence of the YPX(n)L type. The P(T/S)AP and YPX(n)L motifs interact with the endosomal sorting factors Tsg101 and Alix, respectively. Although biochemical and structural studies support a direct binding between HIV-1 p6 and Alix, the physiological role of Alix in HIV-1 biology remains undefined. To elucidate the function of the p6-Alix interaction in HIV-1 replication, we introduced a series of mutations in the p6 Alix binding site and evaluated the effects on virus particle production and virus replication in a range of cell types, including physiologically relevant primary T cells and macrophages. We also examined the effects of the Alix binding site mutations on virion morphogenesis and single-cycle virus infectivity. We determined that the p6-Alix interaction plays an important role in HIV-1 replication and observed a particularly severe impact of Alix binding site mutations when they were combined with mutational inactivation of the Tsg101 binding site.
Collapse
Affiliation(s)
- Ken Fujii
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21701-1201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Molle D, Segura-Morales C, Camus G, Berlioz-Torrent C, Kjems J, Basyuk E, Bertrand E. Endosomal trafficking of HIV-1 gag and genomic RNAs regulates viral egress. J Biol Chem 2009; 284:19727-43. [PMID: 19451649 DOI: 10.1074/jbc.m109.019844] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
HIV-1 Gag can assemble and generate virions at the plasma membrane, but it is also present in endosomes where its role remains incompletely characterized. Here, we show that HIV-1 RNAs and Gag are transported on endosomal vesicles positive for TiVamp, a v-SNARE involved in fusion events with the plasma membrane. Inhibition of endosomal traffic did not prevent viral release. However, inhibiting lysosomal degradation induced an accumulation of Gag in endosomes and increased viral production 7-fold, indicating that transport of Gag to lysosomes negatively regulates budding. This also suggested that endosomal Gag-RNA complexes could access retrograde pathways to the cell surface and indeed, depleting cells of TiVamp-reduced viral production. Moreover, inhibition of endosomal transport prevented the accumulation of Gag at sites of cellular contact. HIV-1 Gag could thus generate virions using two pathways, either directly from the plasma membrane or through an endosome-dependent route. Endosomal Gag-RNA complexes may be delivered at specific sites to facilitate cell-to-cell viral transmission.
Collapse
Affiliation(s)
- Dorothée Molle
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, Institut Fédératif de Recherche 3, 1919 route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
82
|
Votteler J, Iavnilovitch E, Fingrut O, Shemesh V, Taglicht D, Erez O, Sörgel S, Walther T, Bannert N, Schubert U, Reiss Y. Exploring the functional interaction between POSH and ALIX and the relevance to HIV-1 release. BMC BIOCHEMISTRY 2009; 10:12. [PMID: 19393081 PMCID: PMC2680910 DOI: 10.1186/1471-2091-10-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 04/24/2009] [Indexed: 12/21/2022]
Abstract
BACKGROUND The ALG2-interacting protein X (ALIX)/AIP1 is an adaptor protein with multiple functions in intracellular protein trafficking that plays a central role in the biogenesis of enveloped viruses. The ubiquitin E3-ligase POSH (plenty of SH3) augments HIV-1 egress by facilitating the transport of Gag to the cell membrane. Recently, it was reported, that POSH interacts with ALIX and thereby enhances ALIX mediated phenotypes in Drosophila. RESULTS In this study we identified ALIX as a POSH ubiquitination substrate in human cells: POSH induces the ubiquitination of ALIX that is modified on several lysine residues in vivo and in vitro. This ubiquitination does not destabilize ALIX, suggesting a regulatory function. As it is well established that ALIX rescues virus release of L-domain mutant HIV-1, HIV-1DeltaPTAP, we demonstrated that wild type POSH, but not an ubiquitination inactive RING finger mutant (POSHV14A), substantially enhances ALIX-mediated release of infectious virions derived from HIV-1DeltaPTAP L-domain mutant (YPXnL-dependent HIV-1). In further agreement with the idea of a cooperative function of POSH and ALIX, mutating the YPXnL-ALIX binding site in Gag completely abrogated augmentation of virus release by overexpression of POSH. However, the effect of the POSH-mediated ubiquitination appears to be auxiliary, but not necessary, as silencing of POSH by RNAi does not disturb ALIX-augmentation of virus release. CONCLUSION Thus, the cumulative results identified ALIX as an ubiquitination substrate of POSH and indicate that POSH and ALIX cooperate to facilitate efficient virus release. However, while ALIX is obligatory for the release of YPXnL-dependent HIV-1, POSH, albeit rate-limiting, may be functionally interchangeable.
Collapse
Affiliation(s)
- Jörg Votteler
- Institute of Virology, Friedrich-Alexander University, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Evidence that productive human immunodeficiency virus type 1 assembly can occur in an intracellular compartment. J Virol 2009; 83:5375-87. [PMID: 19297499 DOI: 10.1128/jvi.00109-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) assembly occurs predominantly at the plasma membrane of infected cells. The targeting of assembly to intracellular compartments such as multivesicular bodies (MVBs) generally leads to a significant reduction in virus release efficiency, suggesting that MVBs are a nonproductive site for HIV-1 assembly. In the current study, we make use of an HIV-1 Gag-matrix mutant, 29/31KE, that is MVB targeted. We previously showed that this mutant is severely defective for virus particle production in HeLa cells but more modestly affected in primary macrophages. To more broadly examine the consequences of MVB targeting for virus production, we investigated 29/31KE particle production in a range of cell types. Surprisingly, this mutant supported highly efficient assembly and release in T cells despite its striking MVB Gag localization. Manipulation of cellular endocytic pathways revealed that unlike Vpu-defective HIV-1, which demonstrated intracellular Gag localization as a result of Gag endocytosis from the plasma membrane, 29/31KE mutant Gag was targeted directly to an MVB compartment. The 29/31KE mutant was unable to support multiple-round replication; however, this defect could be reversed by truncating the cytoplasmic tail of the transmembrane envelope glycoprotein gp41 and by the acquisition of a 16EK change in matrix. The 16EK/29/31KE matrix mutant replicated efficiently in the MT-4 T-cell line despite maintaining an MVB-targeting phenotype. These results indicate that MVB-targeted Gag can be efficiently released from T cells and primary macrophages, suggesting that under some circumstances, late endosomal compartments can serve as productive sites for HIV-1 assembly in these physiologically relevant cell types.
Collapse
|
84
|
Abstract
The formation of enveloped virus particles requires that key structural components of the virus, and the viral genomic RNA, are brought together at a cellular membrane system where new particles are assembled. The trafficking events, and the subsequent assembly and release of infectious virus particles, is co-coordinated through interactions between the viral structural proteins and cellular proteins. In the present paper, we consider how these events occur during HIV production in macrophages. In these cells, virus assembly appears to occur on a pre-existing specialized plasma membrane domain that is sequestered within the cells. The events that take place at these intracellular assembly sites may endow the virus with unique biochemical characteristics and allow virus release to be co-ordinated through the formation of infectious synapses.
Collapse
|
85
|
Abstract
HIV-1 release requires a direct interaction between the p6 domain of the Gag protein and Tsg101, a component of the cellular endosomal sorting complex required for transport I (ESCRT-I). Disruption of the binding between Gag and Tsg101 is highly detrimental to particle release, making this viral-host cell interaction a potential target for the development of novel anti-HIV-1 agents. An article in this issue reports on the application of a bacterial reverse two-hybrid strategy to identify a cyclic peptide that disrupts Gag-Tsg101 binding and suppresses HIV-1 particle release.
Collapse
Affiliation(s)
- Abdul A. Waheed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland 21702
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland 21702
| |
Collapse
|
86
|
Abstract
HIV infection of macrophages is a critically important component of viral pathogenesis and progression to AIDS. Although the virus follows the same life cycle in macrophages and T lymphocytes, several aspects of the virus-host relationship are unique to macrophage infection. Examples of these are the long-term persistence of productive infection, sustained by the absence of cell death, and the ability of progeny virus to bud into and accumulate in endocytic compartments designated multivesicular bodies (MVBs). Recently, the hypothesis that viral exploitation of the macrophage endocytic machinery is responsible for perpetuating the chronic state of infection unique to this cell type has been challenged in several independent studies employing a variety of experimental strategies. This review examines the evidence supporting and refuting the canonical hypothesis and highlights recently identified cellular factors that may contribute to the unique aspects of the HIV-macrophage interaction.
Collapse
Affiliation(s)
- Carol A Carter
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA.
| | | |
Collapse
|
87
|
Ojesina AI, Chaplin B, Sankalé JL, Murphy R, Idigbe E, Adewole I, Ekong E, Idoko J, Kanki PJ. Interplay of reverse transcriptase inhibitor therapy and gag p6 diversity in HIV type 1 subtype G and CRF02_AG. AIDS Res Hum Retroviruses 2008; 24:1167-74. [PMID: 18729771 DOI: 10.1089/aid.2007.0308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract The gag p6 region of HIV-1 has various nonsubstitutionary mutations, including insertions, duplications, deletions, and premature stop codons. Studies have linked gag p6 mutations to reduced susceptibility to antiretroviral therapy in HIV-1 subtype B. This study examined the relationship between antiretroviral therapy and gag p6 diversity in HIV-1 CRF02_AG and subtype G. p6 data were generated for secondary analyses following Viroseq genotyping of pol gene sequences in plasma samples from HIV-1-infected Nigerians on reverse transcriptase inhibitor therapy, with virologic failure (repeat VL > 2000 copies/ml). p6 sequence chromatograms were available for 40 CRF02_AG and 43 subtype G-infected individuals. Subjects who had not received their supply of antiretroviral drugs for at least 2 months prior to the plasma sampling were classified as nonadherent. p6 sequences from therapy-adherent individuals had more nonsubstitutionary mutations than sequences from drug-naive individuals (p = 0.0005). The P5L/T mutation was inversely correlated with the presence of K27Q/N in p6, with each mutation being more prominent in subtype G and CRF02_AG, respectively. The data also suggested that P5L/T may be a compensatory mutation for the loss of an essential phosphorylation site in p6. In addition, there was an inverse association between P5L/T mutations in p6 and thymidine analog mutations in reverse transcriptase (p = 0.0001), and drug nonadherence was associated with an 8-fold lower risk of having a nonsubstitutionary mutation in p6 (95% CI = 1.27-52.57). Our data suggest that antiretroviral therapy influences gag p6 diversity, but further studies are needed to clarify these observations.
Collapse
Affiliation(s)
- Akinyemi I. Ojesina
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, Massachusetts 02115
| | - Beth Chaplin
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, Massachusetts 02115
| | - Jean-Louis Sankalé
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, Massachusetts 02115
| | | | | | - Isaac Adewole
- University College Hospital, Ibadan, Oyo State, Nigeria
| | - Ernest Ekong
- APIN Plus/Harvard PEPFAR Program, Lagos, Nigeria
| | - John Idoko
- Jos University Teaching Hospital, Jos, Plateau State, Nigeria
| | - Phyllis J. Kanki
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, Massachusetts 02115
| |
Collapse
|
88
|
Joshi A, Munshi U, Ablan SD, Nagashima K, Freed EO. Functional replacement of a retroviral late domain by ubiquitin fusion. Traffic 2008; 9:1972-83. [PMID: 18817521 DOI: 10.1111/j.1600-0854.2008.00817.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Retroviral Gag polyprotein precursors are both necessary and sufficient for the assembly and release of virus-like particles (VLPs) from infected cells. It is well established that small Gag-encoded motifs, known as late domains, promote particle release by interacting with components of the cellular endosomal sorting and ubiquitination machinery. The Gag proteins of a number of different retroviruses are ubiquitinated; however, the role of Gag ubiquitination in particle egress remains undefined. In this study, we investigated this question by using a panel of equine infectious anemia virus (EIAV) Gag derivatives bearing the wild-type EIAV late domain, heterologous retroviral late domains or no late domain. Ubiquitin was fused in cis to the C-termini of these Gag polyproteins, and the effects on VLP budding were measured. Remarkably, fusion of ubiquitin to EIAV Gag lacking a late domain (EIAV/DeltaYPDL-Ub) largely rescued VLP release. We also determined the effects of ubiquitin fusion on the sensitivity of particle release to budding inhibitors and to depletion of key endosomal sorting factors. Ubiquitin fusion rendered EIAV/DeltaYPDL-Ub sensitive to depletion of cellular endosomal sorting factors Tsg101 and Alix and to overexpression of dominant-negative fragments of Tsg101 and Alix. These findings demonstrate that ubiquitin can functionally compensate for the absence of a retroviral late domain and provide insights into the host-cell machinery engaged by ubiquitin during particle egress.
Collapse
Affiliation(s)
- Anjali Joshi
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
89
|
Moore MD, Fu W, Soheilian F, Nagashima K, Ptak RG, Pathak VK, Hu WS. Suboptimal inhibition of protease activity in human immunodeficiency virus type 1: effects on virion morphogenesis and RNA maturation. Virology 2008; 379:152-60. [PMID: 18657842 DOI: 10.1016/j.virol.2008.06.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/20/2008] [Accepted: 06/25/2008] [Indexed: 12/30/2022]
Abstract
Protease activity within nascently released human immunodeficiency virus type 1 (HIV-1) particles is responsible for the cleavage of the viral polyproteins Gag and Gag-Pol into their constituent parts, which results in the subsequent condensation of the mature conical core surrounding the viral genomic RNA. Concomitant with viral maturation is a conformational change in the packaged viral RNA from a loosely associated dimer into a more thermodynamically stable form. In this study we used suboptimal concentrations of two protease inhibitors, lopinavir and atazanavir, to study their effects on Gag polyprotein processing and on the properties of the RNA in treated virions. Analysis of the treated virions demonstrated that even with high levels of inhibition of viral infectivity (IC(90)), most of the Gag and Gag-Pol polyproteins were processed, although slight but significant increases in processing intermediates of Gag were detected. Drug treatments also caused a significant increase in the proportion of viruses displaying either immature or aberrant mature morphologies. The aberrant mature particles were characterized by an electron-dense region at the viral periphery and an electron-lucent core structure in the viral center, possibly indicating exclusion of the genomic RNA from these viral cores. Intriguingly, drug treatments caused only a slight decrease in overall thermodynamic stability of the viral RNA dimer, suggesting that the dimeric viral RNA was able to mature in the absence of correct core condensation.
Collapse
Affiliation(s)
- Michael D Moore
- HIV Drug Resistance Program, National Cancer Institute at Frederick, P.O. Box B, Building 535, Room 336, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Lazert C, Chazal N, Briant L, Gerlier D, Cortay JC. Refined study of the interaction between HIV-1 p6 late domain and ALIX. Retrovirology 2008; 5:39. [PMID: 18477395 PMCID: PMC2397435 DOI: 10.1186/1742-4690-5-39] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 05/13/2008] [Indexed: 11/10/2022] Open
Abstract
The interaction between the HIV-1 p6 late budding domain and ALIX, a class E vacuolar protein sorting factor, was explored by using the yeast two-hybrid approach. We refined the ALIX binding site of p6 as being the leucine triplet repeat sequence (Lxx)4 (LYPLTSLRSLFG). Intriguingly, the deletion of the C-terminal proline-rich region of ALIX prevented detectable binding to p6. In contrast, a four-amino acid deletion in the central hinge region of p6 increased its association with ALIX as shown by its ability to bind to ALIX lacking the proline rich domain. Finally, by using a random screening approach, the minimal ALIX391-510 fragment was found to specifically interact with this p6 deletion mutant. A parallel analysis of ALIX binding to the late domain p9 from EIAV revealed that p6 and p9, which exhibit distinct ALIX binding motives, likely bind differently to ALIX. Altogether, our data support a model where the C-terminal proline-rich domain of ALIX allows the access of its binding site to p6 by alleviating a conformational constraint resulting from the presence of the central p6 hinge.
Collapse
Affiliation(s)
- Carine Lazert
- Université Lyon 1, Centre National de Recherche Scientifique (CNRS), VirPatH FRE 3011, Faculté de Médecine RTH Laennec, Lyon, France.
| | | | | | | | | |
Collapse
|
91
|
Nikolaitchik OA, Gorelick RJ, Leavitt MG, Pathak VK, Hu WS. Functional complementation of nucleocapsid and late domain PTAP mutants of human immunodeficiency virus type 1 during replication. Virology 2008; 375:539-49. [PMID: 18353416 DOI: 10.1016/j.virol.2008.02.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/02/2008] [Accepted: 02/21/2008] [Indexed: 01/16/2023]
Abstract
During human immunodeficiency virus type 1 (HIV-1) assembly, the nucleocapsid (NC) and the PTAP motif in p6 of Gag play important roles in RNA encapsidation and virus release, respectively. We have previously demonstrated that functional complementation occurs between an NC mutant and a PTAP mutant to rescue viral replication. In this report, we examined the amounts of functional NC and PTAP motif that are required during virus replication. When NC and PTAP mutants were coexpressed at 5:1, 5:5, and 1:5 ratios, virus titers were rescued at 5%, 51%, and 86% of the wild-type level, respectively. These results indicate that HIV-1 requires a small amount of functional PTAP motif but far more functional NC to complete efficient replication. Further analyses reveal that RNA packaging can be significantly rescued in viruses containing a small amount of functional NC. However, most of the NC proteins must be functional to generate the wild-type level of R-U5 DNA product. Once the R-U5 product is generated, viruses containing half of the functional NC can complete reverse transcription and DNA integration at near-wild-type efficiency. These results define the quantitative requirements of NC and p6 during HIV-1 replication and provide insights into the requirement for the development of anti-HIV strategies using NC and p6 as targets.
Collapse
|
92
|
Marcucci KT, Martina Y, Harrison F, Wilson CA, Salomon DR. Functional hierarchy of two L domains in porcine endogenous retrovirus (PERV) that influence release and infectivity. Virology 2008; 375:637-45. [PMID: 18355887 DOI: 10.1016/j.virol.2008.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Accepted: 02/13/2008] [Indexed: 12/21/2022]
Abstract
The porcine endogenous retrovirus (PERV) Gag protein contains two late (L) domain motifs, PPPY and P(F/S)AP. Using viral release assays we demonstrate that PPPY is the dominant L domain involved in PERV release. PFAP represents a novel retroviral L domain variant and is defined by abnormal viral assembly phenotypes visualized by electron microscopy and attenuation of early PERV release as measured by viral genomes. PSAP is functionally dominant over PFAP in early PERV release. PSAP virions are 3.5-fold more infectious in vitro by TCID(50) and in vivo results in more RNA positive tissues and higher levels of proviral DNA using our human PERV-A receptor (HuPAR-2) transgenic mouse model [Martina, Y., Marcucci, K.T., Cherqui, S., Szabo, A., Drysdale, T., Srinivisan, U., Wilson, C.A., Patience, C., Salomon, D.R., 2006. Mice transgenic for a human porcine endogenous retrovirus receptor are susceptible to productive viral infection. J. Virol. 80 (7), 3135-3146]. The functional hierarchies displayed by PERV L domains, demonstrates that L domain selection in viral evolution exists to promote efficient viral assembly, release and infectivity in the virus-host context.
Collapse
Affiliation(s)
- Katherine T Marcucci
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
93
|
Votteler J, Schubert U. Ubiquitin ligases as therapeutic targets in HIV-1 infection. Expert Opin Ther Targets 2008; 12:131-43. [PMID: 18208363 DOI: 10.1517/14728222.12.2.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Introduction of highly active antiretroviral therapy has led to a profound reduction in human immunodeficiency virus (HIV) related mortality; although, the complete eradication of the virus from infected individuals has never been achieved. In addition, due to the high mutation and evolution rate, drug-resistant viruses are continuously emerging. OBJECTIVE Genetically more stable cellular pathways represent attractive targets for innovative antiviral strategies, especially the ubiquitin proteasome system, which regulates various steps in the HIV replication cycle. METHODS This review focuses on certain interactions of HIV and E3 ligases as a major player in the ubiquitin proteasome system. RESULTS/CONCLUSION Due to the importance in HIV replication, and together with the high substrate specificity, E3 ligases can be considered as bona fide targets to interfere with HIV infection.
Collapse
Affiliation(s)
- Jörg Votteler
- University of Erlangen-Nuremberg, Institute of Clinical and Molecular Virology, Schlossgarten 4, 91054 Erlangen, Germany.
| | | |
Collapse
|
94
|
TULA proteins bind to ABCE-1, a host factor of HIV-1 assembly, and inhibit HIV-1 biogenesis in a UBA-dependent fashion. Virology 2008; 372:10-23. [DOI: 10.1016/j.virol.2007.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/09/2007] [Accepted: 10/11/2007] [Indexed: 11/20/2022]
|
95
|
Dominant negative inhibition of human immunodeficiency virus particle production by the nonmyristoylated form of gag. J Virol 2008; 82:4384-99. [PMID: 18305041 DOI: 10.1128/jvi.01953-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myristoylation of human immunodeficiency virus (HIV) Gag protein is essential for membrane targeting of Gag and production of viral particles. We show here that coexpression of wild-type and nonmyristoylated forms of HIV Gag resulted in severe inhibition of viral particle production, indicating that the nonmyristoylated counterpart had a dominant negative effect on particle release. When coexpressed, the nonmyristoylated Gag partially incorporated into membrane and lipid raft fractions, likely through coassembly with the wild-type Gag. The membrane and raft associations of the wild-type Gag appeared unaffected, and yet particle production was severely impaired. When viral particles produced from the coexpressing cells were analyzed, the wild-type Gag was more abundant than the nonmyristoylated Gag. Confocal microscopy showed that both forms of Gag were diffusely distributed in the cytoplasm of coexpressing cells but that a portion of the wild-type Gag population was accumulated in EEA1- and CD63-positive endosomes. The intracellular accumulation of Gag was more frequently observed at late time points. The Gag accumulation was also observed on the cell surface protrusion. Electron microscopy of the coexpressing cells revealed budding arrest phenotypes, including the occurrence of interconnected virions on the plasma membrane, and intracellular budding. We also show that the inhibition of particle production and the Gag accumulation to endosomes were suppressed when the nucleocapsid (NC) domain was deleted from the nonmyristoylated Gag, although the NC-deleted Gag was still capable of coassembly. Overall, our data indicate that coassembly with the nonmyristoylated Gag impairs HIV particle release, a phenomenon that may involve NC-mediated Gag-Gag interaction.
Collapse
|
96
|
Elder JH, Sundstrom M, de Rozieres S, de Parseval A, Grant CK, Lin YC. Molecular mechanisms of FIV infection. Vet Immunol Immunopathol 2008; 123:3-13. [PMID: 18289701 DOI: 10.1016/j.vetimm.2008.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Feline immunodeficiency virus (FIV) is an important viral pathogen worldwide in the domestic cat, which is the smallest animal model for the study of natural lentivirus infection. Thus, understanding the molecular mechanisms by which FIV carries out its life cycle and causes an acquired immune deficiency syndrome (AIDS) in the cat is of high priority. FIV has an overall genome size similar to HIV, the causative agent of AIDS in man, and shares with the human virus genomic features that may serve as common targets for development of broad-based intervention strategies. Specific targets include enzymes encoded by the two lentiviruses, such as protease (PR), reverse transcriptase (RT), RNAse H, and integrase (IN). In addition, both FIV and HIV encode Vif and Rev elements essential for virus replication and also share the use of the chemokine receptor CXCR4 for entry into the host cell. The following review is a brief overview of the current state of characterization of the feline/FIV model and development of its use for generation and testing of anti-viral agents.
Collapse
Affiliation(s)
- John H Elder
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| | | | | | | | | | | |
Collapse
|
97
|
Abstract
Infection of domestic cats with feline immunodeficiency virus (FIV) is an important model system for studying human immunodeficiency virus type 1 (HIV-1) infection due to numerous similarities in pathogenesis induced by these two lentiviruses. However, many molecular aspects of FIV replication remain poorly understood. It is well established that retroviruses use short peptide motifs in Gag, known as late domains, to usurp cellular endosomal sorting machinery and promote virus release from infected cells. For example, the Pro-Thr/Ser-Ala-Pro [P(T/S)AP] motif of HIV-1 Gag interacts directly with Tsg101, a component of the endosomal sorting complex required for transport I (ESCRT-I). A Tyr-Pro-Asp-Leu (YPDL) motif in equine infectious anemia virus (EIAV), and a related sequence in HIV-1, bind the endosomal sorting factor Alix. In this study we sought to identify and characterize FIV late domain(s) and elucidate cellular machinery involved in FIV release. We determined that mutagenesis of a PSAP motif in FIV Gag, small interfering RNA-mediated knockdown of Tsg101 expression, and overexpression of a P(T/S)AP-binding fragment of Tsg101 (TSG-5') each inhibited FIV release. We also observed direct binding of FIV Gag peptides to Tsg101. In contrast, mutagenesis of a potential Alix-binding motif in FIV Gag did not affect FIV release. Similarly, expression of the HIV-1/EIAV Gag-binding domain of Alix (Alix-V) did not disrupt FIV budding, and FIV Gag peptides showed no affinity for Alix-V. Our data demonstrate that FIV relies predominantly on a Tsg101-binding PSAP motif in the C terminus of Gag to promote virus release in HeLa cells, and this budding mechanism is highly conserved in feline cells.
Collapse
|
98
|
Fujii K, Hurley JH, Freed EO. Beyond Tsg101: the role of Alix in 'ESCRTing' HIV-1. Nat Rev Microbiol 2007; 5:912-6. [PMID: 17982468 DOI: 10.1038/nrmicro1790] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The limited coding capacity of retroviral genomes forces these viruses to rely heavily on the host-cell machinery for their replication. This phenomenon is particularly well illustrated by the interaction between retroviruses and components of the endosomal budding machinery that occurs during virus release. Here, we focus on the use of host-cell factors during HIV-1 budding and highlight recent progress in our understanding of the role of one such factor, Alix, in both viral and cellular membrane budding and fission events.
Collapse
Affiliation(s)
- Ken Fujii
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
99
|
Fang Y, Wu N, Gan X, Yan W, Morrell JC, Gould SJ. Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol 2007; 5:e158. [PMID: 17550307 PMCID: PMC1885833 DOI: 10.1371/journal.pbio.0050158] [Citation(s) in RCA: 296] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 04/10/2007] [Indexed: 11/19/2022] Open
Abstract
Exosomes are secreted organelles that have the same topology as the cell and bud outward (outward is defined as away from the cytoplasm) from endosome membranes or endosome-like domains of plasma membrane. Here we describe an exosomal protein-sorting pathway in Jurkat T cells that selects cargo proteins on the basis of both higher-order oligomerization (the oligomerization of oligomers) and plasma membrane association, acts on proteins seemingly without regard to their function, sequence, topology, or mechanism of membrane association, and appears to operate independently of class E vacuolar protein-sorting (VPS) function. We also show that higher-order oligomerization is sufficient to target plasma membrane proteins to HIV virus-like particles, that diverse Gag proteins possess exosomal-sorting information, and that higher-order oligomerization is a primary determinant of HIV Gag budding/exosomal sorting. In addition, we provide evidence that both the HIV late domain and class E VPS function promote HIV budding by unexpectedly complex, seemingly indirect mechanisms. These results support the hypothesis that HIV and other retroviruses are generated by a normal, nonviral pathway of exosome biogenesis.
Collapse
Affiliation(s)
- Yi Fang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ning Wu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Xin Gan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Wanhua Yan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - James C Morrell
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Stephen J Gould
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
100
|
Human immunodeficiency virus type 1 Gag engages the Bro1 domain of ALIX/AIP1 through the nucleocapsid. J Virol 2007; 82:1389-98. [PMID: 18032513 DOI: 10.1128/jvi.01912-07] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) and other retroviruses harbor short peptide motifs in Gag that promote the release of infectious virions. These motifs, known as late assembly (L) domains, recruit a cellular budding machinery that is required for the formation of multivesicular bodies (MVBs). The primary L domain of HIV-1 maps to a PTAP motif in the p6 region of Gag and engages the MVB pathway by binding to Tsg101. Additionally, HIV-1 p6 harbors an auxiliary L domain that binds to the V domain of ALIX, another component of the MVB pathway. We now show that ALIX also binds to the nucleocapsid (NC) domain of HIV-1 Gag and that ALIX and its isolated Bro1 domain can be specifically packaged into viral particles via NC. The interaction with ALIX depended on the zinc fingers of NC, which mediate the specific packaging of genomic viral RNA, but was not disrupted by nuclease treatment. We also observed that HIV-1 zinc finger mutants were defective for particle production and exhibited a similar defect in Gag processing as a PTAP deletion mutant. The effects of the zinc finger and PTAP mutations were not additive, suggesting a functional relationship between NC and p6. However, in contrast to the PTAP deletion mutant, the double mutants could not be rescued by overexpressing ALIX, further supporting the notion that NC plays a role in virus release.
Collapse
|