51
|
Gao Y, Kim S, Lee YI, Lee J. Cellular Stress-Modulating Drugs Can Potentially Be Identified by in Silico Screening with Connectivity Map (CMap). Int J Mol Sci 2019; 20:ijms20225601. [PMID: 31717493 PMCID: PMC6888006 DOI: 10.3390/ijms20225601] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022] Open
Abstract
Accompanied by increased life span, aging-associated diseases, such as metabolic diseases and cancers, have become serious health threats. Recent studies have documented that aging-associated diseases are caused by prolonged cellular stresses such as endoplasmic reticulum (ER) stress, mitochondrial stress, and oxidative stress. Thus, ameliorating cellular stresses could be an effective approach to treat aging-associated diseases and, more importantly, to prevent such diseases from happening. However, cellular stresses and their molecular responses within the cell are typically mediated by a variety of factors encompassing different signaling pathways. Therefore, a target-based drug discovery method currently being used widely (reverse pharmacology) may not be adequate to uncover novel drugs targeting cellular stresses and related diseases. The connectivity map (CMap) is an online pharmacogenomic database cataloging gene expression data from cultured cells treated individually with various chemicals, including a variety of phytochemicals. Moreover, by querying through CMap, researchers may screen registered chemicals in silico and obtain the likelihood of drugs showing a similar gene expression profile with desired and chemopreventive conditions. Thus, CMap is an effective genome-based tool to discover novel chemopreventive drugs.
Collapse
Affiliation(s)
- Yurong Gao
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (Y.G.); (S.K.)
| | - Sungwoo Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (Y.G.); (S.K.)
| | - Yun-Il Lee
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Correspondence: (Y.-I.L.); (J.L.)
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (Y.G.); (S.K.)
- Correspondence: (Y.-I.L.); (J.L.)
| |
Collapse
|
52
|
Takii R, Fujimoto M, Matsumoto M, Srivastava P, Katiyar A, Nakayama KI, Nakai A. The pericentromeric protein shugoshin 2 cooperates with HSF1 in heat shock response and RNA Pol II recruitment. EMBO J 2019; 38:e102566. [PMID: 31657478 DOI: 10.15252/embj.2019102566] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022] Open
Abstract
The recruitment of RNA polymerase II (Pol II) to core promoters is highly regulated during rapid induction of genes. In response to heat shock, heat shock transcription factor 1 (HSF1) is activated and occupies heat shock gene promoters. Promoter-bound HSF1 recruits general transcription factors and Mediator, which interact with Pol II, but stress-specific mechanisms of Pol II recruitment are unclear. Here, we show in comparative analyses of HSF1 paralogs and their mutants that HSF1 interacts with the pericentromeric adaptor protein shugoshin 2 (SGO2) during heat shock in mouse cells, in a manner dependent on inducible phosphorylation of HSF1 at serine 326, and recruits SGO2 to the HSP70 promoter. SGO2-mediated binding and recruitment of Pol II with a hypophosphorylated C-terminal domain promote expression of HSP70, implicating SGO2 as one of the coactivators that facilitate Pol II recruitment by HSF1. Furthermore, the HSF1-SGO2 complex supports cell survival and maintenance of proteostasis in heat shock conditions. These results exemplify a proteotoxic stress-specific mechanism of Pol II recruitment, which is triggered by phosphorylation of HSF1 during the heat shock response.
Collapse
Affiliation(s)
- Ryosuke Takii
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Mitsuaki Fujimoto
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Masaki Matsumoto
- Division of Proteomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Pratibha Srivastava
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Arpit Katiyar
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Keiich I Nakayama
- Division of Proteomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akira Nakai
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| |
Collapse
|
53
|
Dudziuk G, Wronowska W, Gambin A, Szymańska Z, Rybiński M. Biologically sound formal model of Hsp70 heat induction. J Theor Biol 2019; 478:74-101. [PMID: 31181241 DOI: 10.1016/j.jtbi.2019.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 03/17/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023]
Abstract
A proper response to rapid environmental changes is essential for cell survival and requires efficient modifications in the pattern of gene expression. In this respect, a prominent example is Hsp70, a chaperone protein whose synthesis is dynamically regulated in stress conditions. In this paper, we expand a formal model of Hsp70 heat induction originally proposed in previous articles. To accurately capture various modes of heat shock effects, we not only introduce temperature dependencies in transcription to Hsp70 mRNA and in dissociation of transcriptional complexes, but we also derive a new formal expression for the temperature dependence in protein denaturation. We calibrate our model using comprehensive sets of both previously published experimental data and also biologically justified constraints. Interestingly, we obtain a biologically plausible temperature dependence of the transcriptional complex dissociation, despite the lack of biological constraints imposed in the calibration process. Finally, based on a sensitivity analysis of the model carried out in both deterministic and stochastic settings, we suggest that the regulation of the binding of transcriptional complexes plays a key role in Hsp70 induction upon heat shock. In conclusion, we provide a model that is able to capture the essential dynamics of the Hsp70 heat induction whilst being biologically sound in terms of temperature dependencies, description of protein denaturation and imposed calibration constraints.
Collapse
Affiliation(s)
- Grzegorz Dudziuk
- ICM, University of Warsaw, ul. Tyniecka 15/17, Warsaw 02-630, Poland.
| | - Weronika Wronowska
- CeNT, University of Warsaw, ul. Banacha 2c, Warsaw 02-097, Poland; Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, Warsaw 02-096, Poland.
| | - Anna Gambin
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, ul. Banacha 2, Warsaw 02-097, Poland.
| | - Zuzanna Szymańska
- ICM, University of Warsaw, ul. Tyniecka 15/17, Warsaw 02-630, Poland; Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, Warsaw 00-656, Poland.
| | - Mikołaj Rybiński
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, ul. Banacha 2, Warsaw 02-097, Poland; Department of Biosystems, Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
54
|
Gu L, Jiang T, Zhang C, Li X, Wang C, Zhang Y, Li T, Dirk LMA, Downie AB, Zhao T. Maize HSFA2 and HSBP2 antagonistically modulate raffinose biosynthesis and heat tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:128-142. [PMID: 31180156 DOI: 10.1111/tpj.14434] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 05/13/2023]
Abstract
Raffinose is thought to play an important role in plant tolerance of abiotic stress. We report here that maize HEAT SHOCK FACTOR A2 (ZmHSFA2) and HEAT SHOCK BINDING PROTEIN 2 (ZmHSBP2) physically interact with each other and antagonistically modulate expression of GALACTINOL SYNTHASE2 (ZmGOLS2) and raffinose biosynthesis in transformed maize protoplasts and Arabidopsis plants. Overexpression of ZmHSFA2 in Arabidopsis increased the expression of Arabidopsis AtGOLS1, AtGOLS2 and AtRS5 (RAFFINOSE SYNTHASE), increased the raffinose content in leaves and enhanced plant heat stress tolerance. Contrary to ZmHSFA2, overexpression of ZmHSBP2 in Arabidopsis decreased expression of AtGOLS1, AtGOLS2 and AtRS5, decreased the raffinose content in leaves and reduced plant heat stress tolerance. ZmHSFA2 and ZmHSBP2 also interact with their Arabidopsis counterparts AtHSBP and AtHSFA2 as determined using bimolecular fluorescence complementation assays. Furthermore, endogenous ZmHSBP2 and Rluc, controlled by the ZmHSBP2 promoter, are transcriptionally activated by ZmHSFA2 and inhibited by ZmHSBP2 in maize protoplasts. These findings provide insights into the transcriptional regulation of raffinose biosynthetic genes, and the tolerance their product confers to plant heat stress.
Collapse
Affiliation(s)
- Lei Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tao Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunxia Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xudong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunmei Wang
- Biology Experimental Teaching Center, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yumin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lynnette M A Dirk
- Department of Horticulture, Seed Biology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - A Bruce Downie
- Department of Horticulture, Seed Biology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Tianyong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
55
|
Biebl MM, Buchner J. Structure, Function, and Regulation of the Hsp90 Machinery. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034017. [PMID: 30745292 DOI: 10.1101/cshperspect.a034017] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone involved in the maturation of a plethora of substrates ("clients"), including protein kinases, transcription factors, and E3 ubiquitin ligases, positioning Hsp90 as a central regulator of cellular proteostasis. Hsp90 undergoes large conformational changes during its ATPase cycle. The processing of clients by cytosolic Hsp90 is assisted by a cohort of cochaperones that affect client recruitment, Hsp90 ATPase function or conformational rearrangements in Hsp90. Because of the importance of Hsp90 in regulating central cellular pathways, strategies for the pharmacological inhibition of the Hsp90 machinery in diseases such as cancer and neurodegeneration are being developed. In this review, we summarize recent structural and mechanistic progress in defining the function of organelle-specific and cytosolic Hsp90, including the impact of individual cochaperones on the maturation of specific clients and complexes with clients as well as ways of exploiting Hsp90 as a drug target.
Collapse
Affiliation(s)
- Maximilian M Biebl
- Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, D-85748 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, D-85748 Garching, Germany
| |
Collapse
|
56
|
Wu CW, Wimberly K, Pietras A, Dodd W, Atlas MB, Choe KP. RNA processing errors triggered by cadmium and integrator complex disruption are signals for environmental stress. BMC Biol 2019; 17:56. [PMID: 31311534 PMCID: PMC6631800 DOI: 10.1186/s12915-019-0675-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/24/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Adaptive responses to stress are essential for cell and organismal survival. In metazoans, little is known about the impact of environmental stress on RNA homeostasis. RESULTS By studying the regulation of a cadmium-induced gene named numr-1 in Caenorhabditis elegans, we discovered that disruption of RNA processing acts as a signal for environmental stress. We find that NUMR-1 contains motifs common to RNA splicing factors and influences RNA splicing in vivo. A genome-wide screen reveals that numr-1 is strongly and specifically induced by silencing of genes that function in basal RNA metabolism including subunits of the metazoan integrator complex. Human integrator processes snRNAs for functioning with splicing factors, and we find that silencing of C. elegans integrator subunits disrupts snRNA processing, causes aberrant pre-mRNA splicing, and induces the heat shock response. Cadmium, which also strongly induces numr-1, has similar effects on RNA and the heat shock response. Lastly, we find that heat shock factor-1 is required for full numr-1 induction by cadmium. CONCLUSION Our results are consistent with a model in which disruption of integrator processing of RNA acts as a molecular damage signal initiating an adaptive stress response mediated by heat shock factor-1. When numr-1 is induced via this pathway in C. elegans, its function in RNA metabolism may allow it to mitigate further damage and thereby promote tolerance to cadmium.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA.
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada.
| | - Keon Wimberly
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Adele Pietras
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - William Dodd
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - M Blake Atlas
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Keith P Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
57
|
Niemelä E, Desai D, Lundsten E, Rosenholm JM, Kankaanpää P, Eriksson JE. Quantitative bioimage analytics enables measurement of targeted cellular stress response induced by celastrol-loaded nanoparticles. Cell Stress Chaperones 2019; 24:735-748. [PMID: 31079284 PMCID: PMC6629742 DOI: 10.1007/s12192-019-00999-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 10/26/2022] Open
Abstract
The cellular stress response, which provides protection against proteotoxic stresses, is characterized by the activation of heat shock factor 1 and the formation of nuclear stress bodies (nSBs). In this study, we developed a computerized method to quantify the formation and size distribution of nSBs, as stress response induction is of interest in cancer research, neurodegenerative diseases, and in other pathophysiological processes. We employed an advanced bioimaging and analytics workflow to enable quantitative detailed subcellular analysis of cell populations even down to single-cell level. This type of detailed analysis requires automated single cell analysis to allow for detection of both size and distribution of nSBs. For specific induction of nSB we used mesoporous silica nanoparticles (MSNs) loaded with celastrol, a plant-derived triterpene with the ability to activate the stress response. To enable specific targeting, we employed folic acid functionalized nanoparticles, which yields targeting to folate receptor expressing cancer cells. In this way, we could assess the ability to quantitatively detect directed and spatio-temporal nSB induction using 2D and 3D confocal imaging. Our results demonstrate successful implementation of an imaging and analytics workflow based on a freely available, general-purpose software platform, BioImageXD, also compatible with other imaging modalities due to full 3D/4D and high-throughput batch processing support. The developed quantitative imaging analytics workflow opens possibilities for detailed stress response examination in cell populations, with significant potential in the analysis of targeted drug delivery systems related to cell stress and other cytoprotective cellular processes.
Collapse
Affiliation(s)
- Erik Niemelä
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Diti Desai
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Emine Lundsten
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Pasi Kankaanpää
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - John E. Eriksson
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
58
|
Transcriptional activation of long terminal repeat of bovine leukemia virus by bovine heat shock factor 1. Virus Res 2019; 269:197641. [PMID: 31228509 DOI: 10.1016/j.virusres.2019.197641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 11/21/2022]
Abstract
Bovine leukemia virus (BLV) causes enzootic bovine leukosis (EBL). The BLV genome encodes Tax protein, a transcriptional activator of viral gene expression that binds to the BLV long terminal repeat (LTR). Heat shock factor 1 (HSF1) is a known regulator of the heat shock response proteins, including heat shock proteins. In the present study, the BLV LTR was investigated for interaction of heat shock element (HSE) with HSF1 and the viral Tax protein. It could be confirmed that a functional HSE is well conserved in different BLV strains. The LTR transcriptional activity, as measured by luciferase reporter assay, was upregulated by bovine HSF1 - without Tax expression - in feline CC81 cells. The HSF1 activated LTR transcription by binding to the HSE. LTR-activation was lost upon HSE removal from the LTR and upon expression of a mutant HSF1 lacking the DNA-binding domain. We conclude that BLV LTR is activated to a basal level by host transcriptional factor HSF1, but without Tax protein involvement.
Collapse
|
59
|
Chatterjee M, Dass J. FP, Sengupta S. Nuclear stress bodies: Interaction of its components in oncogenic regulation. J Cell Biochem 2019; 120:14700-14710. [DOI: 10.1002/jcb.28731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Manjima Chatterjee
- School of Bio Sciences and Technology, Vellore Institute of Technology Vellore India
| | - Febin Prabhu Dass J.
- School of Bio Sciences and Technology, Vellore Institute of Technology Vellore India
| | - Sonali Sengupta
- School of Bio Sciences and Technology, Vellore Institute of Technology Vellore India
| |
Collapse
|
60
|
HSB-1 Inhibition and HSF-1 Overexpression Trigger Overlapping Transcriptional Changes To Promote Longevity in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2019; 9:1679-1692. [PMID: 30894454 PMCID: PMC6505166 DOI: 10.1534/g3.119.400044] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heat shock factor 1 (HSF-1) is a component of the heat shock response pathway that is induced by cytoplasmic proteotoxic stress. In addition to its role in stress response, HSF-1 also acts as a key regulator of the rate of organismal aging. Overexpression of HSF-1 promotes longevity in C. elegans via mechanisms that remain less understood. Moreover, genetic ablation of a negative regulator of HSF-1, termed as heat shock factor binding protein 1 (HSB-1), results in hsf-1-dependent life span extension in animals. Here we show that in the absence of HSB-1, HSF-1 acquires increased DNA binding activity to its genomic target sequence. Using RNA-Seq to compare the gene expression profiles of the hsb-1 mutant and hsf-1 overexpression strains, we found that while more than 1,500 transcripts show ≥1.5-fold upregulation due to HSF-1 overexpression, HSB-1 inhibition alters the expression of less than 500 genes in C. elegans. Roughly half of the differentially regulated transcripts in the hsb-1 mutant have altered expression also in hsf-1 overexpressing animals, with a strongly correlated fold-expression pattern between the two strains. In addition, genes that are upregulated via both HSB-1 inhibition and HSF-1 overexpression include numerous DAF-16 targets that have known functions in longevity regulation. This study identifies how HSB-1 acts as a specific regulator of the transactivation potential of HSF-1 in non-stressed conditions, thus providing a detailed understanding of the role of HSB-1/HSF-1 signaling pathway in transcriptional regulation and longevity in C. elegans.
Collapse
|
61
|
Veri AO, Robbins N, Cowen LE. Regulation of the heat shock transcription factor Hsf1 in fungi: implications for temperature-dependent virulence traits. FEMS Yeast Res 2019; 18:4975774. [PMID: 29788061 DOI: 10.1093/femsyr/foy041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/16/2018] [Indexed: 12/27/2022] Open
Abstract
The impact of fungal pathogens on human health is devastating. For fungi and other pathogens, a key determinant of virulence is the capacity to thrive at host temperatures, with elevated temperature in the form of fever as a ubiquitous host response to defend against infection. A prominent feature of cells experiencing heat stress is the increased expression of heat shock proteins (Hsps) that play pivotal roles in the refolding of misfolded proteins in order to restore cellular homeostasis. Transcriptional activation of this heat shock response is orchestrated by the essential heat shock transcription factor, Hsf1. Although the influence of Hsf1 on cellular stress responses has been studied for decades, many aspects of its regulation and function remain largely enigmatic. In this review, we highlight our current understanding of how Hsf1 is regulated and activated in the model yeast Saccharomyces cerevisiae, and highlight exciting recent discoveries related to its diverse functions under both basal and stress conditions. Given that thermal adaption is a fundamental requirement for growth and virulence in fungal pathogens, we also compare and contrast Hsf1 activation and function in other fungal species with an emphasis on its role as a critical regulator of virulence traits.
Collapse
Affiliation(s)
- Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
62
|
Liu P, Chen X, Zhu J, Li B, Chen Z, Wang G, Sun H, Xu Z, Zhao Z, Zhou C, Xie C, Lou L, Zhu W. Design, Synthesis and Pharmacological Evaluation of Novel Hsp90N-terminal Inhibitors Without Induction of Heat Shock Response. ChemistryOpen 2019; 8:344-353. [PMID: 30976475 PMCID: PMC6437812 DOI: 10.1002/open.201900055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/28/2019] [Indexed: 01/24/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is a potential oncogenic target. However, Hsp90 inhibitors in clinical trial induce heat shock response, resulting in drug resistance and inefficiency. In this study, we designed and synthesized a series of novel triazine derivatives (A1‐26, B1‐13, C1‐23) as Hsp90 inhibitors. Compound A14 directly bound to Hsp90 in a different manner from traditional Hsp90 inhibitors, and degraded client proteins, but did not induce the concomitant activation of Hsp72. Importantly, A14 exhibited the most potent anti‐proliferation ability by inducing autophagy, with the IC50 values of 0.1 μM and 0.4 μM in A549 and SK‐BR‐3 cell lines, respectively. The in
vivo study demonstrated that A14 could induce autophagy and degrade Hsp90 client proteins in tumor tissues, and exhibit anti‐tumor activity in A549 lung cancer xenografts. Therefore, the compound A14 with potent antitumor activity and unique pharmacological characteristics is a novel Hsp90 inhibitor for developing anticancer agent without heat shock response.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Receptor Research Drug Discovery and Design Center Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China.,University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 China
| | - Xiangling Chen
- Division of Anti-Tumor Pharmacology Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China.,University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 China
| | - Jianming Zhu
- Key Laboratory of Receptor Research Drug Discovery and Design Center Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Bo Li
- Key Laboratory of Receptor Research Drug Discovery and Design Center Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China.,University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 China
| | - Zhaoqiang Chen
- Key Laboratory of Receptor Research Drug Discovery and Design Center Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China.,University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 China
| | - Guimin Wang
- Key Laboratory of Receptor Research Drug Discovery and Design Center Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China.,University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 China
| | - Haiguo Sun
- Key Laboratory of Receptor Research Drug Discovery and Design Center Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China.,University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 China
| | - Zhijian Xu
- Key Laboratory of Receptor Research Drug Discovery and Design Center Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China.,University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 China
| | - Zhixin Zhao
- Division of Anti-Tumor Pharmacology Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Chen Zhou
- Division of Anti-Tumor Pharmacology Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Chengying Xie
- Division of Anti-Tumor Pharmacology Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China.,University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 China
| | - Liguang Lou
- Division of Anti-Tumor Pharmacology Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China.,University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 China
| | - Weiliang Zhu
- Key Laboratory of Receptor Research Drug Discovery and Design Center Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China.,University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 China.,Open Studio for Druggability Research of Marine Natural Products Pilot National Laboratory for Marine Science and Technology (Qingdao) 1 Wenhai Road, Aoshanwei, Jimo Qingdao 266237 China
| |
Collapse
|
63
|
Cuthbert RL, Shute RJ, Slivka DR. Skeletal muscle cold shock and heat shock protein mRNA response to aerobic exercise in different environmental temperatures. Temperature (Austin) 2019; 6:77-84. [PMID: 30906813 DOI: 10.1080/23328940.2018.1555414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022] Open
Abstract
The response of cold shock proteins to exercise and environmental temperature in human skeletal muscle is not known. The purpose of this study was to determine the early mRNA response of human stress proteins to endurance exercise and environmental temperatures. Seven recreationally trained males cycled for 1 hour at 60% VO2peak in 7°C, 20°C, and 33°C with biopsies taken pre- and 3 hours post-exercise. Gene expression for heat shock and cold shock proteins were analyzed using qRT-PCR on muscle biopsy samples from the vastus lateralis. RBM3 mRNA was reduced 1.43 ± 0.10 fold (p = 0.006) while there was a trend for CIRP to decrease1.27 ± 0.14 fold (p = 0.059) from pre- to 3 h post-exercise. CIRP and RBM3 mRNA were not different between temperatures (p = 0.273 and p = 0.686, respectively). HSP70 mRNA was 2.27 ± 0.23 fold higher 3 h post-exercise when compared to pre-exercise (p = 0.002) but was not significantly different between temperatures (p = 0.103). HSP27, HSP90, and HSF1 mRNA did not change from pre- to post-exercise (p = 0.052, p = 0.324, p = 0.795) and were not different between temperatures (p = 0.247, p = 0.134, p = 0.808). These data indicate that exposure to mild heat and cold during aerobic exercise have limited effect on the skeletal muscle mRNA expression of heat shock and cold shock proteins. However, skeletal muscle mRNA of cold shock proteins decrease, while HSP70 mRNA increases in response to a low to moderate intensity aerobic exercise bout.
Collapse
Affiliation(s)
- Rebecca L Cuthbert
- Department of Health and Kinesiology, University of Nebraska, Omaha, NE, USA
| | - Robert J Shute
- Department of Health and Kinesiology, University of Nebraska, Omaha, NE, USA
| | - Dustin R Slivka
- Department of Health and Kinesiology, University of Nebraska, Omaha, NE, USA
| |
Collapse
|
64
|
Nagata S, Marunouchi T, Tanonaka K. Histone Deacetylase Inhibitor SAHA Treatment Prevents the Development of Heart Failure after Myocardial Infarction via an Induction of Heat-Shock Proteins in Rats. Biol Pharm Bull 2019; 42:453-461. [DOI: 10.1248/bpb.b18-00785] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shiho Nagata
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences
| | - Tetsuro Marunouchi
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences
| | - Kouichi Tanonaka
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
65
|
NRF2 and HSF1 coordinately regulate heme oxygenase-1 expression. Biochem Biophys Res Commun 2018; 506:7-11. [DOI: 10.1016/j.bbrc.2018.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/05/2018] [Indexed: 01/13/2023]
|
66
|
Sornchuer P, Junprung W, Yingsunthonwattana W, Tassanakajon A. Heat shock factor 1 regulates heat shock proteins and immune-related genes in Penaeus monodon under thermal stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:19-27. [PMID: 29986835 DOI: 10.1016/j.dci.2018.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Heat shock factors (HSFs) participate in the response to environmental stressors and regulate heat shock protein (Hsp) expression. This study describes the molecular characterization and expression of PmHSF1 in black tiger shrimp Penaeus monodon under heat stress. PmHSF1 expression was detected in several shrimp tissues: the highest in the lymphoid organ and the lowest in the eyestalk. Significant up-regulation of PmHSF1 expression was observed in hemocytes (p < 0.05) following thermal stress. The expression of several PmHsps was rapidly induced following heat stress. Endogenous PmHSF1 protein was expressed in all three types of shrimp hemocyte and strongly induced under heat stress. The suppression of PmHSF1 expression by dsRNA-mediated gene silencing altered the expression of PmHsps, several antimicrobial genes, genes involved in the melanization process, and an antioxidant gene (PmSOD). PmHSF1 plays an important role in the thermal stress response, regulating the expression of Hsps and immune-related genes in P. monodon.
Collapse
Affiliation(s)
- Phornphan Sornchuer
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wisarut Junprung
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Warumporn Yingsunthonwattana
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
67
|
Girard PM, Peynot N, Lelièvre JM. Differential correlations between changes to glutathione redox state, protein ubiquitination, and stress-inducible HSPA chaperone expression after different types of oxidative stress. Cell Stress Chaperones 2018; 23:985-1002. [PMID: 29754332 PMCID: PMC6111089 DOI: 10.1007/s12192-018-0909-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 04/04/2018] [Accepted: 05/01/2018] [Indexed: 01/03/2023] Open
Abstract
In primary bovine fibroblasts with an hspa1b/luciferase transgene, we examined the intensity of heat-shock response (HSR) following four types of oxidative stress or heat stress (HS), and its putative relationship with changes to different cell parameters, including reactive oxygen species (ROS), the redox status of the key molecules glutathione (GSH), NADP(H) NAD(H), and the post-translational protein modifications carbonylation, S-glutathionylation, and ubiquitination. We determined the sub-lethal condition generating the maximal luciferase activity and inducible HSPA protein level for treatments with hydrogen peroxide (H2O2), UVA-induced oxygen photo-activation, the superoxide-generating agent menadione (MN), and diamide (DA), an electrophilic and sulfhydryl reagent. The level of HSR induced by oxidative stress was the highest after DA and MN, followed by UVA and H2O2 treatments, and was not correlated to the level of ROS production nor to the extent of protein S-glutathionylation or carbonylation observed immediately after stress. We found a correlation following oxidative treatments between HSR and the level of GSH/GSSG immediately after stress, and the increase in protein ubiquitination during the recovery period. Conversely, HS treatment, which led to the highest HSR level, did not generate ROS nor modified or depended on GSH redox state. Furthermore, the level of protein ubiquitination was maximum immediately after HS and lower than after MN and DA treatments thereafter. In these cells, heat-induced HSR was therefore clearly different from oxidative stress-induced HSR, in which conversely early redox changes of the major cellular thiol predicted the level of HSR and polyubiquinated proteins.
Collapse
Affiliation(s)
- Pierre-Marie Girard
- Institut Curie, PSL Research University, CNRS UMR3347, INSERM U1021, 91405, Orsay, France
- Université Paris-Sud, Université Paris-Saclay, Rue Georges Clémenceau, 91405, Orsay, France
| | - Nathalie Peynot
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy-en-Josas, France
| | - Jean-Marc Lelièvre
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy-en-Josas, France.
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
68
|
Kim HH, Choi S. Therapeutic Aspects of Carbon Monoxide in Cardiovascular Disease. Int J Mol Sci 2018; 19:ijms19082381. [PMID: 30104479 PMCID: PMC6121498 DOI: 10.3390/ijms19082381] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022] Open
Abstract
Carbon monoxide (CO) is being increasingly recognized as a potential therapeutic with important signaling functions in various diseases. Carbon monoxide-releasing molecules (CORMs) show anti-apoptotic, anti-inflammatory, and anti-oxidant effects on the tissues of organisms, thus contributing to tissue homeostasis. An increase in reactive oxygen species production from the mitochondria after exposure to CO is also considered one of the underlying mechanisms of cardioprotection, although mitochondrial inhibition is the main toxic mechanism of CO poisoning. This review highlights the mechanism of the biological effects of CO and its potential application as a therapeutic in clinical settings, including in cardiovascular diseases. This review also discusses the obstacles and limitations of using exogenous CO or CORMs as a therapeutic option, with respect to acute CO poisoning.
Collapse
Affiliation(s)
- Hyuk-Hoon Kim
- Department of Emergency Medicine, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Sangchun Choi
- Department of Emergency Medicine, Ajou University School of Medicine, Suwon 16499, Korea.
| |
Collapse
|
69
|
Higuchi-Sanabria R, Frankino PA, Paul JW, Tronnes SU, Dillin A. A Futile Battle? Protein Quality Control and the Stress of Aging. Dev Cell 2018; 44:139-163. [PMID: 29401418 PMCID: PMC5896312 DOI: 10.1016/j.devcel.2017.12.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/30/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
There exists a phenomenon in aging research whereby early life stress can have positive impacts on longevity. The mechanisms underlying these observations suggest a robust, long-lasting induction of cellular defense mechanisms. These include the various unfolded protein responses of the endoplasmic reticulum (ER), cytosol, and mitochondria. Indeed, ectopic induction of these pathways, in the absence of stress, is sufficient to increase lifespan in organisms as diverse as yeast, worms, and flies. Here, we provide an overview of the protein quality control mechanisms that operate in the cytosol, mitochondria, and ER and discuss how they affect cellular health and viability during stress and aging.
Collapse
Affiliation(s)
- Ryo Higuchi-Sanabria
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Phillip Andrew Frankino
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joseph West Paul
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah Uhlein Tronnes
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
70
|
Zhao Z, Zhu J, Quan H, Wang G, Li B, Zhu W, Xie C, Lou L. X66, a novel N-terminal heat shock protein 90 inhibitor, exerts antitumor effects without induction of heat shock response. Oncotarget 2018; 7:29648-63. [PMID: 27105490 PMCID: PMC5045423 DOI: 10.18632/oncotarget.8818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/28/2016] [Indexed: 01/16/2023] Open
Abstract
Heat shock protein 90 (HSP90) is essential for cancer cells to assist the function of various oncoproteins, and it has been recognized as a promising target in cancer therapy. Although the HSP90 inhibitors in clinical trials have shown encouraging clinical efficacy, these agents induce heat shock response (HSR), which undermines their therapeutic effects. In this report, we detailed the pharmacologic properties of 4-(2-((1H-indol-3-yl)methylene)hydrazinyl)-N-(4-bromophenyl)-6-(3,5- dimethyl-1H -pyrazol-1-yl)-1,3,5-triazin-2-amine (X66), a novel and potent HSP90 inhibitor. X66 binds to the N-terminal domain in a different manner from the classic HSP90 inhibitors. Cellular study showed that X66 depleted HSP90 client proteins, resulted in cell cycle arrest and apoptosis, and inhibition of proliferation in cancer cell lines. X66 did not activate heat shock factor-1 (HSF-1) or stimulate transcription of HSPs. Moreover, the combination of X66 with HSP90 and proteasome inhibitors yielded synergistic cytotoxicity which was involved in X66-mediated abrogation of HSR through inhibition of HSF-1 activity. The intraperitoneal administration of X66 alone depleted client protein and inhibited tumor growth, and led to enhanced activity when combined with celastrol as compared to either agent alone in BT-474 xenograft model. Collectively, the HSP90 inhibitory action and the potent antitumor activity, with the anti-HSR action, promise X66 a novel HSP90-targeted agent, which merits further research and development.
Collapse
Affiliation(s)
- Zhixin Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jianming Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haitian Quan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guimin Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bo Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Weiliang Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chengying Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Liguang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
71
|
Molecular Chaperones: Structure-Function Relationship and their Role in Protein Folding. REGULATION OF HEAT SHOCK PROTEIN RESPONSES 2018. [DOI: 10.1007/978-3-319-74715-6_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
72
|
Goenka A, Parihar R, Ganesh S. Heat Shock-Induced Transcriptional and Translational Arrest in Mammalian Cells. HEAT SHOCK PROTEINS AND STRESS 2018. [DOI: 10.1007/978-3-319-90725-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
73
|
Nieto A, Pérez Ishiwara DG, Orozco E, Sánchez Monroy V, Gómez García C. A Novel Heat Shock Element (HSE) in Entamoeba histolytica that Regulates the Transcriptional Activation of the EhPgp5 Gene in the Presence of Emetine Drug. Front Cell Infect Microbiol 2017; 7:492. [PMID: 29238701 PMCID: PMC5712549 DOI: 10.3389/fcimb.2017.00492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023] Open
Abstract
Transcriptional regulation of the multidrug resistance EhPgp5 gene in Entamoeba histolytica is induced by emetine stress. EhPgp5 overexpression alters the chloride-dependent currents that cause trophozoite swelling, diminishing induced programmed cell death (PCD) susceptibility. In contrast, antisense inhibition of P-glycoprotein (PGP) expression produces synchronous death of trophozoites and the enhancement of the biochemical and morphological characteristics of PCD induced by G418. Transcriptional gene regulation analysis identified a 59 bp region at position −170 to −111 bp promoter as putative emetine response elements (EREs). However, insights into transcription factors controlling EhPgp5 gene transcription are missing; to fill this knowledge gap, we used deletion studies and transient CAT activity assays. Our findings suggested an activating motif (−151 to −136 bp) that corresponds to a heat shock element (HSE). Gel-shift assays, UV-crosslinking, binding protein purification, and western blotting assays revealed proteins of 94, 66, 62, and 51 kDa binding to the EhPgp5 HSE that could be heat shock-like transcription factors that regulate the transcriptional activation of the EhPgp5 gene in the presence of emetine drug.
Collapse
Affiliation(s)
- Alma Nieto
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - David G Pérez Ishiwara
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Virginia Sánchez Monroy
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Consuelo Gómez García
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
74
|
Yoon SJ, Lee MJ, Lee HM, Lee JS. Effect of low-intensity resistance training with heat stress on the HSP72, anabolic hormones, muscle size, and strength in elderly women. Aging Clin Exp Res 2017; 29:977-984. [PMID: 27866347 DOI: 10.1007/s40520-016-0685-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/10/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Several recent studies have reported that heat stress stimulates the activation of heat shock protein 72 (HSP72), leading to an increase in muscle synthesis. Some studies suggested that low-intensity resistance training combined with heat stress could improve muscle size and strength. AIM This study aimed to identify the effect of low-intensity resistance training with heat stress over 12 weeks on the HSP72, anabolic hormones, muscle size, and strength in elderly women. METHODS The subjects were physically healthy women of 65-75 years, who were randomly assigned to one of three groups: a low-intensity resistance training with heating sheet group (HRT group, n = 8), a moderate-intensity resistance training (RT group, n = 6), and a heating sheet group (HEAT group, n = 7). Computed tomography scans, 1-repetition maximum (1RM), and blood samples were taken pre- and post-training. RESULTS The HSP72 did not vary significantly between the different groups and times. The IGF-1 and 1RM had significantly increased in all three groups after the training (respectively, p < 0.05). Moreover, the cross-sectional area (CSA) of the quadriceps showed a significantly greater increase in the HRT group than in the HEAT group (p < 0.05). CONCLUSIONS We found that low-intensity training with heat stress stimulated the anabolic hormones of elderly women, improving their muscle strength and hypertrophy. We believe that low-intensity training with heat stress is an effective way to prevent muscle atrophy and to improve muscle strength in elderly women.
Collapse
Affiliation(s)
- Sung Jin Yoon
- Department of Physical Education, College of Education, Korea University, 145 Anam-ro, Seongbuk-Gu, Seoul, Republic of Korea.
| | - Moon Jin Lee
- Exercise Physiology Lab, Department of Physical Education, Graduate School, Korea University, Seoul, Republic of Korea
| | - Hyo Min Lee
- Exercise Physiology Lab, Department of Physical Education, Graduate School, Korea University, Seoul, Republic of Korea
| | - Jin Seok Lee
- Exercise Physiology Lab, Department of Physical Education, Graduate School, Korea University, Seoul, Republic of Korea
| |
Collapse
|
75
|
Takii R, Fujimoto M, Matsuura Y, Wu F, Oshibe N, Takaki E, Katiyar A, Akashi H, Makino T, Kawata M, Nakai A. HSF1 and HSF3 cooperatively regulate the heat shock response in lizards. PLoS One 2017; 12:e0180776. [PMID: 28686674 PMCID: PMC5501597 DOI: 10.1371/journal.pone.0180776] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/21/2017] [Indexed: 01/01/2023] Open
Abstract
Cells cope with temperature elevations, which cause protein misfolding, by expressing heat shock proteins (HSPs). This adaptive response is called the heat shock response (HSR), and it is regulated mainly by heat shock transcription factor (HSF). Among the four HSF family members in vertebrates, HSF1 is a master regulator of HSP expression during proteotoxic stress including heat shock in mammals, whereas HSF3 is required for the HSR in birds. To examine whether only one of the HSF family members possesses the potential to induce the HSR in vertebrate animals, we isolated cDNA clones encoding lizard and frog HSF genes. The reconstructed phylogenetic tree of vertebrate HSFs demonstrated that HSF3 in one species is unrelated with that in other species. We found that the DNA-binding activity of both HSF1 and HSF3 in lizard and frog cells was induced in response to heat shock. Unexpectedly, overexpression of lizard and frog HSF3 as well as HSF1 induced HSP70 expression in mouse cells during heat shock, indicating that the two factors have the potential to induce the HSR. Furthermore, knockdown of either HSF3 or HSF1 markedly reduced HSP70 induction in lizard cells and resistance to heat shock. These results demonstrated that HSF1 and HSF3 cooperatively regulate the HSR at least in lizards, and suggest complex mechanisms of the HSR in lizards as well as frogs.
Collapse
Affiliation(s)
- Ryosuke Takii
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
| | - Mitsuaki Fujimoto
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
| | - Yuki Matsuura
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
| | - Fangxu Wu
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
| | - Namiko Oshibe
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
| | - Eiichi Takaki
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
| | - Arpit Katiyar
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
| | - Hiroshi Akashi
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takashi Makino
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Masakado Kawata
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Akira Nakai
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
- * E-mail:
| |
Collapse
|
76
|
Yin J, Jiang XY, Qi W, Ji CG, Xie XL, Zhang DX, Cui ZJ, Wang CK, Bai Y, Wang J, Jiang HQ. piR-823 contributes to colorectal tumorigenesis by enhancing the transcriptional activity of HSF1. Cancer Sci 2017; 108:1746-1756. [PMID: 28618124 PMCID: PMC5581525 DOI: 10.1111/cas.13300] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/02/2017] [Accepted: 06/10/2017] [Indexed: 12/13/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs), a novel class of small non-coding RNAs, were first discovered in germline cells and are thought to silence transposons in spermatogenesis. Recently, piRNAs have also been identified in somatic tissues, and aberrant expression of piRNAs in tumor tissues may be implicated in carcinogenesis. However, the function of piR-823 in colorectal cancer (CRC) remains unclear. Here, we first found that piR-823 was significantly upregulated in CRC tissues compared with its expression in the adjacent tissues. Inhibition of piR-823 suppressed cell proliferation, arrested the cell cycle in the G1 phase and induced cell apoptosis in CRC cell lines HCT116 and DLD-1, whereas overexpression of piR-823 promoted cell proliferation in normal colonic epithelial cell line FHC. Interestingly, Inhibition of piR-823 repressed the expression of heat shock protein (HSP) 27, 60, 70. Furthermore, elevated HSPs expression partially abolished the effect of piR-823 on cell proliferation and apoptosis. In addition, we further demonstrated that piR-823 increased the transcriptional activity of HSF1, the common transcription factor of HSPs, by binding to HSF1 and promoting its phosphorylation at Ser326. Our study reveals that piR-823 plays a tumor-promoting role by upregulating phosphorylation and transcriptional activity of HSF1 and suggests piR-823 as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Jie Yin
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Xiao-Yu Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Wei Qi
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Chen-Guang Ji
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Xiao-Li Xie
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Dong-Xuan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Zi-Jin Cui
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Cun-Kai Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Yun Bai
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Jia Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei.,Ronghe Biotechnology Co., Ltd, Shijiazhuang, Hebei, China
| | - Hui-Qing Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| |
Collapse
|
77
|
Saia-Cereda VM, Santana AG, Schmitt A, Falkai P, Martins-de-Souza D. The Nuclear Proteome of White and Gray Matter from Schizophrenia Postmortem Brains. MOLECULAR NEUROPSYCHIATRY 2017; 3:37-52. [PMID: 28879200 PMCID: PMC5582429 DOI: 10.1159/000477299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
Abstract
Schizophrenia (SCZ) is a serious neuropsychiatric disorder that manifests through several symptoms from early adulthood. Numerous studies over the last decades have led to significant advances in increasing our understanding of the factors involved in SCZ. For example, mass spectrometry-based proteomic analysis has provided important insights by uncovering protein dysfunctions inherent to SCZ. Here, we present a comprehensive analysis of the nuclear proteome of postmortem brain tissues from corpus callosum (CC) and anterior temporal lobe (ATL). We show an overview of the role of deregulated nuclear proteins in these two main regions of the brain: the first, mostly composed of glial cells and axons of neurons, and the second, represented mainly by neuronal cell bodies. These samples were collected from SCZ patients in an attempt to characterize the role of the nucleus in the disease process. With the ATL nucleus enrichment, we found 224 proteins present at different levels, and 76 of these were nuclear proteins. In the CC analysis, we identified 119 present at different levels, and 24 of these were nuclear proteins. The differentially expressed nuclear proteins of ATL are mainly associated with the spliceosome, whereas those of the CC region are associated with calcium/calmodulin signaling.
Collapse
Affiliation(s)
- Verônica M. Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Aline G. Santana
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University (LMU), Munich, Germany
- Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University (LMU), Munich, Germany
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- UNICAMP's Neurobiology Center, Campinas, Brazil
| |
Collapse
|
78
|
Dayalan Naidu S, Dinkova-Kostova AT. Regulation of the mammalian heat shock factor 1. FEBS J 2017; 284:1606-1627. [PMID: 28052564 DOI: 10.1111/febs.13999] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/17/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022]
Abstract
Living organisms are endowed with the capability to tackle various forms of cellular stress due to the presence of molecular chaperone machinery complexes that are ubiquitous throughout the cell. During conditions of proteotoxic stress, the transcription factor heat shock factor 1 (HSF1) mediates the elevation of heat shock proteins, which are crucial components of the chaperone complex machinery and function to ameliorate protein misfolding and aggregation and restore protein homeostasis. In addition, HSF1 orchestrates a versatile transcriptional programme that includes genes involved in repair and clearance of damaged macromolecules and maintenance of cell structure and metabolism, and provides protection against a broad range of cellular stress mediators, beyond heat shock. Here, we discuss the structure and function of the mammalian HSF1 and its regulation by post-translational modifications (phosphorylation, sumoylation and acetylation), proteasomal degradation, and small-molecule activators and inhibitors.
Collapse
Affiliation(s)
- Sharadha Dayalan Naidu
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, UK
| | - Albena T Dinkova-Kostova
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, UK
- Department of Pharmacology and Molecular Sciences, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
79
|
Kim Guisbert KS, Guisbert E. SF3B1 is a stress-sensitive splicing factor that regulates both HSF1 concentration and activity. PLoS One 2017; 12:e0176382. [PMID: 28445500 PMCID: PMC5406028 DOI: 10.1371/journal.pone.0176382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/10/2017] [Indexed: 12/20/2022] Open
Abstract
The heat shock response (HSR) is a well-conserved, cytoprotective stress response that activates the HSF1 transcription factor. During severe stress, cells inhibit mRNA splicing which also serves a cytoprotective function via inhibition of gene expression. Despite their functional interconnectedness, there have not been any previous reports of crosstalk between these two pathways. In a genetic screen, we identified SF3B1, a core component of the U2 snRNP subunit of the spliceosome, as a regulator of the heat shock response in Caenorhabditis elegans. Here, we show that this regulatory connection is conserved in cultured human cells and that there are at least two distinct pathways by which SF3B1 can regulate the HSR. First, inhibition of SF3B1 with moderate levels of Pladienolide B, a previously established small molecule inhibitor of SF3B1, affects the transcriptional activation of HSF1, the transcription factor that mediates the HSR. However, both higher levels of Pladienolide B and SF3B1 siRNA knockdown also change the concentration of HSF1, a form of HSR regulation that has not been previously documented during normal physiology but is observed in some forms of cancer. Intriguingly, mutations in SF3B1 have also been associated with several distinct types of cancer. Finally, we show that regulation of alternative splicing by SF3B1 is sensitive to temperature, providing a new mechanism by which temperature stress can remodel the transcriptome.
Collapse
Affiliation(s)
- Karen S. Kim Guisbert
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Eric Guisbert
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
- * E-mail:
| |
Collapse
|
80
|
Sampuda KM, Riley M, Boyd L. Stress induced nuclear granules form in response to accumulation of misfolded proteins in Caenorhabditis elegans. BMC Cell Biol 2017; 18:18. [PMID: 28424053 PMCID: PMC5395811 DOI: 10.1186/s12860-017-0136-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/07/2017] [Indexed: 01/30/2023] Open
Abstract
Background Environmental stress can affect the viability or fecundity of an organism. Environmental stressors may affect the genome or the proteome and can cause cellular distress by contributing to protein damage or misfolding. This study examines the cellular response to environmental stress in the germline of the nematode, C. elegans. Results Salt stress, oxidative stress, and starvation, but not heat shock, induce the relocalization of ubiquitin, proteasome, and the TIAR-2 protein into distinct subnuclear regions referred to as stress induced nuclear granules (SINGs). The SINGs form within 1 h of stress initiation and do not require intertissue signaling. K48-linked polyubiquitin chains but not K63 chains are enriched in SINGs. Worms with a mutation in the conjugating enzyme, ubc-18, do not form SINGs. Additionally, knockdown of ubc-20 and ubc-22 reduces the level of SING formation as does knockdown of the ubiquitin ligase chn-1, a CHIP homolog. The nuclear import machinery is required for SING formation. Stressed embryos containing SINGs fail to hatch and cell division in these embryos is halted. The formation of SINGs can be prevented by pre-exposure to a brief period of heat shock before stress exposure. Heat shock inhibition of SINGs is dependent upon the HSF-1 transcription factor. Conclusions The heat shock results suggest that chaperone expression can prevent SING formation and that the accumulation of damaged or misfolded proteins is a necessary precursor to SING formation. Thus, SINGs may be part of a novel protein quality control system. The data suggest an interesting model where SINGs represent sites of localized protein degradation for nuclear or cytosolic proteins. Thus, the physiological impacts of environmental stress may begin at the cellular level with the formation of stress induced nuclear granules. Electronic supplementary material The online version of this article (doi:10.1186/s12860-017-0136-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine M Sampuda
- Department of Biology, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN, 37132, USA
| | - Mason Riley
- Department of Biology, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN, 37132, USA
| | - Lynn Boyd
- Department of Biology, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
81
|
Dubnikov T, Ben-Gedalya T, Cohen E. Protein Quality Control in Health and Disease. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a023523. [PMID: 27864315 DOI: 10.1101/cshperspect.a023523] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Maintaining functional protein homeostasis (proteostasis) is a constant challenge in the face of limited protein-folding capacity, environmental threats, and aging. Cells have developed several quality-control mechanisms that assist nascent polypeptides to fold properly, clear misfolded molecules, respond to the accumulation of protein aggregates, and deposit potentially toxic conformers in designated sites. Proteostasis collapse can lead to the development of diseases known as proteinopathies. Here we delineate the current knowledge on the different layers of protein quality-control mechanisms at the organelle and cellular levels with an emphasis on the prion protein (PrP). We also describe how protein quality control is integrated at the organismal level and discuss future perspectives on utilizing proteostasis maintenance as a strategy to develop novel therapies for the treatment of proteinopathies.
Collapse
Affiliation(s)
- Tatyana Dubnikov
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University School of Medicine, Jerusalem 91120, Israel
| | - Tziona Ben-Gedalya
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University School of Medicine, Jerusalem 91120, Israel
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University School of Medicine, Jerusalem 91120, Israel
| |
Collapse
|
82
|
Abiko Y, Sha L, Shinkai Y, Unoki T, Luong NC, Tsuchiya Y, Watanabe Y, Hirose R, Akaike T, Kumagai Y. 1,4-Naphthoquinone activates the HSP90/HSF1 pathway through the S-arylation of HSP90 in A431 cells: Negative regulation of the redox signal transduction pathway by persulfides/polysulfides. Free Radic Biol Med 2017; 104:118-128. [PMID: 28049024 DOI: 10.1016/j.freeradbiomed.2016.12.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/08/2016] [Accepted: 12/30/2016] [Indexed: 12/13/2022]
Abstract
The current consensus is that environmental electrophiles activate redox signal transduction pathways through covalent modification of sensor proteins with reactive thiol groups at low concentrations, while they cause cell damage at higher concentrations. We previously exposed human carcinoma A431 cells to the atmospheric electrophile 1,4-naphthoquinone (1,4-NQ) and found that heat shock protein 90 (HSP90), a negative regulator of heat shock factor 1 (HSF1), was a target of 1,4-NQ. In the study presented here, we determined whether 1,4-NQ activates HSF1. We also examined whether such redox signaling could be regulated by nucleophilic sulfur species. Exposure of A431 cells to 1,4-NQ covalently modified cellular HSP90, resulting in repression of the association between HSF1 with HSP90, thereby enhancing HSF1 translocation into the nuclei. Liquid chromatography-tandem mass spectrometry analysis with recombinant HSP90 revealed that the modifications site were Cys412 and Cys564. We found that HSF1 activation mediated by 1,4-NQ upregulated downstream genes, such as HSPA6. HSF1 knockdown accelerated 1,4-NQ-mediated cytotoxicity in the cells. While simultaneous treatment with reactive persulfide and polysulfide, Na2S2 and Na2S4, blocked 1,4-NQ-dependent protein modification and HSF1 activation in A431 cells, the knockdown of Cys persulfide producing enzymes cystathionine β-synthase (CBS) and/or cystathionine γ-lyase (CSE) enhanced these phenomena. 1,4-NQ-thiol adduct and 1,4-NQ-S-1,4-NQ adduct were produced during the enzymatic reaction of recombinant CSE in the presence of 1,4-NQ. The results suggest that activation of the HSP90-HSF1 signal transduction pathway mediated by 1,4-NQ protects cells against 1,4-NQ and that per/polysulfides can diminish the reactivity of 1,4-NQ by forming sulfur adducts.
Collapse
Affiliation(s)
- Yumi Abiko
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Liang Sha
- Leading Graduate School Doctoral Program, Ph.D. Program in Human Biology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuhiro Shinkai
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Leading Graduate School Doctoral Program, Ph.D. Program in Human Biology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takamitsu Unoki
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Nho Cong Luong
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yukihiro Tsuchiya
- Laboratory of Pharmacology, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Yasuo Watanabe
- Laboratory of Pharmacology, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Reiko Hirose
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takaaki Akaike
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yoshito Kumagai
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Leading Graduate School Doctoral Program, Ph.D. Program in Human Biology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
83
|
Willot Q, Gueydan C, Aron S. Proteome stability, heat hardening, and heat-shock protein expression profiles in Cataglyphis desert ants. J Exp Biol 2017; 220:1721-1728. [DOI: 10.1242/jeb.154161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/17/2017] [Indexed: 02/05/2023]
Abstract
In ectotherms, high temperatures impose physical limits, impeding activity. Exposure to high heat levels causes various deleterious and lethal effects, including protein misfolding and denaturation. Thermophilic ectotherms have thus evolved various ways to increase macromolecular stability and cope with elevated body temperatures; these include the high constitutive expression of molecular chaperones. In this work, we investigated the effect of moderate to severe heat shock (37°C–45°C) on survival, heat hardening, protein damage, and the expression of five heat-tolerance related genes (hsc70-4 h1, hsc70-4 h2, hsp83, hsc70-5, and hsf1) in two rather closely related Cataglyphis ants that occur in distinct habitats. Our results show that the highly thermophilic Sahara ant Cataglyphis bombycina constitutively expresses HSC70 at higher levels, but has lower induced expression of heat-tolerance related genes in response to heat shock, as compared to the more mesophilic C. mauritanica found in the Atlas Mountains. As a result, C. bombycina demonstrates increased protein stability when exposed to acute heat stress but is less prone to acquiring induced thermotolerance via heat hardening. These results provide further insight into the evolutionary plasticity of the hsps gene expression system and subsequent physiological adaptations in thermophilous desert insects to adapt to harsh environmental conditions.
Collapse
Affiliation(s)
- Quentin Willot
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Belgium
| | - Cyril Gueydan
- Molecular Biology of the Gene, Université Libre de Bruxelles, Belgium
| | - Serge Aron
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Belgium
| |
Collapse
|
84
|
Sivéry A, Courtade E, Thommen Q. A minimal titration model of the mammalian dynamical heat shock response. Phys Biol 2016; 13:066008. [DOI: 10.1088/1478-3975/13/6/066008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
85
|
The increasing diversity of functions attributed to the SAFB family of RNA-/DNA-binding proteins. Biochem J 2016; 473:4271-4288. [DOI: 10.1042/bcj20160649] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/28/2016] [Accepted: 09/02/2016] [Indexed: 12/15/2022]
Abstract
RNA-binding proteins play a central role in cellular metabolism by orchestrating the complex interactions of coding, structural and regulatory RNA species. The SAFB (scaffold attachment factor B) proteins (SAFB1, SAFB2 and SAFB-like transcriptional modulator, SLTM), which are highly conserved evolutionarily, were first identified on the basis of their ability to bind scaffold attachment region DNA elements, but attention has subsequently shifted to their RNA-binding and protein–protein interactions. Initial studies identified the involvement of these proteins in the cellular stress response and other aspects of gene regulation. More recently, the multifunctional capabilities of SAFB proteins have shown that they play crucial roles in DNA repair, processing of mRNA and regulatory RNA, as well as in interaction with chromatin-modifying complexes. With the advent of new techniques for identifying RNA-binding sites, enumeration of individual RNA targets has now begun. This review aims to summarise what is currently known about the functions of SAFB proteins.
Collapse
|
86
|
Deane CAS, Brown IR. Induction of heat shock proteins in differentiated human neuronal cells following co-application of celastrol and arimoclomol. Cell Stress Chaperones 2016; 21:837-48. [PMID: 27273088 PMCID: PMC5003800 DOI: 10.1007/s12192-016-0708-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 01/19/2023] Open
Abstract
Few effective therapies exist for the treatment of neurodegenerative diseases that have been characterized as protein misfolding disorders. Upregulation of heat shock proteins (Hsps) mitigates against the accumulation of misfolded, aggregation-prone proteins and synaptic dysfunction, which is recognized as an early event in neurodegenerative diseases. Enhanced induction of a set of Hsps in differentiated human SH-SY5Y neuronal cells was observed following co-application of celastrol and arimoclomol, compared to their individual application. The dosages employed did not affect cell viability or neuronal process morphology. The induced Hsps included the little studied HSPA6 (Hsp70B'), a potentially neuroprotective protein that is present in the human genome but not in rat and mouse and hence is missing in current animal models of neurodegenerative disease. Enhanced induction of HSPA1A (Hsp70-1), DNAJB1 (Hsp40), HO-1 (Hsp32), and HSPB1 (Hsp27) was also observed. Celastrol activates heat shock transcription factor 1 (HSF1), the master regulator of Hsp gene transcription, and also exhibits potent anti-inflammatory and anti-oxidant activities. Arimoclomol is a co-activator that prolongs the binding of activated HSF1 to heat shock elements (HSEs) in the promoter regions of inducible Hsp genes. Elevated Hsp levels peaked at 10 to 12 h for HSPA6, HSPA1A, DNAJB1, and HO-1 and at 24 h for HSPB1. Co-application of celastrol and arimoclomol induced higher Hsp levels compared to heat shock paired with arimoclomol. The co-application strategy of celastrol and arimoclomol targets multiple neurodegenerative disease-associated pathologies including protein misfolding and protein aggregation, inflammatory and oxidative stress, and synaptic dysfunction.
Collapse
Affiliation(s)
- Catherine A S Deane
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Ian R Brown
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
87
|
Possible Contribution of Zerumbone-Induced Proteo-Stress to Its Anti-Inflammatory Functions via the Activation of Heat Shock Factor 1. PLoS One 2016; 11:e0161282. [PMID: 27536885 PMCID: PMC4990220 DOI: 10.1371/journal.pone.0161282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/02/2016] [Indexed: 01/04/2023] Open
Abstract
Zerumbone is a sesquiterpene present in Zinger zerumbet. Many studies have demonstrated its marked anti-inflammatory and anti-carcinogenesis activities. Recently, we showed that zerumbone binds to numerous proteins with scant selectivity and induces the expression of heat shock proteins (HSPs) in hepatocytes. To dampen proteo-toxic stress, organisms have a stress-responsive molecular machinery, known as heat shock response. Heat shock factor 1 (HSF1) plays a key role in this protein quality control system by promoting activation of HSPs. In this study, we investigated whether zerumbone-induced HSF1 activation contributes to its anti-inflammatory functions in stimulated macrophages. Our findings showed that zerumbone increased cellular protein aggregates and promoted nuclear translocation of HSF1 for HSP expression. Interestingly, HSF1 down-regulation attenuated the suppressive effects of zerumbone on mRNA and protein expressions of pro-inflammatory genes, including inducible nitric oxide synthase and interlukin-1β. These results suggest that proteo-stress induced by zerumbone activates HSF1 for exhibiting its anti-inflammatory functions.
Collapse
|
88
|
Solís EJ, Pandey JP, Zheng X, Jin DX, Gupta PB, Airoldi EM, Pincus D, Denic V. Defining the Essential Function of Yeast Hsf1 Reveals a Compact Transcriptional Program for Maintaining Eukaryotic Proteostasis. Mol Cell 2016; 63:60-71. [PMID: 27320198 PMCID: PMC4938784 DOI: 10.1016/j.molcel.2016.05.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/22/2016] [Accepted: 05/11/2016] [Indexed: 11/18/2022]
Abstract
Despite its eponymous association with the heat shock response, yeast heat shock factor 1 (Hsf1) is essential even at low temperatures. Here we show that engineered nuclear export of Hsf1 results in cytotoxicity associated with massive protein aggregation. Genome-wide analysis revealed that Hsf1 nuclear export immediately decreased basal transcription and mRNA expression of 18 genes, which predominately encode chaperones. Strikingly, rescuing basal expression of Hsp70 and Hsp90 chaperones enabled robust cell growth in the complete absence of Hsf1. With the exception of chaperone gene induction, the vast majority of the heat shock response was Hsf1 independent. By comparative analysis of mammalian cell lines, we found that only heat shock-induced but not basal expression of chaperones is dependent on the mammalian Hsf1 homolog (HSF1). Our work reveals that yeast chaperone gene expression is an essential housekeeping mechanism and provides a roadmap for defining the function of HSF1 as a driver of oncogenesis.
Collapse
Affiliation(s)
- Eric J Solís
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, MA 02138, USA; Systems Biology PhD Program, Harvard University, Cambridge, MA 02138, USA
| | - Jai P Pandey
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Xu Zheng
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Dexter X Jin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Piyush B Gupta
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Edoardo M Airoldi
- Department of Statistics, Harvard University, Cambridge, MA 02138, USA
| | - David Pincus
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | - Vladimir Denic
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
89
|
Tsai YC, Lam KK, Peng YJ, Lee YM, Yang CY, Tsai YJ, Yen MH, Cheng PY. Heat shock protein 70 and AMP-activated protein kinase contribute to 17-DMAG-dependent protection against heat stroke. J Cell Mol Med 2016; 20:1889-97. [PMID: 27241357 PMCID: PMC5020632 DOI: 10.1111/jcmm.12881] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/18/2016] [Indexed: 12/25/2022] Open
Abstract
Heat shock protein 70 (Hsp70) preconditioning induces thermotolerance, and adenosine monophosphate (AMP)‐activated protein kinase (AMPK) plays a role in the process of autophagy. Here, we investigated whether 17‐dimethylaminoethylamino‐17‐demethoxy‐geldanamycin (17‐DMAG) protected against heat stroke (HS) in rats by up‐regulation of Hsp70 and phosphorylated AMPK (pAMPK). To produce HS, male Sprague–Dawley rats were placed in a chamber with an ambient temperature of 42°C. Physiological function (mean arterial pressure, heart rate and core temperature), hepatic and intestinal injury, inflammatory mediators and levels of Hsp70, pAMPK and light chain 3 (LC3B) in hepatic tissue were measured in HS rats or/and rats pre‐treated with 17‐DMAG. 17‐DMAG pre‐treatment significantly attenuated hypotension and organ dysfunction induced by HS in rats. The survival time during HS was also prolonged by 17‐DMAG treatment. Hsp70 expression was increased, whereas pAMPK levels in the liver were significantly decreased in HS rats. Following pre‐treatment with 17‐DMAG, Hsp70 protein levels increased further, and pAMPK levels were enhanced. Treatment with an AMPK activator significantly increased the LC3BII/LC3BI ratio as a marker of autophagy in HS rats. Treatment with quercetin significantly suppressed Hsp70 and pAMPK levels and reduced the protective effects of 17‐DMAG in HS rats. Both of Hsp70 and AMPK are involved in the 17‐DMAG‐mediated protection against HS. 17‐DMAG may be a promising candidate drug in the clinical setting.
Collapse
Affiliation(s)
- Yung-Chieh Tsai
- Department of Obstetrics and Gynecology, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Sport Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Kwok-Keung Lam
- Department of Pharmacology, Taipei Medical University, Taipei, Taiwan.,Department of Anesthesiology, Catholic Mercy Hospital, Hsinchu, Taiwan
| | - Yi-Jen Peng
- Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Yen-Mei Lee
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Yu Yang
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ju Tsai
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Mao-Hsiung Yen
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Pao-Yun Cheng
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
90
|
Piri N, Kwong JMK, Gu L, Caprioli J. Heat shock proteins in the retina: Focus on HSP70 and alpha crystallins in ganglion cell survival. Prog Retin Eye Res 2016; 52:22-46. [PMID: 27017896 PMCID: PMC4842330 DOI: 10.1016/j.preteyeres.2016.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
Heat shock proteins (HSPs) belong to a superfamily of stress proteins that are critical constituents of a complex defense mechanism that enhances cell survival under adverse environmental conditions. Cell protective roles of HSPs are related to their chaperone functions, antiapoptotic and antinecrotic effects. HSPs' anti-apoptotic and cytoprotective characteristics, their ability to protect cells from a variety of stressful stimuli, and the possibility of their pharmacological induction in cells under pathological stress make these proteins an attractive therapeutic target for various neurodegenerative diseases; these include Alzheimer's, Parkinson's, Huntington's, prion disease, and others. This review discusses the possible roles of HSPs, particularly HSP70 and small HSPs (alpha A and alpha B crystallins) in enhancing the survival of retinal ganglion cells (RGCs) in optic neuropathies such as glaucoma, which is characterized by progressive loss of vision caused by degeneration of RGCs and their axons in the optic nerve. Studies in animal models of RGC degeneration induced by ocular hypertension, optic nerve crush and axotomy show that upregulation of HSP70 expression by hyperthermia, zinc, geranyl-geranyl acetone, 17-AAG (a HSP90 inhibitor), or through transfection of retinal cells with AAV2-HSP70 effectively supports the survival of injured RGCs. RGCs survival was also stimulated by overexpression of alpha A and alpha B crystallins. These findings provide support for translating the HSP70- and alpha crystallin-based cell survival strategy into therapy to protect and rescue injured RGCs from degeneration associated with glaucomatous and other optic neuropathies.
Collapse
Affiliation(s)
- Natik Piri
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, CA 90095, USA.
| | - Jacky M K Kwong
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Lei Gu
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Joseph Caprioli
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
91
|
Abstract
The heat-shock response is a key factor in diverse stress scenarios, ranging from hyperthermia to protein folding diseases. However, the complex dynamics of this physiological response have eluded mathematical modeling efforts. Although several computational models have attempted to characterize the heat-shock response, they were unable to model its dynamics across diverse experimental datasets. To address this limitation, we mined the literature to obtain a compendium of in vitro hyperthermia experiments investigating the heat-shock response in HeLa cells. We identified mechanisms previously discussed in the experimental literature, such as temperature-dependent transcription, translation, and heat-shock factor (HSF) oligomerization, as well as the role of heat-shock protein mRNA, and constructed an expanded mathematical model to explain the temperature-varying DNA-binding dynamics, the presence of free HSF during homeostasis and the initial phase of the heat-shock response, and heat-shock protein dynamics in the long-term heat-shock response. In addition, our model was able to consistently predict the extent of damage produced by different combinations of exposure temperatures and durations, which were validated against known cellular-response patterns. Our model was also in agreement with experiments showing that the number of HSF molecules in a HeLa cell is roughly 100 times greater than the number of stress-activated heat-shock element sites, further confirming the model’s ability to reproduce experimental results not used in model calibration. Finally, a sensitivity analysis revealed that altering the homeostatic concentration of HSF can lead to large changes in the stress response without significantly impacting the homeostatic levels of other model components, making it an attractive target for intervention. Overall, this model represents a step forward in the quantitative understanding of the dynamics of the heat-shock response.
Collapse
|
92
|
Wang C, Zhang Y, Guo K, Wang N, Jin H, Liu Y, Qin W. Heat shock proteins in hepatocellular carcinoma: Molecular mechanism and therapeutic potential. Int J Cancer 2016; 138:1824-1834. [PMID: 26853533 DOI: 10.1002/ijc.29723] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/06/2015] [Accepted: 08/03/2015] [Indexed: 12/30/2022]
Abstract
Heat shock proteins (HSPs) are highly conserved proteins, which are expressed at low levels under normal conditions, but significantly induced in response to cellular stresses. As molecular chaperones, HSPs play crucial roles in protein homeostasis, apoptosis, invasion and cellular signaling transduction. The induction of HSPs is an important part of heat shock response, which could help cancer cells to adapt to stress conditions. Because of the constant stress condition in tumor microenvironment, HSPs overexpression is widely reported in many human cancers. In light of the significance of HSPs for cancer cells to survive and obtain invasive phenotype under stress condition, HSPs are often associated with poor prognosis and treatment resistance in many types of human cancers. It has been described that upregulation of HSPs may serve as diagnostic and prognostic markers in hepatocellular carcinoma (HCC). Targeting HSPs with specific inhibitor alone or in combination with chemotherapy regimens holds promise for the improvement of outcomes for HCC patients. In this review, we summarize the expression profiles, functions and molecular mechanisms of HSPs (HSP27, HSP70 and HSP90) as well as a HSP-like protein (clusterin) in HCC. In addition, we address progression and challenges in targeting these HSPs as novel therapeutic strategies in HCC.
Collapse
Affiliation(s)
- Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yurong Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Ning Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
93
|
Hentze N, Le Breton L, Wiesner J, Kempf G, Mayer MP. Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1. eLife 2016; 5. [PMID: 26785146 PMCID: PMC4775227 DOI: 10.7554/elife.11576] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/18/2016] [Indexed: 01/06/2023] Open
Abstract
The heat shock response is a universal homeostatic cell autonomous reaction of organisms to cope with adverse environmental conditions. In mammalian cells, this response is mediated by the heat shock transcription factor Hsf1, which is monomeric in unstressed cells and upon activation trimerizes, and binds to promoters of heat shock genes. To understand the basic principle of Hsf1 activation we analyzed temperature-induced alterations in the conformational dynamics of Hsf1 by hydrogen exchange mass spectrometry. We found a temperature-dependent unfolding of Hsf1 in the regulatory region happening concomitant to tighter packing in the trimerization region. The transition to the active DNA binding-competent state occurred highly cooperative and was concentration dependent. Surprisingly, Hsp90, known to inhibit Hsf1 activation, lowered the midpoint temperature of trimerization and reduced cooperativity of the process thus widening the response window. Based on our data we propose a kinetic model of Hsf1 trimerization.
Collapse
Affiliation(s)
- Nikolai Hentze
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Laura Le Breton
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Jan Wiesner
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Georg Kempf
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Matthias P Mayer
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
94
|
Neudegger T, Verghese J, Hayer-Hartl M, Hartl FU, Bracher A. Structure of human heat-shock transcription factor 1 in complex with DNA. Nat Struct Mol Biol 2016; 23:140-6. [PMID: 26727489 DOI: 10.1038/nsmb.3149] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/17/2015] [Indexed: 02/06/2023]
Abstract
Heat-shock transcription factor 1 (HSF1) has a central role in mediating the protective response to protein conformational stresses in eukaryotes. HSF1 consists of an N-terminal DNA-binding domain (DBD), a coiled-coil oligomerization domain, a regulatory domain and a transactivation domain. Upon stress, HSF1 trimerizes via its coiled-coil domain and binds to the promoters of heat shock protein-encoding genes. Here, we present cocrystal structures of the human HSF1 DBD in complex with cognate DNA. A comparative analysis of the HSF1 paralog Skn7 from Chaetomium thermophilum showed that single amino acid changes in the DBD can switch DNA binding specificity, thus revealing the structural basis for the interaction of HSF1 with cognate DNA. We used a crystal structure of the coiled-coil domain of C. thermophilum Skn7 to develop a model of the active human HSF1 trimer in which HSF1 embraces the heat-shock-element DNA.
Collapse
Affiliation(s)
- Tobias Neudegger
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jacob Verghese
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
95
|
Miozzo F, Sabéran-Djoneidi D, Mezger V. HSFs, Stress Sensors and Sculptors of Transcription Compartments and Epigenetic Landscapes. J Mol Biol 2015; 427:3793-816. [DOI: 10.1016/j.jmb.2015.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 01/06/2023]
|
96
|
Ohno Y, Egawa T, Yokoyama S, Nakai A, Sugiura T, Ohira Y, Yoshioka T, Goto K. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice. Acta Physiol (Oxf) 2015; 215:191-203. [PMID: 26347147 DOI: 10.1111/apha.12600] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/20/2015] [Accepted: 09/03/2015] [Indexed: 01/30/2023]
Abstract
AIM Effects of heat shock transcription factor 1 (HSF1) deficiency on heat stress-associated increase in slow soleus muscle mass of mice were investigated. METHODS Both HSF1-null and wild-type mice were randomly assigned to control and heat-stressed groups. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anaesthesia. RESULTS Significant increase in wet and dry weights, and protein content of soleus muscle in wild-type mice was observed seven days after the application of the heat stress. However, heat stress had no impact on soleus muscle mass in HSF1-null mice. Neither type of mice exhibited much effect of heat stress on HSF mRNA expression (HSF1, HSF2 and HSF4). On the other hand, heat stress upregulated heat shock proteins (HSPs) at the mRNA (HSP72) and protein (HSP72 and HSP110) levels in wild-type mice, but not in HSF1-null mice. The population of Pax7-positive nuclei relative to total myonuclei of soleus muscle in wild-type mice was significantly increased by heat stress, but not in HSF1-null mice. Furthermore, the absence of HSF1 gene suppressed heat stress-associated phosphorylation of Akt and p70 S6 kinase (p-p70S6K) in soleus muscle. CONCLUSION Heat stress-associated increase in skeletal muscle mass may be induced by HSF1 and/or HSF1-mediated stress response that activates muscle satellite cells and Akt/p70S6K signalling pathway.
Collapse
Affiliation(s)
- Y. Ohno
- Laboratory of Physiology; School of Health Sciences; Toyohashi SOZO University; Toyohashi Japan
| | - T. Egawa
- Department of Physiology; Graduate School of Health Sciences; Toyohashi SOZO University; Toyohashi Japan
- Research Fellow of the Japan Society for the Promotion of Science; Tokyo Japan
| | - S. Yokoyama
- Laboratory of Physiology; School of Health Sciences; Toyohashi SOZO University; Toyohashi Japan
| | - A. Nakai
- Department of Molecular Biology; Graduate School of Medicine; Yamaguchi University; Ube Japan
| | - T. Sugiura
- Faculty of Education; Yamaguchi University; Yamaguchi Japan
| | - Y. Ohira
- Graduate School of Health and Sports Science; Doshisha University; Kyotanabe Japan
| | | | - K. Goto
- Laboratory of Physiology; School of Health Sciences; Toyohashi SOZO University; Toyohashi Japan
- Department of Physiology; Graduate School of Health Sciences; Toyohashi SOZO University; Toyohashi Japan
| |
Collapse
|
97
|
Medkour Y, Svistkova V, Titorenko VI. Cell-Nonautonomous Mechanisms Underlying Cellular and Organismal Aging. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:259-97. [PMID: 26811290 DOI: 10.1016/bs.ircmb.2015.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell-autonomous mechanisms underlying cellular and organismal aging in evolutionarily distant eukaryotes have been established; these mechanisms regulate longevity-defining processes within a single eukaryotic cell. Recent findings have provided valuable insight into cell-nonautonomous mechanisms modulating cellular and organismal aging in eukaryotes across phyla; these mechanisms involve a transmission of various longevity factors between different cells, tissues, and organisms. Herein, we review such cell-nonautonomous mechanisms of aging in eukaryotes. We discuss the following: (1) how low molecular weight transmissible longevity factors modulate aging and define longevity of cells in yeast populations cultured in liquid media or on solid surfaces, (2) how communications between proteostasis stress networks operating in neurons and nonneuronal somatic tissues define longevity of the nematode Caenorhabditis elegans by modulating the rates of aging in different tissues, and (3) how different bacterial species colonizing the gut lumen of C. elegans define nematode longevity by modulating the rate of organismal aging.
Collapse
Affiliation(s)
- Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
98
|
Carnemolla A, Lazell H, Moussaoui S, Bates GP. In Vivo Profiling Reveals a Competent Heat Shock Response in Adult Neurons: Implications for Neurodegenerative Disorders. PLoS One 2015; 10:e0131985. [PMID: 26134141 PMCID: PMC4489736 DOI: 10.1371/journal.pone.0131985] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022] Open
Abstract
The heat shock response (HSR) is the main pathway used by cells to counteract proteotoxicity. The inability of differentiated neurons to induce an HSR has been documented in primary neuronal cultures and has been proposed to play a critical role in ageing and neurodegeneration. However, this accepted dogma has not been demonstrated in vivo. We used BAC transgenic mice generated by the Gene Expression Nervous System Atlas project to investigate the capacity of striatal medium sized spiny neurons to induce an HSR as compared to that of astrocytes and oligodendrocytes. We found that all cell populations were competent to induce an HSR upon HSP90 inhibition. We also show the presence and relative abundance of heat shock-related genes and proteins in these striatal cell populations. The identification of a competent HSR in adult neurons supports the development of therapeutics that target the HSR pathway as treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Alisia Carnemolla
- Dept. Medical and Molecular Genetics, King’s College London, 8th Floor Tower Wing, Guy’s Hospital, Great Maze Pond, London, SE1 9RT, United Kingdom
| | - Hayley Lazell
- Dept. Medical and Molecular Genetics, King’s College London, 8th Floor Tower Wing, Guy’s Hospital, Great Maze Pond, London, SE1 9RT, United Kingdom
| | - Saliha Moussaoui
- Novartis Institute for Biomedical Science, Neuroscience Discovery, Basel, CH-4002, Switzerland
| | - Gillian P. Bates
- Dept. Medical and Molecular Genetics, King’s College London, 8th Floor Tower Wing, Guy’s Hospital, Great Maze Pond, London, SE1 9RT, United Kingdom
- * E-mail:
| |
Collapse
|
99
|
Yang J, Zhang Y, Zhao S, Zhang Z, Tong X, Wei F, Lu Z. Heat shock protein 70 induction by glutamine increases the α-synuclein degradation in SH-SY5Y neuroblastoma cells. Mol Med Rep 2015; 12:5524-30. [PMID: 26135068 DOI: 10.3892/mmr.2015.4027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 06/05/2015] [Indexed: 11/06/2022] Open
Abstract
Functional defects in heat shock proteins (HSPs), e.g. Hsp70, have been reported to have a key role in Parkinson's disease (PD). Overexpressed Hsp70 re‑folds aggregated α‑synuclein to generate the non‑toxic and non‑aggregated form. Thus, Hsp70 is a well‑defined therapeutic target, and Hsp70 promotion is an efficient strategy to prevent or even reverse the α‑synuclein‑induced toxicity in PD. The present study investigated the promotion of Hsp70 expression in SH‑SY5Y neuroblastoma cells by glutamine (Gln), which has recently been recognized to induce Hsp70 expression. Furthermore, the role of heat shock factor (HSF)‑1 in the Gln‑mediated upregulation of Hsp70 expression was investigated. In addition, the regulatory role of Gln in α‑synuclein degradation in α‑synuclein‑overexpressing SH‑SY5Y cells was determined. The results of the present study demonstrated that Gln treatment significantly upregulated Hsp70 expression at the mRNA as well as the protein level in a dose‑dependent and time‑dependent manner. Gln‑induced Hsp70 upregulation was found to be HSF‑1‑dependent, as HSF‑1 knockdown abrogated the Hsp70 upregulation by Gln in α‑synuclein‑overexpressing SH‑SY5Y cells. In conclusion, present study confirmed that Gln upregulates Hsp70 expression in SH‑SY5Y neuroblastoma cells in an HSF‑1‑dependent manner. The upregulation of Hsp70 by Gln increases the α‑synuclein degradation. Therefore, Gln may be a potential therapeutic agent to prevent α‑synuclein aggregation in PD.
Collapse
Affiliation(s)
- Jia Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yanmei Zhang
- Department of Neurology, The People's Hospital of Inner Mongolia, Hohhot, Inner Mongolia 010055, P.R. China
| | - Shigang Zhao
- Department of Neurology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Zhelin Zhang
- Department of Neurology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Xiuqing Tong
- Department of Neurology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Fang Wei
- Department of Neurology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
100
|
Kajiya H, Katsumata Y, Sasaki M, Tsutsumi T, Kawaguchi M, Fukushima T. Photothermal stress triggered by near-infrared-irradiated carbon nanotubes up-regulates osteogenesis and mineral deposition in tooth-extracted sockets. Int J Hyperthermia 2015; 31:635-42. [PMID: 26000973 DOI: 10.3109/02656736.2015.1041430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The bone regenerative healing process is often prolonged, with a high risk of infection particularly in elderly and diseased patients. A reduction in healing process time usually requires mechanical stress devices, chemical cues, or laser/thermal therapies. Although these approaches have been used extensively for the reduction of bone healing time, the exact mechanisms involved in thermal stress-induced bone regeneration remain unclear. METHODS Photothermal stress (PTS) stimulation was carried out using a novel photothermal device, composed of an alginate gel (AG) including carbon nanotubes (CNT-AGs) and their irradiator with near-infrared (NIR) light. We investigated the effects of optimal hyperthermia on osteogenesis, its signalling pathway in vitro and mineral deposition in tooth-extracted sockets in vivo. RESULTS The PTS (10 min at 42 °C, every day), triggered by NIR-induced CNT, increased the activity of alkaline phosphatase (ALP) in mouse osteoblast MC3T3-E1 cells in a time-dependent manner compared with the non-thermal stress control. PTS significantly induced the expression of osteogenic-related molecules such as ALP, RUNX2 and Osterix in a time-dependent manner with phosphorylated mitogen-activated protein kinases (MAPK). PTS increased the expression of heat shock factor (HSF) 2, but not HSF1, resulting in activation of heat shock protein 27. PTS significantly up-regulated mineral deposition in tooth-extracted sockets in normal and ovariectomised osteoporotic model mice in vivo. CONCLUSIONS Our novel CNT-based PTS up-regulated osteogenesis via activation of heat shock-related molecules, resulting in promotion of mineral deposition in enhanced tooth-extracted sockets.
Collapse
Affiliation(s)
- Hiroshi Kajiya
- a Centre for Regenerative Medicine, Fukuoka Dental College , Fukuoka .,b Department of Physiological Science and Molecular Biology , Fukuoka Dental College , Fukuoka , and
| | - Yuri Katsumata
- a Centre for Regenerative Medicine, Fukuoka Dental College , Fukuoka
| | - Mina Sasaki
- b Department of Physiological Science and Molecular Biology , Fukuoka Dental College , Fukuoka , and
| | - Takashi Tsutsumi
- b Department of Physiological Science and Molecular Biology , Fukuoka Dental College , Fukuoka , and
| | - Minoru Kawaguchi
- a Centre for Regenerative Medicine, Fukuoka Dental College , Fukuoka .,c Department of Dental Engineering , Fukuoka Dental College , Japan
| | - Tadao Fukushima
- a Centre for Regenerative Medicine, Fukuoka Dental College , Fukuoka
| |
Collapse
|