51
|
Sood R, Porter AC, Olsen DA, Cavener DR, Wek RC. A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2alpha. Genetics 2000; 154:787-801. [PMID: 10655230 PMCID: PMC1460965 DOI: 10.1093/genetics/154.2.787] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A family of protein kinases regulates translation in response to different cellular stresses by phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF-2alpha). In yeast, an eIF-2alpha kinase, GCN2, functions in translational control in response to amino acid starvation. It is thought that uncharged tRNA that accumulates during amino acid limitation binds to sequences in GCN2 homologous to histidyl-tRNA synthetase (HisRS) enzymes, leading to enhanced kinase catalytic activity. Given that starvation for amino acids also stimulates phosphorylation of eIF-2alpha in mammalian cells, we searched for and identified a GCN2 homologue in mice. We cloned three different cDNAs encoding mouse GCN2 isoforms, derived from a single gene, that vary in their amino-terminal sequences. Like their yeast counterpart, the mouse GCN2 isoforms contain HisRS-related sequences juxtaposed to the kinase catalytic domain. While GCN2 mRNA was found in all mouse tissues examined, the isoforms appear to be differentially expressed. Mouse GCN2 expressed in yeast was found to inhibit growth by hyperphosphorylation of eIF-2alpha, requiring both the kinase catalytic domain and the HisRS-related sequences. Additionally, lysates prepared from yeast expressing mGCN2 were found to phosphorylate recombinant eIF-2alpha substrate. Mouse GCN2 activity in both the in vivo and in vitro assays required the presence of serine-51, the known regulatory phosphorylation site in eIF-2alpha. Together, our studies identify a new mammalian eIF-2alpha kinase, GCN2, that can mediate translational control.
Collapse
Affiliation(s)
- R Sood
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
52
|
Abstract
In this study we demonstrate that ade9 plays an indirect role in purine biosynthesis as a non-functional allele of SER1 in Saccharomyces cerevisiae. The SER1 locus, encoding 3-phosphoserine aminotransferase required for serine biosynthesis, is located on chromosome XV and resides approximately where ade9 had previously been mapped genetically. A minimal functional construct of SER1 is necessary and sufficient to complement both the adenine- and serine-requiring phenotypes of ade9 strains. In addition, adequate exogenous serine levels mask the adenine phenotype of ade9. A disruption of SER1 behaves in the same manner phenotypically as the original ade9 strain. Therefore, ade9 can be more accurately described as an allele of SER1.
Collapse
Affiliation(s)
- P S Buc
- Department of Biology, Georgetown University, Washington, DC 20057-1229, USA
| | | |
Collapse
|
53
|
Kimball SR, Fabian JR, Pavitt GD, Hinnebusch AG, Jefferson LS. Regulation of guanine nucleotide exchange through phosphorylation of eukaryotic initiation factor eIF2alpha. Role of the alpha- and delta-subunits of eiF2b. J Biol Chem 1998; 273:12841-5. [PMID: 9582312 DOI: 10.1074/jbc.273.21.12841] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The guanine nucleotide exchange activity of eIF2B plays a key regulatory role in the translation initiation phase of protein synthesis. The activity is markedly inhibited when the substrate, i. e. eIF2, is phosphorylated on Ser51 of its alpha-subunit. Genetic studies in yeast implicate the alpha-, beta-, and delta-subunits of eIF2B in mediating the inhibition by substrate phosphorylation. However, the mechanism involved in the inhibition has not been defined biochemically. In the present study, we have coexpressed the five subunits of rat eIF2B in Sf9 cells using the baculovirus system and have purified the recombinant holoprotein to >90% homogeneity. We have also expressed and purified a four-subunit eIF2B complex lacking the alpha-subunit. Both the five- and four-subunit forms of eIF2B exhibit similar rates of guanine nucleotide exchange activity using unphosphorylated eIF2 as substrate. The five-subunit form is inhibited by preincubation with phosphorylated eIF2 (eIF2(alphaP)) and exhibits little exchange activity when eIF2(alphaP) is used as substrate. In contrast, eIF2B lacking the alpha-subunit is insensitive to inhibition by eIF2(alphaP) and is able to exchange guanine nucleotide using eIF2(alphaP) as substrate at a faster rate compared with five-subunit eIF2B. Finally, a double point mutation in the delta-subunit of eIF2B has been identified that results in insensitivity to inhibition by eIF2(alphaP) and exhibits little exchange activity when eIF2(alphaP) is used as substrate. The results provide the first direct biochemical evidence that the alpha- and delta-subunits of eIF2B are involved in mediating the effect of substrate phosphorylation.
Collapse
Affiliation(s)
- S R Kimball
- Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | |
Collapse
|
54
|
Cuesta R, Hinnebusch AG, Tamame M. Identification of GCD14 and GCD15, novel genes required for translational repression of GCN4 mRNA in Saccharomyces cerevisiae. Genetics 1998; 148:1007-20. [PMID: 9539420 PMCID: PMC1460055 DOI: 10.1093/genetics/148.3.1007] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Saccharomyces cerevisiae, expression of the transcriptional activator GCN4 increases at the translational level in response to starvation for an amino acid. The products of multiple GCD genes are required for efficient repression of GCN4 mRNA translation under nonstarvation conditions. The majority of the known GCD genes encode subunits of the general translation initiation factor eIF-2 or eIF-2B. To identify additional initiation factors in yeast, we characterized 65 spontaneously arising Gcd- mutants. In addition to the mutations that were complemented by known GCD genes or by GCN3, we isolated mutant alleles of two new genes named GCD14 and GCD15. Recessive mutations in these two genes led to highly unregulated GCN4 expression and to derepressed transcription of genes in the histidine biosynthetic pathway under GCN4 control. The derepression of GCN4 expression in gcd14 and gcd15 mutants occurred with little or no increase in GCN4 mRNA levels, and it was dependent on upstream open reading frames (uORFs) in GCN4 mRNA that regulate its translation. We conclude that GCD14 and GCD15 are required for repression of GCN4 mRNA translation by the uORFs under conditions of amino acid sufficiency. The gcd14 and gcd15 mutations confer a slow-growth phenotype on nutrient-rich medium, and gcd15 mutations are lethal when combined with a mutation in gcd13. Like other known GCD genes, GCD14 and GCD15 are therefore probably required for general translation initiation in addition to their roles in GCN4-specific translational control.
Collapse
MESH Headings
- Alcohol Oxidoreductases
- Aminohydrolases
- Cloning, Molecular
- DNA-Binding Proteins
- Epistasis, Genetic
- Eukaryotic Initiation Factor-2/metabolism
- Eukaryotic Initiation Factor-2B
- Fungal Proteins/genetics
- Gene Deletion
- Gene Expression Regulation, Fungal
- Genes, Dominant
- Genes, Fungal
- Genes, Recessive
- Genes, Regulator
- Genetic Complementation Test
- Meiosis
- Mutagenesis
- Phenotype
- Protein Biosynthesis
- Protein Kinases/genetics
- Pyrophosphatases
- RNA, Fungal
- RNA, Messenger
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Transcription Factors/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- R Cuesta
- Instituto de Microbiología Bioquímica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Spain
| | | | | |
Collapse
|
55
|
Zhu S, Wek RC. Ribosome-binding domain of eukaryotic initiation factor-2 kinase GCN2 facilitates translation control. J Biol Chem 1998; 273:1808-14. [PMID: 9430731 DOI: 10.1074/jbc.273.3.1808] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A family of protein kinases regulate translation initiation in response to cellular stresses by phosphorylation of eukaryotic initiation factor-2 (eIF-2). One family member from yeast, GCN2, contains a region homologous to histidyl-tRNA synthetases juxtaposed to the kinase catalytic domain. It is thought that uncharged tRNA accumulating during amino acid starvation binds to the synthetase-related sequences and stimulates phosphorylation of the alpha subunit of eIF-2. In this report, we define another domain in GCN2 that functions to target the kinase to ribosomes. A truncated version of GCN2 containing only amino acid residues 1467 to 1590 can independently associate with the translational machinery. Interestingly, this region of GCN2 shares sequence similarities with the core of the double-stranded RNA-binding domain (DRBD). Substitutions of the lysine residues conserved among DRBD sequences block association of GCN2 with ribosomes and impaired the ability of the kinase to stimulate translational control in response to amino acid limitation. Additionally, as found for other DRBD sequences, recombinant protein containing GCN2 residues 1467-1590 can bind double-stranded RNA in vitro, suggesting that interaction with rRNA mediates ribosome targeting. These results indicate that appropriate ribosome localization of the kinase is an obligate step in the mechanism leading to translational control by GCN2.
Collapse
Affiliation(s)
- S Zhu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122, USA
| | | |
Collapse
|
56
|
Benni ML, Neigeborn L. Identification of a new class of negative regulators affecting sporulation-specific gene expression in yeast. Genetics 1997; 147:1351-66. [PMID: 9383076 PMCID: PMC1208257 DOI: 10.1093/genetics/147.3.1351] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We characterized two yeast loci, MDS3 and PMD1, that negatively regulate sporulation. Initiation of sporulation is mediated by the meiotic activator IME1, which relies on MCK1 for maximal expression. We isolated the MDS3-1 allele (encoding a truncated form of Mds3p) as a suppressor that restores IME1 expression in mck1 mutants. mds3 null mutations confer similar suppression phenotypes as MDS3-1, indicating that Mds3p is a negative regulator of sporulation and the MDS3-1 allele confers a dominant-negative phenotype. PMD1 is predicted to encode a protein sharing significant similarity with Mds3p. mds3 pmd1 double mutants are better suppressors of mck1 than is either single mutant, indicating that Mds3p and Pmd1p function synergistically. Northern blot analysis revealed that suppression is due to increased IME1 transcript accumulation. The roles of Mds3p and Pmd1p are not restricted to the MCK1 pathway because mds3 pmd1 mutations also suppress IME1 expression defects associated with MCK1-independent sporulation mutants. Furthermore, mds3 pmd1 mutants express significant levels of IME1 even in vegetative cells and this unscheduled expression results in premature sporulation. These phenotypes and interactions with RAS2-Val19 suggest that unscheduled derepression of IME1 is probably due to a defect in recognition of nutritional status.
Collapse
Affiliation(s)
- M L Benni
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway 08854-8020, USA
| | | |
Collapse
|
57
|
Hinnebusch AG. Translational regulation of yeast GCN4. A window on factors that control initiator-trna binding to the ribosome. J Biol Chem 1997; 272:21661-4. [PMID: 9268289 DOI: 10.1074/jbc.272.35.21661] [Citation(s) in RCA: 437] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- A G Hinnebusch
- Laboratory of Eukaryotic Gene Regulation, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
58
|
Dever TE. Using GCN4 as a reporter of eIF2 alpha phosphorylation and translational regulation in yeast. Methods 1997; 11:403-17. [PMID: 9126554 DOI: 10.1006/meth.1996.0437] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Molecular genetic analyses in yeast are a powerful method to study gene regulation. Conservation of the mechanism and regulation of protein synthesis between yeast and mammalian cells makes yeast a good model system for the analysis of translation. One of the most common mechanisms of translational regulation in mammalian cells is the phosphorylation of serine-51 on the alpha subunit of the translation initiation factor elF2, which causes an inhibition of general translation. In contrast, in the yeast Saccharomyces cerevisiae phosphorylation of elF2 alpha on serine-51 by the GCN2 protein kinase mediates the translational induction of GCN4 expression. The unique structure of the GCN4 mRNA makes GCN4 expression especially sensitive to elF2 alpha phosphorylation, and the simple microbiological tests developed in yeast to analyze GCN4 expression serve as good reporters of elF2 alpha phosphorylation. It is relatively simple to express heterologous proteins in yeast, and it has been shown that the mammalian elF2 alpha kinases will functionally substitute for GCN2. Structure-function analyses of translation factors or translational regulators can also be performed by assaying for effects on general and GCN4-specific translation. Three tests can be used to study elF2 alpha phosphorylation and/or translational activity in yeast. First, general translation can be monitored by simple growth tests, while GCN4 expression can be analyzed using sensitive replicaplating tests. Second, GCN4 translation can be quantitated by measuring expression from GCN4-lacZ reporter constructs. Finally, isoelectric focusing gels can be used to directly monitor in vivo phosphorylation of elF2 alpha in yeast.
Collapse
Affiliation(s)
- T E Dever
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
59
|
Coglievina M, Klima R, Bertani I, Delneri D, Zaccaria P, Bruschi CV. Sequencing of a 40.5 kb fragment located on the left arm of chromosome VII from Saccharomyces cerevisiae. Yeast 1997; 13:55-64. [PMID: 9046087 DOI: 10.1002/(sici)1097-0061(199701)13:1<55::aid-yea48>3.0.co;2-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The nucleotide sequence of a 40.5 kb DNA fragment from the left arm of chromosome VII of Saccharomyces cerevisiae was determined and analysed. Twenty-eight open reading frames (ORFs) longer than 300 nucleotides were identified. Eight of the them correspond to the following known yeast genes: EMP24, GCN1, SPO8, COX13, CDC55, RPS26, COX4 and LSR1, also called GTS1. Twelve ORFs are new, among them eight show homology with other genes while four have no homology with any sequence in the databases. Eight additional ORFs are internal to or partially overlapping with other ORFs.
Collapse
Affiliation(s)
- M Coglievina
- Microbiology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
60
|
Erickson FL, Hannig EM. Ligand interactions with eukaryotic translation initiation factor 2: role of the gamma-subunit. EMBO J 1996; 15:6311-20. [PMID: 8947054 PMCID: PMC452454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Eukaryotic translation initiation factor 2 (eIF-2) comprises three non-identical subunits alpha, beta and gamma. In vitro, eIF-2 binds the initiator methionyl-tRNA in a GTP-dependent fashion. Based on similarities between eukaryotic eIF-2gamma proteins and eubacterial EF-Tu proteins, we previously proposed a major role for the gamma-subunit in binding guanine nucleotide and tRNA. We have tested this hypothesis by examining the biochemical activities of yeast eIF-2 purified from wild-type strains and strains harboring mutations in the eIF-2gamma structural gene (GCD11) predicted to alter ligand binding by eIF-2. The alteration of tyrosine 142 in yeast eIF-2gamma, corresponding to histidine 66 in Escherichia coli EF-Tu, dramatically reduced the affinity of eIF-2 for Met-tRNAi(Met) without affecting the k(off) value for guanine nucleotides. In contrast, non-lethal substitutions at a conserved lysine residue (K250) in the putative guanine ring-binding loop increased the off-rate for GDP, thereby mimicking the function of the guanine nucleotide exchange factor eIF-2B, without altering the apparent dissociation constant for Met-tRNAi(Met). For eIF-2[gamma-K250R], the increased off-rate also seen for GTP was masked by the presence of Met-tRNAi(Met) in vitro. In vivo, increasing the dose of the yeast initiator tRNA gene suppressed the slow-growth phenotype and reduced GCN4 expression in gcd11-K250R and gcd11-Y142H strains. These studies indicate that the gamma-subunit of eIF-2 does indeed provide EF-Tu-like function to the eIF-2 complex, and further suggest that the level of Met-tRNAi(Met) is critical for maintaining wild-type rates of initiation in vivo.
Collapse
Affiliation(s)
- F L Erickson
- University of Texas at Dallas, Department of Molecular and Cell Biology, Richardson 75083-0688, USA
| | | |
Collapse
|
61
|
Kimball SR, Mellor H, Flowers KM, Jefferson LS. Role of translation initiation factor eIF-2B in the regulation of protein synthesis in mammalian cells. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 54:165-96. [PMID: 8768075 DOI: 10.1016/s0079-6603(08)60363-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S R Kimball
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey 17033, USA
| | | | | | | |
Collapse
|
62
|
Belfield GP, Ross-Smith NJ, Tuite MF. Translation elongation factor-3 (EF-3): An evolving eukaryotic ribosomal protein? J Mol Evol 1995. [DOI: 10.1007/bf01215185] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
63
|
Belfield GP, Ross-Smith NJ, Tuite MF. Translation elongation factor-3 (EF-3): an evolving eukaryotic ribosomal protein? J Mol Evol 1995; 41:376-87. [PMID: 7563124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fungi appear to be unique in their requirement for a third soluble translation elongation factor. This factor, designated elongation factor 3 (EF-3), exhibits ribosome-dependent ATPase and GTPase activities that are not intrinsic to the fungal ribosome but are nevertheless essential for translation elongation in vivo. The EF-3 polypeptide has been identified in a wide range of fungal species and the gene encoding EF-3 (YEF3) has been isolated from four fungal species (Saccharomyces cerevisiae, Candida albicans, Candida guillermondii, and Pneumocystis carinii). Computer-assisted analysis of the predicted S. cerevisiae EF-3 amino acid sequence was used to identify several potential functional domains; two ATP binding/catalytic domains conserved with equivalent domains in members of the ATP-Binding Cassette (ABC) family of proteins, an amino-terminal region showing significant similarity to the E. coli S5 ribosomal protein, and regions of predicted interaction with rRNA, tRNA, and mRNA. Furthermore, EF-3 was also found to display amino acid similarity to myosin proteins whose cellular function is to provide the motive force of muscle. The identification of these regions provides clues to both the evolution and function of EF-3. The predicted functional regions are conserved among all known fungal EF-3 proteins and a recently described homologue encoded by the Chlorella virus CVK2. We propose that EF-3 may play a role in the ribosomal optimization of the accuracy of fungal protein synthesis by altering the conformation and activity of a ribosomal "accuracy center," which is equivalent to the S4-S5-S12 ribosomal protein accuracy center domain of the E. coli ribosome. Furthermore, we suggest that EF-3 represents an evolving ribosomal protein with properties analogous to the intrinsic ATPase activities of higher eukaryotic ribosomes, which has wider implications for the evolutionary divergence of fungi from other eukaryotes.
Collapse
Affiliation(s)
- G P Belfield
- Research School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | | |
Collapse
|
64
|
Hawkins AR, Lamb HK. The molecular biology of multidomain proteins. Selected examples. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 232:7-18. [PMID: 7556173 DOI: 10.1111/j.1432-1033.1995.tb20775.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of this review is to give an overview of the contribution molecular biology can make to an understanding of the functions and interactions within multidomain proteins. The contemporary advantages ascribed to multidomain proteins include (a) the potential for metabolite channelling and the protection of unstable intermediates; (b) the potential for interactions between domains catalysing sequential steps in a metabolic pathway, thereby giving the potential for allosteric interactions; and (c) the facility to produce enzymic activities in a fixed stoichiometric ratio. The alleged advantages in (a) and (b) however apply equally well to multi-enzyme complexes; therefore, specific examples of these phenomena are examined in multidomain proteins to determine whether the proposed advantages are apparent. Some transcription-regulating proteins active in the control of metabolic pathways are composed of multiple domains and their control is exerted and modulated at the molecular level by protein-DNA, protein-protein and protein-metabolite interactions. These complex recognition events place strong constraints upon the proteins involved, requiring the recognition of and interaction with different classes of cellular metabolites and macromolecules. Specific examples of transcription-regulating proteins are examined to probe how their multidomain nature facilitates a general solution to the problem of multiple recognition events. A general unifying theme that emerges from these case studies is that a basic unitary design of modules provided by enzymes is exploited to produce multidomain proteins by a complex series of gene duplication and fusion events. Successful modules provided by enzymes are co-opted to new function by selection apparently acting upon duplicated copies of the genes encoding the enzymes. In multidomain transcription-regulating proteins, former enzyme modules can be recruited as molecular sensors that facilitate presumed allosteric interactions necessary for the molecular control of transcription.
Collapse
Affiliation(s)
- A R Hawkins
- Department of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, England
| | | |
Collapse
|
65
|
Müller F, Krüger D, Sattlegger E, Hoffmann B, Ballario P, Kanaan M, Barthelmess IB. The cpc-2 gene of Neurospora crassa encodes a protein entirely composed of WD-repeat segments that is involved in general amino acid control and female fertility. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:162-73. [PMID: 7651339 DOI: 10.1007/bf02190797] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Phenotypic and molecular studies of the mutation U142 indicate that the cpc-2+ gene is required to activate general amino acid control under conditions of amino acid limitation in the vegetative growth phase, and for formation of protoperithecia in preparation for the sexual phase of the life cycle of Neurospora crassa. The cpc-2 gene was cloned by complementation of the cpc-2 mutation in a his-2ts bradytrophic background. Genomic and cDNA sequence analysis indicated a 1636 bp long open reading frame interrupted by four introns. The deduced 316 amino acid polypeptide reveals 70% positional identity over its full length with G-protein beta-subunit-related polypeptides found in humans, rat (RACK1), chicken, tobacco and Chlamydomonas. With the exception of RACK1 the function of these proteins is obscure. All are entirely made up of seven WD-repeats. Expression studies of cpc-2 revealed one abundant transcript in the wild type; in the mutant its level is drastically reduced. In mutant cells transformed with the complementing sequence, the transcript level, enzyme regulation and female fertility are restored. In the wild type the cpc-2 transcript is down-regulated under conditions of amino acid limitation. With cpc-2 a new element involved in general amino acid control has been identified, indicating a function for a WD-repeat protein that belongs to a class that is conserved throughout the evolution of eukaryotes.
Collapse
Affiliation(s)
- F Müller
- Institut für Angewandte Genetik, Universität Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
66
|
Iizuka N, Chen C, Yang Q, Johannes G, Sarnow P. Cap-independent translation and internal initiation of translation in eukaryotic cellular mRNA molecules. Curr Top Microbiol Immunol 1995; 203:155-77. [PMID: 7555089 DOI: 10.1007/978-3-642-79663-0_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- N Iizuka
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
67
|
Hinnebusch AG. Translational control of GCN4: an in vivo barometer of initiation-factor activity. Trends Biochem Sci 1994; 19:409-14. [PMID: 7817398 DOI: 10.1016/0968-0004(94)90089-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phosphorylation of translation initiation factor-2 (eIF-2) is an adaptive mechanism for downregulating protein synthesis under conditions of starvation and stress. The yeast Saccharomyces has evolved a sophisticated means of increasing translation of GCN4 mRNA when eIF-2 is phosphorylated, allowing the induction of an important stress-response protein when expression of most other genes is decreasing. Because translation of GCN4 mRNA is so tightly coupled to eIF-2 activity, genetic analysis of this system has provided unexpected insights into the regulation of eIF-2 and its guanine nucleotide exchange factor, eIF-2B.
Collapse
Affiliation(s)
- A G Hinnebusch
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, MD 20892
| |
Collapse
|
68
|
Coccia E, Krust B, Hovanessian A. Specific inhibition of viral protein synthesis in HIV-infected cells in response to interferon treatment. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31623-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
69
|
Abstract
Amino acid starvation of mammalian cells results in a pronounced fall in the overall rate of protein synthesis. This is associated with increased phosphorylation of the alpha-subunit of the initiation factor eIF-2, which in turn impairs the activity of the guanine nucleotide exchange factor, eIF-2B. Similar mechanisms have now been found to operate in the yeast, Saccharomyces cerevisiae, where the major physiological result is to circumvent the lack of external amino acids by promoting the translation of a transcription factor, GCN4, that facilitates the expression of a number of enzymes required for amino acid biosynthesis. This article reviews current knowledge of these mechanisms in both mammalian and yeast cells and identifies questions still requiring elucidation.
Collapse
Affiliation(s)
- V M Pain
- School of Biological Sciences, University of Sussex, Falmer, Brighton, UK
| |
Collapse
|
70
|
Hinnebusch AG. Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2. Mol Microbiol 1993; 10:215-23. [PMID: 7934812 DOI: 10.1111/j.1365-2958.1993.tb01947.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) is one of the best-characterized mechanisms for down-regulating total protein synthesis in mammalian cells in response to various stress conditions. Recent work indicates that regulation of the GCN4 gene of Saccharomyces cerevisiae by amino acid availability represents a gene-specific case of translational control by phosphorylation of eIF-2 alpha. Four short open reading frames in the leader of GCN4 mRNA (uORFs) restrict the flow of scanning ribosomes from the cap site to the GCN4 initiation codon. When amino acids are abundant, ribosomes translate the first uORF and reinitiate at one of the remaining uORFs in the leader, after which they dissociate from the mRNA. Under conditions of amino acid starvation, many ribosomes which have translated uORF1 fail to reinitiate at uORFs 2-4 and utilize the GCN4 start codon instead. Failure to reinitiate at uORFs 2-4 in starved cells results from a reduction in the GTP-bound form of eIF-2 that delivers charged initiator tRNA(iMet) to the ribosome. When the levels of eIF-2.GTP.Met-tRNA(iMet) ternary complexes are low, many ribosomes will not rebind this critical initiation factor following translation of uORF1 until after scanning past uORF4, but before reaching GCN4. Phosphorylation of eIF-2 by the protein kinase GCN2 decreases the concentration of eIF-2.GTP.Met-tRNA(iMet) complexes by inhibiting the guanine nucleotide exchange factor for eIF-2, which is the same mechanism utilized in mammalian cells to inhibit total protein synthesis by phosphorylation of eIF-2.
Collapse
Affiliation(s)
- A G Hinnebusch
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
71
|
Affiliation(s)
- R J Jackson
- Department of Biochemistry, University of Cambridge, England
| |
Collapse
|